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Chapter 6 

Incomparable and with Non Isomorphic: 
 

General structure results for analytic equivalence relations are applied in the context of Banach spaces to 

show that if E଴ does not reduce to isomorphism of the subspaces of a space, in particular, if the 

subspaces of the space admit a classification up to isomorphism by real numbers, then any subspace 

with an unconditional basis is isomorphic to its square and hyperplanes and has an isomorphically 

homogeneous subsequence. A Banach space ࣱ with a Schauder basis is said to be α -minimal for some 

α < ωଵ if, for any two block subspaces z, y	⊆		ࣱ, the Bourgain embeddability index of z into y is at 

least	α. We show a dichotomy that characterises when a Banach space has an α -minimal subspace 

Section (6.1): )  Minimal Banach Spaces  
The general problem of our study is a generalisation of the homogeneous space problem 

[238].Namely, what can be said about a Banach space with “few” non isomorphic subspaces? In 

particular, will such a space necessarily satisfy more regularity properties than a general space? Will it 

necessarily have subspaces of a given type? 
 

Theorem (6.1.1)[234]: Let X be an infinite dimensional Banach space. Then X con- 

tains either a minimal subspace or a continuum of pairwise incomparable subspaces. 
 

Recall that two spaces are said to be incomparable if neither of them embed into the other, and a 

space is minimal if it embeds into all of its infinite dimensional subspaces. 

The homogeneous space problem, which was solved in the positive by the combined efforts of 

Gowers [235], Komorowski and Tomczak-Jaegermann [236],is the problem of whether any infinite 

dimensional space, isomorphic to all its infinite dimensional subspaces, must necessarily be isomorphic 

to ℓଶ. As a continuation of this one can ask how many isomorphism classes of subspaces a non 

Hilbertian space has to contain. Infinitely many? A continuum? Even for some of the classical spaces 

this question is still open, though recent progress has been made by Ferenczi and Galego [237]. 

The theorem and proof turn out to have something to say about the following two problems of 

Gowers. ([235], Problems 7.9 and 7.10): 

(i) Determine which partial orders that can be realised as the set of sub- spaces of an infinite 

dimensional Banach space under the relation of embeddability. Or at least find strong conditions 

such a partial order must necessarily satisfy. 

(ii) Find further applications of the main determinacy result in [235]. In particular, are there any 

applications that need its full strength, i.e., that need it to hold for analytic and not just open sets? 
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Theorem (6.1.1) says that any such partial order must either have a minimal element or an 

antichain of continuum size. And, as will be evident, the proof does in fact very much need the full 

strength of the determinacy result. 

We mention that the proof relies heavily on methods of logic and we have therefore included a 

short review of the most basic notions of set theory indispensable to understand the proof. Also for the 

benefit of the non analyst we recall some standard notions from Banach space theory. 

Before presenting the results of the second part we will first need this brief review. 

A Polish space is a separable completely metrisable space. A measurable space, whose algebra of 

measurable sets are the Borel sets of some Polish topology, is said to be standard Borel. These spaces 

turn out to be completely classified up to Borel isomorphism by their cardinality, that can either be 

countable or equal to that of the continuum. A subset of a standard Borel space is analytic if it is the 

image by a Borel function of some standard Borel space and coanalytic if its complement is so. It is C-

measurable if it belongs to the smallest σ-algebra containing the Borel sets and closed under the Souslin 

operation. In particular, analytic sets are C-measurable as they can be obtained by the Souslin operation 

applied to a sequence of Borel sets. C-measurable sets in Polish spaces satisfy most of the classical 

regularity properties, such as universal measurability and the Baire property. We denote by ∑ 	ଵଵ ,∏ 	ଵଵ  

and ∑ 	ଵଶ  the classes of analytic, coanalytic and Borel images of coanalytic sets respectively. A classic 

result of Sierpinski states that any cset is the union of ଵࣨ Borel sets. 

Let X be a Polish space and ℱ(X) denote the set of closed subsets of X. We endow ℱ(X) with the 

following σ-algebra that renders it a standard Borel space. The generators are the following sets, where 

U varies over the open subsets of X. 

{F	 ∈ 	ℱ(X)	|F	 ∩ 	U 	≠ 	∅} 

The resulting measurable space is called the Effros Borel space of X. 

Fix some basis {U୬} for the space C(2ℕ) and define the Borel set ℬ by: 

ℬ = {F	 ∈ 	ℱ(C(2ℕ))|∀n	(0	 ∈ 	U୬ → 	F ∩	U୬ ≠ 	∅) 	∧ 	∀n, m, l	∀r, t	 ∈ ℚ 

(rU୬ + 	tU୫ ⊆	U୪ ∧ 	F	 ∩	U୬ ≠ 	∅	 ∧ 	F	 ∩ U୫ 	≠ 	∅	 → 	F	 ∩ 	U୪ 	≠ 	∅)} 

This evidently consists of all the closed linear subspaces of C(2ℕ) and, as C(2ℕ) is isometrically 

universal for separable Banach spaces, any separable Banach space has an isometric copy in ℬ. We can 

therefore view ℬ as the standard Borel space of all separable Banach spaces. When one wants to restrict 

the attention to the subspaces of some particular space X one only needs to consider the Borel subset 

{Y	 ∈ 	ℬ	|Y	 ⊆ 	X}. Moreover, it is not hard to see that most reasonably definable properties and relations 

are ∑ 	ଵଶ  in ℬ or ℬ୬, for example, the relations of isometry and isomorphism are both analytic in ℬଶ 

exactly as expected. 
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A theme of descriptive set theory, that has been extensively developed the last fifteen years or so, 

is the Borel reducibility ordering of analytic equivalence relations on standard Borel spaces. 

This ordering is defined as follows: Suppose E	 ⊂ 	Xଶ and E	 ⊂ 	Yଶ are analytic equivalence 

relations on standard Borel spaces X and  . We say that E is Borel reducible to F, in symbols E	 ≤୆ F, if 

there is a Borel measurable function f ∶ 	X	 → 	Y such that for all x, y	 ∈ 	X: 

xEy	 ⟺ f(x)Ff(y) 

Moreover, when X and Y are Polish and f can be taken to be continuous, we write E	 ≤ୡ F. 

Hence, X represents a class of mathematical objects (e.g., sep-arable Banach spaces) that we wish 

to classify up to E-equivalence (e.g., isomorphism) by complete invariants belonging to some other 

category of mathematical objects. A reduction f ∶ 	X	 → 	Y of E to F corresponds then to a classification 

of X-objects up to E-equivalence by Y -objects up to F-equivalence. 

Another way of viewing the Borel reducibility ordering is as a refinement of the concept of 

cardinality. It provides a concept of relative cardinality for quotient spaces in the absence of the axiom 

of choice. For a reduction of E to F is essentially an injection of X/E into Y/F admitting a Borel lifting 

from X to Y	. 

A few words on the power of the continuum: We say that an analytic equivalence relation E on a 

standard Borel space X has a continuum of classes if there is an uncountable Borel set B	 ⊂ 	X consisting 

of pairwise E-inequivalent points. This is known to be stronger than just demanding that there should be 

some bijection between the set of classes and ℝ. The are for example analytic equivalence relations 

having exactly ଵࣨ many classes, but not having a continuum of classes (in the above sense) in any 

model of set theory. But an uncountable Borel set is always Borel isomorphic to ℝ, independently of the 

size of the continuum. 

If A is some infinite subset of ℕ, we denote by [A]ℕ the space of all infinite subsets of A 

equipped with the topology induced by the product topology on 2୅. Furthermore, for two sets A and B 

we write A	 ⊂∗ B iff A	\	B is finite. Then A	 ⊊∗ B iff A	 ⊂∗ B but B	 ⊄∗ 	A. Also, when A	 ⊂ 	N and k	 ∈

	N we let A/k	 = 	 {n	 ∈ 	A|n	 > 	k}. We will occasionally also consider natural numbers as ordinals, so 

that n	 = {0, 1, . . . , n	 − 	1}. 

We will repeatedly use the following result of Ellentuck extending results of Galvin-Prikry for 

Borel sets and Silver for analytic sets: if A	 ⊂ 	 [ℕ]ℕ is a C-measurable set, then there is some A	 ∈

	[ℕ]ℕwith either [A]ℕ ⊂ 	A or [A]ℕ 	∩ 	A	 = 	∅. 

This has the consequence that if f ∶ 	 [ℕ]ℕ 	→ 	X is some C-measurable function with values in 

some Polish space X, then there is some A	 ∈ 	 [ℕ]ℕ such that f’s restriction to [A]ℕis continuous. 
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Among the simpler analytic equivalence relations are those that admit a classification by real 

numbers, i.e., those that are Borel reducible to the identity relation on ℝ. These are said to be smooth. It 

turns out that among Borel equivalence relations there is a minimum, with respect to ≤୆, non smooth 

one, which we denote by E଴ (see [239]). It is defined on [ℕ]ℕ as the relation of eventual agreement, i.e.: 

AE଴B	 ⟺ 	∃୬	A/n	 = 	B/n 

To see that E଴ is non smooth, suppose towards a contradiction that  f ∶ 	 [ℕ]ℕ 	→ ℝ is a Borel function 

such that AE଴B	 ⟺ 	f(A) 	= 	f(B). Then there is some infinite C	 ⊂ 	ℕ such that the restriction of f to 

[C]ℕ is continuous. But, as the equivalence class of C is dense in [C]ℕ, this means that f is constant on 

[C]ℕ, contradicting that [C]ℕintersects more than one equivalence class. 

On the other hand any uncountable Borel set B	 ⊂ 	 [ℕ]ℕ of pairwise almost disjoint sets will 

witness that E଴ has a continuum of classes. 

From this it follows that any analytic equivalence relation to which E଴ reduces has a continuum 

of classes, but does not admit a classification by real numbers. 
 

Theorem (6.1.2)[234]: Let X be a Banach space with an unconditional basis (e୬). If E଴ does not Borel 

reduce to isomorphism between subspaces generated by subsequences of the basis (and in particular if 

these admit a classification by real numbers), then any space spanned by a subsequence is isomorphic to 

its square and hyperplanes. Furthermore, there is a subsequence of the basis such that all of its 

subsequences span isomorphic spaces. 
 

For example, as the usual basis of Tsirelson’s space does not have a sub- sequence all of whose 

subsequences span isomorphic spaces, this shows that there is no isomorphic classification of the 

subspaces of Tsirelson’s space by real numbers. 

This result can be coupled with Gowers’ dichotomy [235] proving: 
 

Theorem (6.1.3)[234]: Let X be a separable Banach space. Either E଴ Borel reduces to isomorphism 

between its subspaces or X contains a reflexive subspace with an unconditional basis all of whose 

subsequences span isomorphic spaces. 
 

For the above we will need some Ramsey type results for product spaces and some constructions 

for reducing E଴. These results seem to have an independent interest apart from their applications to 

Banach space theory in that they classify minimal counter examples to Ramsey properties in product 

spaces. Let us just state one of these: 
 

Theorem (6.1.4)[234]: Let E be an analytic equivalence relation on [ℕ]ℕ invariant un- 

der finite changes. Either E଴ Borel reduces to E or E admits a homogeneous set. 
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Let X be some separable Banach space and (e୧) a non zero sequence in X. We say that (e୧) is a 

basis for X if any vector x in X can be uniquely written as a norm convergent series x	 = 	 ∑ a୧e୧. In that 

case, the biorthogonal functionals e୩∗(∑ a୧e୧) = a୩ and the projections P୩	 (∑ a୧e୧) = 	∑ a୧e୧୬
୧ୀ଴  are in fact 

continuous and moreover their norms are uniformly bounded. 

If (e୧) is some non zero sequence that is a basis for its closed linear span, written [e୧], we say 

that it is a basic sequence in X. The property of (e୧) being a basic sequence can also equivalently be 

stated as the existence of a constant K	 ≥ 	1 such that for any n	 ≤ 	m and a଴, aଵ, . . . , a୫ ∈ 	ℝ: 

ะ෍ a୧e୧

୬

୧ୀ଴

ะ 	≤ 	Kะ෍ a୧e୧

୬

୧ୀ଴

ะ 

Suppose furthermore that for any x	 = 	 ∑ a୧e୧ the series actually con-verges unconditionally, i.e., 

for any permutation σ of ℕ the series ∑ a஢(୧)e஢(୧) converges to x. Then the basic sequence is said to be 

unconditional. 

Again, being an unconditional basis for some closed subspace (which will be denoted by 

‘unconditional basic sequence’) is equivalent to there being a constant K	 ≥ 	1, such that for all n, A	 ⊂

	{0, . . . , n} and a଴, aଵ, . . . , a୫ ∈ 	ℝ 

ะ෍ a୧e୧

୬

୧∈୅

ะ 	≤ 	Kะ෍ a୧e୧

୬

୧ୀ଴

ะ 

We will in general only work with normalised basic sequences, i.e.,‖e୧‖ ≡ 1, which always can be 

obtained by taking e୧ᇱ = ୣ౟
‖ୣ౟‖

	. 

Given some vector x	 ∈ 	span(e୧) let its support, supp(x), be the set of indices i with e୧∗(x) ≠

	0.	For k	 ∈ 	ℕ and x, y	 ∈ 	span(e୧) we write	k	 < 	x if k < min	supp(x) and x	 < 	y if max	supp(x) 	<

	min	supp(y). A block basis, (x୧), over a basis (e୧) is a finite or infinite sequence of vectors in span(e୧) 

with x଴ < 	xଵ < 	xଶ <	. . .. This sequence will also be basic and in fact unconditional in case (e୧) is so. 

Two basic sequences (e୧)and (t୧) are called equivalent, in symbols (e୧) ≈ (t୧), provided a series 

Paiei converges if and only if ∑ a୧t୧ converges. This can also be stated as saying that T ∶ e୧ ↦	 t୧ extends 

to an invertible linear operator between [e୧] and [t୧]. The quantity ‖T‖ · ‖Tିଵ‖ is then the constant of 

equivalence between the two bases. 

A basis that is equivalent to all of its subsequences is said to be sub-symmetric. A simple 

diagonalisation argument then shows that it must be uniformly equivalent to all of its subsequences. 

Two basic sequences (e୧) and (t୧) are said to be permutatively equivalent if there is some 

permutation σ of ॻ such that (e୧)  and (t஢(୧)) are equivalent. 
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Two Banach spaces X and Y are called incomparable in case neither of them embed 

isomorphically into the other. X is said to be minimal if it embeds into all of its infinitely dimensional 

subspaces and X itself is infinite dimensional. 

The proof of the first theorem will proceed by a reduction to an analysis of Borel partial orders 

due to L. Harrington, D. Marker and S. Shelah (see [240]). Instrumental in our reduction will be the 

determinacy result of Gowers on certain games in Banach spaces (see [235]), which will guarantee that 

some choices can be done uniformly, a fact that is needed for definability purposes. Moreover, we will 

use some ideas of J. Lopez-Abad on coding reals with inevitable subsets of the unit sphere of a Banach 

space (see [241). 

We mention that it was shown by a simpler argument in [242] by V. Ferenczi and the author that 

any Banach spaces either contains a minimal subspace or a continuum of non isomorphic subspaces. 

For facility of notation we write X	 ⊑ 	Y if X embeds isomorphically into Y and will always 

suppose the spaces we are working with to be separable infinite dimensional. Then ⊑ restricted to the 

standard Borel space of sub- spaces of some separable Banach space becomes an analytic quasi-order, 

i.e., transitive and reflexive. So the result above amounts to saying that either ⊑ has a minimal element 

or a perfect antichain.  

Suppose (e୧) is a normalised basic sequence with norm denoted by  ‖·‖ . We call a normalised 

block vector x with finite support rational if it is a scalar multiple of a finite linear combination of (e୧) 

with rational coordinates.Notice that there are only countably many rational (finite) block vectors, which 

we can gather in a set Q and give it the discrete topology. Let bb୕(e୧) be the set of block bases of (e୧) 

consisting of rational normalised block vectors, which is easily seen to be a closed subspace of Qℕ, 

which is itself a Polish space. Moreover the canonical function sending X	 ∈ 	bb୕(e୧) to its closed span 

in ो is Borel, so the relations of isomorphism, etc.,become analytic bb୕(e୧). 

We recall the following classical facts: Any infinite dimensional Banach space contains an 

infinite normalised basic sequence (e୧). Moreover, if Y is any subspace of [e୧], then it contains an 

isomorphic perturbation of a block basic sequence of (e୧). Again any block basic sequence is equivalent 

to some member of bb୕(e୧). So this explains why we can concentrate on bb୕(e୧) if we are only looking 

for minimal subspaces. 

For X, Y	 ∈ 	bb୕(e୧), let X	 ≤ 	Y if X is a blocking of Y	, i.e., if any element of X is a linear 

combination over  . Note that this does not imply that they are rational block vectors over Y	, but only 

over (e୧). Moreover, if Y	 = 	 (y୧), X	 = 	 (x୧) 	 ∈ 	bb୕(e୧), put Y ≤∗ X if for some k, (y୧)i ≥ k	 ≤ 	X. Also, 

for ∆= (δ୧) an infinite sequence of strictly positive reals write d(X, Y	) 	< 	 ∆ if ∀i‖x୧ −	y୧‖ 	< 	 δ୧. 
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Put X	 ≈ 	Y if the bases are equivalent and X ≅ 	Y if they span isomorphic spaces. Then a 

classical perturbation argument shows that there is some ∆ depending only on the constant of the basis, 

such that for any X, Y ∈ bb୕(e୧) if d(X, Y	) < ∆, then X	 ≈ 	Y and in particular X	 ≅ 	Y	. Put also X	 =

	(x୧) 	⋍ Y	 = 	 (y୧) if ∃k	∀i	 ≥ 	kx୧ = y୧. Then evidently X	 ⋍ 	Y implies X	 ≈ 	Y	. 

For a subset A	 ⊂ 	bb୕(e୧)let A∗ = 	 {Y	 ∈ bb୕(e୧)|∃X	 ∈ 	A	X	 ⋍ 	Y	} and A∆ = 	 {Y	 ∈

bb୕(e୧)|∃X	 ∈ 	A	d(X, Y	) < ∆}. Notice that if A is analytic so are both A∗
	 and A∆. Again	[Y	] 	= 	 {X	 ∈

	bb୕(e୧)|X	 ≤ 	Y	}. Such an A is said to be large in [Y	] if for any X	 ∈ 	 [Y	] we have [X] 	∩ 	A ≠ 	∅. 

For (e୧) a given normalised basis, A	 ⊂ 	bb୕(e୧) and X	 ∈ 	bb୕(e୧), the Gowers game ৕ଡ଼୅ is 

defined as follows: Player I plays in the k’th move of the game a rational normalised block vector yk of 

(e୧) such that y୩ିଵ < 	y୩ and y୩ is a block on X. Player II responds by either doing nothing or playing a 

rational normalised block vector x such that x	 ∈ 	 [y୪ାଵ, . . . , y୩] where l was the last move where II 

played a vector. So player II wins the game if in the end she has produced an infinite rational block basis 

X	 = 	 (x୧) ∈ A. This is an equivalent formulation due to J. Bagaria and J. Lopez-Abad (see [243]) of 

Gowers’ original game. 

Gowers [235] proved that if A	 ⊂ bb୕(e୧) is analytic, large in [Y] and ∆ is given, then for some 

X	 ∈ 	 [Y] II has a winning strategy in the game ৕ଡ଼
୅∆  . 

We mention also a result of Odell and Schlumprecht [244] obtained from their solution to the 

distortion problem: If E is an infinite dimensional Banach space not containing c0, there are an infinite 

dimensional subspace F and A, B	 ⊂ 	S୊ of positive distance such that any infinite dimensional sub-space 

of F intersects both A and B. 

The following was shown in [242]: 
 

Lemma (6.1.5)[234]: (MA) Let A	 ⊂ bb୕(e୧) be linearly ordered under ≤∗ of cardinality strictly less 

than the continuum. Then there is some X	 ∈ 	bb୕(e୧) such that X	 ≤∗ 	Y for all Y	 ∈ 	A. 

From this lemma one gets the following: 
 

Lemma (6.1.6)[234]:  (MA + ¬CH) Suppose W	 ⊂ 	bb୕(e୧) is a	 ∑ 	ଵଶ  set, large in some [Y	] and ∆> 	0. 

Then II has a winning strategy in ৕ଡ଼
୵∆   for some X	 ∈ 	 [Y]. 

 

Proof : Let W	 = 	⋃னభVஞ be a decomposition of W as an increasing union of ଵࣨ Borel sets. We claim 

that some Vஞ∗		 is large in [Z] for some Z	 ∈ 	 [Y	], which by Gowers’ theorem will be enough to prove the 

lemma. So suppose not and find Y଴ ∈ 	 [Y	] such that [Y0] 	∩ 	V଴∗ 	= 	∅.	Repeating the same process and 

diagonalising at limits, we find Yஞ ∈ 	 [Y	]	for ξ	 < 	ωଵ such that [Yஞ] 	∩ Vஞ∗ 	= 	∅ and Yஞ 	≤∗ 	Y஗ for η	 <

	ξ. By the above lemma there is some Yஶ 	= 	 (y୧) ∈ 	 [Y	] with Yஶ 	≤∗ 		Yஞ for all ξ	 < 	ωଵ. 
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We claim that [(yଶ୧)] 	∩ W	 = 	∅. Otherwise, for Z	 = 	 (z୧) 	 ∈ 	 [(yଶ୧)] 	∩ W find ξ	 < 	ωଵ such 

that Z	 ∈ 	Vஞ	 . Now as (y୧) 	≤∗ 	Yஞ there is some k with (y୧)i ≥ k	 ≤ 	Yஞ, but then 

(yଶ୧) 	⋍ 	 (y୩, y୩ାଵ, y୩ାଶ, . . . , yଶ୩ିଵ, yଶ୩, yଶ(୩ାଵ), yଶ(୩ାଶ), . . . ) 	≤ 	Yஞ 

One now easily sees that there is some	(x୧) with 

(z୧) ⋍ (x୧) 	≤ 	 ((y୩, y୩ାଵ, y୩ାଶ, . . . , yଶ୩ିଵ, yଶ୩, yଶ(୩ାଵ), yଶ(୩ାଶ), . . . ) 

whereby (x୧) 	 ∈ 	Vஞ∗ contradicting Vஞ∗ ∩	 [Yஞ] 	= 	∅. 

Therefore [(yଶ୧)] 	∩ W	 = 	∅, again contradicting the largeness of W.  
 

Lemma (6.1.7)[234]:  (MA + ¬CH) Suppose that (e୧) is a basic sequence such that [e୧] does not 

contain a minimal subspace. Then for any Y	 ∈ 	bb୕(e୧) there are a Z ∈ [Y	] and a Borel function g ∶

	[Z] 	→ 	 [Z], with g(X) 	≤ 	X and X ⋢ g(X)	for all X ∈ [Z]. 
 

Proof : As c଴ is minimal, [e୧] does not contain c଴. Therefore, by the solution to the distortion problem 

by Odell and Schlumprecht, we can by replacing (e୧) by a block suppose that we have two positively 

separated sets F଴, Fଵ of the unit sphere, such that for any X	 ∈ 	bb୕(e୧) there are rational normalized 

blocks x, y on X with x	 ∈ 	F଴ and y	 ∈ 	Fଵ. We call such sets inevitable. 

Let D	 = 	 {X	 = 	 (x୧) 	 ∈ 		bb୕(e୧)	|∀i	x୧ 	∈ 	F଴ ∪	Fଵ} and for X	 ∈ 	D let α(X) 	 ∈ 	2ℕ be defined 

by α(X)(i) 	= 	0	 ↔ 	x୧ 	 ∈ 	F଴. Then D is easily seen to be a closed subset of bb୕(e୧) and α:	D	 → 	2ℕ to 

be continuous. Furthermore by the inevitability of F଴ and Fଵ we have that D is large in every [Y]. 

Let Q∗
ழ୒ be the set of finite non identically zero sequences of rational numbers given the discrete 

topology. Then (Q∗
ழ୒	)ℕ is Polish. Define for any Y	 ∈ 	bb୕(e୧) and (λ୧) 	 ∈ 	 (Q∗

ழ୒	)ℕ the block basis 

(λ୧) · 	Y of Y in the obvious way, by taking the linear combinations given by (λ୧). 

Fix also some perfect set P of almost disjoint subsets of ℕ seen as a subset of 2ℕ and let β ∶

	P	 ↔ 	 (Q∗
ழ୒	)ℕ be a Borel isomorphism. 

Again E	 = 	 {X	 ∈ 	D|	α(X) 	 ∈ 	P} in large and closed in bb୕(e୧). 

   Then the set 

W = {X = (x୧) ∈ bb୕(e୧)|(xଶ୧) ∈ E ∧ (xଶ୧ାଵ) 	⋢ 	β ∘ α((xଶ୧)) · (xଶ୧ାଵ)} 

is coanalytic. We claim moreover that it is large in	bb୕(e୧). 

To see this, let Y	 ∈ 	bb୕(e୧) be given and take by inevitability of F଴ and Fଵ some (z୧) ∈ 	 [Y	] 

with zଷ୧	 ∈ 	F଴ and zଷ୧ାଵ ∈ 	Fଵ. As [zଷ୧ାଶ] is not minimal there is some X	 ≤ 	 (zଷ୧ାଶ) such that (zଷ୧ାଶ) ⋢

	X. Take some (λ୧) ∈ 	 (Q∗
ழ୒	)ℕ such that (λ୧) · 	(zଷ୧ାଶ) ≈ X and (zଷ୧ାଶ) ⋢	 (λ୧) · (zଷ୧ାଶ). We can now 

define some (v୧) such that either vଶ୧ = 	 zଷ୧ or vଶ୧ 	= 	 zଷ୧ାଵ,	 β ∘ 	α((vଶ୧)) 	= 	(λ୧) and vଶ୧ାଵ = zଷ୧ାଶ. 

This ensures that (v୧) 	∈ 	W. So as (v୧) 	≤ 	 (z୧) it is in	[Y	]	and W is indeed large. 
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Take now some ∆= 	 (δ୧) depending on the basic constant as above with δ୧ < ଵ
ଶ

d(F଴, Fଵ). By the 

preceding lemma we can find a Y ∈ bb୕(e୧) such that II has a winning strategy σ in the game ৕ଡ଼
୵∆ .  

Suppose that = 	 (x୧) has been played by II according to the strategy σ as a response to Z played 

by I. As σ is winning, X	 ∈ 	W∆
∗ . Define γ(X) ∈ 2ℕ by γ(X)(i) = 0 if d(xଶ୧, F଴) 	< 	 δଶ୧ and γ(X)(i) 	=

	1	otherwise. Then γ is Borel from W∆
∗ to 2ℕ, and furthermore there is a unique γ∗(X) 	 ∈ 	P such that 

∃k	∀i	 ≥ 	k	γ(X)(i) 	= γ∗(X)(i). This is because P was chosen to consist of almost disjoint subsets of ℕ. 

Again X	 ↦ γ∗(X) is Borel. 

Take some U = (u୧) 	 ∈ 	W such that ∀ஶn	‖u୬ −	x୬‖ 	< 	 δ୬. Then α(U) 	= γ∗(X), (uଶ୧ାଵ) 	≈

	(xଶ୧ାଵ) and (uଶ୧ାଵ) 	⋢ 	β ∘ α(U) · (uଶ୧ାଵ). So due to the equivalence invariance of the basis by ∆ 

perturbations we have (xଶ୧ାଵ) ⋢ β ∘ γ∗(X) · (xଶ୧ାଵ). 

Let V	 ∈ 	 [X] be the normalisation of β ∘ γ∗(X) · (xଶ୧ାଵ). The function 

g ∶ 	Z	 ↦ 	V is Borel and obviously V ≈ 	β ∘ γ∗(X) · (xଶ୧ାଵ) ≤ (xଶ୧ାଵ) ≤ Z and as (xଶ୧ାଵ)	 β ∘ γ∗(X) ·

(xଶ୧ାଵ)  also Z	 ⋢ V	. 

A Banach space is called quasi-minimal if any two subspaces have further isomorphic subspaces. 

The following is a standard observation. 
 

Lemma (6.1.8)[234]: Suppose [e୧] is quasi-minimal. Then ⊑ is downwards σ-directed on bb୕(e୧), i.e., 

any countable family has a common minorant. 

Proof : Suppose that Y୧ ∈ 	bb୕(e୧) are given, then define inductively Z୧ ∈ 	 [Y଴]	such that Z୧ 	⊑ 	Y୧ and 

Z୧ାଵ 	≤ 	Z୧. Take some Z	 = 	 (z୧) 	≤∗ 	Z୬ for all n and notice as in the proof of Lemma (6.1.6) that 

(zଶ୧) 	⊑ 	Z୬ for all n.  
 

Lemma (6.1.9)[234]: If R is a downwards σ-directed Borel quasi-order on a standard Borel space X. 

Then either R has a perfect antichain or a minimal element. 
 

Proof : This is a simple consequence of the results of L. Harrington, D. Marker and S. Shelah [240], as 

we will see. Suppose that R did not have a perfect antichain, then by their results there is a countable 

partition X	 = ⋃X୬ into Borel sets, so that R is total on each piece, i.e., R can be written as a countable 

union of R-chains. 

Applying another of their results this implies that for some countable ordinal α there are Borel 

functions f୬ ∶ 	X୬ 	→ 	2஑	, such that for any x, y	 ∈ 	X୬: 

yRx ⇔ 	x	 ≤୪ୣ୶ 	y 

Where ≤୪ୣ୶  is the usual lexicographical ordering. In their terminology, R is linearisable on each X୬. 
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One can easily check that any subset of 2஑ has a countable subset cofinal with respect to ≤୪ୣ୶	, so 

pulling it back by fn it becomes coinitial in R ↾ Xn. Putting all these sets together one gets a countable 

subset of X coinitial with respect to R. So by downwards σ-directedness there is therefore a minimal 

element in X.  

After this series of lemmas we can now prove the theorem: 
 

Theorem (6.1.10)[234]: Let X be an infinite dimensional Banach space. Then X con- 

tains either a minimal subspace or a continuum of pairwise incomparable subspaces. 
 

Proof : By Gowers’ quadrichotomy X contains either a quasi-minimal sub- space or a subspace with a 

basis such that any two disjointly supported subspaces are totally incomparable (see Gowers [235] 

theorem 7.2 and the fact that H.I. spaces are quasi-minimal). In the latter case any perfect set of almost 

disjoint subsets of N will give rise to subsequences of the basis spanning totally incomparable spaces, 

which would prove the theorem. So we can suppose that X	 = 	 [e୧] is quasi-minimal for some basis (e୧). 

If X does not contain a minimal subspace, we can choose Z	 ∈ 	bb୕(e୧) and the Borel function as above 

(under MA + ¬CH of course). So define the following property on subsets A, B of [Z]ଶ: 

	Φ(A, B) 	⇔ 

∀Y, V, W ∈ [Z]	[(Y, V) ∉ A ∨ (V, W) ∉ A	 ∨ (Y, W) ∉ B] ∧ ∀Y ∈ [Z](Y, g(Y)) ∉ A 

We see that Φ is ∏ 	ଵଵ  on ∑ 	ଵଵ , hereditary and continuous upwards in the second variable. 

Furthermore, Φ(⊑,⋢), so by the second reflection theorem (see Kechris [245] theorem (35.16)) there is 

some Borel set R containing ⊑ such that Φ(R,∁R). But then R is a Borel quasi-order, downwards σ-

directed, as it contains ⊑, and without a minimal element, as witnessed by g. So R has a perfect anti-

chain by the previous lemma, which then is an antichain for ⊑ too. 

The statement is therefore proved under the additional hypothesis of Martin’s axiom and the 

negation of the continuum hypothesis. We will see that this is in fact sufficient to prove the theorem. By 

standard metamathematical facts and Shoenfield’s absoluteness theorem it is enough to show that the 

statement we wish to prove is ∑ 	ଵଶ . 

It was proved by Ferenczi and the author in [242] that the property of having a block minimal 

subspace was ∑ 	ଵଶ . For using Gowers’ determinacy result and codings as above, one can continuously 

find an isomorphism between the space and a certain subspace to testify the minimality. This proof can 

trivially be modified to show that the property of having a minimal (i.e., not necessarily block minimal) 

subspace is also ∑ 	ଵଶ  . For now we only have to choose not a code for a subspace and an isomorphism, 

but a code for a subspace and an embedding. For the convenience of the reader, we have included the 

proof of this in(see[234]). 



158 
 

On the other hand, the property of having a perfect antichain is obviously ∑ 	ଵଶ  by just counting 

quantifiers. So these remarks finish the proof.  
 

We will show two Ramsey type results and afterwards some applications to Banach space 

theory. 

It is well known that there are no nice Ramsey properties for the product space [ℕ]ℕ × [ℕ]ℕ in 

contradistinction to the simple Ramsey space [ℕ]ℕ. That is, there are even quite simple relations not 

admitting a square [A]ℕ 	× 	 [B]ℕ	that is either included in or disjoint from the relation. An example of 

this is the oscillation relation ࣩ defined by 

(a୬)ࣩ(b୬) 	⇐⇒ 

∃N	∀n[	#(k	|a୬ < 	b୩ < a୬ାଵ) 	≤ 	N	 ∧ 	#(k	|	b୬ < 	a୩ < 	b୬ାଵ) 	≤ 	N] 

Where [ℕ]ℕ is seen as the space of strictly increasing sequences of integers (a୧). 

The situation is very different if one replaces one of the factor spaces by other Ramsey spaces 

and there are now very deep positive theorems on so called polarised partition relations. 

We are interested in the case when the relation on the product is in fact a definable equivalence 

relation. Here the right question seems to be when there is a cube [A]ℕ contained in one class. Now if 

one lets two subsets of ℕ be equivalent iff they have the same minimal element, then the relation has 

exactly ଴ࣨ classes and does not admit a homogeneous set. 

On the other hand if the relation is invariant under finite changes, such as E଴, then there are 

bigger chances that it should have a homogeneous set. We will show that in the case of analytic 

equivalence relations, E଴ is in fact the minimal counterexample to the Ramsey property, in the sense 

that, if an analytic equivalence relation is invariant under finite changes and does not admit a 

homogeneous set, then it Borel reduces E଴. In the same vein it is shown that if an analytic equivalence 

relation does not admit a cube on which it has only countably many classes, then it has at least a perfect 

set of classes. We notice that both of these results are relatively direct consequences of the Silver and 

Glimm-Effros dichotomies in the case of the equivalence relation being Borel. But our results are 

motivated by applications to isomorphism of separable Banach spaces, which is true analytic, and the 

dichotomies are known not to hold in this generality. 

The following result was also found independently by S. Todorcevic, albeit with a somewhat 

different proof: 
 

Theorem (6.1.11)[234]: Let E be an analytic equivalence relation on [ℕ]ℕ. Then either 

E has a continuum of classes or there is some A	 ∈ 	 [ℕ]ℕ such that E only has a countable number of 

classes on [A]ℕ. 
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Moreover, A’s E଴ class will be a complete section for E on[A]ℕ. 
 

Proof : We will prove the theorem under MA + ¬CH. By Burgess’ theorem (Exercise (35.21) in [238]) 

we can suppose that E has at most ଵࣨ classes (Cஞ)னభ. Define Pஞ(A) 	↔ 	 [A]୉బ ∩	Cஞ ≠ 	∅ and notice that 

this an analyti1c E଴-invariant property. We can by simple diagonalisation find (Aஞ)னభ 	, Aஞ ⊂∗ A஗	for 

η	 < 	ξ	 < 	ωଵ such that ∀ξ < ωଵ either [Aஞ]ℕ ⊂	Pஞ or [Aஞ]ℕ ⊂ 	CPஞ. And by MA + ¬CH there is an 

A	 ⊂∗ Aஞ,∀ξ	 < ωଵ. 

Notice now that by E଴-invariance of Pஞ, if B	 ⊂∗ A and [A	]ℕ ⊂	Pஞ or [A	]ℕ ⊂ 	CPஞ then also 

[B	]ℕ ⊂	Pஞ, respectively [B	]ℕ ⊂ 	CPஞ. So therefore ∀ξ	 < 	ωଵ[A	]ℕ ⊂	Pஞ or [A	]ℕ ⊂	CPஞ. 

Suppose now that B	 ∈ 	 [A	]ℕ, B	 ∈ 	Cஞ then Pஞ(B) and therefore[A	]ℕ ⊂ 	Pஞ and Pஞ(A), i.e., 

∃A′E଴A	A′EB. This means that [A]୉బ  is a complete section for E on [A	]ℕ. 

Let us now see that the statement of the theorem is absolute. Saying that E has a continuum of 

classes is equivalent to saying that there is a compact perfect set K	 ⊂ 	 [ℕ	]ℕ consisting of pairwise E-

inequivalent points: 

∃K	 ⊂ 	 [ℕ	]ℕ compact, perfect ∀x, y	 ∈ 	K(x	 = 	y	 ∨ 	xEy) 

This is obviously a  ∑ 	ଵଶ  statement. 

For the other case, notice that as [A]୉బ  is a complete section for E	on  [A	]ℕ there is by the 

Jankov-von Neumann selection theorem a C-measurable selector f ∶ 	 [A	]ℕ 	→ 	ℕℕ and a Borel set B	 ⊂

	[ℕ	]ℕ 	× 	[ℕ	]ℕ 	× 	ℕℕ with  E	 = π[ℕ	]ℕ×[ℕ	]ℕB, such that for D	 ∈ 	 [A	]ℕ there is an A′E଴A with 

B൫D, Aᇱ, f(D)൯	.	That is, we can choose a witness to D being E equivalent to some A′E଴A in a C-

measurable way. But any C-measurable function can, using Ellentuck’s theorem, be rendered continuous 

on a cube, i.e., there is some B	 ∈ 	 [A	]ℕ such that f’s restriction to [B	]ℕ is continuous. So by the proof 

above the E-classes on [A	]ℕ are the same as the E-classes on [B	]ℕ and the other possibility can be 

written as: 

∃B	∃f ∶ 	 [B	]ℕ 	→ 	ℕℕ continuous ∀D	 ∈ 	 [B	]ℕ	∃BᇱE଴B	B൫D, Bᇱ, f(D)൯ 

This statement is ∑ 	ଵଶ  as the quantifier ∃B′E଴B is over a countable set, so by Shoenfield 

absoluteness and standard metamathematical facts it is enough to prove the result under MA + ¬CH.   

The next results render explicit the connection with the Borel reducibility ordering. 
 

Definition (6.1.12)[234]: For A, B ⊂ ℕ set AE଴ᇱ B iff ∃n	|A ∩ n| = |B ∩ n| ∧ A\n = B\n 

It is easy to see that the equivalence class of any infinite-coinfinite subset of N is dense in [ℕ	]ℕ and in 

fact the equivalence relation is generically ergodic. Moreover, E଴ᇱ is just a refinement of E଴	 . 
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Lemma (6.1.13)[234]:  E଴ᇱ is generically ergodic (i.e., any invariant set with the Baire property is either 

meagre or comeagre) and all classes [A	]	୉బᇲ  , for A infinite- coinfinite, are dense. 
 

Proof : Since [ℕ	]ℕ is cocountable in 2ℕ we can restrict our attention to it. Suppose that some invariant 

set A is non meagre, then there is some a	 ⊂ 	 [0, n]	such that A is comeagre in	Dୟ,୬ = {A	 ∈

[ℕ	]ℕ|A	 ∩ [0, n] = a}. So for any Dୠ,୫ there are c, d	 ∈ 	 [0, k]; 	max(n, m) 	< 	k	such that  a	 ⊂ 	c, b	 ⊂

	d, |c| = 	 |d|.	Now for any A	 ∈ 	 [{k	 + 	1, k	 + 	2, . . . }]ℕ we have ϕ(c	 ∪ 	A) = 	 (d	 ∪ 	A)E଴ᇱ (c	 ∪ 	A)	and 

ϕ is a homeomorphism of Dୡ,୩ 	⊂ 	Dୟ,୬ with Dୢ,୩. But that means that the image of A is comeagre in 

Dୢ,୩ ⊂ 	Dୠ,୫ and is included in the saturation of A, which is A. So A is comeagre in the space. 

If A is infinite-coinfinite, then for any Dୟ,୬ there are b, c	 ⊂ 	 [0, k]; 	b	 ⊃ a, n	 < 	k, A	 ∩	 [0, k] 	=

	c, b	 ∩ 	[0, n] 	= 	a and |b| 	= 	 |c|. So A	 = 	(c	 ∪ 	A/k)E଴ᇱ (b	 ∪ A/k) 	∈ 	Dୠ,୩ 	⊂ 	Dୟ,୬. And its class is 

dense.   

 

Proposition (6.1.14)[234]: Let E be a meagre equivalence relation on 2ℕ containing 

E଴ᇱ . Then E଴	 ≤୆ 	E. 
 

Proof. Let (D୬) be a decreasing sequence of dense open sets, such that E ∩ ⋂୬D୬ = ∅. 

We will inductively construct sequences b଴୬	, bଵ୬ ∈ 2ழ୒ for n ∈ ℕ such that for all n, |b଴୬| 	=

	|bଵ୬|, b଴୬തതതതതത = 	bଵ୬തതതതതത ∶= 	#{k	|bଵ୬(k) 	= 	1}. And if aୱ = bୱ(଴)
଴ 			ෝ	. . . 			ෝ	bୱ(|ୱ|ିଵ)

|ୱ|ିଵ  for all s	 ∈ 	2ழ୒, then for any 

s, t	 ∈ 	2୬, Nୟ౩	బ̂
	 × Nୟ౪	̂భ ⊂ 	D୬ାଵ. 

Suppose that this can be done. Then define α	 ⟼∪୬ a஑⌈୬ 	= 	a஑		. This is clearly continuous. If 

now ￢αE଴β	, then for infinitely many n,α(n) 	≠ 	β(n). So for these n	(a஑	, aஒ	) 	 ∈ 	Nୟಉ↾౤శభ × Nୟಊ↾౤శభ ⊂

D୬ାଵ, which implies that ൫a஑	, aஒ	൯ ∈ ⋂୩	D୩ 	⊂ 	 ∁E. 

Conversely, if αE଴β, then for some N, we have ∀n	 ≥ 	N	α(n) 	= 	β(n). But then easily a஑	 =

	a஑↾୒		ොb஑(୒)
୒ 		ොb஑(୒ାଵ)

୒ାଵ 	. .. and aஒ	 = 	a஑↾୒		ොb஑(୒)
୒ 		ොb஑(୒ାଵ)

୒ାଵ …, so by the construction, a஑	E଴ᇱβ. 

Now for the constructinon: Suppose that b଴୬	, bଵ୬ have been chosen for ∀m	 < n, enumerate 2୬ ×

	2୬ by (s଴, t଴), . . . , (s୩, t୩) and take c଴଴, cଵ଴ ∈ 2ழ୒ such that Naୱబ		ොୡబబ × 	Na୲బ		ොୡభబ ⊂	D୬. This can be done as 

D୬ is dense and open in the product. 

Prolong c଴଴, cଵ଴ to c଴ଵ, cଵଵ respectively in such a way that Naୱభ		ොୡబభ × Na୲భ		ොୡభభ ⊂ D୬. 

Again, prolong c଴ଵ, cଵଵtoc଴ଶ, cଵଶ respectively in such a way that Naୱమ		ොୡబమ × Na୲మ		ොୡభమ ⊂ D୬, etc. 

Finally, prolong c଴୩	, cଵ୩ to b଴୬	, bଵ୬ respectively, such that |b଴୬	| = |bଵ୬|, b଴୬ധധധ = 	bଵ୬ധധധ	. 

This finishes the construction.  
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For the following, we recall that ∀∗x	R(x) means that the set {x|R(x)} is comeagre, where x 

varies over some Polish space. 
 

Theorem (6.1.15)[234]: Let E be an analytic equivalence relation on [ℕ	]ℕ such that E଴ᇱ ⊂ 	E, i.e., E is 

E଴ᇱ  -invariant. Then either E଴	 ≤ୡ cE or there is some A	 ∈ 	 [ℕ	]ℕ such that E only has one class on [A	]ℕ. 
 

Proof : By corollary 3.5 of [10], if  E଴	 ≰ୡ 	E, then E will be a decreasing intersection of ଵࣨ smooth 

equivalence relations: 

E	 = ሩEஞ

	

னభ

	 , Eஞ 	⊂ 	E஗		,η < 	ξ	 < 	ωଵ 

Let fஞ:	[ℕ	]ℕ 	→ R be a Borel reduction of Eஞ to identity on ℝ. Then for any A	 ∈ 	 [ℕ	]ℕ, there is a 

B	 ∈ 	 [A	]ℕ such that f ↾ [B	]ℕ is continuous. But since there is a dense Eஞ-class the function has to be 

constant, that is, there is only one class. 

We construct inductively a	 ⊂∗-decreasing sequence (Aஞ)னభ  of infinite sub- sets of ℕ	, with each 

Aஞ being homogeneous for Eஞ. Under MA + ¬CH such a sequence can be diagonalised to produce an 

infinite Aஶ ⊈∗ Aஞ,∀ξ < 	ωଵ.	Now as Aஶ ⊈∗ Aஞ it is easily seen that Aஶ is E଴ᇱ  -equivalent with some 

subset of Aஞ and therefore also Eஞ-equivalent with Aஞ itself. Furthermore, the same holds for any infinite 

subset of Aஶ, so Aஶ is homogeneous for all of the Eஞ and therefore for E too. 

As before one sees that the property of having a homogeneous set is ∑ 	ଵଶ , so we need only check 

that continuously reducing E଴ is ∑ 	ଵଶ . But this can be written as:  

∃f ∶ [N	]୒ → [N	]୒	continuous	[	∀∗α ∈ [N	]୒	∀βE଴α	∀γE଴α	f(β)Ef(γ) 

∧	∀α,β	 ∈ 	 [N	]୒	{αE଴β	 ∨ 	￢f(α)Ef(β)}] 

So as the quantifier ∀βE଴α is over a countable set and that the category quantifier ∀∗ preserves 

analyticity (see Theorem (29.22) in [238]), the statement is ∑ 	ଵଶ  .  

  Let (e୧) be some basic sequence in a Banach space X and define the following equivalence relation on 

[N	]୒:	A ≅ 	B	
											
ሯልሰ	 [e୧]୅ ≅ [e୧]୆. Then ≅ is analytic and extends E଴ᇱ  . For suppose that AE଴ᇱ B. Then 

[e୧]୅ and [e୧]୆are spaces of the same finite codimension in [e୧]୅∪୆ and are therefore isomorphic. So, 

using the proposition, one sees that if E଴ ≰ B ≅, then ≅ must be non meager and therefore by 

Kuratowski-Ulam have a non meagre class, which again by the lemma is comeagre. 

To avoid trivialities, let us in the following suppose that all Banach spaces considered are 

separable, infinite dimensional. 

Gowers showed the following amazing result about the structure of sub-spaces of a Banach 

space: if X is a Banach space, then it contains either an unconditional basic sequence or an H.I. subspace 

[235]. 



162 
 

Here an H.I. (hereditarily indecomposable) space Y is one in which no two infinite dimensional 

subspaces form a direct sum. This property, which passes to subspaces, insures that Y cannot be 

isomorphic to any of its sub- spaces and cannot contain any unconditional basic sequence. Therefore in 

the classification of the subspaces of a Banach space one can always suppose to be dealing with an H.I. 

space or a space with an unconditional basis. 
 

Proposition (6.1.16)[234]: Let (e୧) be a basic sequence in a Banach space. Then either 

E଴ Borel reduces to isomorphism of spaces spanned by subsequences of the basis or there will be some 

infinite A	 ⊂ 	ℕ, such that for any infinite B	 ⊂ 	A: [e୧]୅ ≅ [e୧]୅. 

Example (6.1.17)[234]: Hereditarily Indecomposable spaces. 
 

Suppose that we are given a hereditarily indecomposable space X. Then as any Banach space 

contains a (conditional) basic sequence, we can suppose that we have a basis (e୧). By the above 

proposition, if E଴ does not reduce, there would be a subsequence spanning a space isomorphic to some 

proper subspace in contradiction with the properties of H.I. spaces. So E଴ reduces to isomorphism of its 

subspaces. The same reasoning shows, using the first theorem, that it has a continuum of incomparable 

subspaces. 
 

A recent result due to Ferenczi and Galego [237] says that E଴ Borel reduces to the isomorphism 

relation between subspaces of c଴ and ℓଵ. So if E଴ does not reduce to isomorphism between the 

subspaces of an Banach space, then using Gowers’ dichotomy we can find a subspace with an 

unconditional basis. Therefore by James’ characterisation of reflexivity this basis must span a reflexive 

space. All in all this gives us the following: 
 

Theorem (6.1.18)[234]: Let X be an Banach space such that the isomorphism relation between its 

subspaces does not reduce E଴. Then X contains a reflexive sub- space with an unconditional basis, all of 

whose subsequences span isomorphic spaces. 
 

Let us notice that if a basis (e୧) has the property that no two disjointly supported block basic 

sequences are equivalent, then one can easily show that this basis has the Casazza property and 

moreover that it satisfies 

(e୧)୅	 ≈	 (e୧)୆	
										
ሯልሰ	(e୧)୅	 ≅ (e୧)୆	 	

										
ሯልሰ 	AE଴ᇱ B 

See the work of Gowers and Maurey, [247], for unconditional examples of such bases. So as E଴ᇱ and E଴	  

are Borel bi-redicible, there are bases on which both equivalence and isomorphism between 

subsequences are exactly of complexity E଴	 . 

We will now see an extension of some results by Ferenczi and the author, [248], and Kalton, 

[245]. 
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Theorem (6.1.19)[234]: Let (e୧) be an unconditional basic sequence. Then either E଴	  Borel reduces to 

isomorphism of spaces spanned by subsequences of the basis or any space spanned by a subsequence is 

isomorphic to its square and its hyperplanes. And there is some infinite A	 ⊂ 	N such that for any infinite 

B	 ⊂ 	A, [e୧]୅ ≅ [e୧]୆. 

Proof. As before we can suppose we have some comeagre class A ⊂ 	 [N]୒	. But then A is also comeagre 

in 2ℕ and there is therefore a partition A଴, Aଵ of ℕ and subsets B଴ 	⊂ A଴, Bଵ ⊂ Aଵ such that for any C ⊂

N, if C ∩ A଴ = B଴ or C	 ∩ Aଵ = Bଵ, then C	 ∈ A. In particular, B଴	, Bଵ, B଴ 	∪ 	Bଵ ∈ 	A. Moreover, as the 

complement operation is a homeomorphism of 2ℕ with itself, there is some C such that C, CC	 ∈ 	A. So 

identifying subsets of ℕ with the Banach spaces they generate and using the fact that the basis is 

unconditional, and therefore that disjoint subsets form direct sums, we can calculate: 

N = C ∪ CC	 ≅ 	C	 ⊕ CC ≅ 	B଴⊕	B଴ ≅ B଴⊕	Bଵ ≅ B଴ ∪ Bଵ ≅ B଴ 

So N ∈ 	A and A consists of spaces isomorphic to their squares. Now for any D	 ⊂ 	N: 

N ⊕ D ≅ B଴⊕ Bଵ⊕ D ≅ [B଴ ∪ (D ∩	Aଵ)] ⊕ [Bଵ ∪ (D ∩ A଴)] ≅ N ⊕ N ≅ N 

This in particular shows that [e୧]୒ is isomorphic to its hyperplanes. 

We notice now that the argument is quite general, in the sense that we could have begun from 

any [e୧]୅instead of [e୧]୒, and therefore the results hold for any space spanned by a subsequence.  

Kalton [245] showed that in case an unconditional basis only has a countable number of 

isomorphism classes on the subsequences of the basis, then the space spanned is isomorphic to its square 

and hyperplanes. The above result is along the same lines and we should mention that one can get 

uniformity results with a bit of extra care in the proof, see the article by Ferenczi,[248], for this. 

  Notice that permutative equivalence between subsequences of a basis in- duces an analytic 

equivalence relation on [ℕ]ℕ	. 
 

Theorem (6.1.20)[234]: (Bourgain, Casazza, Lindenstrauss, Tzafriri) If (e୧)୒ is an un- conditional basic 

sequence permutatively equivalent to all of its subsequences, then there is a permutation π of N such that 

(e஠(୧))୒ is subsymmetric. 
 

Their statement of the theorem is slightly more general, but the general case is easily seen to 

follow from the infinite dimensional Ramsey theorem. 
 

Proposition (6.1.21)[234]: Let (e୧)୅ is an unconditional basic sequence. Then either E଴ reduces to the 

relation of permutative equivalence of the subsequences of the basis or there is some A	 ∈ 	 [N]୒ such 

that (e୧)୅ is subsymmetric. 
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Proof.  Notice that ∼୮	 (permutative equivalence) on [N]N is E଴ᇱ -invariant, so applying the Ramsey 

result we can suppose that there is some B ∈ [N]୒ such that all C	 ∈ 	 [B]୒ are C	 ∼୮ B. Now there is 

some permutation π of B such that (e஠(୧))୆ is subsymmetric. Again choosing a strictly increasing 

sequence A	 = {n଴	, nଵ, nଵ, . . . } ⊂ B such that π(n଴) < π(nଵ) < π(nଶ) <	. . ., we get a subsymmetric 

(e	(୧))୅. 

Section (6.2): α-Minimal Banach Space:  

Suppose ࣱ is a separable, infinite-dimensional Banach space. We say that ࣱ is minimal if ࣱ 

isomorphically embeds into any infinite-dimensional subspace Y⊆ࣱ (and write ࣱ ⊆ࣱ to denote that 

ࣱ embeds into Y). The class of Banach spaces without minimal subspaces was studied by V. Ferenczi 

and the author in [251], extending work of W.T. Gowers [252] and A.M. Pelczar [253], in which a 

dichotomy was proved characterising the presence of minimal subspaces in an arbitrary infinite-

dimensional Banach space. 

The dichotomy hinges on the notion of tightness, which we can define as follows. Assume that 

ࣱ has a Schauder basis (e୬) and suppose Y ⊆	ࣱ is a subspace. We say that Y is tight in the basis (e୬) 

for ࣱ if there are successive finite intervals of ℕ, 

1଴ < 1ଵ < 1ଶ < ⋯ ⊆ N, 

such that for any isomorphic embedding T :	Y →	ࣱ, if		P୍ౣ denotes the canonical projection of ࣱ onto 

[e୬]୬ ∈ I୫, then 

lim
୫⟶ஶ

infฮP୍ౣTฮ > 0 

Alternatively, this is equivalent to requiring that whenever A ⊆ N is infinite, there is no embedding of y 

into[e୬|n ∉∪୫୅ I୫]. Also, the basis (e୬) is tight if any infinite-dimensional subspace  Y ⊆ ࣱ is tight in 

(e୬) and a space is tight in case it has a tight basis. We note that if ࣱ is tight, then so is any shrinking 

basic sequence in ࣱ. 

Tightness is easily seen to be an obstruction to minimality, in the sense that a tight space cannot 

contain a minimal subspace. In [251] the following converse is proved: any infinite-dimensional Banach 

space contains either a minimal or a tight subspace. 

J. Bourgain introduced in [254] an ordinal index that gives a quantitative measure of how much 

one Banach space with a basis embeds into another. Namely, suppose ࣱ, is a space with a Schauder 

basis (e୬	)and y is any Banach space. We let T൫(e୬	), ਁ, K൯be the tree of all finite sequences 

(y଴, yଵ … , y୩)in Y, including the empty sequence ∅ = (		), such that 

(y଴, … , y୩)~k(e଴, … e୩) 
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Here, whenever (x୧) and (y୧)are sequences of the same (finite or infinite) length in Banach spaces ߯ and 

੩, we write 

(x୧)~k(y୧) 

if for all  a଴, … , a୩ ∈ ℝ 

ଵ
୏
ቯ෍ a୧x୧

୩

୧ୀ଴

ቯ ≤ ቯ෍ a୧y୧

୩

୧ୀ଴

ቯ ≤ Kቯ෍ a୧x୧

୩

୧ୀ଴

ቯ. 

We notice that T൫(e୬	), ਁ, K൯is ill-founded, i.e., admits an infinite branch, if and only if ࣱ = [e୬] 

embeds with constant K into y. 

The rank function ρTon a well-founded tree T, i.e., without infinite branches, is defined by 

ρT(ୗ) = 0 if s ∈ T is a terminal node and 

ρT(ୗ) = sup൛ρT(୲) + 1|s ≺ t, t ∈ Tൟ 

Otherwise. Then, the rank of T is defined by  

rank(T)= sup൛ρT(ୗ) + 1|	sϵTൟ, 

Whence rank(T)=	ρT(∅) + 1 if T is non-empty. Moreover, if T is ill-founded, we let rank(T) = ∞, with 

the stipulation that α < ∞for all ordinals	α. 

Then, rank(T(e୬), ਁ, K) measures the extent to which ࣱ = [e୬] K-embeds into ਁ and we 

therefore define the embed ability rank of ࣱ = [e୬]  into y by 

Emb((e୬), ਁ) = sup
୩ஹଵ

rank (T(e୬), ਁ, K)  

Since (e୬) is a basic sequence, there is for any K ≥ 1 a sequence ∆= (δ୬)  of positive real numbers, 

such that if y୬, z୬ ∈ ਁ, ‖y୬ − z୬‖ < δ୬and (y଴ … . , y୩)~k(e଴ … . , e୩)then also(z଴ … . , z୩)~k +

1(e଴ … . , e୩). Therefore, to calculate the embed ability rank, Emb൫(e୬), ਁ൯, it suffices to consider the 

trees of all finite sequences (y଴ … . , y୩) with (y଴ … . , y୩)~k(e଴ … . , e୩), where, moreover, we require the 

y୬to belong to some fixed dense subset of ਁ. We shall use this repeatedly later on, where we replace ਁ by 

a dense subset of  itself. This comment also implies that Emb൫(e୬), ਁ൯is either	∞, if	ࣱ ⊆ ਁ, or an 

ordinal < density(y)ା, if ࣱ ⊈ ਁ. In particular, if ਁ is separable, then Emb൫(e୬), ਁ൯ is either  or a 

countable ordinal. Also, note that the embeddability rank depends not only on the space ࣱ, but also on 

the basis (e୬). However, if ਁ is separable and	ࣱ ⋢ ਁ, then by the Boundedness Theorem for coanalytic 

ranks (see [255]), the supremum of Emb൫(e୬), ਁ൯ over all bases (e୬).  for w is a countable ordinal. In 

case Emb൫(e୬), ਁ൯ ≥α, we say that ࣱ = [e୬]	 α-embeds into ਁ. 

Since minimality is explicitly expressed in terms of embeddability, it is natural to combine it 

with Bourgain’s embeddability index in the following way. 
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Definition (6.2.1)[250]  Let α be a countable ordinal. A Banach space ࣱ with a Schauder basis (e୬) is 

α- minimal if any block subspace Z = [ࣴ୬] ⊆W  α-embeds into any infinite-dimensional subspace ਁ 

⊆	ࣱ. 
 

It is easy to check that if ࣱ = [e୬]	 is a space with a basis and ࣲ=[x୬] and ਁ = [y୬] are block 

subspaces of ࣱ such that x୬∈	ਁ for all but finitely many n, which we denote by ࣲ ⊆∗ ਁ, then if ਁ is α-

minimal, so is ࣲ. In particular, α-minimality is preserved by passing to block subspaces. Similarly, we 

can combine tightness with the embeddability index. 
 

Definition (6.2.2)[250]: Let α be a countable ordinal and ࣱ a Banach space with a Schauder basis (e୬). 

We say that ࣱ = [e୬] is α-tight if for any block basis (y୬)in ࣱ there is a sequence of intervals of ℕ. 

1଴ < 1ଵ < 1ଶ < ⋯ ⊆ N 

such that for any infinite set A ⊆	ℕ, 

Emb൮(y୬), ቎e୬|n ∉ራ I୨
୨∈୅

቏൲ ≤ α. 

In other words, if y = [y୬] (α +1)-embeds into some subspace Z ⊆W, then 

lim	inf
୩→ஶ

ฮP୍ ౡหzฮ > 0 

Again, it is easy to see that if ࣱ = [e୬] is α-tight, then so is any block subspace of ࣱ. Also, if 

ࣱ = [e୬] is α-tight, then no block subspace,  y = [y୬], is β-minimal for α <β. And, if y = [y୬] is 

minimal, then ੩ = [y୬] is α-minimal for any α < ωଵ. It follows from this that if ࣱ = [e୬] is α-tight, then 

ࣱ = [e୬] admits no minimal block subspaces, and thus, as any infinite-dimensional subspace contains a 

block subspace up to a small perturbation ࣱ, contains no minimal subspaces either. 

Our first result says that tightness can be reinforced to α-tightness. 

Theorem (6.2.3)[250]: Let ࣱ be a Banach space with a Schauder basis. Then ࣱ has a minimal 

subspace or a block subspace ࣲ = [x୬] ⊆	ࣱ that is α-minimal and ω஑-tight for some countable ordinal 

α. 

Proof. Suppose that ࣱ has no minimal subspace and pick by Theorem (6.2.3) some block subspace 

଴ࣱ⊆ࣱ that is β-tight for some β<ωଵ. So no block subspace of ଴ࣱ is (β + 1)-minimal. 
 

Let now α be the supremum of all ordinals y such that W0 is saturated with y -minimal block 

subspaces and pick a block subspace ଵࣱ⊆ ଴ࣱ not containing any (α +1)-minimal subspace. 

We claim that ଵࣱ contains an α-minimal block subspace ஶࣱ.If α is a successor ordinal, this is 

obvious, so suppose instead that α is a limit. Then we can find ordinals γ2 < γ3 < … with supremum α. 

We then inductively choose block subspaces ଵࣱ⊇ ଶࣱ⊇ ଷࣱ⊇… such that ୬ࣱis ਁ୬-minimal. Letting 
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ஶࣱ⊆ ଵࣱ be a block subspace such that ஶࣱ⊆∗ ୬ࣱ for all n, we see that ஶࣱ is γn-minimal for all n, 

which means that for any block sequence (z୫) ⊆ ஶࣱand infinite-dimensional subspace ਁ⊆ ஶࣱ,we have 

Emb൫(z୫), ਁ൯ ≥ y୬ 

for all n, whence Emb൫(z୫), ਁ൯ ≥ sup୬y୬ = α. So ஶࣱ	is α-minimal and so are its subspaces. Now, ஶࣱ 

has no (α + 1)-minimal subspace, so, by Theorem4, ஶࣱcontains an ஑ࣱ-tight block subspace ࣲ, which 

simultaneously is α-minimal.  

Since any two Banach spaces of the same finite dimension are isomorphic, one easily sees that 

any space ࣱ with a Schauder basis (e୬) is ω-minimal. On the other hand, in [251], a space ࣱ = [e୬] is 

defined to be tight with constants if for any block subspace ੩=[y୬] there are intervals 1଴ < 1ଵ < 1ଶ <

⋯	such that for any integer constant K, 

[y୬]୬∈ଵౡ ⋢ k[e୬]୬∈ଵౡ 

Where ⊑	denotes the embeddability relation and ⊑୏ denotes embeddability with constant K. In this 

case, it follows that for any infinite set A⊆N and any K ∈ A, 

rank

⎝

⎜
⎛

T൮(y୬), ቎e୬|n ∉ራ 1୨
୨∈୅

቏ , k൲

⎠

⎟
⎞
≤ max1୩, 

and hence 

Emb൮(y୬), ቎e୬|n ∉ራ 1୨
୨∈୅

቏൲ = lim
୏∈୅

⎝

⎜
⎛

T൮(y୬), ቎e୬|n ∉ራ1୨
୨∈୅

቏ , k൲

⎠

⎟
⎞
≤ ω 

So, if ࣱ = [e୬]is tight with constants, we see that ࣱ = [e୬]is ω-tight and  ω-minimal.Following [251], 

we also define a space ࣱ to be locally minimal if there is a constant K ≥ 1 such that ࣱ is K-crudely 

finitely representable in any infinite-dimensional subspace, i.e., if for any finite-dimensional F ⊆	ࣱ and 

infinite-dimensional ੩⊆ࣱ, Ƒ⊑୏ ਁ. Let us first see local minimality in terms of α-minimality. 
 

Proposition (6.2.4)[250]: Suppose ࣱ is a locally minimal Banach space with a Schauder basis (e୬) 

Then ࣱ = [e୬] is ωଶ-minimal. 
 

Proof. Let K be the constant of local minimality. For any infinite-dimensional subspace ⊆	ࣱ, block 

sequence (इ୧)⊆	ࣱ and α < ω2, we need to show that Emb ൫(इ୧), ਁ	൯ > α. So choose n such that α >

ω ∙n and find some constant C such that if xଵ < … < x୬ and yଵ < … < y୬ are finite block sequences of 

(ei) such that ଵ
୩
‖x୧‖ ≤ ‖y୧‖ ≤ k‖x୧‖, then (x୧)~c(y୧). we claim that 
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rank ቀT൫(इ୧), ਁ, 2C൯ቁ ≥ ω. n 

To see this, find some block subspace x such that  ࣲ ⊑ଶ ਁ. It suffices to prove that 

rank ቀT൫(इ୧),ࣲ, c൯ቁ ≥ ω. n 

Let kଵ be given.We shall see that ∅ has rank≥ 	ω(n − 1)+	kଵ−1 in ቀT൫(इ୧), ਁ, C൯ቁ.So choose by local 

K-minimality some z଴,…,z୩భିଵ ∈	ࣲ such that 

൫इ଴ … ,इ୩భିଵ൯~k൫z଴, . . . , z୩భିଵ൯ 

It then suffices to show that ൫z଴, . . . , z୩భିଵ൯has rank ≥ ω(n − 1)	in T൫(इ୧), ਁ, C൯. or, equivalently, that 

for any kଶ, it has rank ≥ ω(n− 1) + kଶ−1. So choosez୩భ, . . . ,	z୩భା୩మିଵ in ࣲ with support after all of 

z଴,…,z୩భିଵ such that 

൫इ୩భ … ,इ୩భା୩మିଵ൯~k൫z୩భ, . . . , z୩భା୩మିଵ൯ 

Again, it suffices to show that  

൫z଴, . . . , z୩భିଵ, z୩భ, . . . , z୩భା୩మିଵ൯ 

has rank ≥ ω(n− 1)	in	T൫(इ୧), ਁ, C൯. Et cetera. 

Eventually, we will have produced 

z଴, . . . , z୩భିଵ < z୩భ, . . . , z୩భା୩మିଵ < ⋯ < z୩భ , . . . , z୩౤ିଵ, … z୩భା⋯୩౤ିଵ 

Such that for each l. 

൫इ୩భା⋯ା୩ౢషభ, … ,इ୩భା⋯ା୩ౢషభ൯~k൫z୩భା⋯ା୩ౢషభ , . . . , , … z୩భା⋯ା୩ౢషభ൯ 

Since we have chosen the successive sections of (z୧) successively on the basis, we have, by the choice 

of C, that 

൫इ଴ … ,इ୩భା⋯୩౤ିଵ൯~c൫z଴, . . . , z୩భା⋯୩౤ିଵ൯ 

Where by൫z଴, . . . , z୩భା⋯୩౤ିଵ൯∈T൫(इ୧),ࣲ, C൯. and hence has  rank	≥0 = ω(n − n) in T൫(इ୧),ࣲ, C൯. This 

finishes the proof.  
 

In [251], another dichotomy was proved stating that any infinite-dimensional Banach space 

contains a subspace with a basis that is either tight with constants or is locally minimal. In particular, we 

have the following dichotomy. 

Theorem (6.2.5)[250]: (See V. Ferenczi and C. Rosendal [251].) Any infinite-dimensional Banach 

space contains an infinite-dimensional subspace with a basis that is either ω-tight or is ω2-minimal. 
 

One problem that remains open is to exhibit spaces that are α-minimal and ωα-tight for 

unbounded α < ωଵ. We are not aware of any construction in the literature that would produce this, but 

remain firmly convinced that such spaces must exist, since otherwise there would be a universal β <
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ωଵsuch that any Banach space would either contain a minimal subspace or a β-tight subspace, which 

seems unlikely. 
 

Problem (6.2.6)[250]: Show that there are α-minimal, ωα-tight spaces for unboundedly many α < ωଵ. 
 

The main result, Theorem (6.2.7), allows us to refine the classification scheme developed in 

[252] and [251], by further differentiating the class of tight spaces into α-minimal, ωα-tight for α < ωଵ. 

Currently, the most interesting direction for further results would be to try to distinguish between 

different classes of minimal spaces, knowing that these pose particular problems for applying Ramsey 

Theory.  

We follow A.S. Kechris [255] presentation of trees and games, except that we separate a game 

from its winning condition and thus talk about players having a strategy to play in a certain set, rather 

than having a strategy to win. 
 

For the proof of Theorem (6.2.9), we will need to replace Banach spaces with the more 

combinatorial setting of normed vector space over countable fields, which we will be using throughout 

(cf. [256]). So suppose W is a Banach space with a Schauder basis (e୬). By a standard Skolem hull 

construction, we find a countable subfield ृ⊆ R such that for any ृ -linear combination ∑ a୬e୬୫
୬ୀ଴  the 

norm‖∑ a୬e୬୫
୬ୀ଴ ‖ belongs to ृ. Let also W be the countable-dimensional F-vector space with basis 

(e୬). In the following, we shall exclusively consider the F-vector space structure of W, and thus 

subspaces etc. refer to ृ -vector subspaces. We equip W with the discrete topology, whereby any subset 

is open, and equip its countable power Wℕwith the product topology. Since W is a countable discrete 

set, Wℕis a Polish, i.e., separable and completely metrisable, space. Notice that a basis for the topology 

on Wℕ is given by sets of the form 

N(x୭, … , x୩) = {(y୬) ∈ wℕ|y଴ = x଴& … &y୩ = x୩}, 

where x୭, … , x୩ ∈ W. Henceforth, we let x, y, z, v be variables for non-zero elements of W. if x =

∑ a୬e୬ ∈ W, we define the support of x to be the finite, non-empty set supp(x) = {n|a୬ ≠ 0} and set for 

x,y ∈W, 

x	 < y| ⇔	∀n	 ∈ 	supp(x)	∀m	 ∈ 	supp(y), n	 < 	m. 

Similarly, if k is a natural number, we set 

k	 < x	 ⇔ 	∀n	 ∈ 	supp(x), k < n. 

Analogous notation is used for finite subsets of N and finite-dimensional subspaces of W. A finite or 

infinite sequence (x଴, xଵ, xଶ, xଷ, … )of vectors is said to be a block sequence if for all n, x୬ < x୬ + 1 

Note that, by elementary linear algebra, for all infinite-dimensional subspaces X ⊆W there is a 

subspace Y ⊆ X spanned by an infinite block sequence, called a block subspace. Henceforth, we use 
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variables X, Y,Z,V to denote infinite-dimensional block subspaces of W. Also, denote finite sequences 

of non-zero vectors by variables xሬ⃗ , yሬ⃗ , z⃗, υሬ⃗ . Finally, variables E,F are used to denote finite-dimensional 

subspaces of W. 
 

Theorem (6.2.7)[250]: Let ࣱ be a Banach space with a Schauder basis and having no minimal 

subspaces.Then there is a block subspace ࣲ= [x୬] that is α-tight for some countable ordinal α. 

The main results, however, provide us with more detailed structural information. 
 

Proof. We should first recall a natural strengthening of tightness from [251]. Suppose W is a Banach 

space with a Schauder basis (e୬). Let also bb(e୬) ⊆ W	ℕbe the closed set of all block sequences in W	ℕ. 

Let I be the countable set of all non-empty finite intervals {n, n + 1, . . . , m} ⊆ N and give ∥ℕthe 

product topology, where I is taken discrete. We say that W = [e୬] is continuously tight if there is a 

continuous function 

f: bb(e୬) →∥ℕ 

such that for any block sequence (y୬)∈wℕ, f ൫(y୬)൯=(I୬)∈ Iℕ is a sequence of intervals such that  1଴ <

1ଵ < 1ଶ < ⋯and such that whenever 

 A ⊆ N is infinite, 

[y୬] ⋢ ൥e୬|n ∉ራ 1୩
୩∈୅

൩. 

In other words, f continuously chooses the sequence of intervals witnessing tightness. As in the case of 

Banach spaces, for any	k ≥ 1, block subspace  Y ⊆W, and block sequence (x୬) of (e୬)we define T 

൫(x୬), Y, K	൯to be the non-empty tree consisting of all finite sequences (y଴, … , y୩)in Y such that 

(y଴, … , y୩)~k(x଴, … , x୩) 

Similarly define the embeddability index of (x୬)	in Y  by 

Emb൫(x୬), Y൯ = sup rank
୩ஹଵ

(T(x୬), Y, k) 

Then, if ੩ denotes the closed R-linear subspace of ड spanned by Y,we have, as was observed earlier, 

that 

Emb൫(x୬), ਁ൯ = Emb൫(x୬), Y൯ 

We recall the statement of Theorem (6.2.3). 
 

Theorem (6.2.8)[250]: Let ड be a Banach space with a Schauder basis (e୬) and having no minimal 

subspaces. 

Then there is a block subspace ࣲ = [x୬] that is α-tight for some countable ordinal α. 
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Proof. By the results of [251], we have that, as ड has no minimal subspaces, there is a block subspace 

ࣲ =[x୬] of ड= [x୬] that is continuously tight as witnessed by a function f. So it suffices to show that 

for some α <ω1 and any block sequence (y୬) of (x୬), if x୬ = f൫(y୬)൯, then 

Embቌ(y୬), ൥x୬|n ∉ራ I୏
୩∈୅

൩ቍ ≤ α, 

for any infinite set A ⊆ N. 

Note that if D is any countable set, we can equip the power set P(D) with the compact metric 

topology obtained from the natural identification with 2D. Let [ℕ] denote the space of subsets of ℕ 

equipped with the Polish topology induced from P(ℕ). We define a Boral measurable function between 

Polish spaces 

T: bb(y୬) × ℕ × [ℕ] → p(Xழ୒) 

by setting 

T൫(y୬), A, K൯ = T൮(y୬), ቎x୬|n ∉ራ I୨
୨஫୅

቏ , k൲, 

where  (I୬) = f൫(y୬)൯.By assumption, the image of T is an analytic set of well-founded trees on X. So, 

by the Boundedness Theorem for analytic sets of well-founded trees, there is some α <ω1 such that  

sup
൫(୷౤),୅,୏൯஫ୠୠ(ଡ଼౤)×[ℕ]×ℕ

rank	 ൮Tቌ(y୬), ൥x୬|n ∉ራ I୩
୩∈୅

൩ , kቍ൲ ≤ α, 

whereby, for any block sequence (y୬) of (x୬) and any infinite subset A ⊆ N, 

Embቌ(y୬), ൥x୬|n ∉ራ I୩
୩∈୅

൩ , kቍ ≤ α, 

showing that ࣲ is α-tight.  

Theorem (6.2.9)[250]: Let ࣱ be Banach space with a Schauder basis and suppose  α < ωଵ. Then there 

is a block subspace ࣲ = [x୬] ⊆	ࣱ that is either ωα-tight or (α +1)-minimal. Finally, combining 

Theorems (6.2.7) and (6.2.9), we have the following refinement of Theorem (6.2.7). 
 

Proof. Suppose X ⊆ W and α is a countable ordinal number. We define the generalised Gowers α-game 

below X, denoted Gଡ଼
∝, between two players I and II as follows: 

1       
Y଴

ξ଴ < α        														 Yଵ
ξଵ < ξ଴

                               
Y୩

ξ୩ < ξ୩ିଵ
 

                                                              ….. 
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II                
F଴ ⊆ Y଴
x଴ ∈ F଴

																					 nଵ ⊆ Yଵ
xଵ ∈ F଴ + Fଵ

															 n୩ ⊆ F୩
x୩ ∈ F଴ + ⋯+ F୩

				 

Here α > ξ଴ 	> ξଵ > ⋯ > ξ୩ = 0 is a strictly decreasing sequence of ordinals,Y୪ ⊆ X are block 

subspaces, the F୪⊆Y୪ are finite-dimensional subspaces, and x୪ ∈ F଴+ Fଵ +…+F୪ non-zero vectors. Since I 

plays a strictly decreasing sequence of ordinals, the game will end once ξ୏ = 0 

has been chosen and II has responded with some x୩. We then say that the sequence (x଴, . . . , x୩) of non-

zero vectors is the outcome of the game. 

Similarly, we can define the asymptotic α-game below	X, Fଡ଼஑, as follows 

I       
n଴

ξ଴ < α                 
n଴

ξଵ < ξ଴                      
n୩

ξ୩ < ξ୩ିଵ 

                                                                … 

II                  
n଴ ⊆ F଴
x଴ ∈ F଴

																					 nଵ ⊆ Fଵ
xଵ ∈ F଴ + Fଵ

															 n୩ ⊆ F୩
xଵ ∈ F଴ + ⋯+ F୩

				 

Here again,	α > ξ଴ 	> ξଵ > ⋯ > ξ୩ = 0 is a strictly decreasing sequence of ordinals, nl natural numbers, 

the F୪ are finite-dimensional subspaces of [e୧]୧ୀ୬ౢାଵ
ஶ and x୪ ∈ F଴ + ⋯+ F୪ nonzero vectors. The game 

ends once I has played ξ୩=0 and II has responded with some x୩. The outcome is the sequence of non-

zero vectors (x଴, . . . ,x୩). If xሬ⃗  is a finite sequence of non-zero vectors, we define the games 

Gଡ଼
஑൫Xሬሬ⃗ ൯, Fଡ଼஑(xሬ⃗ )as above, except that the outcome is now xሬ⃗ 	(̂z଴, … , z୩).	We also define adversarial α-games 

by mixing the games above. For this, suppose E, F are finite-dimensional subspaces of W and z⃗ is an 

even-length sequence of non-zero vectors. We define Aଡ଼
஑(z⃗	, E	, F)by 

I																			n଴ < E଴																															nଵ < Eଵ																							n୩ < E୩  

                          
			x଴
		Y଴
		ξ଴

																																									
xଵ
yଵ
ξଵ
																																				

x୩
y୩
ξ୩
	 

                                                                                  … 

II    n଴																													
nଵ

F଴ < Y଴
y଴

																								
nଶ

Fଵ < Yଵ
yଵ

																								F୩ < Y୩
y୩

    Bଡ଼
஑(z⃗	, E	, F)by 

																	E଴ < Y଴																															nଵ < Eଵ																							n୩ < E୩  

 I                  
			x଴
		n଴
		ξ଴

																																									
xଵ
nଵ
ξଵ
																																				

x୩
n୩
ξ୩
	 

                                                                                  … 

II    	Y଴																									
Yଵ

F଴ < Y଴
y଴

																								
Yଶ

Fଵ < Yଵ
yଵ

																								n୩ < F୩
y୩

     

Where  α > ξ଴ > ξଵ > ⋯ > ξ୩ = 0   
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is a decreasing sequence of ordinals, Y୪⊆X are block subspaces, and n୪ natural numbers. Moreover ,in 

Aଡ଼
஑൫Zሬ⃗ , E, F൯, 

E୪ ⊆ X ∩ [e୧]୧ୀ୬ౢାଵ
ஶ 1	and	F୪ ⊆ Y୪	 

are finite-dimensional subspaces, while inBଡ଼
஑൫Zሬ⃗ , E, F൯ 

F୪ ⊆ X ∩ [e୧]୧ୀ୬ౢାଵ
ஶ 	and	E୪ ⊆ Y୪ 

are finite-dimensional subspaces. Finally, the non-zero vectors xl and yl are chosen such that 

x୪ ∈ E + E଴ + ⋯+ E୪, 

while 

y୪ ∈ F + F଴ + ⋯+ F୪. 

Both games terminate once I has played  ξ୩ = 0 and II has responded with some y୩. The 

outcome is then the finite sequence of non-zero vectors 

z⃗(x଴, y଴, xଵ, yଵ, … x୩, y୩). 

Now suppose instead that z⃗ is an odd-length sequence of non-zero vectors. We then define Aଡ଼
஑൫Zሬ⃗ , E, F൯, 

by 

																										nଵ < Eଵ																													nଶ < Eଶ																							n୩ < E୩ 

I								y଴	        
xଵ
Yଵ
ξଵ
																																							

xଶ
Yଶ
ξଶ
																																

x୩
Y୩
ξ୩
	 

                                                                          … 

II                  
nଵ

F଴ ⊆ Y଴
y଴

																		
nଶ

Fଵ ⊆ Yଵ
yଵ

																								F୩ ⊆ Y୩
y୩

 

And Bଡ଼
஑൫Zሬ⃗ , E, F൯, by 

																											nଵ ⊆ yଵ																				Eଶ ⊆ yଶ																											E୩ ⊆ y୩ 

I			n଴	                  
xଵ
nଵ
ξଵ
																																	

xଶ
nଶ
ξଶ
																																				

x୩
n୩
ξ୩
	 

                                                                                …. 

          II        
yଵ

n଴ ⊆ F଴
y଴

																				
nଶ

nଵ ⊆ Fଵ
yଵ

																																																		n୩ ⊆ F୏
y୩

 

Where 

α > ξଵ > ⋯ > ξ୩ = 0 

is a decreasing sequence of ordinals, 

x୪ϵE + Eଵ + ⋯+ E୪, 
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y୪ϵF + F଴ + ⋯+ F୪, 

and otherwise the games are identical to those above. The outcome is now the finite sequence 

z⃗	(̂y଴, xଵ, yଵ, … , x୩, y୩) 

If z⃗=∅ and E = F = {0}, we shall write Bଡ଼
஑ and Aଡ଼

஑  instead of Aଡ଼
஑(z⃗	, E	, F)by respectively 

Bଡ଼
஑(z⃗	, E	, F) Thus, in both gamesAଡ଼

஑  and Bଡ଼
஑ one should remember that I is the first to play a vector. And 

in Aଡ଼
஑X, I plays block subspaces and II plays integers, while in Bଡ଼

஑  II takes the role of playing block 

subspaces and I plays integers.We should also mention the degenerate case when α = 0. The 

gamesGଡ଼
஑൫Zሬ⃗ ൯ and Fଡ଼஑൫Zሬ⃗ ൯ then  terminate immediately with outcome Zሬ⃗  and, if Zሬ⃗  is of even length, the 

same holds for the games Aଡ଼
஑(z⃗	, E	, F)	and Bଡ଼

஑(z⃗	, E	, F)On the  other hand if Zሬ⃗ is  of odd  length in 

Aଡ଼
஑(z⃗	, E	, F) and Bଡ଼

஑(z⃗	, E	, F) ,I will play respectively Y଴ and Y଴ and II respond with a single y0 

according to the rules, whereby the outcome is now z⃗	y଴.If X and Y are subspaces, where Y is spanned 

by an infinite block sequence (y଴, yଵ, yଶ, yଷ … . ),we write Y ⊆∗X if there is n such that y୫ ∈ X for all 

m≥n. A simple diagonalisation argument shows that if X଴ ⊇ Xଵ ⊇ Xଶ ⊇ … is a decreasing sequence of 

block subspaces, then there issome Y ⊆X଴ such that Y ⊆∗ X୬for all n. The aim of the games above is for 

each of the players to ensure that the outcome lies in some predetermined set depending on the player. 

By the asymptotic nature of the game, it is easily seen that if T ⊆ Wழ୒and	Y ⊆∗ X, then if II has a 

strategy in Gଡ଼
஑	or	 Aଡ଼

஑(z⃗	, E	, F)to play in T , i.e., to ensure that the outcome is in T , then II will have a 

strategy in Gଢ଼
஑ respectivelyAଢ଼

஑(z⃗	, E	, F)to play in T too. Similarly, if I has a strategy in Fଡ଼஑	or	Bଡ଼
஑(z⃗	, E	, F) 

To play in T,then I also has a strategy in Fଢ଼஑	, respectively in	Bଡ଼
஑(z⃗	, E	, F) to play in T.We are now ready 

to prove the basic determinacy theorem for adversarial α-games, which can be seen as a refinement of 

the determinacy theorem for open adversarial games (see Theorem 12 in [256]). 
 

Theorem (6.2.10)[250]: Suppose α<ωଵ and T⊆Wழ୒.Then for any X ⊆ Wthere is Y ⊆ X such that either 

(i) II has a strategy in Aଢ଼
஑ to play in T , or 

(ii) I has a strategy in Bଢ଼
஑ to play in ∼ T . 

 

Proof. We say that 

(i) (xሬ⃗ , E, F,β, X) is good if II has a strategy in Aଡ଼
ஒ(xሬ⃗ , E, F, ) to play in T . 

(ii) (xሬ⃗ , E, F, β, X) is bad if ∀Y ⊆ X, (xሬ⃗ , E, F, β, X)is not good. 

(iii) (xሬ⃗ , E, F, β, X) is worse if it is bad and either 

(a) หXሬሬ⃗ หis even and β = 0, or 

(b) หXሬሬ⃗ ห is even, β >0, and ∀Y	 ⊆ 	X	∃E଴ 	⊆ 	Y∃x଴ ∈ 	E	+ E଴	∃γ	 < β	(x	ˆx଴, E	 + E0, F, γ, X) is bad, 

or 
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(c) |xሬ⃗ |is odd and 

∃n ∀n<F଴ ⊆ X ∀y଴∈F((x	ˆy଴, E, F	 + F଴, β, X) is bad, 

(iv) (xሬ⃗ , E, F,β, X) is wicked if ∀y଴∈F((x	ˆy଴, E, F	 + F଴, β, X)is bad. 

One checks that good, bad and wicked are all ⊆∗-hereditary in the last coordinate, that is, if 

(xሬ⃗ , E, F,β, X)is good and Y ⊆∗ X,then also (xሬ⃗ , E, F, β, X)is good, etc. So, by diagonal sing over the 

countable many tuples of xሬ⃗ ,E, F, and β ≤α, we can find some Y ⊆ X such that for all 

xሬ⃗ , E, F	and	β ≤ α, 

(i)( xሬ⃗ , E, F, β, Y) is either good or bad, and 

(ii) if there is some Y0 ⊆ Y such that for all F଴ ⊆Y0, (xሬ⃗ , E, F + F଴,β, Y)is wicked, then there is some n 

such that for all n<F଴⊆Y , (xሬ⃗ , E, F + F଴, β, Y)is wicked. 
 

Lemma (6.2.11)[250]: If (xሬ⃗ , E, F,β, Y	)is bad, then it is worse. 
 

Proof. Assume first that |xሬ⃗ |is even. The case when β = 0 is trivial, so assume also β >0. Since 

(xሬ⃗ , E, F,β, Y)is bad, we have ∀V ⊆Y  II has no strategy in A୚
ஒ (xሬ⃗ , E, F) to play in T. 

Referring to the definition of the game A୚
ஒ (xሬ⃗ , E, F)  this implies that 

∀V ⊆ Y	∃E଴ ⊆ V	∃x଴ ∈ E + E଴	∃γ < β 

II has no strategy in A୚
ஓ (xሬ⃗ 		x̂଴, E + E଴, F) to play in T 

(note that the subspace Y଴⊆V also played by I becomes the first play of I in the game A୚
ஓ (xሬ⃗ 		x̂଴, E +

E଴, F) But if V⊆Y and II has no strategy inA୚
ஓ (xሬ⃗ 		x̂଴, E, E଴, F) to play in T , then (xሬ⃗ 		x̂଴, E + E଴, F, y, V)  is 

not good and hence must be bad. Thus, 

∀V ⊆ Y	∃E଴ ⊆ V	∃x଴ ∈ E + E଴	∃γ	 < β	(xሬ⃗ 		x̂଴, E	+ E଴, F, γ, V	)	is	bad, 

which is just to say that (xሬ⃗ ,E,F,β,Y) is worse. Now suppose instead that |xሬ⃗ | is odd. As (xሬ⃗ , E, F, β, Y) is 

bad, it is not good and so II has no strategy in A୚
ஒ ((xሬ⃗ , E, F)to play in T . Therefore, for some Y଴⊆Y, we 

have ∀F଴ ⊆ Y଴	∀y଴ ∈ F + F଴	II	has no strategy in	Aଢ଼
ஒ(xሬ⃗ 		ŷ଴, E, F + F଴)to play in T i.e.,	∀F଴ ⊆ Y଴	∀y଴ ∈

F	 + 	F଴	(x	ˆy଴, E, F	 + 	F଴,β, Y) is not good and hence is bad. In other words,	∀F଴ ⊆ Y଴	(xሬ⃗ , E, F	 +

F଴, β, Y) is wicked. 

So by (ii) we have ∃n	∀n < F଴ ⊆ Y	(xሬ⃗ , E, F	 + F଴,β, Y) is wicked, that is ∃n	∀n < F଴ ⊆ Y	∀y଴ ∈ F +

F଴	(xሬ⃗ 	ˆy଴, E, F	 + F଴, β, Y) is bad, showing that (xሬ⃗ ,E,F,β,Y) is worse. If (∅, {0}, {0}, α, Y) is good, the first 

possibility of the statement of the theorem holds. So suppose instead (∅, {0}, {0}, α, Y) is bad and hence 

worse. Then, using the lemma and unraveling the definition of worse, we see that I has a strategy to play 

the game Bଢ଼
஑such that at any point in the game, if  

xሬ⃗ = 	 (x଴, y଴, xଵ, yଵ, . . . , x୪, y୪), 
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E଴, F଴, Eଵ, Fଵ, . . . , E୪, F୪	, 

α	 > ξ଴ 	> 	 ξଵ 	> ⋯	> 	 ξ୪ , 

respectively, 

yሬ⃗ሬ⃗ 	= 	 (x଴, y଴, xଵ, yଵ, . . . , y୪ିଵ, x୪	), 

E଴, F଴, Eଵ, Fଵ, . . . , F୪ିଵ, E୪	, 

α	 > ξ଴ 	> 	 ξଵ 	> ⋯	> 	 ξ୪	, 

have been played, then 

(xሬ⃗ , E଴ 	+ ⋯+ E୪, F଴ 	+ ⋯+ F୪, ξ୪, Y), 

respectively 

(yሬ⃗ , E଴ 	+ ⋯+ E୪, F଴ + ⋯+ F୪ − 1, ξ୪, Y), 

is worse. Since α > ξ଴ >ξଵ . . . , we eventually have ξ୩ = 0, that is, the game terminates with some worse 

(z⃗, E଴ 	+ ⋯+ E୩, F଴ 	+ ⋯+ F୩, 0, Y), 

where by the outcome z⃗ lies in ∼ T .  

We first need a lemma ensuring us a certain uniformity. 
 

Lemma (6.2.12)[250]: Let β <ωଵ and suppose that for every X ⊆W there are K ≥ 1 and a block 

sequence (y୬)⊆X such that II has a strategy in Fଡ଼
ஒ	to play (x଴, xଵ, . . . , x୩) satisfying 

(x଴, xଵ, . . . , x୩) 	 ∼ K	(y଴, yଵ, . . . , y୩). 

Then there are K ≥1 and Y ⊆W such that for all X ⊆ Y there is a block sequence (y୬)⊆X such that II 

has a strategy in Fଡ଼
ஒ to play (x଴, xଵ, . . . , x୩) satisfying 

(x଴, xଵ, . . . , x୩) 	 ∼ K	(y଴, yଵ, . . . , y୩). 

In other words, K ≥ 1 can be chosen uniformly for all X ⊆ Y . 

Proof. Assume toward a contradiction that the conclusion fails. Then, as the gamesFଡ଼
ஒ to play in any set 

T ⊆Wழ୒ are determined, i.e., either I or II has a winning strategy, we can inductively define W ⊇ Y଴ ⊇

Yଵ ⊇ ⋯ such that for any block sequence (y୬)in Y୏, I has a strategy in Fଢ଼୩
ஒ  to play (x଴, xଵ, . . . , x୩) 

satisfying 

(x଴, xଵ, . . . , x୩) 	 ≁ K	(y଴, yଵ, . . . , y୩). 

For each N ∈ ℕ, let	c(N) be a constant such that if (v଴, vଵ, . . . , v୒ିଵ, v୒, v୒ାଵ, . . . ) and 

(u଴, uଵ, . . . , u୒ିଵ, v୒, v୒ାଵ, . . . ) are two normalised block sequences of (e୬), then 

(v଴, vଵ, . . . , v୒ିଵ, v୒, v୒ାଵ, . . . ) 	 ∼ c(N)	(u଴, uଵ, . . . , u୒ିଵ, v୒, v୒ାଵ, . . . ). 

Now choose a block sequence (x଴, xଵ, xଶ, . . . ) such that for every N there are normalised 

v଴, vଵ, . . . , v୒ିଵ 	 ∈ Y୒∙ୡ(୒) with 

v଴ 	< vଵ 	< ⋯ < v୒ିଵ 	< x୒ 	< x୒ାଵ 	< ⋯ 
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and, moreover, such that x୒, x୒ାଵ, . . .∈ Y୒∙ୡ(୒). Set also X = [x୬]. 

By the assumptions of the lemma, we can find some constant N ∈ N and a normalised block 

sequence (y଴, yଵ, . . . ) in X such that II has a strategy in Fଡ଼
ஒ to play (इ଴,इଵ, . . . ,इ୩) with 

(इ଴,इଵ, . . . ,इ୩) 	 ∼ N	(y଴, yଵ, . . . , y୩). 

Since min supp(x୒) 	≤ min supp(y୒), it follows by the choice of (x୬) that there are normalized  

v଴, v଴, . . . , v୒ିଵ 	 ∈ 	Y୒・c(N) such that 

v଴ 	< vଵ 	< ⋯ < v୒ିଵ 	< y୒ 	< y୒ାଵ 	< ⋯	 . 

Moreover, by the definition of c(N), we have 

(v଴, vଵ, . . . , v୒ିଵ, y୒, y୒ାଵ, . . . ) 	 ∼ c(N)	(y଴, yଵ, . . . , y୒ିଵ, y୒, y୒ାଵ, . . . ). 

Thus, if we let v୬ 	= 	y୬ for all n ≥ N, we see that II has a strategy in Fଡ଼
ஒ to play (इ଴,इଵ, . . . ,इ୩) with 

(इ଴,इଵ, . . . ,इ୩) ∼ N	(y଴, yଵ, . . . , y୩) 	 ∼ c(N)	(v଴, vଵ, . . . , v୩). 

But X ⊆∗ Y୒.ୡ(୒), so II has a strategy in Fଢ଼ొ.ౙ(ొ)

ஒ  to play (इ଴,इଵ, . . . ,इ୩) with 

(इ଴,इଵ, . . . ,इ୩) ∼ N. c(N)	(v଴, vଵ, . . . , v୏). 

On the other hand, (v୬) ⊆ Yଢ଼ొ.ౙ(ొ) and so I has a strategy in Fଢ଼ొ.ౙ(ొ)

ஒ to play (इ଴,इଵ, . . . ,इ୩) such that 

(इ଴,इଵ, . . . ,इ୩) ∾	 (v଴, vଵ, . . . , v୏), 

which is absurd. This contradiction proves the lemma.  
 

Lemma (6.2.13)[250]: Suppose X ⊆W, (y଴, yଵ, yଶ, . . . ) is a sequence of vectors in W, α	 < ωଵ	and	K	 ≥

	1. 

Assume that II has a strategy in Fଡ଼ன∙஑ to play (x଴, xଵ, . . . , x୏)	such that 

(x଴, xଵ, . . . , x୏) 	 ∼ K	(y଴, yଵ, . . . , y୏). 

Then II has a strategy in  Bଡ଼
஑ to play (u଴, v଴, uଵ, vଵ, . . . , u୏, v୩) such that 

(u଴, uଵ, . . . , u୏) 	 ∼ K	(v଴, vଵ, . . . , v୩). 

Proof. We shall describe the strategy for II in the game Bଡ଼
஑, the idea being that, when playing the game 

Bଡ଼
஑, II will keep track of an auxiliary run of	Fଡ଼னି஑ , using his strategy there to compute his moves in Bଡ଼

஑. 

Now, in Fଡ଼஑, II will play subspaces Y଴, Yଵ, .. . all equal to Y = [y୬], whereby the subspaces Y଴, Yଵ, . .. 

and E଴, Eଶ, . .. lose their relevance and we can eliminate them from the game for simplicity of notation. 

We thus have the following presentation of the game Bଡ଼
஑ 

I   
u଴ϵY

n଴
ξ଴ < α

																											
uଵϵY

nଵ
ξଵ < ξ଴

																	
u୩ϵY

n୩
ξ୩ < ξ୩ିଵ

 

                                                                       … 

     
II																		n଴ < F଴
																				v଴ϵF଴

																		 nଵ < Fଵ
vଵϵF଴ + Fଵ

										 n୩ < F୩
v୩ϵF଴ + ⋯+ F୩
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So suppose u଴, uଵ, . .. is being played by I in Bଡ଼
஑ . To compute the answer v଴, vଵ, . .. ,II follows his strategy 

Fଡ଼னି஑ to play (z଴, zଵ, . . . , z୩) 	 ∼ K	(y଴, yଵ, . . . , y୩) as follows. First, as u଴, uଵ, . . .∈ Y = 	 [y୬], we can write 

each u୧ as 

u୧ 	= ෍ λ୨୧y୨

୫౟ିଵ

୨ୀ଴

, 

where we, by adding dummy variables, can assume that m଴ < mଵ < mଶ 	< ⋯	. So to compute v଴ and F଴ 

given u଴, n଴ and ξ଴, II first runs an initial part of Fଡ଼னି஑ as follows 

I         
		n଴

ωξ଴ + m଴ − 1																		
n଴

ωξ଴ + m଴ − 2																	
n଴
ωξ଴ 

II																															n଴ < Fଵ଴

x଴ϵFଵ଴
												 n଴ < Fଶ଴

xଵϵFଵ଴ + Fଶ଴
										

n଴ < F୫బ
଴

x୫బషభϵFଵ଴ + ⋯+ F୫బ
଴  

He then plays F଴ 	= 	Fଵ଴ + ⋯+ F୫బ
଴  and v଴ = ∑ λ୨଴x୨

୫బିଵ
୨ୀ଴ ϵF଴,	in B୶

஑	Next, I will play some uଵ, nଵ and 

ξଵ, and, to compute vଵ and Fଵ II will continue the above run of Fଡ଼னି஑ with 

I											
n଴

ωξଵ + mଵ − 1																																																
nଵ
ωξଵ 

                                                                … 

II																																								
nଵ < Fଵଵ

x୫బϵF଴ + Fଵ଴
																		

nଵ < F୫భ
ଵ

x୫భିଵϵF଴ + Fଵଵ + ⋯+ F୫భ
ଵ 								 

He then plays Fଵ = Fଵଵ+…+F୫భ
ଵ  and 

vଵ 	= ෍ λ୨ଵx୨

୫భିଵ

୨ୀ଴

ϵF଴ + Fଵ 

in Bଡ଼
஑ So at each stage, II will continue his run of  Fଡ଼னି஑a bit further until eventually I has played some 

ξ୩ = 0. Thus, in the game Fଡ଼ன∙஑ , I will play ordinals 

α > ωξ଴ + m଴ − 1 > ωξ଴ + m଴ − 2 > ⋯ > ωξ଴ > ωξଵ + mଵ − 1 > ⋯ > ωξ୩ = 0 

and integers n଴ ≥	n଴ 	≥ ⋯ 	≥ n଴ ≥ nଵ ≥ ⋯	≥ 	n୏ , while II will use his strategy to play 

(x଴, x,ଵ 	 . . . , x୫ౡିଵ) such that 

(x଴, x଴, . . . , x୫୩) 	 ∼ K	(y଴, yଵ, . . . , y୫ౡିଵ)	). 

Since the v୧ and u୧ have the same coefficients over respectively (x୬) and (y୬), it follows that 

(u଴, uଵ, . . . , u୩) 	 ∼ K	(v଴, vଵ, . . . , v୩). 

By a similar argument, we have the following lemma. 
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Lemma (6.2.14)[250]: Suppose X ⊆ W, (y଴, yଵ, yଶ, . . . )is a block sequence in W,α < 	ωଵ	and	K	 ≥ 1. 

Assume that II has a strategy in	Fଡ଼னି஑  to play (x଴, xଵ, . . . , x୩) such that (x଴, xଵ, . . . , x୩ 	 ∼

K	(y଴, yଵ, . . . , y୩). 

Then for any block sequence (z୬) in [y୬], II has a strategy in  Fଡ଼஑to play (v଴, vଵ, . . . , v୩) such that 

(v଴, vଵ, . . . , v୩) 	 ∼ K	(z଴, zଵ, . . . , z୩). 
 

Proof. First, as (z୬) is a block sequence in [y୬], we can write each z୧ as 

zi	 = ෍ λ୨y୨

୫ౠିଵ

୨ୀ୫౟షభ

, 

where −1	 = 	0 < m଴ < mଵ < mଶ < ⋯ . 

As before, when playing   Fଡ଼஑, II will keep track of an auxiliary run of Fଡ଼ன஑, using his strategy 

there to compute his moves inFଡ଼஑. So the game  Fଡ଼஑runs as follows: 

 I								
n଴
ξ଴ 																					

nଵ
ξଵ 																																						

n୩
ξ୩  

                                                              …   

 II																	n଴ < F଴
v଴ϵF଴

																		 nଵ < Fଵ
vଵϵF଴ + Fଵ

										 n୩ < F୩
v୩ϵF଴ + ⋯+ F୩

 

To compute v଴, II first runs an initial part of Fଡ଼ன஑ as follows 

 		I									
n଴

ωξ଴ + m଴ − 1																						
n଴

ωξ଴ + m଴ − 2																				
n଴
ωξ଴ 

                                                                                … 

II																															n଴ < Fଵ଴

x଴ϵFଵ଴
																								 n଴ < Fଶ଴

xଵϵFଵ଴ + Fଶ଴
																	

n଴ < F୫బ
଴

x୫బϵFଵ଴ + ⋯+ F୫బ
଴ .

 

He then plays F଴ 	= Fଵ଴ + ⋯+ F୫బ
଴  and  

v଴ 	= ෍ λ୨x୨

୫బିଵ

୨ୀ୫ିଵ

∈ F଴ 

In Fଡ଼஑ 

Next, I will play some ξଵ and nଵand to compute vଵ and Fଵ, II will continue the above run of Fଡ଼ன஑with 

I
nଵ

						ωξଵ + mଵ − m଴ − 1																																		
nଵ
ωξଵ 

                                                                     …. 

II																																											
nଵ < Fଵଵ

x୫బϵF଴ + Fଵ଴
																		

nଵ < F୫భି୫బ
ଵ

x୫ଵ − 1ϵF଴ + Fଵଵ + ⋯+ F୫భି୫బ
ଵ 								 

He then plays Fଵ 	= 	Fଵଵ + ⋯+ F୫భି୫బ
ଵ  and 
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vଵ 	= ෍ λ୨x୨

୫ౠିଵ

୨ୀ୫బ

∈ F଴ + Fଵ 

In Fଡ଼஑ 

So at each stage, II will continue his run of In Fଡ଼ன஑ a bit further until eventually I has 

played	some ξ୩ = 0. Thus, in the game  Fଡ଼ன஑, I will play ordinals 

α	 > ωξ	଴ + m	଴ − 1 > ωξ଴ 	+ 	m଴ 	− 2	 > ⋯ > ωξ଴ 	> ωξ	ଵ + 	m	ଵ − m଴ 	− 1	 > ⋯ > ωξ୩ 	= 	0 

and integers n଴ 	≥ 	n଴ 	≥ ⋯ 	≥ 	n଴ ≥ 	nଵ 	… 	≥ 	n୩ , while II will use his strategy to play 

(x଴, xଵ, . . . , x୫ౡିଵ) such that 

(x଴, xଵ, . . . , x୫ౡିଵ) 	 ∼ K	(y଴, yଵ, . . . , y୫ౡିଵ). 

Since the v୧and z୧ have the same coefficients over respectively (x୬) and (y୬), it follows that 

(v଴, vଵ, . . . , v୩) 	 ∼ K	(z଴, zଵ, . . . , z୩). 

Lemma (6.2.15)[250]: Suppose X⊆W, (y୬) is a block sequence in W,α < ωଵ, and K, C	 ≥ 	1. Assume 

that 

(a) II has a strategy in Fଡ଼஑ to play (x଴, . . . , x୏) such that 

(x଴, xଵ, . . . , x୩) 	 ∼ K	(y଴, yଵ, . . . , y୩), 

and 

(b) II has a strategy in Aଡ଼
஑  to play (u଴, v଴, . . . , u୏, v୏) such that 

(u଴, uଵ, . . . , u୩) 	 ∼ C	(v଴, vଵ. . . . , v୩). 

Then II has a strategy in Gଡ଼
஑ to play (v଴, . . . , v୩) such that 

(v଴, vଵ, . . . , v୏) 	 ∼ KC	(y଴, yଵ, . . . , y୩). 

Proof. To compute his strategy in Gଡ଼
஑, II will play auxiliary runs of the games  Aଡ଼

஑   and Fଡ଼஑ in which he is 

using the strategies described above. Information is then copied between the games as indicated in the 

diagrams below. The game Gଡ଼
஑ 

I			
y଴
ξ଴ 																						

yଵ
ξଵ 																																							

y୩
ξ୩  

                                                                …. 

II											F଴ ⊆ Y଴
v଴ϵF଴

																		 Fଵ ⊆ Yଵ
vଵϵF଴ + Fଵ

										 F୩ ⊆ Y୩
v୩ϵF଴ + ⋯+ F୩

 

The game Fଡ଼஑ 

I						
n଴
ξ଴ 																		

							nଵ
							ξଵ 																																		

n୩
ξ୩  

                                                                …. 

II																		n଴ < E଴
x଴ϵE଴

																		 nଵ < Eଵ
xଵϵE଴ + Eଵ

										 n୩ < E୩
x୩ϵE଴ + ⋯+ E୩
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The game Aଡ଼
஑  

        																																	n଴ < E଴																					nଵ < Eଵ																			n୩ < E୩ 

                  I																									
x଴ ∈ E଴

Y଴
ξ଴

																	
xଵ ∈ E଴ + Eଵ

Yଵ
ξଵ

					
x୩ ∈ E଴ + ⋯+ E୩

Y୩
ξ୩

	 

                                                       …                  

II												
n଴																													nଵ

																																F଴ ⊆ Y଴
																														v଴ ∈ F଴

																													 F୩ ⊆ Y୩
v୩ ∈ F଴ + ⋯+ F୩

 

By chasing the diagrams, one sees that this fully determines how II is to play in Gଡ଼
஑.Moreover, since II 

follows his strategy in Fଡ଼஑, we have 

(x଴, xଵ, . . . , x୩) ∼ K	(y଴, yଵ, . . . , y୩), 

while the strategy in Aଡ଼
஑  ensures that 

(x଴, xଵ, . . . , x୩) ∼ C	(v଴, vଵ, . . . , v୩), 

from which the conclusion follows.  
 

Theorem (6.2.16)[  ]: Suppose α < ωଵ. Then there is X ⊆W such that one of the following holds. 

(1) For every block sequence (y୬) in X and K ≥ 1, I has a strategy in Fଡ଼ன஑ to play (x଴, xଵ, . . . , x୏) 

satisfying 

(x଴, xଵ, . . . , x୩) 	 ≁ K	(y଴, yଵ, . . . , y୩). 

(2) For some K	 ≥ 1 and every block sequence (z୬)⊆X, II has a strategy in Gଡ଼
஑  to play 

(x଴, xଵ, . . . , x୩)	satisfying 

(x଴, xଵ, . . . , x୩) 		∼ K	(z଴, zଵ, . . . , z୩). 

Proof. Suppose that there is no X ⊆ W for which (1) holds. Then, using that the game Fଡ଼ன஑ is 

determined, for every X	 ⊆ 	W there is a block sequence (y୬) in X and some K ≥ 1 such that II has a 

strategy in Fଡ଼ன஑ to play (x଴, xଵ, . . . , x୩)		 satisfying 

(x଴, xଵ, . . . , x୏) 			 ∼ K	(y଴, yଵ, . . . , y୩). 

So, by Lemma (6.2.12), there is some K ≥ 1 and Y ⊆ W such that for all X ⊆ Y there is some block 

sequence (y୬) in X such that II has a strategy in Fଡ଼ன஑ to play (x଴, xଵ, . . . , x୏)	 satisfying 

(x଴, xଵ, . . . , x୩) 				 ∼ K	(y଴, yଵ, . . . , y୩) 

It thus follows from Lemma (6.2.13) that for all X ⊆ Y, II has a strategy in Bଡ଼
஑ to play 

(u଴, v଴, uଵ, vଵ, . . . , u୩, v୩) such that 

(u଴, uଵ, . . . , u୩) 	 ∼ K	(v଴, vଵ, . . . , v୩). 

Therefore, there is no X⊆Y such that I has a strategy in Bଡ଼
஑ to play a sequence (u଴, v଴, uଵ, vଵ, . . . , u୩, v୩) 

satisfying 
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(u,଴ uଵ, . . . , u୩) ≁ K	(v଴, vଵ, . . . , v୩), 

and thus, by Theorem (6.2.10), we can find some X ⊆ Y such that II has a strategy in Aଡ଼
஑  to play 

(u଴, v଴, uଵ, vଵ, . . . , u୩, v୩) satisfying 

(u଴, uଵ, . . . , u୩) 	 ∼ K	(v଴, vଵ, . . . , v୩). 

Let (y୬) be the block sequence in X such that II has a strategy in Fଡ଼ன஑to play (x଴, xଵ, . . . , x୏) satisfying 

(x଴, xଵ, . . . , x୩) 	 ∼ K	(y଴, yଵ, . . . , y୩). 

Then, using Lemma (6.2.14), we see that for any block sequence (z୬) ⊆ [y୬], II has a strategy in Fଡ଼஑ to 

play (x଴, xଵ, . . . , x୩) such that 

(x଴, xଵ, . . . , x୩) 	 ∼ K	(z଴, zଵ, . . . , z୩). 

In other words, there is some block sequence (y୬) in X such that for any block sequence  (z୬) ⊆ [y୬] 

(a) II has a strategy in Fଡ଼஑ to play (x଴, . . . , x୩) satisfying 

(x଴, xଵ, . . . , x୩) ∼ K	(z଴, zଵ, . . . , z୩),	and 

(b) II has a strategy in Aଡ଼
஑  to play (u଴, v଴, . . . , u୩, v୩)	satisfying 

(u଴, uଵ, . . . , u୩) 	 ∼ K	(v଴, vଵ, . . . , v୩). 

So finally, by Lemma (6.2.15), for any block sequence (z୬)⊆[y୬], II has a strategy in Gଡ଼
஑  to play 

(v଴, . . . , v୩) such that 

(u଴, uଵ, . . . , u୩) 	 ∼ Kଶ	(z଴, zଵ, . . . , z୩). 

Replacing X by the block subspace [y୬] ⊆ X and K by Kଶ, we get (2).  
 

Lemma (6.2.17)[250]: Suppose α < ωଵ, K ≥ 1, X ⊆ Wand	(z୬)⊆W is a block sequence such that II has 

a strategy in Gଡ଼
஑ to play (y଴, . . . , y୩) satisfying 

(y଴, . . . , y୩) 	 ∼ K	(z଴	. . . , z୩). 

Then for any subspace Y ⊆ X, rank	(T	((z୬), Y, K)) > α. 
 

Proof. Let Y⊆X and suppose toward a contradiction that rank (T	((z୬), Y, K)) = ξ଴+ 1≥α, where ξ଴ is 

the rank of the root ∅ in T (T	((z୬), Y, K). Now, let I play Y,	ξ଴ in	Gଡ଼
஑ and let II respond using his 

strategy 

                                         I                        Y
ξ଴

 

                                        II                   
E଴ ⊆ Y
y଴ ∈ E଴

 

Then the rank of (y଴) 	∈ 	T	((z୬), Y, K) is some ordinal ξଵ < 	 ξ଴, so in Gଡ଼
஑, I continues by playing Y, ξଵ 

and II responds according to his strategy 

                                        I    Y
ξ଴
																										Yξଵ
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                                        II            
E଴ ⊆ Y
y଴ ∈ E଴

																	 Eଵ ⊆ Y
yଵ ∈ E଴ + Eଵ

 

Again, the rank of (y଴, yଵ) 	 ∈ 	T	((x୬), Y, K) is some ordinal ξଶ < ξଵ, so in Gଡ଼
஑, I continues by playing 

Y,	ξଶ and II responds according to his strategy 

                                  I    Y
ξ଴
																		Yξଵ

																													Yξଶ
  

                                                        … 

                         II   							E଴ ⊆ Y
y଴ ∈ E଴

								 Eଵ ⊆ Y
yଵ ∈ E଴ + Eଵ

				 Eଶ ⊆ Y
yଶ ∈ E଴ + Eଵ + Eଶ

 

Etc. 

Eventually, we will have constructed some(y଴, yଵ, . . . , y୩ିଵ) whose 

 T ((z୬), Y, K)-rank is ξ୩ = 0, while 

               I							Yξ଴
																					 Y

ξ୩ିଵ
  

                                    …  

              II         
E଴ ⊆ Y
y଴ ∈ E଴

																 E୩ିଵ ⊆ Y
y୩ିଵ ∈ E଴ + E୩ିଵ

 

has been played according to the strategy of II. 

It follows that if I continues the game by playing Y, ξ୩ 	= 	0, 

I			Yξ଴
																											 Y

ξ୩ିଵ
																								 Y

ξ୩ = 0  

                               … 

II         
E଴ ⊆ Y
y଴ ∈ E଴

																 E୩ିଵ ⊆ Y
y୩ିଵ ∈ E଴ + ⋯+ E୩ିଵ

 

using his strategy, II must be able to respond with some E୩ and  

y୩∈ E଴ +…+E୩ 

I					Yξ଴
																					 Y

ξ୩ିଵ
																																											 Y

ξ୩ = 0  

                          …   

II         
E଴ ⊆ Y
y଴ ∈ E଴

																 E୩ିଵ ⊆ Y
y୩ିଵ ∈ E଴ + ⋯+ E୩ିଵ

							 E୩ ⊆ Y
y଴ ∈ E଴ + ⋯+ E୩

							 

Since II played according to his strategy, we have (y଴, yଵ, . . . , y୩) 	 ∼ K	(z଴, zଵ, . . . , z୩) and thus 

(y଴, yଵ, . . . , y୩) 	 ∈ 	T	((z୬), Y, K), contradicting that (y଴, . . . , y୩ − 1) has T	((z୬), Y, K)-rank 0 and hence 

is a terminal node.  
 

Lemma (6.2.18)[250]: Suppose (x୬) ⊆W is a block sequence,β < ωଵ and that for every normalised 

block sequence (y୬) in X = [x୬] and K ≥ 1, I has a strategy in Fଡ଼
ஒ to play (z଴, zଵ, . . . , z୩) such that	 
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(z଴, zଵ, . . . , z୏) 	 ≁ K	(y଴, yଵ, . . . , y୩). 

Then, for every normalised block sequence (y୬) in X and	K ≥ 1, there is a sequence (J୫	) of intervals of 

ℕ with min J୫→∞, such that if A ⊆ N is infinite, contains 0 and Z	 = 	 ൣx୨	หj	 ∉ ⋃ J୫୫∈୅ 	then 

RankቀT൫(y୬), z, k൯ቁ ≤ β. 

Proof. We relativise the notions of support of vectors et cetera to the basis (x୬) for X. So the reader can 

assume that (x୬) is the original basis (e୬) and X =W. Assume (y୬) is a normalised block sequence in X 

and K ≥ 1. Let also ∆ = ൫δ୨൯ be a sequence of positive real numbers such that whenever z୨, v୨ ∈

	X,ฮz୨ 	− v୨	ฮ < 	 δ୨ , and 

(v଴, . . . , v୩) 	 ∼ K	(y଴, . . . , y୩), 

then 

(z଴, . . . , z୩) 	 ∼ 2K	(y଴, . . . , y୩). 

We choose sets ॰୧ 	⊆ 	X such that for each finite set d ⊆ ℕ, the number of z ∈ ॰୧ such that supp(z)=d is 

finite, and for every v∈X with	‖v‖ ≤ K there is some z ∈ ॰୧ with supp(z)= supp(v)and ‖z − v‖ < δ୧. 

This is possible since the K-ball in	[xj]୨∈ୢ is totally bounded for all finite d ⊆N. 

The strategy for I in Fଡ଼
ஒ in the game for (y୬) with constant 2K can be seen as a pair of functions ξ 

and n that to each legal position (z଴, E଴, . . . , z୨, E୨	) of II in Fଡ଼
ஒ provide the next 

play	ξ(z଴, E଴, . . . , z୨, E୨	) ∈Ord and n(z଴, E଴, . . . , z୨, E୨	) ∈ ℕ by I. 

We define a function p:ℕ → ℕ by letting p(m)  be the maximum of m and 

max ቀn൫z଴, [x୪]୪஫ୢబ , … . z୧, [x୪]୪஫ୢ౟൯หd୨ ⊆ [0, m − 1]z୨ ∈ [x୪]୪஫ୢబ∪…∪ୢౠ ∩ ॰୨ቁ 

By assumption on the sets ॰୨ , p is well-defined and so we can set 

J୫ = [m, p(m)] ⊆ N. 

We claim that if A ⊆ N is an infinite set containing 0 and 

Z	 = ൥x୬|n ∉ 	ራ J୫
୫஫୅

൩ , 

Then  

rank	(T(y୬), Z, K)) ≤ β. 

To see this, we define a monotone function φ, i.e., vሬ⃗ 	 ≺ 	wሬሬሬ⃗ 	⇒ φ(vሬ⃗ ) 	≺ 	φ(wሬሬሬ⃗ ), associating to each vሬ⃗ =

(v଴, vଵ, . . . , v୧	) ∈ T	((y୬), Z, K) some 

φ(vሬ⃗ ) = (z଴, zଵ, . . . , z୧	) ∈ ॰଴ × ॰ଵ 	×⋯×॰୧ 

such that for all j ≤ i, ฮz୨ 	− 	v୨ฮ < δ୨	and supp(z୨ ) = supp(v୨ ), whereby, in particular, z	୨ ∈ 	Z. 

Also set T = ∅[T	((y୬), Z, K)] and note that T is a subtree of Zழ୒ with 
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rank(T	) 	≥ rank(T	(yn), Z, K)) 

Suppose toward a contradiction that rank (T	) > β, whereby the rank of ∅ in T is ≥ β. We describe how 

II can play against the strategy for I in Fଡ଼
ஒ to play (z଴, . . . , z୩) such that 

(z଴, . . . , z୩) 	 ∼ 2K	(y଴, . . . , y୩), 

which will contradict the assumption on the strategy for I. The case β = 0 is trivial, so we assume that 

β > 0. 

First, I plays ξ(∅) < β and n(∅). Since, a଴ = 0 ∈ A, we have  n(∅) ≤ p(a଴) = maxJୟబ < Z	and 

thus there is some n(∅) < z଴ ∈ T whose rank in T is ≥ ξ(∅). Find also aଵ ∈ A such that z଴ < Jୟభ  and let 

E଴ 	= 	 [x୨	|	Jୟబ < x୨ < Jୟభ]	So let II respond by 

                                    I																						n
(∅)
ξ(∅) 

                                   II																					n
(∅) < E଴
z଴ ∈ E଴

 

Now, by his strategy, I will play some ξ(z଴, E଴) < ξ(∅) and n(z଴, E଴) ≤ 	p(aଵ) 	= 	maxJୟభ . So find 

some zଵ such that (z଴, zଵ) ∈ T and has  rank≥ ξ(z଴, E଴) in T . Find also aଶ ∈ A such that  zଵ < Jୟమ  .Then, 

as a଴, aଵ ∈ A, if we set Eଵ = 	 [x୨	|	Jୟభ < x୨ < Jୟమ], we have zଵ 	 ∈ 	E଴ 	+ Eଵ, so we let II respond by 

I				n
(∅)																																
ξ(∅)																															

n(z଴, E଴)
ξ(z଴, E଴)  

II  																n
(∅) < 	E଴

																			z଴ ∈ E଴
																											n

(z଴, E଴) < Eଵ
zଵ ∈ E଴ + Eଵ

 

Et cetera. It follows that at the end of the game, 

I 

				n
(∅)
ξ(∅) 																							

n(z଴, E଴, … . . z୩ − 1, E୩ − 1)
ξ(z଴, E଴, … . . z୩ − 1, E୩ − 1) = 0 

                                 …. 

     II																			n
(∅) < E଴
z଴ ∈ E଴

														n
(z଴, E଴, … . . z୩ − 1, E୩ − 1) < E୩

z୩ ∈ E଴ + ⋯ . . +E୩
 

II will have constructed a sequence (z଴, . . . , z୩) ∈ T	. So, by the definition of T,there is some 

(v଴, . . . , v୩) ∈ T	((y୬), Z, K) such that ∅(v଴, . . . , v୩) 	= 	 (z଴, . . . , z୩) and hence ฮz୨ 	− 	v୨ฮ < δ୨	for all j . 

Thus, 

(v଴, . . . , v୩) ∼ K	(y଴, . . . , y୩), 

and hence 

(z଴, . . . , z୩) 	 ∼ 2K	(y଴, . . . , y୩). 

Since II cannot have such a strategy, it follows instead that 
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rank൫T൫n୷൯, Z, K൯ ≤ rank ≤ β, 

which proves the lemma.  
 

Lemma (6.2.19)[250]: Suppose (x୬) ⊆ W is a normalised block sequence,β < ωଵ, and that for every 

normalised block sequence (y୬)	in	X = [x୬]and	 

K ≥ 1, I	has a strategy in Fଡ଼
ஒ to play (z଴, zଵ, . . . , z୩) such that 

(z଴, zଵ, . . . , z୩) 	 ≁ K	(y଴, yଵ, . . . , y୩). 

Then, for every normalised block sequence (y୬) in X there is a sequence 

I଴ < Iଵ 	< Iଶ < ⋯ 

of intervals of N, such that if A ⊆ ℕ is infinite and Z = [x୨	|j ∉ ⋃ I୫୫∈୅ ], then 

Emb൫(y୬), z൯ ≤ β. 

Proof. Fix a normalised block sequence (y୬) in X and relativise again all notions of support et cetera to 

the block basis (x୬). By Lemma (6.2.18), we can for every K find a sequence (J୬୩ ) of intervals of N with 

min J୬୩
୬→ஶ

→ ∞ such that for any infinite set A ⊆ 	ℕ containing 0, we have 

rankቀT൫(y୬), ൣx୨	|j ∉ ⋃ J୬୏୬∈୅ ൧, K൯ቁ ≤ 	β. 

Also, for every N, we let	c(N) ∈ ℕ be a constant such that any two subsequences of ൫x୨൯differing in at 

most N terms are c(N)−equivalent. 

We construct intervals I଴ < Iଵ < Iଶ < ⋯ such that each I୬ contains an interval from each of the 

families (J୧ଵ		), . . . , (J୧୬	) and, moreover, 

	min	1୬ < max1୬ 	− maxJ଴
୬∙ୡ	(୫୧୬	ଵ౤)			. 

We claim that if A ⊆ ℕ is infinite and Z = [x୨	|j ∉ ⋃ I୫୫∈୅ ], then 

Emb		((y୬), Z) ≤ β. 

Suppose towards a contradiction that this fails for some A and pick some N such that rank 

(T	((y୬), Z, N)) > β. Choose a ∈ A such that a ≥ N and note that 

min	Iୟ < maxIୟ − maxJ଴
ୟ.ୡ(୫୧୬	ଵ౗ 	)			. 

Thus, by changing only the terms x୨	for	j < min	Iୟ of the sequence 

൭x୨ห	j ∉ ራ 1୫
୫∈୅

൱ = ൭x୨หj ∉ ራ 1୫
୫∈୅

&j < min1ୟ൱ ∪ ൭x୨หj ∉ ራ 1୫
୫∈୅

&		j < max1ୟ൱, 

we find a subsequence of 

ቀx୨หmaxj଴
ୟ.ୡ(୫୧୬	ଵ౗) < j ≤ max1ୟ	ቁ ∪ ൭x୨ห	j ∉ ራ 1୫

୫∈୅

&	j > max1ୟ൱ 
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that is c(min	Iୟ) −equivalent with 

൭x୨ห	j ∉ ራ 1୫
୫∈୅

൱ 

 

Since N.	c(min	Iୟ) ≤ a. c(min	Iୟ), it follows that if 

Y	 = 	 ቂx୨หmaxj଴
ୟ.ୡ(୫୧୬	ଵ౗) < j ≤ max1ୟቃ + ൥x୨ห	j ∉ ራ 1୫

୫∈୅

&	j > max1ୟ൩ 

then ⊑ୡ(୫୧୬	୍౗	)	 Y , and so 

β < rank(T(y୬), Z, N)) ≤ rank൫T(y୬), y, a. c(min	1ୟ)൯). 

But, by the choice of the 1୬, we see that there is an infinite subset B ⊆ ℕ containing 0 such that Y is 

outright a subspace of 

 ቂx୨ห	j ∉ ⋃ 1୫୫∈୆ J୫
ୟ.ୡ	(୫୧୬	ଵ౗)	ቃ	where by, by choice of the intervals J୫

ୟ.ୡ	(୫୧୬	ଵ౗) , we have 

rank൫T(y୬), y, a. c(min	1ୟ)൯) ≤ β 

which is absurd. This contradiction shows that the intervals I୬ fulfill the conclusion of the lemma. 

By combining Theorem (6.2.16) and Lemmas (6.2.17) and (6.2.19), we obtain 
 

Lemma (6.2.20)[250]: Suppose α < ωଵ.Then there is a block subspace X = [x୬] ⊆ 	W	such that one of 

the following holds. 

(i) For every normalised block sequence (y୬) in X there is a sequence 

I଴ < Iଵ < Iଶ < ⋯ 

of intervals of  ℕ, such that if A⊆ ℕ is infinite, then 

Embቌ(y୬), ൥x୨หj ∉ ራ 1୫
୫∈୅

൩ቍ ≤ αω 

 (ii) For any subspace Y ⊆ X and any block sequence (z୬) ⊆ X, 

Emb൫(y୬), Y൯ > α 

And by replacing the normed Ԇ-vector subspaces X and Y in Lemma (6.2.20) by their closures ࣲand ੩ 

in ड, we obtain Theorem (6.2.4). 
 

Theorem (6.2.21)[250]: Let ड be Banach space with a Schauder basis and suppose	α < ωଵ. Then there 

is a block subspace ࣲ = [x୬] ⊆ ड that is either ωα-tight or (α + 1) −minimal. 
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                                                                   List of Symbols  

 

 

 ࢋࢍࢇࡼ  ࢒࢕࢈࢓࢟ࡿ
݂݅݊ infimum 2 
 maximum 2 ݔܽ݉

   Sup Supremum 3 
 ௣ Banach space 8ܫ
݉݅݊ minimum 9 
 Support  9 ݌݌ݑܵ
݈௣ Lebesgue space 33 
⨁ Direct sum 40 
ܾ݁݉ embeddability  45 
 Convex 48 ݋ܥ
 cluster 53 ݐݏݑ݈ܥ
݈ஶ Lebesgue space 57 
݈ଵ Lebesgue space 57 
⨂ Tensor product 69 

݀݅ܽ݉ diameter 71 
 extreme   77 ݐݔ݁
 ஶ Lebesgue space 95ܮ
 ଵ Lebesgue space 95ܮ
݀݅݉ dimension 103 
 interior 105 ݐ݊݅
ܴ݁ Real 106 
 ௣ Lebesgue measure  111ܮ
ܽ. ݁ almost everywhere 128 
⊞ Summation symbol 133 
 determinant 135 ݐ݁݀
݂݂ܽ affine 144 
.ܪ  Hereditarily indecomposable   162 ܫ

                                

 

 


