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Chapter 4  

The Big Slics Phenomena and Weakly Open Sets in The Unit Ball 

    The result obtained for L-embedded spaces can be applied to show that the above property is satisfied 

for every predual of an atomless real JBW*-triple. As a consequence, a characterization of the Radon-

Nikodym property is obtained in this setting, showing that a predual of a real JBW*-triple E verifies the 

Radon-Nikodym property if, and only if, E is the     sum of real type I triple factors.In the case of the 

existence of a pre-dual, appropriate specializations of these characterizations are also reviewed.We 

provide examples of classical Banach spaces satisfying the assumptions of the results. If K is any 

infinite compact Hausdorff topological space, then      ̂ Y has the diameter two property for any 

nonzero Banach space Y . We also provide a result on the diameter two property for the injective tensor 

product. 

Section (4.1): M- embedded And L-embedded Spaces: 

The nonexistence of denting points in the unit ball of some function spaces has been the subject 

of several recent papers [67], [68]. A point    in the sphere of a Banach space     , is a denting point of 

the unit ball in     , if there are slices, that is, subsets defined as 

        {           ‖  ‖   }               

containing   , with diameter arbitrarily small. From [69],    is a denting point of the unit ball of   if, 

and only if,    is an extreme point in    and    is a point of weak-norm continuity, that is, a point of 

continuity for the identity map from        onto       , where   and   denote the weak and the norm 

topology, respectively. In particular, the existence of denting points in the unit ball of a Banach space   

implies the existence of nonempty relatively weakly open subsets of the unit ball in   with diameter 

arbitrarily small. Then the extreme opposite property to the existence of denting points in the unit ball of 

a Banach space is that every nonempty relatively weakly open subset of the unit ball has diameter 2. 

This is the case, for example, for infinite-dimensional   -algebras [70], uniform algebras [71], non-

hilbertizable real JB*-triples [72] and for some Banach spaces of vector valued functions and some 

spaces of operators [73]. 

We study when every nonempty relatively weakly open subset of the unit ball of an M-

embedded or L-embedded space has diameter 2.We obtain sufficient conditions in order to assure the 

above property in the M-ideals case, when only the original norms are considered, by improving the 

results in [68]. After this, it is shown that every Banach space containing    can be equivalently 
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renormed so that every nonempty relatively weakly open subset of its unit ball has diameter 2, and then 

the same is true for proper M-ideals. 

The result for the L-embedded case ,where a sufficient condition to have diameter 2 for all 

nonempty relatively weakly open subsets of the unit ball of an L-embedded space is obtained. This 

condition works in the setting of preduals of real     -triples and, as a consequence, we prove that 

every nonempty relatively weakly open subset of the unit ball of the predual of an atomless real      -

triple has diameter 2. Then the same holds for preduals of atomless Von Neumann algebras. Finally an 

easy characterization of the Radon- Nikodym property is given , where it is shown that the predual of a 

real      -triple   satisfies the Radon-Nikodym property if, and only if,   is the   -sum of type I real 

triple factors and then, the predual   of a Von Neumann algebra   satisfies the Radon-Nikodym 

property if, and only if,   is the   -sum of trace class operators on a complex Hilbert space. The above 

characterizations of Radon-Nikodym property can be found in [74] and [75] for preduals of complex 

     -triples and in [76] for preduals of Von Neumann algebras. Also the relation between L-embedded 

spaces and the Radon-Nikodym propety was studied in [77]. 

Finally, in order to obtain that every nonempty relatively weakly open subset of the unit ball of 

    
  has diameter 2, where    and    denote the classical Lebesgue space and Hardy space, 

respectively, on the unit interval [   ]. 

Let   be a real or complex Banach space. We denote by      , and    the unit sphere, the closed 

unit ball and the topological dual, respectively, of  . We denote by   the weak topology of  , and by    

the we  
 
 topology of   . Given a subspace   of  , we denote by    the polar or annihilator subspace 

of   in   . An L-projection (resp. M-projection) on   is a linear projection   on   satisfying ‖ ‖  

‖    ‖  ‖      ‖ (resp. ‖ ‖     {‖    ‖ ‖      ‖}) for all    . A subspace   of   is said 

to be an L-summand (resp. M-summand) of   if it is the range of an L-projection (resp. M-projection) 

on  , and an M-ideal of   if    is an L-summand of   .   is said to be L-embedded (resp. M-embedded) 

whenever   is an L-summand (resp. M-ideal) of     (see [78]). 
 

We have for the main results. 

Lemma (4.1.1)[66]: Let   be a Banach space such that every nonempty relatively weakly open subset of 

   has diameter 2. Then every nonempty relatively weakly open subset of     
  has diameter 2, where 

  is an arbitrary Banach space. 
 

Proof. We call        and let       be the projection from   onto  , which is weak open. It is 

clear that          and ‖ ‖   . Then if   is a weakly open subset of   such that       , 
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one has that           is a nonempty weak open set relative to   , and so          . Hence 

            .  
 

The following is a    version of the above lemma. We omit the proof, since it is similar to the 

one above. 
 

Lemma (4.1.2)[66]: Let   be a Banach space. Assume that            , where   is a closed 

subspace of   and   is a closed subspace of   . Assume that every nonempty relatively        -open 

subset of      has diameter 2. Then every nonempty relatively        -open subset of      has diameter 

2. 

For a Banach space   and a subspace   of    given, we denote by        the weak topology on 

  endowed by the dual pair      , that is, the smallest vector topology on   such that every element of   

is a continuous map. 

The following result shows that the size of many nonempty relatively weakly open subsets of the 

unit ball of an M-ideal have diameter 2. 

Proposition (4.1.3)[66]: Let   be a Banach space and let   be a closed and proper subspace of  . 

Assume that   is an M-ideal of   (that is, there is an L-projection from    onto some subspace   of   , 

with kernel   ). Then every nonempty relatively       -open subset of    which intersects    has 

diameter 2. 
 

Proof. Let   be a       -open subset of   and assume that       . Choose some        . 

As   is a proper subspace of  , given    , there is an      such that ‖   ‖     , where 

    denotes the class of the element   in the quotient    . 

By [79, Proposition (4.1.3)], there exists a net {  } of elements of   converging to   in the 

      -topology and satisfying 

       
 

‖         ‖     

Then, for       given, we can choose    so that  (         )   , whenever     . 

Furthermore, for   close enough to 1, we can assume that  (         )    for each     , 

since the net { (         )} converges to     in the       -topology and        . 

Then  (         )      , whenever      and       is close enough to 1. Hence 

             ‖    ‖    ‖   ‖          

whenever      and       are close enough to 1. Now, it is enough to take the limit when   tends 

to 1 and   to 0, to obtain that   has diameter 2.  
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The following is the main result in the M-ideals setting, which improves the results in [68], 

where only the nonexistence of strongly exposed points is deduced with an extra hypothesis. 
 

Theorem (4.1.4)[66]: Let   be a Banach space and let   be a closed and proper subspace of  . Assume 

that   is an M-ideal of   (that is, there is an  -projection on    onto some subspace   of   , with kernel 

  ). If    is weak-  dense in    , then every nonempty relatively weakly open subset of    and    has 

diameter 2. 
 

Proof. As    is weak-  dense in    , then ‖ ‖         
|    |     , and so the norm of   is 

      -lower semi-continuous. 

Let   be a nonempty relatively weakly open subset of   . Then, there are           and 

      such that 

   {     |        |         }     

since the       -topology on   is just the weak topology of  . 

Setting   {     |        |         } , we have that   is a nonempty relatively 

       open subset of    intersecting   . By Proposition (4.1.3), we obtain that          . Now, we 

claim that    is dense in the topological space (        ). 

Indeed,            ; hence every      can be written as       with        and 

     . There exists a net of elements       which converges to   in the weak-  topology. Hence, 

for every    , we have                             . Now it is clear that the assumption 

|        |         , implies that, for some    and      |         |         . That 

proves the       -density of    in  . Moreover, as the norm of   is       -lower semicontinuous, we 

have that            and so,          . Then we have proved that every nonempty relatively 

weakly open subset of    has diameter 2. 

As every nonempty relatively weak-  open subset of      contains a nonempty relatively weakly 

open subset of   , and    is weak-  dense in     , we deduce that every nonempty relatively weak-  

open subset of      also has diameter 2. Now, as   is an M-ideal of  , we have          and then 

           , where,    and    denote the    and    sum, respectively. Hence, by Lemma 

(4.1.2), we have that every nonempty relatively weak-  open subset of      has diameter 2, and then 

every nonempty relatively weakly open subset of    also has diameter 2, since from the weak-  density 

of    in     , every nonempty relatively weakly open subset of    is weak-  dense in some nonempty 

relatively weak-  open subset of      and the norm in     is weak-  lower semi-continuous.  

For M-embedded Banach spaces  , we have            , and so we have automatically the 

weak-  density of     in      . Then we obtain the following 
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Corollary (4.1.5)[66]: Let   be a non-reflexive M-embedded Banach space, and let   be a closed 

subspace of     containing  . Then every nonempty relatively weakly open subset of    has diameter 2. 
 

Proof. If   is a closed subspace of     containing  , then   is an M-ideal of  . In fact, if   is the L-

projection in      with kernel    and image   , we identify    with the quotient         and define 

        by                      . Now   is an L-projection whose kernel is the anihilator of 

  in   . 

Finally, as     is weak-  dense in      , given           with ‖       ‖   , we choose 

      such that ‖       ‖   , and then there exists a net {  } of elements of     converging to 

        in the weak-  topology on     . Then {     } is a net of elements of        converging to 

        in the weak-  topology on   . Then we have proved that the closed unit ball of       is weak-

  dense in    . It is enough to apply Theorem (4.1.4) to obtain that every nonempty relatively weakly 

open subset of    has diameter 2.  
 

Note that, since the property of being M-embedded is hereditary and stable by quotients, the 

same result is true when   is a non-reflexive closed subspace of   or a non-reflexive quotient of  . 

In particular, from the above corollary, we deduce that the unit closed ball of every closed and 

non-reflexive subspace of an M-embedded space has no continuity points and so has no strongly 

exposed points, and the same is true for non-reflexive quotients of an M-embedded spaces. Roughly 

speaking, this fact shows that every subspace and every quotient of an M-embedded space fails the 

Radon-Nikodym property in a very strong way, if it is not reflexive. As a consequence of the above 

corollary, it is worth mentioning some interesting examples. As    is an M-embedded space, not only 

every infinite-dimensional subspace or quotient of    verifies the conclusion of Corollary (4.1.5), but 

also every subspace of    containing   . If   is a Hilbert space, and      and      stand for the space 

of compact operators on   and the space of all bounded operators on  , respectively, it is well known 

that      is an M-embedded space. Again, not only every subspace or quotient of      satisfies the 

conclusion of Corollary (4.1.5), but also every subspace of      containing     , since       , the 

bidual space of     , is isometrically isomorphic to     . 

As the failure of the Radon-Nikodym property in non-reflexive M-embedded spaces is well 

known, since every non reflexive M-embedded space contains an isomorphic copy of   , it is natural to 

ask for the behavior of relatively weakly open subsets of the unit ball of a Banach space containing   -

copies. Of course, not every Banach space containing   -copies lacks a point of continuity in its unit 

ball. For this, it is enough to consider         . It is easy to see that        is a denting point of   , 
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where    denotes the first vector of the unit vector basis in   . However the following result shows that, 

up to renorming, the above situation cannot happen. 
 

Proposition (4.1.6)[66]: Let   be a Banach space containing a subspace isomorphic to   . Then there 

exists an equivalent norm in   so that every nonempty relatively weakly open subset of the new unit ball 

has diameter 2. 
 

Proof. As the conclusion is isomorphic in nature, we can suppose that   contains a subspace   isometric 

to   . Now, by [78, Proposition II.2.10], there exists an equivalent norm | | on   which agrees with the 

original norm on   so that   becomes M-ideal in  . 

Then we have    | |            for some subspace   of    . Finally, as     is isometric to 

   and every nonempty relatively weakly open subset of     has diameter 2, it is enough to apply 

Lemma (4.1.1) to obtain that every nonempty relatively weakly open subset of     | |   has diameter 2.  
 

As every proper M-ideal, that is, an M-ideal which is not an M-summand, contains an 

isomorphic copy of   , we deduce the following 
 

Corollary (4.1.7)[66]: Let   be a proper M-ideal of a superspace  . Then there is an equivalent norm in 

  so that every nonempty relatively weakly open subset of the new unit ball of   and   has diameter 2. 
 

Now we pass to study the size of nonempty relatively weakly open subsets of the unit ball of an 

L-embedded space. The result is the following 
 

Theorem (4.1.8)[66]: Let   be an L-embedded Banach space, that is,          for some subspace 

  of    . If    is weak-  dense in     , then every nonempty relatively weakly open subset of    has 

diameter 2. 
 

Proof. Let   be a nonempty relatively weakly open subset of   . As   is infinite dimensional, there is 

an         and then there exist            such that 

   {     |        |         }     

Let   {          |    
      |         }. Then   is a nonempty relatively weak-  

open subset of      such that        . 

From the weak-  density of    in      we can choose a net {  } of elements in    converging to 

   in the weak-  topology of    , hence there is a    such that     , whenever     . Furthermore, as 

the norm of     is weak-  lower semi-continuous, we have     inf ‖  ‖  ‖  ‖   . Then, given     

then there is a      such that ‖  ‖     , and     . Now, we deduce 

        ‖     ‖  ‖  ‖  ‖  ‖             

As     was arbitrary, we conclude that          . 
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Finally, from the weak-  density of    in      we obtain that    is relatively dense in the 

topological space   endowed with the weak-  topology of    . Now, the weak-  lower semicontinuity of 

the norm in     allows us to assure that                           .  
 

In order to show examples where Theorem (4.1.8) works, we denote by    and    the Hardy 

space and the Lebesgue space on the interval [   ]. Also,   
  stands for the subspace of    of functions 

in    vanishing at 0. From [80, p. 27], the unit ball of      
  lacks extreme points, and it is well known 

that      
  is an L-embedded space. Then we can apply Theorem (4.1.8) as in Theorem (4.1.12) to 

obtain the following 
 

Corollary (4.1.9)[66]: Every nonempty relatively weakly open subset of the unit ball of      
   as 

diameter 2. 
 

The same is true for     
  instead      

  since they are isometric. 

Let   be a Banach space. For   in   , we define the roughness of   at         , by the equality 

              
‖ ‖  

‖   ‖  ‖   ‖   

‖ ‖
  

We remark that the absence of roughness of   at   (i.e.,         ) is nothing other than the Fréchet 

differentiability of the norm of   at   [81, Lemma I.1.3]. Given    , the Banach space   is said to be 

 -rough if, for every   in   , we have         . We say that   is rough whenever it is  -rough for 

some    , and extremely rough whenever it is 2-rough. 

Assume that   is a Banach space such that every nonempty relatively weakly open subset of    

has diameter 2. Then, by [81, Proposition I.1.11], the dual    of   (resp. the predual    of  , if this 

exists) is extremely rough. 

Then, we have the following consequences (see Theorem (4.1.12) and Corollary (4.1.13) for part 

ii)): 
 

Corollary (4.1.10)[66]: The following Banach spaces are extremely rough: 

i) The dual of any nonreflexive M-embedded space. 

ii) The real atomless     -triples, and so the atomless Von Neumann algebras. 
 

Corollary (4.1.11)[66]: Every Banach space   containing an isomorphic copy of    can be equivalently 

renormed so that    becomes extremely rough. 
 

In order to show a new application of Theorem (4.1.8) we introduce some notation. 

We recall that a complex    -triple is a complex Banach space   with a continuous triple 

product { }          which is linear and symmetric in the outer variables and conjugate-linear 

in the middle variable, and satisfies: 
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(i) For all    , the map   {   } from   to   is a hermitian operator on   and has nonnegative 

spectrum. 

(ii) {  {   }}  {{   }  }  { {   } }  {  {   }} for all            . 

(iii)‖{   }‖  ‖ ‖  for all    . 

We also recall that a bounded linear operator   on a complex Banach space   is said to be 

hermitian if ‖        ‖    for every real number  . 

Following [82], we define real    -triples as norm-closed real subtriples of complex     -triples. 

Here, by a subtriple we mean a subspace which is closed under triple products of its elements. A triple 

ideal of a real or complex    -triple   is a subspace   of   such that {   }  {   }   . Real 

    -triples where first introduced as those real    -triples which are dual Banach spaces in such a 

way that the triple product becomes separately   -continuous (see [82, Definition 4.1 and Theorem 

4.4]). Later, it was shown in [83] that the requirement of separate   -continuity of the triple product is 

superabundant. 

Finally, we recall that an element   of a real    -triple   is said to be a tripotent if {   }   . 

Given     tripotents in  , we say that   and   are orthogonal if {   }    and we say that     if 

    and   are orthogonal tripotents. Then a minimal tripotent will be a tripotent which is minimal in 

the partial order defined above. 

Examples of real    -triples are the spaces       , for arbitrary real, complex, or quaternionic 

Hilbert spaces   and  , under the triple product {   }  
 

 
           . Also, the corresponding 

spaces of all symmetric,     , and skew,     , bounded linear operators on   can be considered real 

   -triples. The above examples become particular cases of those arising by considering either the so-

called complex Cartan factors (regarded as real    -triples) or real forms of complex Cartan factors [84]. 

We recall that real forms of a complex Banach space   are defined as the real closed subspaces of   of 

the form    {          }, for some conjugation (i.e., conjugate-linear isometry of period two) 

on  . We note that, if   is a complex    -triple, then every real form of   is a real    -triple (since 

conjugations on   preserve triple products [85]). Among complex Cartan factors, the so-called complex 

spin factors become especially relevant for our present approach. They are built from an arbitrary 

complex Hilbert space (    |   ) of hilbertian dimension    by taking a conjugation   on  , and then 

by defining the triple product and the norm by 

{   }    |      |    ( |    )     

and 
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‖ ‖    |   √  |    |( |    )|
 
  

respectively, for all       in  . Following [86], we say that a real    -triple is a generalized real spin 

factor if it is either a complex spin factor (regarded as a real    -triple) or a real form of a complex spin 

factor. 

It is well known that every complex     -triple   has a unique isometric predual  , and this is 

an L-embedded space. This is also the case for preduals of real     -triples as done in [72]. 

Now we are ready to show the application of Theorem (4.1.8). 

Theorem (4.1.12)[66]: Let   be a real     -triple and let    be its predual. If   is atomless, that is,   

lacks minimal tripotentes, then every nonempty relatively weakly open subset of    
 has diameter 2. 

 

Proof. As   is atomless, according to [87, Corollary 2.1], we deduce that    
 lacks extreme points. 

Now,    is an L-embedded space by [72, Proposition 2.2]; then we have         , for some 

subspace   of   . Let us see that    is weak -dense in    
. 

As    
 lacks extreme points and the set of extreme points of    

 is the union of the sets of 

extreme point of    
 and   , we obtain that    (   

)         , where        denotes the set of 

extreme points of  . Now, the Krein-Milman theorem applied to    
 gives us that 

   
   ̅̅ ̅ 

 
(       ), and then the desired conclusion. 

Finally, it is enough to apply Theorem (4.1.8) to finish the proof.  
 

In the setting of   -algebras, the concept of mininal tripotents is exactly the well-known notion 

of minimal projections. As a Von Neumann algebra is also a real     -triple, we obtain the following 
 

Corollary (4.1.13)[66]: Let   be an atomless Von Neumann algebra, that is,   lacks minimal 

projections, and    stands for its predual. Then every nonempty relatively weakly open subset of    
 has 

diameter 2. 
 

Finally, we show a characterization of Radon-Nikodym property in the setting of the preduals of 

real     -triples and, as a consequence, in the setting of the preduals of Von Neumann algebras, too. 
 

Theorem (4.1.14)[66]: Let   be real     -triple and    its preduals. Then: 

i)    satisfies the Radon-Nikodym property if, and only if,   is purely atomic, that is,   is the weak-

  closed linear span of its minimal tripotents. Furthermore, in this case,   is the   -sum of weak-

  closed simple ideals which are either finite-dimensional, infinite-dimensional generalized real 

spin factors or of the form             or      for some real, complex or quaternionic infinite-

dimensional Hilbert spaces   and  . 
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ii)    fails the Radon-Nikodym property if, and only if,    can be equivalently renormed so that 

every nonempty relatively weakly open subset of    
 has diameter 2. 

iii)    satisfies the Radon-Nikodym property if, and only if,    satisfies the Krein-Milman property. 
 

Proof. i) Assume that    verifies the Radon-Nikodym property. By [87, Theorem 3.6], we have 

      , where   and   are weak  closed real triple ideals of  , such that   is purely atomic and   

is atomless. By the above corollary    , since the Radon-Nikodym property is hereditary. Then 

    is purely atomic. 

Now, in order to describe the preduals of real      triples satisfiyng the Radon-Nikodym 

property, assume that   is purely atomic. We denote by  ̂       the complexification of  . By [87], 

 ̂ is a purely atomic complex      triple and then, by [88],  ̂ is the    sum of type I Cartan factors, 

that is, the    sum of   -closed simple ideals which are either finite-dimensional, infinite-dimensional 

complex spin factors or of the form             or      for some complex Hilbert spaces   and  . 

Taking into account that the conjugation τ preserves the triple product and is   -continuous, it is enough 

to apply [84] to deduce that   is the    sum of   -closed simple ideals which are either finite-

dimensional, infinite-dimensional generalized real spin factors or of the form             or      for 

some real, complex or quaternionnic Hilbert spaces   and  . Finally, as the Radon-Nikodym property is 

stable by    sums and the preduals of the above spaces satisfy the Radon-Nikodym property (see [89]) 

we deduce that    verifies the Radon-Nikodym property. 

ii) If    fails the Radon-Nikodym property, as in the above paragraph, we set       . 

Now, as   and   are   -closed real triple ideals of  , we have        , where   is the predual of 

the atomless real     -triple  . By the above corollary, every nonempty relatively weakly open subset 

of    has diameter 2. Now it is enough to apply Lemma (4.1.1), to see that    can be equivalently 

renormed so that every nonempty relatively weakly open subset of    
 has diameter 2. The converse 

implication is trivial. 

iii) It is well known that every Banach space satisfying the Radon-Nikodym property also 

verifies the Krein-Milman property. In order to prove the converse, assume that    fails the Radon-

Nikodym property. Then, by i),   is not purely atomic. Now, as in ii),       , where   and     

are we  
 
 closed real triple ideals of  , such that   is purely atomic and   is atomless. Then,    

    , where   is the predual of the atomless real     -triple  . By [87, Corollary 2.1], we deduce 

that    lacks extreme points and hence    fails the Krein-Milman property.  
 

Corollary (4.1.15)[66]: Let   be a Von Neumann algebra and    its predual. Then: 
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i)    satisfies the Radon-Nikodym property if, and only if,   is purely atomic. Furthermore, in this 

case, there exists {  } a family of infinite-dimensional complex Hilbert spaces, such that   

   ∑        and       ∑       , where      denotes the space of all nuclear operators 

on  . 

ii)    fails the Radon-Nikodym property if, and only if,    can be equivalently renormed so that 

every nonempty relatively weakly open subset of     has diameter 2. 

iii)    satisfies the Radon-Nikodym property if, and only if,    satisfies the Krein-Milman property. 

Section (4.2): Characterizations of Unitaries: 

 

  -algebras have inspired many notions and results in the theory of Banach spaces. Concerning 

the interest of the present paper, the starting point could be dated in the early Bohnenblust–Karlin [91], 

where it is shown that the unit of every norm-unital complex Banach algebra is a vertex of the closed 

unit ball of the algebra (a purely Banach space notion), and that vertices of the closed unit ball of a 

unital   -algebra are precisely the unitary elements of the algebra .Since the Bohnenblust–Karlin paper, 

many authors have been interested in the geometry of the Banach spaces of norm-unital Banach algebras 

around their units, and the relationship between this geometry and the algebraic structure. The results 

obtained in this line until 1973 are nicely collected in the Bonsall–Duncan monograph [92,93], and 

culminate in the celebrated Vidav–Palmer theorem characterizing unital   -algebras among norm-unital 

complex Banach algebras in terms involving only the Banach space of the algebra, and the unit [92]. 

Another aspect where   -algebras inspired deep developments in the theory of Banach spaces is 

that of the infinite dimensional holomorphy. Indeed, the open unit ball of any   -algebra is a bounded 

symmetric domain [94]. Moreover, if the open unit ball of a complex Banach space is a bounded 

symmetric dom in, then the B n ch sp ce itself is “ lmost”     -algebra, and there is an intrinsically 

defined triple product { } on it which behaves algebraically and geometrically like the one obtained 

from the binary product of a   -algebra by taking {   }  
 

 
           . The resulting mathematical 

creature, called a    -triple, has been feverishly studied in last years, and the star result in the theory, 

due to W. Kaup [95], asserts that every bounded symmetric domain in a complex Banach space is 

biholomorphically equivalent to the open unit ball of a suitable    -triple. Let us mention also that, by 

combining the theory of    -triples with the literature originated in the Bohnenblust–Karlin paper [91], 

it has been possible to characterize (possibly non-unital)   -algebras as those complex Banach algebras 

having an approximate unit bounded by 1, and whose open unit ball is a bounded symmetric domain 

[96]. 
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We review in detail the already commented Bohnenblust–Karlin Banach space characterization 

of unitaries in   -algebras ,as well as some results, both in the theory of Banach algebras 

[97,92,93,98,99,100,101] and in the one of Banach spaces [102,103,104,105,106], originated in that 

characterization. It is worth mentioning that the Bandyopadhyay–Jarosz–Rao paper [102] is motivated 

by the recent Akemann–Weaver rediscovery [107] of the Bohnenblust–Karlin characterization, and that, 

in its turn, some results in [102] become rediscoveries of previous ones in [14,106].  

We show how, thanks to [108,97,109], the Bohnenblust–Karlin Banach space characterization of 

unitaries in   -algebras remains true in the more general setting of    -triples , and note that a    -triple 

has unitary elements if and only if it is the    -triple underlying a suitable unital    -algebra [108].    -

algebras are Jordan–Banach complex algebras with involution, which behave like   -algebras endowed 

with the Jordan product     
 

 
        [110]. 

We devoted to the study of unitaries in real    -triples (i.e., closed real subtriples of    -triples 

[111]). Since a Banach space characterization of unitaries in real    -triples cannot be found  and such a 

characterization could be found [112], but remains unknown to date, in the particular case of real    -

algebras (i.e., closed  -invariant real subalgebras of    -algebras), we center our attention in the still 

more particular case of   -algebras.   -algebras are Jordan– Banach real algebras which behave like the 

self-adjoint parts of   -algebras endowed with the Jordan product [113]. We collect a Banach space 

characterization of unitaries in   -algebras, essentially due to J.D.M. Wright and M.A. Youngson [114], 

and review the recent Leung–Ng–Wong determination of vertices of closed unit balls of   -algebras 

[115]. 

We involving in our development the notions of norm-norm and norm-weak upper semi-

continuity of the duality mapping of a Banach space at a point [116]. Although these notions were not 

motivated by any Banach algebra question or result, they have shown useful in the study of norm-unital 

Banach algebras [99,106], mainly in the case that these algebras are in addition dual Banach spaces 

[117]. Then, we invoke deep results in the Godefroy–Indumathi and Godefroy–Rao papers [118,119], 

about the norm-weak upper semi-continuity of the pre-duality mapping of a dual Banach space, and 

derive three previously unnoticed relevant facts [120],[121]. 
 

The celebrated of R.V. Kadison [122], on surjective linear isometries of   -algebras, implicitly 

contains a Banach space characterization of unitary elements in unital   -algebras. Actually, an explicit 

characterization is given by the following. 
 

Theorem (4.2.1)[90]: Let   be a unital   -algebra, and let u be a norm-one element of  . Then the 

following conditions are equivalent: 
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(i)   is unitary. 

(ii) The dual space    is the linear hull of the set of states of  . 

(iii)  is a vertex of the closed unit ball of  . 
 

We recall that, given a norm-one element   of a Banach space  , the states of   (relative to  ) 

are defined as those norm-one elements   of the dual space    satisfying       . We also recall that 

vertices of the closed unit ball of a Banach space   are defined as those norm-one elements   of   such 

that the set of states of         , separates the points of  . 

The proof of the implication          is really easy. Indeed, since it is well known that 

Condition (ii) is fulfilled in the case that   equals the unit 1 of  , it also remains fulfilled for every 

unitary   because unitary elements of   lie in the orbit of 1 under the group of all surjective linear 

isometries on  . By the way, an alternative proof of          can be given by noticing that, if   is a 

unitary element of  , then   becomes a   -algebra with unit u under the product         and the 

involution       . On the other hand, the implication            is clear. Therefore, the core of the 

theorem is the implication            which is proved in Example 4.1 of the early paper of H.F. 

Bohnenblust and S. Karlin [91],  nd is collected in Theorem 9.5.16(c) of P lmer’s boo  [123]. As 

pointed out by Bohnenblust and Karlin in [91], the equivalence           in the above theorem 

dr stic lly simplifies K dison’s origin l  rguments in [122]. 

Theorem (4.2.1) remained forgotten by many people until it has been rediscovered by C. 

Akemann and N. Weaver [107, Theorem 2], who only formulate the equivalence          in that 

theorem. 

We list in Remark (4.2.2) immediately below some other known results related to Theorem 

(4.2.1). To be short, norm-one elements   of a Banach space   such that    is the linear hull of        

will be called geometrically unitary elements of  . 
 

Remark (4.2.2)[90]: (i) Let   be a Banach space, let   be a norm-one element of  , and define the 

numerical index,       , of   at   by 

          
‖ ‖  

   
        

      

Then u is a geometrically unitary element of   if and only if          [106, Theorem 3.2]. We note 

that        can be equivalently defined as the maximum nonnegative real number   satisfying 

    
        

|    |  ‖ ‖ 

for every    . 
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(ii) The above result becomes an abstract version of the Moore–Sinclair theorem [124,125] (see 

also [93]) that, if   is a complex Banach algebra with a norm-one unit 1, then 1 is a geometrically 

unitary element of  . Indeed, the Moore–Sinclair theorem follows from (i) by keeping in mind the 

Bohnenblust–Karlin theorem that        
 

 
 [91] (see also [92]). Part (i) of the present remark also 

implies that the requirement of associativity of   in the Moore–Sinclair theorem can be altogether 

removed because, as pointed out in [106], the Bohnenblust–Karlin theorem remains true in the non-

associative context. 

(iii) Let   be a complex Banach algebra with a norm-one unit 1 (associativity of   is now 

required), and let   be an algebraically unitary element of   (i.e., an invertible element satisfying 

‖ ‖  ‖   ‖   ). Since the operator of left multiplication by   on   is a surjective linear isometry 

taking 1 to  , it follows from the Moore–Sinclair theorem that   is a geometrically unitary element of  . 

(iv) Let   be a Banach space, and let   be a norm-one element of  . Then we have          

       [106]. Consequently, by Part (a) of the present remark,   is a geometrically unitary element of 

    if and only if it is a geometrically unitary element of   [102]. 

(v) Let   be a unital   -algebra. It follows from [98] that, for a norm-one element   in  , each of 

Conditions (i) to (iii) in Theorem (4.2.1) is equivalent to (iv)        is equal to 1 or 
 

 
. 

 

Moreover, the existence of a norm-one element   of   with          is equivalent to the 

commutativity of  . 

(vi) It is straightforward that vertices of the closed unit ball,   , of a Banach space   are extreme 

points of   . By the way, the closed unit ball of a   -algebra   has extreme points if and only if   has a 

unit, and, in this case, the extreme points of    are the elements     such that            

       [126]. 

(vii) Let us say that a norm-one element   of a Banach space   is a strongly extreme point of    

if, whenever      and      are sequences in    with       
 

 
         , we have           

     . According to [102], geometrically unitary elements of   are strongly extreme points of   . 

(viii) The above result becomes an abstract version of the previously known fact that, if   is a 

complex Banach algebra with a norm-one unit 1, then 1 is a strongly extreme point of    [92]. Indeed, 

this fact follows from (vii) and the Moore–Sinclair theorem. Now note that the associativity of   is not 

needed in the Moore–Sinclair theorem (see Part (ii) of the present remark), and that, if   is a (possibly 

non-associative) real Banach algebra with a norm-one unit 1, then the projective tensor product      is 

a complex Banach algebra with unit    . It follows that, if   is a real or complex (possibly non-
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associative) Banach algebra with a norm-one unit 1, then 1 is a strongly extreme point of   . For 

quantitative versions of this fact, the reader is referred to [127]. 

(ix) Let   be a Banach space (with unit sphere   ), and let   be in   . The element   is said to 

be a strongly exposed point of    if there exists       with the property that, whenever      is a 

sequence in    such that (     )   , we have       . It is well known that, if   is a strongly 

exposed point, then   is a denting point of   , which means that there are slices of    of arbitrarily 

small diameter which contain  . On the other hand, if   is a denting point of   , then   is a strongly 

extreme point of    [128]. Now, let A be a (possibly non-associative) real or complex Banach algebra 

with a norm-one unit 1. Then there exists an equivalent algebra norm ‖| |‖ on   arbitrarily close to ‖ ‖, 

satisfying ‖| |‖   , and such that 1 becomes a strongly exposed point of     ‖| |‖  [100]. Moreover, if 

in addition   is a dual Banach space, then the norm ‖| |‖ above can be chosen among the dual norms on 

 , and in such a way that 1 becomes in fact a   -strongly exposed point of     ‖| |‖ . We note that, even 

if   is associative, 1 need not be a denting point (much less a strongly exposed point) of   . Indeed, the 

Banach algebra of all bounded linear operators on any infinite-dimensional complex Hilbert space has 

no denting point in its closed unit ball [129]. More generally, the closed unit ball of a   -algebra   is 

dentable (i.e., there are slices of    of arbitrarily small diameter) if and only if   is finite-dimensional 

[130]. 

(x) By a unitary Banach algebra we mean an associative Banach algebra   with a norm-one unit 

1, and such that    equals the closed convex hull of the set of all algebraically unitary elements of   (in 

the sense of Part (iii) of the present remark). Relevant examples of unitary Banach algebras are all unital 

  -algebras [93] and the discrete group algebras       for every group  . Let   be a unitary Banach 

algebra. If   is complex, then the product of   becomes a geometrically unitary element in the Banach 

space of all continuous bilinear mappings from     to   [97]. On the other hand, if    is dentable, 

then, according to [97], for a norm-one element   of  , the following assertions are equivalent: 

( ́)    is an algebraically unitary element of  . 

(  ́)   is a denting point of   . 

(   ́ )    equals the closed convex hull of the orbit of   under the group of all surjective linear 

isometries on  . 
 

We do not know if Theorem (4.2.1) rem ins true whenever “unit l   - lgebr ” is repl ced with “unit ry 

complex B n ch  lgebr ”, nor even if  lgebr ic unit ries in unit ry complex B n ch  lgebr s c n be 

geometric lly ch r cterized. Unit ry B n ch  lgebr s origin ted in Cowie’s PhD thesis [131], and were 
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reconsidered, without noticing Cowie’s forerunner, in the H nsen–Kadison [132]. For later development 

of the theory, see [133,134,135,97] and references therein. 

(xi) Let   be a Banach space. By a product on   we mean a continuous bilinear mapping from 

    to  . We denote by      the Banach space of all products on  . Now, assume that   is complex. 

By a   -product on   we mean an element        such that  , endowed with the product   and a 

suitable involution, becomes a   -algebra. Every   -product   on   is both a geometrically unitary 

element of      [99]  nd  n “ pproxim tely norm-unit l product” (which me ns th t       is a Banach 

algebra having an approximate unit bounded by 1). In the case that   is the Banach space underlying a 

  -algebra, the converse is also true. More precisely, if there are   -products on  , and if   is both an 

extreme point of       and an approximately norm-unital product (associativity of   is not assumed), 

then   is an (automatically associative)   -product on X [101]. 

(xii) Vertices of the closed unit ball of a Banach space   need not be geometric unitaries [105,], 

nor even strongly extreme points of    [102]. The vertex in [105] is in fact the unit of a real norm-unital 

Banach algebra (say  ), and hence, by Part (h) of the present remark, it is a strongly extreme point of 

  . 

(xiii) Let   be a complex Banach space. As a consequence of Part (b) of the present remark, the 

identity mapping on   (say 1) is a vertex of the closed unit ball of the Banach space      of all bounded 

linear operators on  . Actually, 1 remains a vertex of the closed unit ball of a much larger Banach space. 

More precisely, by passing to restrictions to   , the space      can be identified with a closed subspace 

of the sup-normed Banach space       of all bounded continuous functions from    to   which are 

holomorphic in the open unit ball of   and vanish at zero, and it follows straightforwardly from [103] 

that 1 becomes a vertex of       . In fact, minor changes to the proof of [102] allow us to realize that 1 

is a vertex of      , where      stands for the Banach space of all bounded continuous functions from 

   to   which are holomorphic in the open unit ball of  . 

(xiv) As pointed out in [102], a bounded linear operator   on a Banach space   is a 

geometrically unitary element of      whenever the adjoint operator    is a geometrically unitary 

element of      . The converse is far from being true. Indeed, as a consequence of [104] (with   equal 

to the two-dimensional Euclidean real space), there is a real Banach space   (namely, the space      in 

that theorem) such that the identity mapping 1 on   is a geometrically unitary element of      (with 

           ), whereas the identity mapping on    is not even a vertex of       . 

 

We note that Parts (i) and (iii) of the above remark have been recently rediscovered (see [102] 

and [102], respectively). 
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   -triples are defined as those complex Banach spaces   endowed with a continuous triple 

product { }          which is linear and symmetric in the outer variables, and conjugate-

linear in the middle variable, and satisfies: 

(i) For all   in  , the mapping   {   } from   to   is a Hermitian operator on   (in the sense of 

[92]) and has nonnegative spectrum. 

(ii) The equality 

{  {   }}  {{   }  }  { {   } }  {  {   }} 

holds for all           in  . 

(iii) ‖{   }‖  ‖ ‖  for every   in  . 
 

Every   -algebra becomes a    -triple under the triple product 

{   }  
 

 
             

More generally,   -algebras are    -algebras under the product 

     
 

 
                                                                   

and    -algebras become    -triples under the triple product 

{   }                                                            

 (see [108,136]). We recall that    -algebras are defined as those complete normed Jordan complex 

algebras   endowed with a conjugate-linear algebra-involution   satisfying ‖    
  ‖  ‖ ‖  for every 

  in  , where, for   in A, the operator        is defined by                    . 

The main interest of    -triples relies on the fact that, up to biholomorphic equivalence, there are 

no bounded symmetric domains in complex Banach spaces others than the open unit balls of    - triples 

[95]. Unitary elements of a    -triple   are defined as those elements   of   satisfying { {   } }    

for every    . It is easily seen that, if a   -algebra   has a unitary element in the    -triple sense, 

then   has a unit, and unitary elements in the    -triple sense coincide with unitary elements in the usual 

  -algebra meaning. 

According to the celebr ted K up’s version [95] of the Banach–Stone theorem, the surjective 

linear isometries between    -triples are precisely the triple-isomorphisms. Therefore, implicitly, 

unitary elements of a    -triple are determined by the Banach space structure. An explicit determination 

is provided by the following. 
 

Theorem (4.2.3)[90]: For a norm-one element   in a    -triple  , the following conditions are 

equivalent: 

(i)   is unitary. 
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(ii)        is equal to 1 or 
 

 
. 

(iii)   is geometrically unitary. 

(iv)   is a vertex of the closed unit ball of  . 
 

 Proof: If Condition (1) is fulfilled, then  , endowed with the product      {   } and the 

involution    {   }, becomes a unital    -algebra whose unit is precisely   (see [108]), and hence 

(2) holds by [109, Theorem 26] (see also [137, Theorem 4]). On the other hand, the implication     

    follows from Remark (4.2.2)(a), and the one         is clear. Finally, the implication         

follows from [96, Lemma 3.1] and [108, Theorem 4.4]. An alternative proof of         can be given 

by keeping in mind that vertices of the closed unit ball of a Banach space are extreme points, that 

extreme points of the closed unit ball of a    -triple are well understood [138, Proposition 3.5], and then 

by selecting (with the help of [139, Proposition 1(a)]) those extreme points which are in fact vertices. 

In relation to the above proof, it is worth mentioning that, contrarily to what happens in the case 

of   -algebras, the group of all surjective linear isometries on a    -triple   need not act transitively on 

the set of all unitary elements of   [108, Example 5.7]. Let us also notice that, by the references applied 

above, the existence in a    -triple   of a geometrically unitary element (respectively, of a norm-one 

element   with         ) is equivalent to the fact that   is triple-isomorphic to a unital    -algebra 

(respectively, to a unital commutative   -algebra). Therefore, as in the case of   -algebras (see Remark 

(4.2.2)(j)), if a    -triple   has a unitary element, then    equals the closed convex hull of the set of all 

unitaries in   [140]. 

We list in Remark (4.2.4) immediately below some other known results related to Theorem 

(4.2.3). 

Remark (4.2.4)[90]:(i) The closed unit ball of a    -algebra   has extreme points if and only if   has a 

unit [136]. Therefore, by Remarks (4.2.2)(b) and (4.2.2) (f), a    -algebra   has geometrically unitary 

elements if and only if    has vertices, if and only if    has extreme points. A similar situation need not 

hold for general    -triples. Indeed, every complex Hilbert space   becomes a    -triple under the 

triple product {   }  
  |      |   

 
, and however every element in    is an extreme point of    

whereas, if             has no vertex. 

(ii) Let   be a Jordan algebra with a unit 1, and let   be an element of  . Following [141], we 

say that   is invertible in   if there exists     such that the equalities       and        hold. 

If   is invertible in  , then the element   above is unique, it is called the inverse of  , and is denoted by 

   . Now assume that   has an involution (respectively, that   is normed). Then we say that   is  -

unitary (respectively, algebraically unitary) if it is inversible in   with        (respectively, with 
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‖ ‖  ‖   ‖   ). According to [108], if   is in fact a unital    -algebra, then   is a unitary element 

of   in the    -triple sense if and only if it is  -unitary, if and only if it is algebraically unitary. 

(iii) The bidual of a    -algebra  , endowed with a suitable product and a suitable involution, is 

a unital    -algebra containing A as a    -subalgebra [136]. 

(iv) Unitaries in    -triples are examples of tripotents (i.e., elements   such that {   }   ). In 

the particular case of   -algebras, tripotents are usually called partial isometries. As a consequence of 

[142] and [143], tripotents in a    -triple   are precisely those elements in   which are centers of 

symmetry of some   -closed face of the closed unit ball of    . 

(v) A more recent Banach space characterization of tripotents in    -triples, generalizing a 

previous result for   - algebras [107], is proved in [121]. Indeed, a norm-one element   of a    -triple 

  is a tripotent if and only if the sets 

{     there exists     with ‖    ‖  ‖    ‖   } 

and 

{     ‖    ‖     {  ‖  ‖} for  ll    } 

coincide [121]. 
 

  -algebras are defined as those complete normed Jordan real algebras   satisfying ‖ ‖  

‖     ‖ for all     in  . The basic reference for the theory of   -algebras is the book of H. Hanche-

Olsen and E. Stormer [113]. An element   of a unital   -algebra is said to be a symmetry if     . The 

space of all self-adjoint bounded linear operators on a complex Hilbert space, endowed with the product 

    
 

 
       , becomes an illustrative example of a   -algebra. As in this particular case, every 

unital   -algebra   is endowed with an order with the property that    is affinely isomorphic to its 

positive part (say   
 ) via the mapping   

 

 
     . It is proved in the Wright–Youngson early paper 

[114] that the extreme points of   
  are precisely the idempotents of  . Therefore, as codified explicitly 

in [144], we have the following. 
 

Theorem (4.2.5)[90]: Let   be a unital   -algebra. Then the extreme points of the closed unit ball of   

are precisely the symmetries of  . 
 

By a real    -algebra we mean a closed  -invariant real subalgebra of a (complex)    -algebra. 

In the case of the existence of a unit, real    -algebras were introduced (under the name of    -

algebras) by K. Alvermann [145], who provided a system of intrinsic axioms for them. By a non-unital 

version of [111] (see [113]),   -algebras are precisely those real    -algebras whose involution is the 

identity mapping. Real   -algebras (i.e., closed  -invariant real subalgebras of   -algebras), equipped 
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with the Jordan product defined by the equality (1), become also relevant examples of real    -algebras. 

According to Proposition (4.2.6) below, our notion of a real    -algebra coincides with the apparently 

stronger one in [111, p. 321], where this concept was introduced by the first time. 

Following [111], by a real    -triple we mean a closed real subtriple of a (complex)    -triple. 

Clearly, every real    -algebra becomes a real    -triple under the triple product defined by the equality 

(2). If   is a real    -triple, then its complexification has a natural triple product, namely the one 

obtained by extending that of A by complex linearity in the outer variables, and by conjugate-linearity in 

the middle variable. Analogously, if   is a real    -algebra, we can extend both the product of   (by 

complex bilinearity) and the involution of   (by conjugate-linearity) to the complexification of  . 

Actually, we have the following. 
 

Proposition (4.2.6)[90]:Let    ‖ ‖  be a    -triple (respectively, a    -algebra), and let   be a closed 

real subtriple (respectively, a closed  -invariant real subalgebra) of  . Then the complexification 

     of  , endowed with its natural triple product (respectively, with its natural product and 

involution) and the norm ‖|    |‖     {‖    ‖ ‖    ‖}, becomes a    -triple (respectively, 

a    -algebra). 
 

The bracket-free version of the above proposition is shown in [111]. The bracket version is 

proved in an analogous way. Indeed, consider a set copy  ̂ of   with sum, product by scalars, product, 

involution, and norm defined by  ̂   ̂      ̂   ̂   ̅ ̂  ̂   ̂     ̂  ̂    ̂, and ‖ ̂‖  ‖ ‖, 

respectively. Then  ̂ becomes a    -algebra, and hence    ̂ is also a    -algebra under the norm 

‖    ̂ ‖     {‖ ‖ ‖ ‖}. Now, the mapping          ̂   (   ̂)  (         ̂) becomes 

an algebra  -isomorphism from the complexification of   onto a    -subalgebra of   ̂ . 

Let   and   be as in Proposition (4.2.6). It is proved in [111] that extreme points of    remain 

extreme in        |‖ ‖| . Therefore, invoking Remark (4.2.4)(a), we deduce the following. 

 

Corollary (4.2.7)[90]: Let   be a real    -algebra. Then the closed unit ball of   has extreme points if 

and only if   has a unit. 

It follows from Corollary (4.2.7) and Remark (4.2.2)(h) that the closed unit ball of a real    -

algebra has extreme points if and only if it has strongly extreme points. On the other hand, keeping in 

mind Proposition (4.2.6) and Remark (4.2.4)(c), an easy argument (like the one in the proof of [111,]) 

leads to the following. 

Corollary (4.2.8)[90]: Let   be a real    -algebra. Then the bidual of  , endowed with a suitable 

product and a suitable involution, is a unital real    -algebra containing   as a real    -subalgebra. 
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According to [111], surjective linear isometries between real    -triples are precisely those 

linear bijections preserving the cube mapping   {   }. As a consequence, surjective triple-

isomorphisms between real    -triples are isometries. In the case of real    -algebras, we have the 

following converse. 
 

Corollary (4.2.9)[90]: Surjective linear isometries between real    -algebras are in fact triple-

isomorphisms. 
 

The above corollary is proved by F.J. Fernández-Polo, J. Martínez, and A.M. Peralta, under the 

additional assumption that the real    -algebras under consideration have units (see [112]). To remove 

this additional assumption, it is enough to pass to biduals, to keep in mind Corollary (4.2.8), and to 

apply the original result in [112] to the bitranspose mapping of the given isometry. In fact, the proof 

itself in [112] works verbatim in our more general situation as soon as Corollary (4.2.8) is kept in mind. 

As in the complex case, unitary elements of a real    -triple   are defined as those elements   of 

  satisfying { {   } }    for every    . Unitary elements of a real    -triple   are strongly 

extreme points of     because, as in the complex case, if   is a unitary element of  , then   becomes a 

real    -algebra with unit   (for a suitable product and a suitable involution), and Remark (4.2.2)(h) 

applies. Keeping in mind Proposition (4.2.6), Corollary (4.2.7), and Remark (4.2.4)(b), we easily realize 

that, if a real    -algebra   has a unitary element in the real    -triple sense, then   has a unit, and 

unitary elements of   in the real    -triple sense coincide with  -unitary elements, as well as with 

algebraically unitary elements. In particular, if a   -algebra   has a unitary element in the real    -triple 

sense, then   has a unit, and unitary elements in the real    -triple sense coincide with symmetries in 

the usual   -algebra meaning. 

A consequence of Corollary (4.2.9) is that, in the setting of real    -algebras, the notion of a 

unitary element is actually a Banach space notion. In the particular case of   -algebras, an explicit 

Banach space characterization of unitaries is provided by Theorem (4.2.5). For a general real    -

algebra, we do not know any explicit Banach space characterization of its unitary elements. Could they 

coincide with the strongly extreme points of its closed unit ball? Anyway, in the general setting of real 

   -triples, Banach space characterizations of unitaries cannot be found. Indeed, we have the following. 
 

Example (4.2.10)[90]: Let   stand for the two-dimensional real Euclidean space. Then we can identify 

  with  , and consider it as a real    -triple under the triple product {   }    ̅ , so that all elements 

in    become unitary elements. However, as it happens with any real Hilbert space, we can also consider 

  as a real    -triple under the triple product {   }  
  |      |   

 
 , so that no element in    becomes 

unitary. 
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According to [111], linear isometries from   -algebras onto real    -triples are in fact triple-

isomorphisms. It follows from Example (4.2.10) that the result just reviewed does not remain true if we 

replace   -algebras with real    - algebras, nor even if we replace JB-algebras with commutative real 

  -algebras. 

Geometrically unitary elements of real    -triples are considered in F.J. Fernández-Polo, J. 

Martínez, and A.M. Peralta [121], where the following result is proved. 
 

Proposition (4.2.11)[90]: (See [121, Proposition 2.8].) Let   be a real    -triple, and let   be a norm-

one element in  . Then the following conditions are equivalent: 

(i)   is a geometrically unitary element of  . 

(ii)   is a vertex of the closed unit ball of  . 

(iii)The Banach space of  , endowed with the product     {   }, becomes a   -algebra with 

unit  . 
 

It follows from the above proposition that the existence in a real    -triple   of a geometrically 

unitary element is equivalent to the fact that   is triple-isomorphic to a unital   -algebra. Therefore, the 

study of geometrically unitary elements in real    -triples is concluded with the following. 

Theorem (4.2.12)[90]: Let   be a unital   -algebra, and let   be a norm-one element of  . Then the 

following conditions are equivalent: 

(i)   is a central symmetry of  . 

(ii)         . 

(iii)  is a geometrically unitary element of  . 

(iv)   is a vertex of the closed unit ball of  . 
 

The proof of the implication          is easy. Indeed, since Condition (ii) is fulfilled in the case 

that   equals the unit 1 of   [113], it also remains fulfilled in the case that   is any central symmetry 

because, in that case, the mapping       is a surjective linear isometry on   taking 1 to  . On the 

other hand, the implication            follows from Remark (4.2.2)(i), and the one            is 

clear. Therefore, the core of the theorem is the implication         , which is in fact the main result in 

the Leung–Ng–Wong [115]. 

The proof of the implication          in Theorem (4.2.12), given in [115], combines order 

theoretical arguments with the previously known fact that central symmetries of a unital   -algebra   

are precisely the isolated points of the set of all extreme points of    ([144] together with Theorem 

(4.2.5)). As pointed out in the introduction of [115], an alternative (and quicker) proof of the implication 

         in Theorem (4.2.12) can be provided by invoking Proposition (4.2.11) and a result taken 
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from [144]. Indeed, if   is a vertex of  , then, by Proposition (4.2.11), the Banach space of  , endowed 

with a suitable product, becomes a   -algebra (say   ) with unit  . Now the mapping     is a 

surjective linear isometry from    to  , and hence, as a consequence of [144], there exists a central 

symmetry   in  , together with a surjective algebra isomorphism       , such that we have 

         for every    . This implies, by taking     and noticing that       , that     is 

indeed a central symmetry in  . 

By Corollary (4.2.7) and Theorem (4.2.12), the closed unit ball of a   -algebra   has extreme 

points if and only if it has vertices, if and only if   has geometrically unitary elements. 

To conclude this section, let us mention that, as a consequence of [111] and [146], the Banach 

space characterization of tripotents of (complex)    -triples, collected in Remark (4.2.4)(d), remains 

true verbatim in the caseof real    -triples. In its turn, the natural real variant of the geometric 

characterization of tripotents of (complex)    -triples, reviewed in Remark (4.2.4)(e), determines 

tripotents in real    -triples [121]. 
 

Let   be a topology on a set  , let   be a vector space topology on a vector space   over 

      or   , let   be a function from   to    (empty values for   are allowed), and let   be in  . We 

say that   is  -  upper semi-continuous (in short,  -  usc) at   if, for every  -neighborhood   of zero in 

 , there exists a  -neighborhood   of   in   such that             whenever   lies in  . Now, let 

  be a Banach space. The duality mapping of   is defined as the function          from the unit 

sphere of   to    
. These notions are related to the material previously reviewed in this survey because 

of the following. 
 

Fact (4.2.13)[90]: (See [106, Proposition 4.5].) Let   be a (possibly non-associative) real or complex 

Banach algebra with a norm-one unit 1. Then the duality mapping of   is norm-norm usc at 1. 
 

Keeping in mind that, for a norm-one element   in a Banach space  , we have           , 

and that such an element   is geometrically unitary if and only if          (by Remark (4.2.2)(a)), 

the requirement          can be read as that   is   geometric lly unit ry element of the “best 

possible type”. Such   speci l goodness of   reflects into the following easy consequence of Fact 

(4.2.13). 
 

Fact (4.2.14)[90]: (See [117, Corollary (4.2.21)].) Let   be a Banach space, and let   be a norm-one 

element of   such that         . Then the duality mapping of   is norm-norm usc at  . 

Fact (4.2.14) does not remain true if the assumption that          is relaxed to the one that   

is a geometrically unitary element of  . Indeed, for every real number   with      , we can find a 

couple      , where   is a Banach space, and   is a norm-one element of   satisfying          and 
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such that the duality mapping of   is not norm-weak usc at   [117]. A much more recent result in the 

same direction is the one asserting that, given any non-reflexive Banach space  , and any non-zero 

element    , there exists an equivalent norm on   such that, in the new norm,   is a geometrically 

unitary element but not a point of norm-weak upper semi-continuity for the duality mapping [119]. 

Another result, whose proof involves Fact (4.2.13), is the following. 
 

Fact (4.2.15)[90]: (See [99, Corollary 1.3].) Let   be a   -algebra. Then the product of   becomes a 

point of norm-norm upper semi-continuity for the duality mapping of the Banach space of all continuous 

bilinear functions from     to  . 
 

The above fact remains true if we replace   -algebra with unitary real or complex Banach 

algebra (in the sense of Remark (4.2.2)(x)) [97]. 

Let   be a Banach space, and let   be a closed subspace of  . We say that   is a semi- -

summand of   if, for each    , there exists a unique     such that ‖   ‖  ‖   ‖, and 

moreover this   satisfies ‖ ‖  ‖ ‖  ‖   ‖. This happens in particular if   is an  -summand of   

(which means that   is the range of a linear projection   on   such that ‖ ‖  ‖    ‖  ‖      ‖ 

for every    ). The following result is folklore. Indeed, it follows for example from [147]. 
 

Fact (4.2.16)[90]: Let   be a Banach space over  , and let   be a norm-one element of   such that    

is a semi- -summand of  . Then         . 
 

Now, let   be a non-zero element in a Banach space   over  , and note that   can be 

equivalently renormed in such a way that, in the new norm,   has norm one, and    becomes an  -

summand of  . It follows from Remark (4.2.2)(a) and Facts (4.2.14) and (4.2.16) that, up to such a 

renorming,   becomes both a geometrically unitary element and a point of norm-norm upper semi-

continuity for the duality mapping (compare Proposition 2.1 of [119], and the comments following it). 

The different notions of upper semi-continuity of the duality mapping of a Banach space were 

introduced and studied by J.R. Giles, D.A. Gregory, and B. Sims [116] who, among other results, proved 

the following. 
 

Fact (4.2.17)[90]: (See [116, Theorem (4.2.3)].) Let   be a Banach space, and let   be a norm-one 

element of  . Then the duality mapping of   is norm-weak usc at   if and only if        is weak -

dense in         . 
 

The notion of strong sub differentiability of the norm of a Banach space   at a norm-one element 

     (the meaning of which will not be specified here) was introduced by D.A. Gregory [149], and 

was rediscovered later in [117] under the name that       is a strong numerical range space. As proved 
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in [148], the strong sub differentiability of   at   is equivalent to the norm-norm upper semi-continuity 

of the duality mapping of   at  . It is worth mentioning that, after Gregory, most have preferred the 

terminology of strong sub differentiability of the norm instead of that of norm-norm upper semi-

continuity of the duality mapping. This happens where the points of norm-norm upper semi-continuity 

for the duality mapping of   -algebras,    -triples, and real    -triples are determined (see [149], [150], 

and [151]). 

Let   be a Banach space having a (complete) pre-dual   . We define the pre-duality mapping of 

  as the function             from the unit sphere of   to    . According to Godefroy–Indumathi 

[118], we have the following. 
 

Fact (4.2.18)[90]:Let   be a dual Banach space, and let   be a norm-one element of  . Then we have: 

(i) The pre-duality mapping of   is norm-weak usc at   if and only if           is weak -

dense in       . 

(ii) If the duality mapping of   is norm-weak usc at  , then so is the pre-duality mapping of  . 

As pointed out in [118], a consequence of Facts (4.2.17) and (4.2.18)(i) is that, given a norm-one 

element u of an arbitrary Banach space  , the duality mapping of   is norm-weak usc at   if and only if 

so is the pre-duality mapping of    . Now, let   be a norm-one element in a dual Banach space   over 

 . An early forerunner of Fact (4.2.18)(2) is [117], which, with our present terminology, asserts that the 

pre-duality mapping of   is norm-weak usc at   as soon as the duality mapping of   is norm-norm usc 

at  . We note also that Remark (4.2.2)(iv), together with Facts (4.2.14) and (4.2.18)(ii), implies that, if 

        , then the pre-duality mapping of  , as well as the pre-duality mapping of any dual of   of 

even order, is norm-weak usc at   [152]. As a consequence, by Fact (4.2.16), the same conclusion holds 

whenever    is a semi- -summand of   [152]. 

Again, let   be a dual Banach space, and let   be a norm-one element of  . We say that   is a   -

vertex of    if           separates the points of  , and that   is a   -unitary element of   if    

equals the linear hull of          . It is obvious that   -vertices are vertices, and it is not so obvious 

but true that   -unitaries are geometric unitaries [102]. On the other hand, if   is a vertex of   , and if 

the pre-duality mapping of   is norm-weak usc at  , then, by Fact (4.2.18)(1),   is a   -vertex of   . 

Now, we can complete the picture with the following result, due to G. Godefroy and T.S.S.R.K. Rao. 
 

Theorem (4.2.19)[90]: (See [119, Proposition 2.2].) Let   be a dual Banach space, and let   be a 

geometrically unitary element of   such that the pre-duality mapping of   is norm-weak usc at  . Then 

  is   -unitary. 
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Since Theorem (4.2.19) is proved in [119] only for real spaces, and we are interested also in 

complex spaces, we reproduce here the proof, introducing the appropriate changes to cover both the real 

and complex cases. We begin by claiming that, if   is a bounded, closed, and convex subset of a Banach 

space   such that its closed absolutely convex hull is a neighborhood of zero in  , then   is the linear 

hull of  . Indeed, putting us in the more complicate case that   is complex, and noticing that |co|    

√ co              (where co    and |co|    means convex and absolutely convex hull, 

respectively), and that, by [153], co              is a   -closed subset of   in the sense of 

[153,], the claim follows from [153]. Now, let   and   be as in Theorem (4.2.19), and, for   in  , put 

        {|    |          }   

Then, by Remark (4.2.2)(i),      is an equivalent norm on  , and, by Fact (4.2.18)(i), we have 

        {                 } 

for every  , which implies that the closed unit ball of (      ) is the absolute polar of           in 

 . It follows from the bipolar theorem that the closed absolutely convex hull of           is the 

closed unit ball of    for some equivalent norm on   . Finally, by the claim,    equals the linear hull of 

         , i.e.,   is   -unitary, as required. 

Keeping in mind Remark (4.2.2)(ii) and Facts (4.2.13) and (4.2.18)(ii), Theorem (4.2.19) implies 

the following result, which, as far as we know, has not been noticed previously. 

Corollary (4.2.20)[90]: Let   be a (possibly non-associative) complex Banach algebra with a norm-one 

unit 1, and assume that   is also a dual Banach space. Then 1 is   -unitary. Moreover, if   is in fact 

associative, then all algebraically unitary elements of   (in the sense of Remark (4.2.2)(c)) are also   -

unitary elements of  . 

Analogously, invoking Remark (4.2.14)(a) and Facts (4.2.14) and (4.2.18)(2), Theorem (4.2.19) 

implies the following. 
 

Corollary (4.2.21)[90]: Let   be a dual Banach space, and let   be a norm-one element of   satisfying 

        . Then   is   -unitary. 
 

We note that, in the case of real spaces, Corollary (4.2.21) can be easily derived from the notions 

and results in the theory of the so-called unit-order spaces [154]. Looking at the proof of Theorem 

(4.2.3), and applying Corollary (4.2.20), we realize that, if   is a     -triple (i.e., a    -triple which is 

also a dual Banach space), then unitary elements of  , in the    -triple sense, coincide with   -unitary 

elements of  , and also with   -vertices of   . In particular, for von Neumann algebras, unitaries (in 

the   -algebra sense),   -unitaries, and   -vertices are the same [108]. On the other hand, it follows 

from Theorem (4.2.12) and Corollary (4.2.21) that, if   is a    -algebra (i.e., a   -algebra which is 
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also a dual Banach space), then central symmetries of   coincide with   -unitary elements of  , as well 

as with   -vertices of    [117]. 

We recall that, if   is any dual Banach space, then the Banach space     , of all continuous 

bilinear mappings from     to  , becomes naturally a dual Banach space. Now, keeping in mind 

Remark (4.2.2)(k) and Facts (4.2.15) and (4.2.18)(ii), Theorem (4.2.19) implies the following. 
 

Corollary (4.2.22)[90]: Let   be a von Neumann algebra. Then the product of   is a   -unitary element 

of     . 

To conclude our discussion, let us note that Theorem (4.2.19) does not remain true if the 

assumption that the pre-duality mapping of   is norm-weak usc at   is removed. Indeed, given any non-

reflexive separable dual Banach space  , there exists     such that, up to a suitable equivalent dual 

renorming,   becomes geometrically unitary, but is not   -unitary, nor even a   -vertex (since, in fact, 

we have             in the renorming) [119, Theorem 2.4]. 

Section (4.3): Projective Tensor Product of Banach Spaces: 
 

Nygaard and Werner showed that some of the classical Banach spaces without the Radon–

Nikod m property actually fail much weaker requirements. Indeed they proved that for any infinite-

dimensional uniform algebra, every non-empty relatively weakly open subset of its closed unit ball has 

diameter equal to two [156]. If a Banach space satisfies the above condition, we will say that it has the 

diameter two property [157]. As a consequence of the mentioned result, every infinite dimensional real 

or complex      satisfies the diameter two property. The result for      was extended to real    -

triples (in the sense of [158]) whose Banach space is not reflexive by Becerra, Lόpez, Peralta and 

Rodríguez [159]. Hence every infinite dimensional   -algebra satisfies the diameter two property (see 

also [160]). 

Becerra and Lόpez proved that for every atomless measure   and for every compact Hausdorff 

topological space  , the spaces         and        have the diameter two property for every nonzero 

Banach space   [161]. Lόpez obtained positive results for L-embedded and M-embedded Banach spaces 

under some additional assumptions [162]. 

Recently the results of [160,159,161] have been generalized and unified in [157] by proving that 

every Banach spaces whose centralizer is infinite-dimensional satisfies the diameter two property. 

It is also known that every Banach space with the Daugavet property has the diameter two 

property [163]. However, there are spaces without the Daugavet property that enjoy some of its 

consequences. For instance, in [164] it was proved that the interpolation spaces       and       
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satisfy that every slice of the unit ball have diameter two. For the symmetric projective tensor of some 

classical Banach spaces some results along the same line can be found in [165,166,167]. 

If a Banach space satisfies that every slice of the unit ball has diameter two, then it is immediate 

that the same property is satisfied by its projective tensor product with any other nonzero Banach space. 

For the diameter two property, it is not clear the behavior.  

The complete projective tensor product of two Banach spaces whose centralizers are infinite-

dimensional, has the diameter two property. The previous result can be applied, for instance, to every 

infinite-dimensional   -algebra, or to any space       , for every infinite compact Hausdorff space   

and for any nonzero Banach space  . we obtain a result along the same line assuming that the centralizer 

of one of the Banach spaces is infinite-dimensional and the unit sphere of the dual of the other contains 

an element of numerical index one. In order to show this statement, we need results on the numerical 

index that are interesting by themselves. The class of the spaces satisfying the assumption on the 

numerical index contains the so-called CL-spaces. For instance, the spaces       and      are CL-

spaces. For the case of      spaces we obtain a refinement. The projective tensor product of every 

infinite-dimensional      and any nonzero Banach space satisfies the diameter two property. Finally 

the  section contains one result stating the diameter two property for the injective tensor product under 

certain assumptions on the Banach spaces. We do not know in general if the projective tensor product of 

a Banach space with the diameter two property and any other non-trivial Banach space also satisfies the 

diameter two property. 

Throughout,   will be a Banach space over the scalar field   (  or  ). As usual,       and    

will denote the unit sphere, the closed unit ball, and the (topological) dual, respectively, of  . 

We recall that a function module is (the third coordinate of) a triple              , where   is a 

non-empty compact Hausdorff topological space (called the base space),         a family of Banach 

spaces, and   a closed     -submodule of the     -module ∏   
 
    (the   -sum of the spaces   ) 

such that the following conditions are satisfied: 

(i) For every    , the function   ‖    ‖ from   to   is upper semi-continuous. 

(ii) For every    , we have    {         }. 

(iii)The set {         } is dense in  . 

We follow the notation of [168], where the basic results on function modules can be found. 
 

Lemma (4.3.1)[155]: (See [10, Lemma 2.1].) Let               be a function module, and let   be an 

extreme point of   . Then, for every     we have ‖    ‖   . 
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Let   be a Banach space over   and      the space of all bounded and linear operators on  . By 

a multiplier on   we mean an element        such that every extreme point of     becomes an 

eigenvector for   . Thus, given a multiplier   on  , and an extreme point   of    , there exists a unique 

number       satisfying             . The centralizer of   (denoted by     ) is defined as the set 

of those multipliers   on   such that there exists a multiplier   on   satisfying             for every 

extreme point   of    . Thus, if    , then      coincides with the set of all multipliers on  . In all 

cases,      is a closed subalgebra of      isometrically isomorphic to      , for some compact 

Hausdorff topological space    (see [168]). Moreover   can be seen as a function module whose base 

space is precisely   , and such that the elements of      are precisely the operators of multiplication by 

the elements of       (see [168]). 

If   and   are Banach spaces over the same scalar field    , we will denote by        the 

space of bounded bilinear forms on    . We recall that the projective tensor product of   and  , 

denoted by   ̂  , is the completion of     under the norm given by 

‖ ‖     {∑‖  ‖‖  ‖

 

   

    ∑     

 

   

                     }   

We recall that the space        is linearly isometric to the topological dual of   ̂  . Under this 

identification, for every         , we will denote by  ̃ the corresponding linear functional on 

  ̂  . It is satisfied that 

 ̃                            

Lemma (4.3.2)[155]: Let   and   be Banach spaces and assume that    contains some extreme point 

and      is infinite-dimensional. Let   be an open set in (   ̂    ) and      such that 

   ∑       

 

   

  

where           ∑   
 
            , and      , for all          . Then there are elements 

      and       in    for       such that 

∑       

 

   

 ∑       

 

   

   

and  (  )      (  ) for all          . 

 

Proof. By a previous remark, we can assume that   is a function module with base space equal to some 

compact     , and such that      coincide with the set of operators of multiplication by elements of 

    . Since      is infinitedimensional   is infinite. Hence there is a sequence {  } of non-empty 
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pair-wise disjoint open subsets of  . For    , take      ,  nd  pply Urysohn’s Lemm  to pic     in 

     with                 and         whenever       . Since the bounded sequence 

{  }    converges pointwise to 0, it converges weakly to 0 in     , and hence {   }    converges 

weakly to zero and {(  –   ) }   
 converges weakly to   in   for every element   in  . By the 

assumption there is an extreme point   of   . For each          , we define the sequences {  
 
} and 

{  
 
} in    by 

  
 
               

and 

  
 
               

Let us notice that for every    , one has 

(       )‖     ‖       ‖    ‖     

hence ‖  
 
‖    and ‖  

 
‖   . 

Since the sequences {  
 
}
 

 and {  
 
}
 

 converge weakly to    for all          , we deduce that 

{  
 
   } and {  

 
   } converge weakly to       in    ̂  , for all          . Then there exists   

such that 

∑    
 
   

 

   

 ∑    
 
   

 

   

    

we define      
 
 and      

 
 for all          . We know that there are elements      satisfying 

        . Since   is an extreme point of   , by Lemma (4.3.1), ‖    ‖    for every    . Let 

     (     )
 
 , such that    (     )   . So the functional defined by         (     )       

belongs to    . We have that  (  )      (  ) for every          .  

 

Every (bounded) bilinear form         can be identified with an operator        by 

the formula                for          . We will denote by  ̂   the bilinear form on       

associated to the   -continuous operator       
     , where          is the canonical injection 

of   in its bidual. Since     is an extension of  , then  ̂   is an extension of  . Indeed  ̂   is the 

restriction to       of the Arens extension of  . Since   is   -continuous, then  ̂   satisfies 

 ̂             
 

                                                                  

for every net      in   that converges to     in the w -topology of    . 
 



99 
 

Lemma (4.3.3)[155]: Let   and   be Banach spaces and assume that      is infinite-dimensional. Let 

  be an open set in (   ̂    ) and      that can be written as 

   ∑       

 

   

  

where           ∑   
 
           , and       , for all          . Then for every    , 

there exists       in    and       satisfying 

∑       

 

   

 ∑       

 

   

   

and | (  )   |    and | (  )   |    for every          . 

Proof. Since     , we can assume that there are     and           in        such that 

  {     ̂   | ̃        ̃     |             }  

We write, for each   {       }      ̂ 
  

, the extension of    to       described above. Now, we 

consider the weakly open set of      ̂   given by 

 ̂  { ̂       ̂   | ̃        ̃     |          }  

It is clear that    ̂, so     ̂ . By assumption,      is infinite-dimensional, so        is also 

infinite-dimensional in view of [169, Corollary I.3.15]. Since      has extreme points, we can apply 

Lemma (4.3.2) to the element     ̂ . We have that  ̂ contains elements  ̂   ̂  that can be expressed 

as 

 ̂  ∑    
     

 

   

  

and 

 ̂  ∑    
     

 

   

  

where   
     

        , and there exist         such that  (  
  )      (  

  ) for all          . 

Given    , since     is   -dense in      , we can assume that       and | (  
   )   |    and 

| (  
  )   |    for all          . 

Since    is   -dense in      and each  ̂ 
  

 is   -continuous on the first variable for every 

     , there are          such that | (  )   |    and | (  )   |    for all   {       } 

and the elements 
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   ∑       

 

   

    ∑       

 

   

 

satisfy that        .  
 

Proposition (4.3.4)[155]: (See [166, Proposition 3.1].) Let   be a Banach space. Then         is   -

dense in  
(    )

 . 

For every Banach spaces   and  , we will show that there is a natural embedding    ̃ from 

       to  (     ). Let us recall that we denoted by  ̂   the extension of   to       that we 

described before. We know that this canonical extension satisfies ‖ ̂  ‖  ‖ ‖. We denote by  ̂    the 

extension of  ̂      to        defined in (3). We have that ‖ ̂  ‖  ‖ ‖ for all    .  

In this way we have the following chain of embeddings 

                 (     )     (      )     

where each arrow means the corresponding extension. 

Hence we can complete the above chain as follows 

                   (      )     (     )  

and the embedding    ̃ from        to  (     ) is an isometry. 

 

Lemma (4.3.5)[155]; Let   and   be Banach spaces and assume that  (   ) is infinite-dimensional. 

Let   be an open set in (   ̂     ) and      such that 

   ∑       

 

   

  

where           ∑   
 
           , and       , for all          . Then for every    , 

there exists       in    and       such that 

∑       

 

   

 ∑       

 

   

   

and | (  )   |    and | (  )   |    for every      . 

 

Proof. Since     , we can assume that there is     and           in        such that 

  {     ̂   | ̂       ̂     |          }  

Let us consider, for each   {       }, the extension  ̂  of    to      . We denote by    the linear 

functional on     ̂   associated to the bilinear form  ̃  for      . Now we define the weakly 

open set in the unit ball of     ̂   by    
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 ̂  { ̂       ̂   |    ̂         |          }  

We know that     ̂ . By assumption,  (   ) is infinite-dimensional, so we can apply Lemma (4.3.3) 

to     ̂. We obtain that  ̂ contain elements  ̂   ̂  that can be expressed as 

 ̂  ∑    
  

   

 

   

  

and 

 ̂  ∑    
  

   

 

   

  

where   
  

   
  

     , and there exists    
(   )

  such that | (  
  

)   |    and | (  
  

)   |  

  for all          . By Proposition (4.3.4) we know that         is   -dense in         , so by using 

the definition of        we can assume that there exists     such that            . Now, by the 

definition of    , we can assume that there exists     such that   
  

   
  

      , for all          . 

This implies that there exists     such that   
  

   
  

      , for all          , and           . If 

we proceed as in the last part of the proof of Lemma (4.3.3), after a finite number of steps, we conclude 

the proof.  
 

Theorem (4.3.6)[155]: Let   and   be Banach spaces such that  (   ) and  (   ) are infinite-

dimensional. Then the space   ̂   has the diameter two property. 
 

Proof. Let   be a non-empty open set in (   ̂      . We can clearly assume that there is   

            in       , and       ̂   such that 

  {     ̂   | ̂       ̂     |          }  

Since every weakly open set is norm open set, we suppose that 

   ∑       

 

   

  

where           ∑   
 
            , and       , for all          . Given    , by applying 

Lemma (4.3.5) to the Banach space  , there are elements    in    for       and       such that 

∑       
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and | (  )   |    for all          . If we apply Lemma (4.3.5) to   and ∑        
 
   , there are 

      in            and       such that 

   ∑       

 

   

        ∑       

 

   

   

and | (  )   |    and | (  )   |    for all          . We consider the bilinear map     

    given by                , which is bounded and satisfies ‖ ‖   . Then 

‖     ‖  | ̅       |  |∑   (  )   (  ) (  )

 

   

| 

                ∑             

 

   

              

We conclude that 

            ‖     ‖  di m     

for every    . Hence diamW = 2 as we wanted to show.  
 

Now we will provide examples of spaces where the previous results can be applied. Given a 

Banach space  , there exists a natural embedding    ̃ from      to  (   ). Indeed, let   be in 

    . Given   ⋃      
   , there exists     such that α belongs to     , allowing us to consider 

the element         of ⋃      
   , which does not depend on  . In this way we are provided with a 

natural extension of   to ⋃      
   , which extends uniquely by continuity to    , giving rise to an 

element  ̃ of  (   ). It is known that for every   in           lies in        [169]. Hence we already 

are aware of the chain of embeddings 

                        (    )     

where each arrow means double transposition. 

Indeed, it is known that the image of      under this embedding is contained in  (   ) (see 

[157]). Hence we can complete the above chain as follows 

                        (    )     (   )  

For a Banach space  , an  -projection on   is a (linear) projection       satisfying 

‖ ‖  ‖    ‖  ‖      ‖ for every    . In such a case, we will say that the subspace      is an 

 -summand of  . Let us notice that the composition of two  -projections on   is an  -projection [168], 

so the closed linear subspace of      generated by all  -projections on   is a subalgebra of     , the 
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space of all bounded and linear operators on  . This algebra, denoted by     , is called the 

Cunningham algebra of  . It is known that      is linearly isometric to       (see [168]). 

The following Banach spaces   satisfy that    {    (    )     }   , so  (   ) is 

infinite-dimensional: 

(i) Every non-reflexive Banach space   such that    is  -embedded [166]. For instance, an 

infinitedimensional predual of an   -space or a (real or complex) infinite-dimensional   -

algebra belongs to this class. 

(ii) The space  (       ) where   is an infinite compact topological space,   is a non-null 

Banach space and   is a topology such that the weak topology is contained in   and the norm 

topology is finer than   [157]. 

(iii)        (the space of all bounded and linear operators from   to  ) for every Banach spaces 

    such that either      is infinite-dimensional or      is infinite-dimensional (see [169,]). 

For instance, any infinite-dimensional space       satisfies that its Cunningham algebra is 

infinite-dimensional. 
 

Under some isomorphic condition, Banach spaces have an equivalent norm satisfying the 

assumption of Theorem (4.3.6). The diameter two property for an equivalent norm under the next 

assumption was previously obtained in [162] by the same procedure. 
 

Lemma (4.3.7)[155]: (See [170, Theorem 22.4].) In a Banach space, a CS-closed set and its closure 

have the same interior. 
 

For a subset   of a Banach space, co    |co|   , and |co̅|    will denote the convex, absolutely 

convex, and closed absolutely convex hull of  , respectively. 
 

Corollary (4.3.8)[155]: Let   be a CS-closed set in a Banach space  . Then |co|    and |co̅|    have 

the same interior in  . 
 

Proof. If   is real, then |co|    co       is a CS-closed set (by [170, 22.2 and 22.3]), and the 

result follows from Lemma (4.3.7). Assume that   is complex. Let    , and take     such that 

         co {         } , where           are the  -th roots of 1 in  . Then we have 

|co|    co            co (⋃   

 

   

)       |co|     

By keeping in mind that co ⋃    
 
     is a CS-closed set, and applying Lemma (4.3.7), we deduce that 

       |co|   , where   stands for the interior of |co|   . Therefore, since   is open, we have 

  ⋃
 

   
     |co|   . _ 
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Let   be a Banach space, and let   be a norm-one element in  . We put 

       {            }  

Now, assume that   has a (complete) predual   , and put 

   
                 

If    
       , then we define    

       . Otherwise, we define    
      as the largest non-

negative real number   satisfying 

 ‖ ‖     
       {|    |       

     }  

for every    . We say that   is an   -unitary element of   if the linear hull of    
      equals the 

whole space   . 

Proposition (4.3.9)[155]: Let   be a norm-one element in a dual Banach space  . Then   is   -unitary 

in   if and only if    
       . Moreover, we have 

   
        (   

)  |  |   
                                                  

 

Proof. Assume that   is   -unitary. Then |co̅| (   
     ) is a barrel in   . Since barrels in a Banach 

space are neighborhoods of zero, there exists     such that     
 |co̅| (   

     ). This implies 

that  ‖ ‖     
    for every    , and hence that    

       . 

Now we can clearly assume that    
       . Then, in the duality       , the set 

  {        
     } 

is the absolute polar of    
     , and the inclusion   

 

        
   holds. It follows from the bipolar 

theorem that    
        

 |co̅| (   
     ). By applying Corollary (4.3.8), the inclusion (4) follows. 

Clearly, that inclusion implies that   is   -unitary.  

The first paragraph in the above proof is taken from the proof of [171, Corollary (4.3.8)]. 

Now, let X be an arbitrary Banach space, and let   be a norm-one element in  . We define 

       as the largest non-negative real number   satisfying 

 ‖ ‖          {|    |          } 

for every    , and we say that u is an unitary element of   if the linear hull of        equals the 

whole space   . 

Let   be a topology on a set  , let   be a vector space topology on a vector space   over   (  or 

 ), let   be a function from   to    (empty values for   are allowed), and let   be in  . We say that   is 

    upper semi-continuous (in short,     usc) at   if, for every   -neighborhood   of zero in  , 

there exists a  -neighborhood   of   in   such that             whenever   lies in  . 
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Now, let   be a dual Banach space. We define the pre-duality mapping of   as the function 

     
      from the unit sphere of   to    . Let   be a norm-one element in  . Since, clearly, 

   
            , it follows from Proposition (4.3.9) and [172, Theorem 3.1] that, if   is   -unitary, 

then   is unitary [171, Corollary (4.3.8)]. Under the requirement that the preduality mapping of   is 

norm-weak usc at  , the converse is also true. This result is due to G. Godefroy and T.S.S.R.K. Rao 

[173, Proposition 2.2] in the real case, and its proof is clarified and adapted to the complex case in [174]. 

Now we are ready to formulate and prove a quantification of the result just quoted. 
 

Theorem (4.3.10)[155]: Let   be an unitary element in a dual Banach space  , and assume that the pre-

duality mapping of   is norm-weak usc at  . Then   is   -unitary. More precisely, we have        

   
        and  

       int(   
)  |co|   

       
 

Proof. According to [175, Lemma (4.3.2)], the assumption that the pre-duality mapping of   is norm-

weak usc at   is equivalent to the fact that    
      is    -dense in       . Therefore we have 

        
    for every    , and, consequently, the equality           

      holds. Now apply 

Proposition (4.3.9).  
 

Now, let   be an arbitrary Banach space. The duality mapping of   is defined as the function 

         from the unit sphere of   to    
. Let   be a norm-one element in  . If         , then   

is both an unitary element of   (by [172, Theorem 3.1]) and a point of norm–norm upper semi-

continuity of the duality mapping of   [176, Corollary 5.9]. On the other hand, in the case that   is in 

fact a dual Banach space, the mere norm-weak upper semi-continuity of the duality mapping of   at   

implies the norm-weak upper semi-continuity of the pre-duality mapping of   at   [175, Theorem 2.3]. 

Therefore, by invoking Theorem (4.3.10), we get the following. 
 

Corollary (4.3.11)[155]: Let   be a dual Banach space, and let   be a norm-one element in   such that 

        . Then we have 

int(   
)  |co|(   

     )  

As a consequence 

   
 |co̅|(   

     )  

We will deduce some consequences on the diameter two property. 
 

We will provide some examples of spaces satisfying the assumption of the last statement. If   is 

a  -finite measure, then the space 

(i)        , by taking the unit of       as  , 
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(ii)         ̂      , so     can be identified with  (           ), and   is the identity 

operator on       (    or  ), 

(iii) in the complex space,         ̂       ̂      , so    can be identified with the 

space of continuous bilinear mappings on             with values in      , and f is 

the usual product on      ,  
 

satisfies that          . In the first and second cases it can be checked directly. Indeed the second 

example is a consequence of [177]. The third one can be found in [1781]. Indeed, every CL-space (see 

[179] or [180] for the definitions) or more generally an almost CL-space satisfies that the unit sphere of 

its dual contains points where the numerical index is one. This class contains the spaces       and 

    . It is also known that        is an almost CL-space if   is an almost CL-space [180]. 

Let us also observe that every Banach space has an equivalent norm for which the unit sphere of 

the dual has an element with numerical index one. If   is a Banach space,       and   is a closed 

subspace of   such that        , we consider the norm in   given by 

|‖     ‖|     {‖ ‖ | |}   

So           
  for some functional   

        . Then it is immediate that for the norm |‖ ‖| 

we have        
    . 

 

On Theorems (4.3.6) and (4.3.10) we assumed conditions on both spaces in order to obtain the 

diameter two property for their projective tensor product. The next result shows that it is not needed any 

extra assumption in the case that one of the spaces is any infinite-dimensional     . 
 

Theorem (4.3.12)[155]: Let   be any infinite compact Hausdorff topological space and   a non-null 

Banach space. Then the space        ̂   satisfies the diameter two property. 
 

Proof. Assume that   is a non-empty open set in       . Since   is infinite and   { }, then   is 

infinite-dimensional and so       . Since   is weakly open in   , it is open in    for the norm 

topology. Hence, for every    , there are                                  and positive real 

numbers            with ∑   
 
      such that 

   ∑  

 

   

        

and ‖  ‖      . Hence there is   
       satisfying that   

       e   
          . Since    is 

linearly isometric to           , then there is                such that    is the operator associated to 

the functional   
 . We consider the sets 

  {  {       }   e              }   {       }    
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We know that 

      e   
      ∑    e           

 

   

 ∑    e           

   

 ∑    e           

   

 

 ∑  
   

 ∑       

   

    ∑  
   

                

Hence ∑         and so 

∑  
   

                                                                         

Now we restrict the operator   
               to the linear space      of bounded 

measurable functions on  , that clearly contains     . Let us remark that the restriction of the norm of 

       to      is just the supremum norm, that is, 

‖ ‖     
   

|    |                

Since the linear space of simple measurable functions on   is dense in     , there are   

              measurable sets, non-empty and pairwise disjoint such that 

 

‖∑  
    

   

 

   

‖                                                             

for convenient scalars {  
              } satisfying |  

 |        . Since the subsets {      

   } are non-empty and pairwise disjoint, the space   generated by {   
       } is a subspace of 

     is isometric to   
 . Indeed the unique linear mapping     

    that satisfies 

         
    for every                                                     

is a linear isometry. 

We write 

   ∑  
    

 

   

                                                                 

We know that      and by (6) it holds that ‖     ‖    for each  . Since it is satisfied that Re 

              for     and ‖ ‖   , then we deduce that 

 e                                                                           

Since   is infinite, there are sequences {  } and {  } in      satisfying the conditions of Lemma 2.1.i) 

in [165]. That is, there are sequences of non-empty open subsets {  } and {  } of   such that 

                                if      
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and 

  |                       ‖  ‖                                          

Since the functions {       } have disjoint supports, then its linear span is isometric to   . 

Indeed there is a linear isometry from {       } onto    that maps {  } into the usual Schauder basis 

of   . The same argument also holds for {       }. Then {  } and {  } are weakly null sequences in 

     and so for each      , the sequence {    } given by 

       ∏ (    )

        

    

 ∑  
        

 

   

  

converges weakly to    in     . We will also check that ‖    ‖    for each       and    . Let 

us fix   and   and choose    . If      for every   {                  }, then in view 

of (10) we have that               for every                and so              . 

Assume now that there is some    [   ] such that      , where           . If       then we 

have 

           
    

     

On the other hand, if      , then we obtain 

             (     
   )   

and in any case |       |   . A similar argument proves that for every      , the sequence {    } 

given by 

       ∏  (    )

        

   

 ∑  
        

 

   

 

It is known that every space with the Daugavet property satisfies the diameter two property [163, 

Lemma 3]. In [181, Corollary 4.3] the authors provided an example of a two-dimensional complex 

normed space   such that   
 [   ]  ̂   fails the Daugavet property. However our result can be applied 

to the previous space. Besides            also satisfies the diameter two property if the measure   is 

atomless. If we consider       (for an atomless measure  ) instead of     , Theorem (4.3.12) still 

holds. Indeed         does have the Daugavet property (see [182, Example, p. 858]) if   is an atomless 

measure. 
 

We considered results stating the diameter two property for projective tensor products of Banach 

spaces. In the case of the injective tensor product, it will be enough to assume one restriction only to one 

of the spaces in order to obtain a positive result. 
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Lemma (4.3.13)[155]; (See [157, Proposition 4.1].) Let   be a Banach space failing the diameter 2 

property. Then     also fails this property. 

Lemma (4.3.14)[155]: (See [157, Theorem 4.4].) Let   be a Banach space failing the diameter two 

property. Then there exists     such that    ( (     ))    for every    . 

 

If   and   are Banach spaces over the same scalar field    , we recall that the injective tensor 

product of   and  , denoted by   ̂  , is the completion of     under the norm given by 

‖ ‖    

   {∑|       
     |

 

   

    ∑     

 

   

                                   } 

Theorem (4.3.15)[155]: Let   be a Banach space over  , such that    {     (    )      }   . 

Then the space   ̂   satisfies the diameter two property, for every non-null Banach space  . 
 

Proof. Since     ̂   can be seen as a subspace of (  ̂  )
  

 containing   ̂   [183, Lemma 1], 

we have that 

(  ̂  )
  

      ̂      (  ̂  )
  
  

By applying again the mentioned result to     ̂  , we obtain 

    ̂       ̂       ̂      

We conclude that 

  ̂       ̂       ̂   (  ̂  )
  
  

By induction we prove that for every     

  ̂        ̂   (  ̂  )
   

  

We fix    , then for     we have that 

(  ̂  )
   

 (     ̂  )
   

 ((  ̂  )
   

)
   

. 

This implies that 

(  ̂  )
  

 (     ̂  )
  

 ((  ̂  )
   

)
  

. 

For every Banach space   and every    , we have (    )
  

    . It follows that 

(  ̂  )
  

 (     ̂  )
  

. 

By Lemma (4.3.15), if there is a relatively weakly open subset of    ̂  
 whose diameter is less than 

two, the same happens for the space (  ̂  )
  

. By Lemma (4.3.16), there exists     such that 
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   ( (     ̂  ))   . Hence, for all    . As a consequence,    ( (     ̂  )
  

)   . 

for    . Since  (     ̂  )) contains a copy of  (    )       for all     (see [184] and also 

[168, pp. 129 and 171]) and      { } we conclude that    ( (    ))    for all    . This 

contradicts the assumption.  


