Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/13643
Title: Projective Tensor Product with Polynomial And Alpha Minimal of Banach Spaces
Other Titles: ضرب ممتدة الاسقاط مع كثيرة الحدود وأصغرية ألفا لفضاءات باناخ
Authors: Juma, Manal Yagoub Ahmed
Supervisor, Shawgy Hussein Abd Alla
Keywords: Mathematics
Extended projection
Many border
Banach spaces
Issue Date: 10-Jan-2016
Publisher: Sudan University of Science and Technology
Citation: Juma , Manal Yagoub Ahmed . Projective Tensor Product with Polynomial And Alpha Minimal of Banach Spaces / Manal Yagoub Ahmed Juma ; Shawgy Hussein Abd Alla .- Khartoum: Sudan University of Science and Technology, college of Science , 2016 .- 203p. :ill. ;28cm .-PhD.
Abstract: A Banach space with few operation and an arbitrarily distortable are shown. We also show the sub symmetric sequences ,minimal spaces and subspaces with isomorphically homogenous sequences in a Banach spaces. Renormings, external structures and quantification of weak sequential completeness are obtained .We determine the big slice phenomena in M-embedded and L-embedded , the characterizations of unitaries with iii weakly open sets in the unit ball of the projective tensor product of Banach spaces. We study Banach spaces which satisfy linear identities ,polynomials and polynomial norms .We characterize the incomparability , non isomorphic and minimality and α-minimal Banach space.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/13643
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Projective Tensor Product... .pdfTitle55.28 kBAdobe PDFView/Open
ABSTRACT.pdfAbastract702.05 kBAdobe PDFView/Open
CH 1.pdfchapter625.44 kBAdobe PDFView/Open
CH 2.pdfchapter446.36 kBAdobe PDFView/Open
CH 3.pdfchapter626.3 kBAdobe PDFView/Open
CH 4.pdfchapter631.61 kBAdobe PDFView/Open
CH 5.pdfchapter671.03 kBAdobe PDFView/Open
Chapter 6.pdfchapter667.83 kBAdobe PDFView/Open
References.pdfRefernce164.75 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.