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Chapter 3 

Renormings  and Quantification 

We construct an exposed point in the unit ball of a Banach space X that remains exposed in the unit ball 

of       but is not extreme in the unit ball of      . 

  We show some examples witnessing natural limits of our positive results, in particular, we construct a 

separable Banach space X with the Schur property that cannot be renormed to have a certain quantitative 

form of weak sequential completeness, thus providing a partial answer to a question of G. Godefroy. 

Section (3.1): Extermal Structrues: 

We attempt to understand several new extremal structures of Banach spaces that have been 

recently studied in [43], [44] and [45]. For a Banach space   let    denote the closed unit ball. The 

authors of [43] have introduced a new class of extreme points by calling a unit vector     whose state 

space   {     
         } spans   , a unitary. When   belongs to a dual space   , if    

{           } spans   then   is called a w   
 
-unitary. These notions are the abstract analogues of 

the corresponding notion of a unitary in a unital   -algebra. It follows from Theorem 9.5.16 of [46] (see 

also [47]) that a vector   in a    algebra is a unitary in this sense if and only if it is unitary in the (usual) 

algebraic sense. A unitary is in particular a strongly extreme point (see [43]). 

It was shown in [43] that any w   
 
-unitary of    is a unitary. The converse holds in several 

natural situations: it follows from Theorem 3 in [47] that when    is a von Neumann algebra every 

unitary in    is a w   
 
-unitary. More generally, this is true under an upper semi-continuity assumption 

on the duality map .However ,we show below that this converse fails for general Banach spaces: indeed, 

if   is non-reexive and    is separable, there is a renorming of   such that the dual space    attain its 

norm: hence, while the subset   of the bidual unit ball where   attains its norm is so large that it spans 

   , this set   does not meet  . 

Any unitary   is clearly a w   
 
-unitary (under the canonical embedding) of the bidual. Thus a 

natural question is the following: When is {     
         } w   

 
-dense in {    

          }? 

It turns out that this density condition is frequently satisfied for natural examples of unitaries. For 

instance, when   is a   -algebra, a unitary in   remains a unitary of the enveloping von Neumann 

algebra; thus it follows from Proposition 3.3 in [43] that the density condition holds in this case. 

Following the terminology of Theorem 3.1 in [48], when this density condition is satisfied, we call   a 

point of norm-weak upper semi-continuity (norm-weak usc) for the duality map   {    
       

‖ ‖}. We show that any non-reflexive Banach space with a unitary u can be renormed so that in the new 

norm   is still a unitary, but is not a point of norm-weak usc for the duality map. 
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For a convex set   we denote by     its set of extreme points. We always consider a Banach 

space as canonically embedded in its bidual. For     we denote by      the  -th dual of  . It is easily 

seen that a unitary     is extreme in all dual unit balls       . 

For a non- reflexive space          is said to be a w   
 
-extreme point if it is also an extreme 

point of   
  . In [5] the authors gave an example of a space with a smooth dual, whose unit vectors are all 

extreme points of   
   but none is an extreme point of   

   
. By a renorming result that is applicable, e.g., 

to certain separable Asplund spaces, we construct (Theorem (3.1.5)) a point         
   

 that is not an 

extreme point of   
   

. Such counterexamples suggest that it is hopeless to find a condition which 

ensures that an extreme point of the unit ball of a Banach space remains extreme in all duals of even 

order, and which boils down to usual extremality in reexive spaces (see [45]). 

We denote by       the convex hull of a set  . When   is a subset of a dual space, the w   
 
-

closure of   is denoted    , and        is the w   
 
-closed convex hull. We denote by        the 

norm closed convex hull of  . 

We first observe that the simplest way to obtain unitaries through renorming techniques actually 

provides unitaries which are also points of norm-weak usc for the duality map. 

 

Proposition (3.1.1)[42]: Let   be a Banach space and      . There is a renorming on   in which   

is a unitary and a point of norm-weak usc of the duality map. 

Proof. As remarked in [43], given a non-zero vector   in a Banach space we can renorm the space so 

that   is a unitary in the new norm. It suffices indeed to consider the unit ball    of some equivalent 

norm such that     , and to consider the equivalent norm whose unit ball is          {  } . So 

we may and do assume that   is a unitary. Put            . Then    is the dual unit ball of an 

equivalent norm on   whose state space is   and clearly   is still a unitary. It is easy to see that the unit 

ball of the triple dual is given by               (where the closure is taken with respect to the 

w   
 
-topology). Now if     , then        if and only if     . Thus   is a point of norm-weak 

usc for the duality map in this norm.  

In the above proof, the point   is a (QP) point (in the sense of [49]) of   when this space is 

equipped with the norm whose unit ball is   . Hence it is in particular, for this norm as well, a point 

where the duality map is even norm-to-norm upper semi-continuous. 

The following simple proposition shows that in the presence of norm-weak upper semi-

continuity unitaries in dual spaces are w   
 
-unitaries. We refer to [44] for the definition and basic 

statements on norm-weak upper semi-continuity of the pre-duality map,    {           ‖  ‖}. 
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Proposition (3.1.2)[42]: Let   
     be a unitary. If   

  is a point of norm-weak usc for the pre-duality 

map then   
  is a w   

 
-unitary. In particular, if the duality map is norm-weak usc at   

 , then   
  is a 

w   
 
-unitary. 

Proof. By Lemma 2.1 in [44], the functional   
  is norm-attaining. Let    {       

      }. To 

show that   
  is a w   

 
 -unitary we shall show that               is the unit ball of an equivalent 

norm on  . By Corollary 3.2 in [43] the conclusion follows. Note that                 (where the 

closure is taken in the w   
 
-topology of    ). Thus by our assumption of upper semi-continuity,    is 

also the absolute convex hull of {    
       

    }. As   
  is a unitary, by Theorem 3.1 in [43] we 

have that    is the unit ball of an equivalent dual norm on    . Thus by the bipolar theorem we see that 

  is an equivalent norm on  . The last part follows from Theorem (3.1.3) in [44], since if a norm 

attaining functional is a point of norm-weak usc for the duality map then it is also a point of norm-weak 

usc for the pre-duality map.  

We will now use finer renorming techniques for exhibiting unitaries that are not points of norm-

weak usc for the duality map. 

Theorem (3.1.3)[42]: Let   be a non-reexive Banach space, and   a non-zero vector in  . Then   can be 

renormed so that in the new norm   is a unitary but not a point of norm-weak usc for the duality map. 

Proof. As shown in [43], we may and do assume that   is a unitary in the original norm of  . We first 

consider the case of a separable Banach space  . Let   denote the state space of  . Let          . Let 

     {|       |      }. Since    |  r    is not w   
 
-sequentially continuous, we can choose a 

sequence {  
 } with       

         
       and   

       (with respect to the w   
 
-topology, 

here and in the rest of the proof). 

Let   
           

  and let         
   {  

 } . The convex set   is the dual unit ball for 

an equivalent norm on  . As before it is easy to see that   is still a unitary with respect to this norm with 

the same state space  . 

We now show that   is not a point of norm-weak usc of the duality map of this norm. We show 

that the criterion in Theorem 2.1 of [48] is violated. Let   {   |       |   }. Pick any    . Since 

  
      , these functionals are eventually in the set {            }. It follows that this set is 

not contained in      . Indeed, for     and    ,             , while       
       for n 

large enough. Thus for   large enough we get that   
  {            } but   

       . 

The general case follows easily from the separable one. Let       and   be separable non-

reexive. We construct   
  in   as above, and we denote by   

  norm preserving extensions to   of the 
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functionals   
  obtained above. Let         

   {  
  } . It is easily checked that   is still a unitary in 

the new norm but is not a point of norm-weak usc for the duality map.  

Theorem (3.1.4)[42]: Let   be a non-reexive Banach space such that    is separable. Then   can be 

equivalently renormed so that, in the new dual norm,    contains a unitary which fails to attain its norm. 

Proof. Since    is separable, we may assume (see [50], Theorem II.7.1) that   is equipped with an 

equivalent norm such that     is strictly convex. Since   is not reexive, by James' theorem there exists a 

unit vector   
  that is not norm attaining. Let ‖  

  ‖    
     

    . Clearly   
    . Let       

     . 

Let   {              
      ‖      

  ‖     }. Clearly span       and      . 

We now renorm   such that   is the state space of   
  in this norm. It will clearly follow that   

  is 

a unitary that does not attain its norm. 

As    is separable and   is bounded, let   {  
  } . We can write          

  for a 

sequence {  } of w   
 
-open subsets of          

  . For each  , we can choose a sequence {    }  

          such that        
   in the w   

 
-topology and such that |  

 (    )|            for all 

    and for all  . 

Let       (    {    }). Let ‖ ‖  denote the equivalent norm on   whose unit ball is   . As 

|  
 (    )|   , we have that   

  is a unit vector with respect to the new norm. 

Also in the new norm the bidual unit ball is given by        (  
      ( {    })). Now 

suppose        
          

   for some   
     

     
     ( {    })   [   ] and       

    . 

Then     
     

     
     

  . Since     is strictly convex,   
     

    . 

Since for any     all     's but a finite number are contained in   , we have that ( {    })
 
 

 (  {    }). We now claim that   
    . To see this we use the description of    ( {    }) in terms 

of barycenters (Proposition 1.2 in [51]). Thus there is a probability measure   with  (( {    })
 
)    

and   
   is the barycenter of  . Then     

     
   ∫   

   . Since ( {    })
 
  (  {    }) and by 

the choice of     , this implies       . As   is a w   
 
-compact convex set by Proposition 1.2 of [51] 

again, we have   
    . Hence       and so   is also the state space for this norm. 

Since      , it follows that   
  does not attain its supremum on   , in other words, that   

  

fails to attain its norm.  

A unitary in   remains unitary in    , and it follows through an obvious induction that a unitary 

is in particular an extreme point in the unit ball of every dual space      . It is well known that such a 

stability fails for general extreme points. Our last result shows that, even if stability holds to begin with, 

it may fail afterwards [45], [52]. 
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Theorem (3.1.5)[42]: Let   be a separable space such that         is separable and non-reexive. There 

is an equivalent norm on   and a vector     of norm one, which is an exposed point of the unit ball of 

the fourth dual but is not an extreme point of the unit ball of the sixth dual. 

Proof. The proof below is a modification of the proof of Proposition 4.1 in [44] that the reader is invited 

to consult before dwelling upon this proof. Our strategy is to adjust what has been done for proving [44, 

Prop. 4.1], in such a way that the renormed space is actually a dual space. In order to keep the notation 

of the proof of [44, Prop. 4.1], we will denote by   a smooth point of    and by     the corresponding 

differential. 

We first note that the original dual norm is Fréchet smooth on a dense set since     is separable. 

Indeed, the dual of       is isomorphic to        . Let      be a unit vector where the norm is 

Fréchet differentiable. It is an easy consequence of Smulyan's lemma that when a dual norm is Fréchet 

differentiable at a given point  , the differential   at this point belongs to the predual. Hence, let     be 

such that      ‖ ‖   . Let {  }   
      be such that {   }   

 is norm dense in    and {     }   
 is 

norm dense in   . 

Since         is separable and non-reexive, we can choose a sequence of unit vectors {  }    

           such that      in the w   
 
- topology of      and there exists          with 

{  }  {  }
  (where the closure is taken with respect to the w   

 
-topology of     ). 

Again by separability there exist sequences {    }    
   such that         for each  , in the 

w   
 
-topology of     . Note that this in particular implies that for fixed   and   tending to infinity, 

       in the w   
 
-topology of     as {  }       . Without loss of generality we may assume that: 

(i) |  (  )|       for    ; 

(ii) |  (    )|       for     and for all  ; 

(iii)|       |       for all    . 

We finally choose a sequence {      }     such that             in the w   
 
-topology of     and 

assume again without loss of generality: 

(i) |   (      )|       for     , for all    ; 

(ii) |   (           )|       for    , for all    ; 

(iii)| (      )|       for all      . 

As in the previous renormings, we now let       
              ⁄    and take       (   

 {      
 }) as the new unit ball. 
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As before, the unit ball     
  of the bidual in the new norm is given by     

        
       

with   ( {      
 }), where the closures are taken in the w   

 
-topology of    . By our choice of these 

sequences, we have: 

(i)       
    in       as    , for any        and       ; 

(ii) for any           
            in       for     and any       ; 

(iii) for any               
        

           in          for    . 

Therefore       {          ⁄   }
     

  {     ⁄   }     { }. Now since     has the 

Radon-Nikodym property, we have (see page 327 of [44]) that the w   
 
-closed convex hull of any 

w   
 
-compact subset of     coincides with its norm-closed convex hull. Therefore     

  

  {  
          } with 

    {       (  
 

 
)  }

       
  {     (  

 

 
)  }

     
 

  {(  
 

 
)  }

   
  { }  

We now show that   is a smooth point of the third dual in the new norm (in other words, a very smooth 

point, with the notation used in [44], of the dual), and thus f is an exposed point (and so in particular an 

extreme point) of the fourth dual unit ball. 

To achieve this we first note that   is a smooth point of    equipped with the new dual norm, 

with derivative  . Indeed, we clearly have 

       { }  { }  

and since   is a smooth point of the original dual norm, 

  
       { }  { }  

and our claim easily follows. 

Also by the choice of the sequences we have: 

(i) |  (    )|       for    , for all  ; 

(ii) |   (      )|       for     , for all    ; 

(iii)      (      )    for all        . 

Therefore when   goes to infinity, the sequences (    ) and (      ) converge weakly to 0 in     

regardless of   and  . Now, using convex combinations as in the proof of Fact 6 in [44], we can show 

that   is a point of w   
 
- weak continuity for the identity map on the unit ball of the bidual. Thus by 

Remark 3.1 in [44] we get that   is a smooth point of the third dual, and thus   is exposed by   in the 

new unit ball  
    
  of     . 
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We finally invoke the choice of        we made at the start of the proof. By our construction 

we have that 

     (  
 

 
)       

  

for every   and  , and thus 

   (  
 

 
)    

    
  

for every  , and finally      
    
  and      

    
 . Therefore   is not an extreme point of the sixth 

dual unit ball. 

Section (3.2): Weak Sequential Completeness: 

If   is a Banach space, we recall that it is weakly sequentially complete if any weakly Cauchy 

sequence in   is weakly convergent. In the present paper we investigate quantitative versions of this 

property. To this end we use several quantities related to a given bounded sequence      in  . 

Let   ust        denote the set of all w   
 
 cluster points of      in    . By       we will denote 

the diameter of   ust        (see also (4) below). Further, if     are nonempty subsets of a Banach 

space  , then 

          {‖   ‖         } 

denotes the usual distance between   and   and the Hausdorff non-symmetrized distance from   to   is 

defined by 

 ̂         {           }   

Note that a space   is weakly sequentially complete if for each bounded sequence      in   

satisfying         (this just means that the sequence is weakly Cauchy) we have  ̂   ust           

  (i.e., all the weak  cluster points are contained in  , which for a weakly Cauchy sequence means that 

it is weakly convergent). It is thus natural to ask which Banach spaces satisfy a quantitative version of 

weak sequential completeness, i.e., the inequality 

 ̂   ust                                                                  

for all bounded sequences      in   and for some    . The starting point of our investigation was the 

following remark made by G. Godefroy in [57]: 

If   is complemented in     by a projection   satisfying 

‖   ‖  ‖    ‖  ‖        ‖                                              

then   is weakly sequentially complete and 

 ̂   ust                                                                   

for any sequence      in  . 
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It can be easily seen that 

         
      

(      
   

             
   

      ) 

    
      

   
   

   {|         (  )|       }                            

The first formula of (4) is used in [58], the second one in [57]. 

Banach spaces satisfying assumption (2) above are called  -embedded, see [59]. The proof of (3) 

can be found in [60]. 

By what has been said above, inequality (3) is a quantitative form of weak sequential 

completeness. 

In [57] G. Godefroy mentions that it is not clear which weakly sequentially complete spaces can 

be renormed to have such a quantitative form of weak sequential completeness. 

On th  on  h n  w  show th t th   nsw r to G. Go  froy’s qu stion   nnot b  positiv  for     

weakly sequentially complete Banach spaces, more precisely we construct a weakly sequentially 

complete space that cannot be renormed in such a way that (3) holds, see Example (3.2.5) below.On the 

other hand we put inequality (3) into context by studying some modifications and possible converses, 

see the following theorem. In particular, we slightly improve inequality (3) – see (6) in the theorem – but 

such that now the additional factor 2 is optimal. 

We will use one more quantity (cf. [61] but appearing implicitly in [58]) which in some 

situations is more natural than the quantity  , namely 

 ̃        { (   
)  (   

)  is   subs qu n   of     }   

The negative partial answer to the mentioned question of G. Godefroy is given by the following 

example. In fact, we obtain a slightly stronger result. Not only there is a weakly sequentially complete 

Banach space not satisfying (1) for all bounded sequences and some    , but we get even a weakly 

sequentially complete space not satisfying a weaker form of (1) – with d in place of  ̂. 

We remark that a separable space with the Schur property belongs to the class of so-called 

strongly weakly compactly generated spaces (see [62, Examples 2.3]) and thus such a quantitative form 

of weak sequential completeness does not hold even for this class of spaces. 

Lemma (3.2.1)[56]: Let   be a Banach space and      be a bounded sequence in  . Suppose that     

is such that 

‖∑    

 

   

‖   ∑|  |

 

   

 

whenever     and           are real numbers. Then 
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(i)         , 

(ii)     ust            . 

 

Proof. (i) It is clear that the sequence      is linearly independent. Hence there is a unique linear 

functional defined on its linear span whose value is   at       and    at     for each    . By the 

assumption, the norm of this functional is at most 1. Let        be its Hahn–Banach extension. Then 

   witnesses that         . 

(ii) Let     be any w   
 
 cluster point of the sequence      in     and     be arbitrary. It 

follows from [63, Proposition 4.2] that there is an index     such that 

‖∑  (    )

 

   

‖   ∑|  |

 

   

 

for every sequence (  )   

 
 with finitely many nonzero elements. In particular, it follows that the vectors 

        , are linearly independent. So, there is a unique linear functional on their linear span whose 

value at each      is equal to  . By the above inequality, the norm of this functional is at most one. Let 

      be its Hahn–Banach extension. Then we have 

‖     ‖                    
   

  (    )     

This completes the proof of the lemma.  

Theorem (3.2.2)[56]: Let   be a Banach space and      be a bounded sequence in  . Then 

 ̃       ̂   ust                                                               

If the space   is  -embedded, then also the following inequalities hold: 

  ̂   ust                                                                     

  ̂   ust            ̃                                                         

Since we have trivially that  ̃    and    ̂ it is natural to ask whether one of these quantities can be 

replaced by a sharper one in the inequalities of the theorem. The following remark and Example 3 show 

that this cannot be done in any of the inequalities (5)–(7). 

Proof. 

We start by proving (5): Let      be a bounded sequence in  . We assume that         

because otherwise (5) holds trivially. Let   (   ̃    ) be arbitrary. The key ingredient is provided by 

a result of E. Behrends (see [58, Theorem 3.2]) that yields a subsequence (   
) such that 
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‖∑     

 

   

‖  
 

 
∑|  |

 

   

 

whenever     and            . By Lemma (3.2.3)(ii) we get  (  ust   (   
)  )  

 

 
, hence 

 ̂   ust           
 

 
. As   (   ̃    ) is arbitrary, (5) follows. 

We continue by proving (6): We set    ̂   ust           and assume that     because 

otherwise (6) holds trivially. Let         be arbitrary and let     be a weak  cluster point of the 

sequence      in     such that            
 

 
. Set        and          where   denotes the 

projection on   as in (2). Then          ‖  ‖. We claim that there is a subsequence (   
) such that 

∑  (   
  )

 

   

             ∑|  |

 

   

                                   

for all     and all        
  in   . This wi   b  prov   by G. Go  froy’s ‘    of    rgum nt’ [59, p. 

170], cf. the proof of [59, Proposition IV.2.5]. Since    is a w   
 
 cluster point of the sequence     

  , there is    such that ‖   
  ‖    

 

 
 which settles the first induction step. 

Suppose we have constructed    
        

. Let (  )
   

 
 be a finite sequence of elements of the 

unit sphere of   
    such that     

    for all   {       } and such that for each   in the unit sphere of 

    
  there is an element    such that 

‖    ‖
  
    

 

        
 

‖  ‖
  

Let   {       } be arbitrary. Then ∑   
 (   

  )      
   

 
    is a w   

 
 cluster point of the 

sequence (∑   
 (   

  )      
        

   )
   

 
 and for its norm we have 

‖∑  
 (   

  )      
   

 

   

‖  ‖∑  
 (   

  )

 

   

‖  ‖    
   ‖  

                                                                       ∑|  
 |  |    

 | (  
 

 
)

 

   

    

             ∑|  
 |

   

   

             

It follows that there is         such that 

‖∑  
 (   

  )

   

   

‖              
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for all   {       }. By a straightforward calculation using the choice of the    and the triangle 

inequality we get that inequality (8), with     instead of  , holds for all   in the unit sphere of 

   
   and hence for all elements of     . 

This finishes the construction. By Lemma (3.2.1)(i) we get 

 (   
  )          

hence clearly 

       (   
)   (   

  )          

As         is arbitrary, we get (6). 

Finally, let us prove (7): We take any subsequence (   
) and observe that 

     ust             ̂(  ust   (   
)  )   (   

) 

by (6). Then we can pass to the infimum over all (   
). This finishes the proof of the theorem. 

Example (3.2.3)[56]: There is an  -embedded space   and a bounded sequence      in   such that 

 ̃       and     ust            . 

 

Proof. For     set      
  and let   be the   -sum of all the spaces       . Then   is  -

embedded by [59, Proposition IV.1.5]. 

Further, let    
        

 be the canonical basic vectors of    and let      be the sequence in   

containing subsequently these basic vectors, i.e., the sequence 

  
    

    
    

    
    

    
        

       

Then we have  ̃       as each subsequence of      contains a further subsequence isometrically 

equivalent to the canonical basis of   . 

It remains to show that     ust            . To do so, it is enough to prove that 0 is a weak 

cluster point of the sequence     . To verify this, we fix              and    . Let   

   {‖  ‖     ‖  ‖}. 

The dual    can be canonically identified with the   -sum of the spaces   
     . Moreover, 

  
  is canonically isometric to   

 . Thus each      can be viewed as a bounded sequence        , 

where    (    )   

 
   

  for each    . 

We find     such that 
 

 
   and let     be such that     . Let   {       } be 

arbitrary. We have ‖  
 ‖  ‖  ‖   . As ‖  

 ‖  ∑ |    
 | 

   , the set 

{  {       } |    
 |  

 

 
} 

has at most   elements. It follows that the set 
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{  {       } (   {       } |    
 |  

 

 
)} 

has at most    elements. As     , there is some   {       } such that |    
 |  

 

 
   for each 

  {       }. It means that |  (  
 )|    for each   {       }. 

Since   
  is an element of the sequence     , this completes the proof that 0 is in the weak 

closure of the sequence, hence 0 is a weak cluster point (as the sequence       does not contain 0). 

Example (3.2.4)[56]: There exists a separable Banach space   with the Schur property – in particular,   

is weakly sequentially complete – which is 1-complemented in its bidual, such that there is no constant 

    satisfying 

    ust                   

for every bounded sequence      in  . 

Proof. We recall that    is th  Č  h–Stone compactification of   and       is the space of all signed 

Radon measures on    considered as the dual of   . 

Let us fix     and consider the space 

        ‖ ‖      [   ] ‖ ‖    

Here ‖ ‖  denotes the usual norm on      is the first infinite ordinal,  [   ] stands for the space of all 

continuous functions on the ordinal interval [   ] and ‖ ‖  is the standard supremum norm. Note that 

we have the following canonical identifications: 

  
  (   

 

 
‖ ‖ )      [   ] ‖ ‖           n  

  
   (       ‖ ‖     )      [   ] ‖ ‖    

For    , let    (    [   ])    , where    denotes the  -th canonical basic vector in    and 

 [   ] is the characteristic function of the interval [   ]. Let    be the closed linear span of the set 

{       }. We observe that 

   {(      )           ∑  

 

   

 for        }                              

Indeed, the set on the right-hand side is a closed linear subspace of    containing    for each    . 

This prov s th  in  usion ‘ ’. To prov  th   onv rs  on ,   t us t     ny point (      ) in the set on the 

right-hand side. Since        , we get 

(      )  ∑    

 

   

    

as the series is absolutely convergent. 
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It follows that for each (      )     we have 

 ‖    ‖  ‖(      )‖       ‖    ‖   

hence    is isomorphic to   . More precisely, the projection on the first coordinate is an isomorphism 

onto   . In particular,    has the Schur property (and thus it is weakly sequentially complete). 

We further observe that   
   is canonically identified with the w   

 
 closure of    in   

  , thus 

  
   {              [   ]              

             {       }   n            }            

Indeed, the set on the right-hand side is a w   
 
 closed linear subspace of   

   containing   , which 

prov s th  in  usion ‘ ’. To prov  th   onv rs  on    t us fix       in the set on the right-hand side. 

Take a bounded net      in    which w   
 
 converges to  . For each   there is a unique     [   ] 

such that           . Then      is clearly a bounded net in   [   ]. Moreover, we will show that      

w   
 
 converges to  . Since the w   

 
 topology on bounded sets coincides with the topology of 

pointwise convergence, it suffices to show that    pointwise converge to  . Indeed, 

      ∑       {       }

 

   

          for    h      

      ∑           

 

   

                                                 

It follows that    is 1-complemented in its bidual. To show that we set 

       (  { }             { })          
    

Then   is a projection of   
   onto    of norm one. Indeed, if         , then           and hence 

            . Further, by (9) and (10) we get that           for each         
  . Thus   is a 

projection onto   . To show it has norm one, it is enough to observe that, given         
  , we have 

‖  { } ‖   ‖ ‖, and that            { } is a continuous function on [   ] coinciding on [     

with   and so ‖           { }‖ 
 ‖ ‖ . 

Further, for the sequence     , its w   
 
 cluster points in   

   are equal to 

(    { })          

where    denotes the Dirac measure at a point     . 

We claim that, for our sequence     , we have 

 (  ust  
         )  

 

 
    n                                                 
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To see the first inequality, we use the fact that the distance of any w   
 
 cluster point of      from    is 

at least  ( { }  [   ])  
 

 
. On the other hand, if           are distinct, then 

‖(    { })  (     { })‖  
   ‖        ‖  

    ‖      ‖          

This verifies (11). 

Now we use the described procedure to construct the desired space  . For    , let    
 

 
 and 

let   

 

 be the space constructed for   . Let 

  (∑  

 

 

   

)

  

 

be the   -sum of the spaces   

 

. We claim that X is the required space. 

First, since each   

 

 has the Schur property,  , as their   -sum, possesses this property as well 

(this follows by a straightforward modification of the proof that    has the Schur property, see [64, 

Theorem 5.19]). Hence   is weakly sequentially complete. 

Further, observe that 

   (∑  

 

 

 

   

)

  

   n        (∑  

 

  

 

   

)

  

  

Note that the latter space is not equal to     but it is 1-complemented in     (cf. the proof of [59, 

Proposition IV.1.5]). Now it follows that   is 1-complemented in    . 

Finally, fix    . We consider a sequence  ̂  (        
 -th

  
      ), where the elements 

     

 

    , are defined above. Let   (        
 -th

(    { })
      ), where       , be a w   

 
 

cluster point of   ̂   in    . Then, for any                    , 

‖   ‖    ‖(    { })      ‖
  
 

   
 

 
 

by (11). Hence 

    ust     ̂      
 

 
  

On the other hand, 

   ̂         
 

 
  

again by (11). From this observation the conclusion follows. 
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Even though the second part of Theorem (3.2.2) is formulated for  -embedded spaces, using 

results of A.S. Granero and M. Sánchez we can prove the following variant of Theorem (3.2.2). 

Let   be a subspace of an  -embedded Banach space   and      be a bounded sequence in  . 

Then 

 ̂   ust                    n        ust            ̃                        

To verify the first inequality, we consider       ust       . Since   ust          ust       , using 

[65, Lemma 2.2] (with     for    ) and Theorem (3.2.2), we obtain 

                     ̂   ust                  

This proves the first statement because       ust        was arbitrary. The second one can be deduced 

from the first one just as in the proof of Theorem (3.2.2). 

However, we do not know whether it is possible to obtain not only (12) but (6) and (7) of 

Theorem (3.2.2) for subspaces of  -embedded spaces. 

Up to now we have tacitly assumed that we are dealing with real Banach spaces. In fact, our 

proofs work for real spaces but all the results can be easily transferred to complex spaces as well. Let us 

indicate how to see this. 

Let   be a complex Banach space. Denote by    the same space considered over the field of real 

numbers (i.e., we just forget multiplication by imaginary numbers). Let          
  be defined by 

                             

It is well known that   is a real-linear isometry of    onto     
 . Let us define a mapping       

    
   by the formula 

                 (       )                
   

It is easy to check that the mapping   satisfies the following properties: 

(i)   is a real-linear isometry of     onto     
  . 

(ii)   is a w   
 
-to-w   

 
 homeomorphism. 

(iii)       . 

It follows that for any sequence in   all the quantities in question (i.e.,    ̃    and  ̃) are the same 

with respect to   and with respect to   . (Recall that   is defined as the diameter of w   
 
 cluster points, 

which has good sense in a complex space as well, even though in the complex case only the second 

formula of (4) works.) If, moreover, we observe that    is  -embedded whenever   is  -embedded, we 

conclude that Theorem (3.2.2) is valid for complex spaces as well. 

As for Examples (3.2.3) and (3.2.4), it is clear that they work also in the complex setting – we 

can just consider complex versions of the respective spaces. 
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We finish by recalling that G. Godefroy’s qu stion, for whi h B n  h sp   s (3) ho  s, r m ins 

open. In particular, the following question seems to be open. 

Question (3.2.5)[56]: Let   be a Banach space which is a  -summand in its bidual, i.e., there is a 

projection         with ‖    ‖   . Does (1) hold for   for some    ? 

We conjecture that the space from Example (3.2.4), although it is 1-complemented in its bidual, 

is not a  -summand. At least the projection we have constructed does not work. 

Corollary (3.2.6)[257]. Let   be a Banach space and    
   be a square bounded sequence in  . 

Suppose that     is such that 

‖∑          
 
 

 

   

‖   ∑|         |

 

   

 

When ever    and                
       are real numbers. Then 

(i) ( ̃   )   
     , 

(ii)              
       . 

Proof.(i) It is clear that the square sequence    
  is linearly independent. Hence there is a unique 

linearfunctional defined on its linear span whose value is   at   
     and    at   

  for each   . 

Bythe assumption, the norm of this functional is at most 1. Let           be its Hahn–Banach 

extension. Then       witnesses that 

( ̃   )   
     . 

(ii) Let        be any       cluster point of the square sequence    
  in     and      be 

arbitrary. It follows from [7, Proposition 4.2] that there is an index     such that 

‖∑         ( 
 
    )

 

   

‖   ∑|         |

 

   

 

for every quadratic sequence (         )   

 
with finitely many nonzero elements. In particular, it 

follows thatthe vectors  
        , are linearly independent. So, there is a unique linear functional 

ontheir linear span whose value at each   
    is equal to  . By the above inequality, the norm ofthis 

functional is at most one. Let          be its Hahn–Banach extension. Then we have 

‖         ‖                           
   

     (  
    )     

This completes the proof of the lemma.  

Corollary (3.2.7)[257]. Let    be a Banach space and    
   be a square bounded sequence in  . Then 

 ̃   
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If the space   is  -embedded , then also the following inequalities hold: 

                  
      ( ̃   )   

                                                        

              
       ̃   

                                                        

Proof . 

                    We start by proving (13): Let    
  be a square bounded sequence in  . We assume 

that( ̃   )   
     because otherwise (15) holds trivially. Let   (   ̃   

  )be arbitrary. The key 

ingredient is provided by a result of E.Behrends (see [1, Theorem 3.2]) that yields a square 

subsequence (  
  

) such that 

‖∑          
 
  

 

   

‖  
 

 
∑|         |

 

   

 

Whenever     and                
         . By corollary (3.2.6)(ii) we get 

 (        (  
  

)  )  
 

 
, hence                 

      
 

 
. As   (   ̃   

  ) is arbitrary, (13) 

follows. 

We continue by proving (14): We set                    
     and assume that     

because otherwise (14) holds trivially. Let        be arbitrary and let        be a       cluster point 

of the square sequence    
  in     such that               

 

 
. Set            and   

  

         where   denotes the projection on  as in (2). Then             ‖  
 ‖.We claim that 

there is a square subsequence(  
  

)such that 

∑         ( 
 
  

   )

 

   

             ∑|         |

 

   

                             

for all     and all               
  in   . This will be proved by G. Godefroy’s ‘ace of   argument’ 

[6,p. 170], cf. the proof of [6, Proposition IV.2.5]. Since   
 is a       cluster point of the square 

sequence   
     ,there is    such that ‖  

  
   ‖    

 

 
which settles the first induction step. 

Suppose we have constructed   
  

       
  

. Let               
  be a finite sequence of 

elements of theunit sphere of  
    such that            

    for all   {       } and such that 

for each         in the unitsphere of            
  there is an element          such 

that 

‖                  ‖  
    

 

       
 

‖  
 ‖

  

Let   {       } be arbitrary. Then 
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∑         
 (  

  
   )             

   
 

 

   

 

is a       cluster point ofthe square sequence  

(∑         
 (  

  
   )             

    
     

 

   

)

   

 

 

and for its norm we have 

‖∑         
 (  

  
   )             

   
 

 

   

‖ 

 ‖∑         
 (  

  
   )

 

   

‖  ‖           
   

 ‖ 

                                                ∑|         
 |  |           

 | (  
 

 
)

 

   

 

             ∑|         
 |

   

   

             

It follows that there is        such that 

‖∑         
 (  

  
   )

   

   

‖              

for all   {       }.By a straight forward calculation using the choice of the 

         and the triangle inequality we get that inequality (16), with     instead of  , holds for 

all         in the unit sphere of  
   and hence for all elements of     . 

This finishes the construction. By Corollary (3.2.7)(i) we get 

( ̃   )(  
  

   )          

Hence clearly 

( ̃   )   
   ( ̃   )(  

  
)  ( ̃   )(  

  
   )          

As        is arbitrary, we get (14). 

Finally, let us prove (15): We take any square subsequence (  
  

)and observe that 

              
            (        (  

  
)  )  ( ̃   )(  

  
) 

by (14). Then we can pass to the infimum over all (  
  

). This finishes the proof of the theorem. 

Corollary (3.2.8)[257]. There is an  -embedded space   and square bounded sequence    
  in   such 

that ̃   
     and              

       . 
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Proof.  

For     set      
  and let   be the   -sum of all the spaces      .  

Then    is  -embedded by [6, Proposition IV.1.5]. 

Further, let    
        

be the canonical basic vectors of   and let    
  be the square 

sequence in   containing subsequently these basic vectors, i.e., the sequence 

  
    

        
      

        
        

      
            

         

Then we have  ̃   
     as each square subsequence of    

  contains a further square subsequence 

isometrically equivalent to the canonical basis of  . 

It remains to show that              
       . To do so, it is enough to prove that 0 is a weak 

cluster point of the square sequence   
  . To verify this, we fix             and    . Let   

   {‖  ‖     ‖  ‖}. 

The dual    can be canonically identified with the   -sum of the spaces   
     . 

Moreover,   
 is canonically isometric to   

 . Thus each      can be viewed as a bounded 

sequence       , where    (    )   

 
   

 for each    . 

We find     such that 
 

 
   and let     be such that     . Let   {       }be arbitrary. We 

have‖  
 ‖  ‖  ‖   . As ‖  

 ‖  ∑ |    
 | 

   ,the set 

{  {       } |    
 |  

 

 
} Has at most    elements. It follows that the set 

{  {       } (    {       } |    
 |  

 

 
)} 

has at most    elements. As     , there is some   {       } such that |    
 |  

 

 
   for 

each   {       }. It means that |  (  
 )|    for each  

  {       }. 

Since   
 is an element of the square sequence   

  , this completes the proof  that 0 is in the 

weak closure of the square sequence, hence 0 is a weak cluster point (as the square sequence 

   
  does not contain 0). 

Corollary (3.2.9)[257]. There exists a separable Banach space   with the Schur property–in 

particular,   is weakly  sequentially  complete – which is 1-complemented in its bidual, such that there 

is no constant     satisfying 

             
       ( ̃   )   

   

for every square bounded sequence    
  in  . 
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Proof  

We recall that    is the Čech–Stone compactification of   and      is the space of all signed 

Radon measures on    considered as the dual of  . 

Let us fix            and consider the space 

 (      )        
      ‖ ‖      [   ] ‖ ‖    

Here ‖ ‖  denotes the usual norm on      is the first infinite ordinal,  [   ] stands for the spaceof all 

continuous functions on the ordinal interval [   ] and ‖ ‖  is the standard supremum norm. Note 

that we have the following canonical identifications: 

 (      )
  (   

 

        
‖ ‖ )     [   ] ‖ ‖            

 (      )
   (              ‖ ‖     )      [   ] ‖ ‖    

For    , let   
  (    [   ])   (      ), where   denotes the  -th canonical basic vector 

in   and  [   ] is the characteristic function of the interval [   ]. Let  (      )be the closed linear 

span ofthe set{  
      }. We observe that 

 (      )  {(      )   (      )       ∑  

 

   

           }                               

Indeed, the set on the right-hand side is a closed linear subspace of  (      )containing   
 for 

each    . This proves the inclusion ‘ ’. To prove the converse one, let us take any point (      )in 

the set on the right-hand side. Since       , we get 

(      )  ∑   
 
 

 

   

  (      ) 

as the series is absolutely convergent. 

It follows that for each (      )   (      )we have 

        ‖    ‖  ‖(      )‖  (          )‖    ‖   

hence (      )is isomorphic to   . More precisely, the projection on the first coordinate is an 

isomorphismonto   . In particular,  (      )has the Schur property (and thus it is weakly sequentially 

complete). 

We further observe that  (      )
  is canonically identified with the       closure of 

 (      )in (      )
  ,thus 

 (      )
   {              [   ]  
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             {       }               }            

Indeed, the set on the right-hand side is a       closed linear subspace of  (      )
   containing 

 (      ),which proves the inclusion ‘ ’. To prove the converse one let us fix      in the set on 

theright-hand side. Take a bounded net     in   which       converges to  . For each   there isa 

unique     [   ] such that         (      ). Then     is clearly a bounded net in 

  [   ].Moreover, we will show that            converges to . Since the       topology on 

bounded  sets coincides with the topology of point wise convergence, it suffices to show that   point 

wise converge to . Indeed, 

      ∑       {       }

 

   

                        

      ∑           

 

   

                                               

It follows that  (      )is 1-complemented in its bidual. To show that we set 

       (  { }             { })         (      )
    

Then   is a projection of  (      )
  onto  (      )of norm one. Indeed, if       (      ), then 

          and hence             . Further, by (9) and (10) we get that        

 (      )foreach       (      )
  . Thus   is a projection onto  (      ). To show it has norm one, 

it is enough to observe that, given       (      )
  , we have‖  { } ‖   ‖ ‖, and that   

         { } isa continuous function on [   ] coinciding on [    with  and so‖          

 { }‖ 
 ‖ ‖ . 

Further, for the square sequence   
  , its       cluster points in  (      )

  are equal to 

(    { })          where    denotes the Dirac measure at a point     . 

We claim that [10], for our square sequence   
  ,we have 

 (      
(      )
     

    (      ))  
 

 
   ( ̃   )   

                           

To see the first inequality, we use the fact that the distance of any       cluster point of    
   from 

 (      )is at least  ( { }  [   ])  
 

 
. On the other hand, if           are distinct, then 

‖(    { })  (     { })‖ 
(      )
   ‖        ‖ 

(      )
           ‖      ‖     
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This verifies (19). 

Now we use the described procedure to construct the desired space   (see [10]).For    , let 

          
 

 
and let   

 

be the space constructed for          . 

Let    (∑   

 

 
   )

  

be the   -sum of the spaces   

 

. We claim that X is the required space. 

First, since each    

 

has the Schur property,  , as their   -sum, possesses this property aswell 

(this follows by a straight forward modification of the proof that   has the Schur property,see [2, 

Theorem 5.19]).Hence   is weakly sequentially complete. 

Further, observe that 

   (∑  

 

 

 

   

)

  

        (∑  

 

  

 

   

)

  

  

Note that the latter space is not equal to     but it is 1-complemented in    (cf. the proof of [6, 

Proposition IV.1.5]). Now it follows that   is 1-complemented in    . 

Finally, fix     . We consider a square sequence  ̂ 
  (         -  

  
      ), where the 

elements  
    

 

    , are defined above. Let    (        
 -  

(    { })
      ), where       , 

be a       cluster point of   ̂ 
  in    .Then, for any  

                       ,‖     ‖    ‖(    { })       ‖
  
 

   
 

 
 

By (19). Hence 

            ̂ 
      

 

 
  

On the other hand, 

( ̃   )  ̂ 
   ( ̃   )   

   
 

 
  

again by (19). From this observation the conclusion follows. 

 

 

 


