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Chapter 5  

Linear Identities and Polynomials Norms  

   We study nontrivial linear identities such as 

∑  ‖  ( )       ( )  ‖
    

 

   

                                 ( ) 

for all  elements    on a Banach space  . If X is a two-dimensional real space in   , then it is 

embeddable in   . This is not necessarily true for spaces with more dimensions or for    ,    . 

The question of embeddability is equivalent to the classical moment problem. All spaces in     are 

uniformly convex and Uniformly smooth and thus reflexive. They obey generally weaker versions of 

the Holder and Clarkson inequalities. Krivine's inequalities, shown to determine embeddability into 

        , fail in the even case. We lead to a unified treatment and generalization of some classical 

results on linear identities and polynomial characterizations due to Frechet, Mazur, Orlicz, Reznick, 

Wilson, and others. 

Section  5.1: Linear Identities In Banach  Spaces 

A  necessary  condition  for  (1)  to  hold  in     is  that  ‖      ‖  must  be a  polynomial in 

  for all choices of  elements     and   .  A sufficient condition for (2) to hold in   is that (2) must 

hold in the field of scalars. Specific identities are presented including a generalized parallelopiped 

law first observed by Koehler, and some isometric results are stated. 

      Thus the parallelogram law revisited. In 1909 [186], Frechet proved the following result. 

Lemma (5.1.1)[185]: (Fr ́chet). If     is  continuous  function  on     and, for  all  real     and   ,  

equation (3)  holds,  then    is a  polynomial  with degree less than  . 

∑(  )   (
 

 
)  (    )

 

   

                                           ( ) 

Proof. It is  well-known  that  any sequence *  + satisfying ∑ (  )   ( 
 
)    

 
      for  all M  is 

generated   by  a  polynomial; that is,  there  is a  polynomial   with  degree  less than     for  which 

    ( ). 

In (3), put   ( )         and  let     range  over  the  integers.Then  there  is  a polynomial 

  with  ( )      ( ). Now put  (
 

 
)       

 

 
 and let    range over the half-integers. There is 

a polynomial   with  ( )      (
 

 
).  Thus  (  )   ( ) for all  and  ( )   (

 

 
), so 

 (   )   (
 

 
). A repetition of this argument demonstrates that  (    )   (    ) for all  

integers    and   .  By the continuity of     ( )   ( )  for all     and the lemma is  proved. 
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The parallelogram law has a second difference nature: ‖   ‖   ‖ ‖  ‖   ‖   ‖ ‖ , see 

[187]. Putting successively            and            and subtracting, we get (4).  Fix  

  and  , elements of  any  space  in  which  (1) holds. 

∑(  ) (
 

 
) ‖    ‖ 

 

   

                                           ( ) 

Let              and substitute in (4). Setting ‖    ‖   ( ),  we  obtain   (5). By the 

triangle inequality, | 
 

 (  )   
 

 (  )|  |     |  ‖ ‖, hence   is continuous. 

∑(  ) (
 

 
)  (    )

 

   

                                          ( ) 

Applying Lemma (5.1.1) to (5) we see that  ( ) is quadratic in  . Indeed, if‖    ‖   (   )  

  (   )   (   )  , then clearly  (   )  ‖ ‖  and    (   )  ‖ ‖ .  It  is  not  hard  to  verify  

that    (   ) satisfies  the  definition  of  a real inner-product and  (   )    (    )that  of a 

complex inner-product.  This provides an alternative proof to the Jordan-von Neumann theorem. We 

shall   return to the parallelogram law as an embarkation point for a series of linear identities which 

hold in more spaces than Hilbert space. As an appetizer, consider (6), a generalization of  (1) to  a  

three-dimensional parallelopiped. 

‖      ‖  ‖      ‖   ‖      ‖  ‖      ‖  

      (‖    ‖  ‖    ‖  ‖   ‖  ‖   ‖  

 ‖   ‖  ‖   ‖ )                       

  (‖ ‖  ‖ ‖  ‖ ‖ )                                                   ( ) 

Observe that (6) holds for      in Hilbert space and for       in Hilbert space and in   (   ) for 

any (   ). Indeed, it may be verified that (6) holds in any Banach space in which  ‖        ‖  is 

a homogeneous polynomial in  ,  , and for fixed  elements    , and  .This condition turns out  to be 

necessary as well, and the  situation will prove  to  be  typical. 

Theorem (5.1.2)[185]: Suppose   is a Banach space in which (7) holds for all  elements     and  ,  

where                and   the         aredistinct. 

∑  ‖     ‖
     

 

   

                                               ( ) 

Then for every   and  in  ,‖    ‖  is a  polynomial in  . In particular,   is an even integer 
 

Proof. Set  (   )    ‖ ‖
  ∑   ‖     ‖

  
   · By the hypotheses,  (   )    for all elements  

  and     and       for     .  Fix elements    and  ;  let    be  arbitrary. Then    (      

  
   )   (   ). Writing this out, we obtain (8). Notice that the term for     in the sum in (8) 

vanishes. 
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    (‖   ‖
  ‖ ‖ ) 

 ∑  

 

   

(‖      (      
  ) ‖  ‖     ‖

 )             ( ) 

We repeat  this  procedure  (due  to  Wilson [188]) and  obtain  (9), where the  inner sum  is taken  

over  all choices of           . 

  ∑(  ) 
 

   

.∑ .       .   
        

  /  //             ( ) 

Equation (9) may be expanded using the definition of  (   ) as (10), where the inner sum is as 

before. 

     ∑(  ) (
 

 
) ‖    ‖ 

 

   

 

 ∑  

 

   

∑(  ) 
 

   

(∑‖      (    .   
        

  /)  ‖
 

)     (  ) 

For any fixed  , the     subsets  of *         + divide into  two  corresponding classes: if      

{       }  then    and   * + are associated. Using this pairing, the terms 

(  ) ‖      (    .   
        

  /)  ‖
 

 

and (  )   ‖      (    .   
        

  /)  ‖
 

cancel out in the triple sum. Hence, (10) 

reduces to (11). 

  ∑(  ) (
 

 
) ‖    ‖ 

 

   

                                     (  ) 

Then  we choose    and    arbitrary nonzero elements  in  , let  and   be arbitrary  reals  and  set 

             and   ( )  ‖    ‖  in (11). We obtain (12), and  by  Lemma(5.1.1),  ( )  

‖    ‖ must  be a  polynomial. 

  ∑(  ) (
 

 
)  (    )

 

   

                                     (  ) 

As     ( )  ‖ ‖       has degree   and as   ( )   ,   is an  even integer. 

Lemma (5.1.3)[185]: Suppose   is a Banach space in which (13) holds for all  elements  and  , 

where          and the (     )   arepairwise linearly independent . 

∑  ‖       ‖
 

 

   

                                            (  ) 

Then‖    ‖ is a polynomial in     for all elements   and  . 
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Proof. We shall reduce (13) to (7). Permute the  's  so  that         and  let       
     then 

    then     if      then     and        for       and   the     's are   distinct   by  

the linear  independence. In  the  first  case,  rewrite (13) as  (14) and  then put  into  it      

         where    and   are  arbitrary. 

∑  |  |
 

 

   

‖     ‖
                                           (  ) 

We obtain (15) which is in the form of  (7). 

∑  |  |
 

 

   

‖  (     ) ‖
                                    (  ) 

In the second case. Let s be a number for which        and put              into (13) where 

  and   are again arbitrary. (If (     ) and  (     ) are independent then so are(         ) and 

(         )). We obtain (16) which now falls under the first case. 

∑  

 

   

‖(      )     ‖
                                         (  ) 

Carlsson [189] proved  Lemma (5.1.3) for      and            real. 
 

Theorem (5.1.4)[185]: Suppose   is a Banach space in which (17) holds for all  elements   , where 

        , the (  ( )       ( ))'s arepairwise linearly independent (   )        , and  for 

every   there is at  least one     with  ( )   . 

∑  

 

   

‖  ( )       ( )  ‖
                                   (  ) 

Then, for  all  and , ‖    ‖ is a  polynomial in  . 
 

Proof. Permute the   's so  that |  ( )|  |  ( )|    |  ( )|, then    ( )   . If   ( )    for  

   ,  put           in (17), then   ‖  ( )  ‖
    for all    , that is,    is trivial. 

Otherwise, suppose  ( )    for         and (17) may be rewritten as (18), where    ( )  

  ( )  ( )
  ,  

∑  

 

   

|  ( )|
 ‖     ( )       ( )  ‖

  

 ∑   

 

     

‖  ( )       ( )  ‖
                        (  ) 

From the linear independence, it follows that the  -tuples {(  ( )     ( ))} are distinct. Define 

the sets 

    {(       )   
  ∑  

 

   

  ( )  ∑  

 

   

  ( )} 
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These  sets  do  not  exhaust   
  and  so  we  can  find      for   which  the  , defined by     

∑     ( )
 
   , are  distinct. 

For arbitrary   and  ,  let             in  (18). We obtain (19) which is in the form of 

(13). 

∑  |  ( )|
 

 

   

‖     ‖
  ( ∑ ∑|  ( )  |

 

 

   

 

     

)‖ ‖    

This completes the  proof.  

To obtain the natural corollary we need a lemma. 

Lemma (5.1.5)[185]: Suppose   is a nonnegative function and   and   are positive integers such that 

   and    are polynomials. Then    is a polynomial, where   (   ), the  greatest common divisor. 
 

Proof. We have    ( )    ∏ (    ) 
 
            .Thus,  ( )    ∏ (    )

  
 

   
    and so 

 |   . Write           (   )   . As   |      |   and so      ∏ (    )
  
   

    is a 

polynomial. 
 

Corollary (5.1.6)[185]: Suppose   is a Banach space which satisfies (20) for all elements   , where  

     and the same restrictions on constants apply as in  Theorem (5.1.4). 

∑  

 

   

‖  ( )       ( )  ‖
                            (  ) 

Then    is an  even  integer for each   and ‖    ‖  is a  polynomialin   for  all   and  ,  where 

  (       ),  the   greatest   common divisor. 
 

Proof. Fix         and let        ‖  ( )       ( )  ‖
  . Let         for      ,  then 

by (20),∑    
   

   . Upon collectingequal   ’s as   ’s we find that ∑ .∑        
/       

   . Hence 

∑        
  . Thus   satisfies an equation of form (17) for each    and‖    ‖   is a polynomial 

in  . We now apply Lemma (5.1.5)  to  this  situation  and conclude   that    is  a  polynomial. The 

Class    . The  necessary condition of  Theorem (5.1.4) suggests the   following  definition:  a 

Banach  space    is  polynomial  of degree      if, for  all  elements   and  ,  ‖    ‖  is  a  

polynomial of degree    in real  . The class    consists of all Banach spaces which are   polynomial 

of degree   . 

Theorem (5.1.7)[185]: 

(i) If     is in   ,   then X  is a  Hilbert  space. 

(ii) If   divides  , then    , is contained in    . 

(iii)If   (   ), then            . 

(iv) If  is an  integer dividing  , then for  all measure spaces (   )    (   ) is in    . 
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(v) If    is not  an  even  integer and (   )is not trivial, then   (   ) is not  in      for  any  . 

Proof.   (i) This  is  the   Jordan-von  Neumann  theorem. 

(ii) If ‖    ‖  is a polynomial and 
  

  
 is an integer, then‖    ‖  is a polynomial. 

(iii)  Combine (ii) and Lemma (5.1.5). 

(iv) It suffices to show that    (   ) is in    . Pick elements   and   in     (   ) then 

‖    ‖   ∫|    |     ∫(| |   (     )    )
 
   

                                ∫∑  (   ) 
    

where   (   ) is a sum of terms of the  form           with               . As 

∫| |       and∫| |      ,  each   (   ) is integrable by  Holder's inequality.  Thus  ‖  

  ‖   ∑∫  (   )    
   and     (   ) is in     . 

(v) If  (   ) has two disjoint sets of positive measure, then one may easily construct elements 

  and   in   (   ) with ‖    ‖    | | .  If     is not an   even integer then (  | | )
  

 ⁄  is 

not   a polynomial as it is not in  , -  . See [190].   The embedding properties of       will be 

described in [191]. We state without proof the following theorem. 

Theorem (5.1.8)[185]: (i) If   is a real two-dimensional space in   , then it is  isometrically 

isomorphic  to  a subspace of    ,   -. 

(ii) There exists a three-dimensional space in   which isnot isometrically isomorphic to any 

subspace of    (   )  for any(   ). 

(iii) There exist two-dimensional spaces in    (   ) which are not isometrically 

isomorphic  to any  subspace of    (   )for any (   ). 

Now we show the sufficient condition that  the classes      form the finest  possible  

gradation of  Banach spaces according to the linear identities they  satisfy: if  an  identity of type (16) 

holds with       for one space in    then  it  holds  for  all spaces  in    . We begin with a few 

preliminaries. 
 

Lemma (5.1.9)[185]: Suppose a function  (       ) is a polynomial in each of its   variables  

separately, that  is, (21)  holds for each   ,     , where the     ’s are   continuous  and  a carat  

over  a variable signifies  its omission. 

 (       )  ∑    (      ̂      )  
 

  

   

                        (  ) 

Then     is in fact a polynomial in the variables together. 
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Proof. The proof will  be by  induction on   . The theorem is certainly true for    .  Suppose it is 

true if    . For       we have by hypothesis a representation of  (         ) in the form 

(22).   Let            . 

 (         )  ∑       (         )    
 

   

   

                     (  ) 

Define the  th
 difference    (   )(       ) by  (23). 

   (   )(       )  ∑(  )   (
 

 
)  (               )         (  )

 

   

 

Since    is certainly linear, we can compute for            (   )(         )  obtaining 

(24). 

   (   )(         )  ∑        (   )(       )    
 

 

   

          (  ) 

Since a representation of form (21) holds fort and the  th difference annihilates all polynomials with 

degree less than      (   )(         )   . Thus,         (   )(       )   for each  . By 

Lemma (5.1.5),      (       )is a polynomial in each    separately. The induction hypothesis for 

     ensures that       (       ) is a polynomial in           together.By (22), 

 (         ) is therefore a polynomial in          . This establishes the induction step and  

completes the  proof. 
 

Lemma (5.1.10)[185]: A space   is in     if and only if, for all   and elements   , ‖       

    ‖
   is  a  polynomial in        . 

 

Proof. It is easy to see that  ‖           ‖
   must be a homogeneous   polynomial if it is a 

polynomial at all, and that this condition is equivalent to ‖              ‖
   being a 

polynomial in         

If ‖              ‖
   is a polynomial, set                    , arbitrary 

  and  . We find that   is in    .To prove the converse, define  (       )  ‖          

    ‖
  . Fix all variables save   , then  (       ) is a  polynomial  in    withcoefficients 

depending  on       ̂      . For any polynomial  ( )  ∑    
   

    of degree    we have the 

formulae    ∑      ( )
  
   , where     can be found by solving the linear system: ∑    

   
    

 ( )       . Now  (       ) can  be  put  into  form  (25)  for  each     and  by the   above,  we  

can  write      (      ̂      )  ∑      (           )
  
   . 

 (       )  ∑  (      ̂      )  
 

  

   

                                 (  ) 
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Hence   (      ̂      )  
  is a sum of terms ‖                  ‖

       each of which is 

continuous in  (      ̂      ).  We can now apply Lemma (5.1.9) and conclude that  (       ) is 

a polynomial in         jointly. As  | (       )|  (‖  ‖  |  |‖  ‖    |  |‖  ‖)
   has  

degree   at most    . 
 

Theorem (5.1.11)[185]: If an identity of the form (17) (with restrictions on constants  as in Theorem 

(5.1.4))  holds  for  one space in    then  it holds for  all  spaces in    . In  particular, an  identity  

holds  in   if  and  only  if  it holds in Hilbert space. 
 

Proof. An ordered  -tuple (         ) of nonnegative integers is a  -partition of    if       

      . For each   and   there are a finite number of such partitions.   Suppose (17) holds for 

 in   . The  th(   )-partition of   ( (     )    (     )) will be called  (   ) for short. Write 

 (   )   (  ). In (17), we restrict    to a one-dimensional subspace of   generated by  , ‖ ‖  

           ‖  ‖  |  |, complex   . We obtain (26), which can be rewritten as (27) using |  |
   

(|  |
 ) . 

∑  |  ( )       ( )  |
  

 

   

                                  (  ) 

∑  

 

   

(∑∑  ( )  ( )    

 

   

 

   

)

 

                                  (  ) 

Index   the  (   )-partitions  of    from    to  ,  then  (27) can  be written as  (28);  where    
  

denotes   ( )
 
 ( )    ( )

 
 ( )      denotes   

 
 ( )    

 
 ( )    

  
 and  

   are defined analogously, 

where  the  double sum ranges independently over all  pairs of (   )-partitions of   and where 

     is the positive multinomial coefficient depending on    and    

We now rewrite (28) as (29). 

∑∑    (∑  

 

   

   
   

  )

 

   

 

   

    
                              (  ) 

A polynomial in               which vanishes identically must have vanishing coefficients. As 

       we deduce (30) for all partitions     and    

∑  

 

   

   
   

                                                           (  ) 

Now let   be a space in      and fix elements          in  . Write  (       )  ‖       

    ‖
   for complex          , (     real). Then   (       )  ‖            

  (   )      (   )‖
    is a  polynomial of degree    in                 by Lemma 

(5.1.10). From                     it  follows that  (       ) is  a  polynomial  in     

and       of  degree    . Rewrite  (       ) in form  (31), where  the  sum  is taken  over all 
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(   )­partitions  of   and      , indexed  by  and     respectively,  where the        ’s are  the  

coefficients and  the  condensed   (   ) is as  before. 

 (       )  ∑ ∑ ∑       

 

 (      )

  (   ) ̅ (      )                  (  )

 

 (   )

  

   

 

Because   (       )   (         
    ),  (31) does not  depend  on   . 

Viewing (32) as a polynomial in      having as coefficients polynomials in    and  ̅, it  

follows that           unless    . 

∑ (     )  
 

   

∑ ∑       

 

 (      )

  (   ) ̅ (      )                     (  )

 

 (   )

 

We can thus rewrite (31) as (33), and insert this into  (17). 

 (       )  ∑∑    

 

   

    ̅                                      (  )

 

   

 

We obtain (34). 

∑  |  ( )       ( )  |
  

 

   

 

 ∑  

 

   

(∑∑    

 

   

 

   

   
  ̅

 

  )  ∑∑    

 

   

 

   

∑  

 

   

   
  ̅

 

         (  ) 

This last equality is a consequence of (30). 

Never the less the parallelopiped law. Frechet [192] proved that any Banach space which 

satisfies  (35) for  all elements    , and    is a Hilbert  space. 

‖     ‖  ‖   ‖  ‖   ‖  ‖   ‖  

 ‖ ‖  ‖ ‖  ‖ ‖                                            (  ) 

Jordan  and von Neumann reduced  (35) to  (1) by putting      and proving  that the  new  

condition  is as  strong  as  the  old.  The same sort of reduction applied to Theorem (5.1.12) will lead 

to a generalized parallelopiped  law. 
 

Theorem (5.1.12)[185]: If   is in    , and     , then  for all elements            , equation  (36)  

holds, where  the  inner   sum is  taken  over all   -tuples               . 

∑(  ) ∑|         |
  

 

   

                                    (  ) 

Proof. In light of Theorem (5.1.11) it is sufficient to prove the theorem for elements in Hilbert space, 

indeed, we need only prove that (36) holds for all complex numbers   . The sum on the left-hand side 

is, in any  case,  a  polynomial  in  the    ’s and   ̅ ’s. 
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∑(  ) ∑|         |
  

 

   

                                      (  ) 

A monomial    
      

    ̅  
    ̅  

   with ∑   ∑             will occur in |      

   |
  

either with multinomial coefficient 

(  ) 

(   ) (   )(   ) (   )
 

or not at all depending on whether the  j1's are contained in the i c's or  not. Because           

    , hence each monomial occurs in  (37).  Indeed, for     , the    ’s are contained  in 

precisely (   
   

) -tuples  and  so,  altogether, a  monomial    
      

    ̅  
    ̅  

   will occurin (37) with 

total coefficient (38). As ∑ (  ) .   
 
/   

     ,  thesum  in (38) vanishes  and  so so (37) is  proved. 

∑(  ) .
   

   
/

   

   

(  ) 

              
 

The identity holds  in  Hilbert space  and  hence  in  all    . 

Theorem (5.1.13)[185]: (The  parallelepiped law). If   is in     and    , then  for all elements  

        ,  the identity (39) holds in  ,  where the  inner   sum  is  taken   over  all  choices of  

sign      and all ordered, k-tuples with            . 

∑(  )     ∑‖             ‖
  

 

   

                     (  ) 

Proof. In Theorem (5.1.12), let                and        for     . Each term 

                will appear in (37)      times depending on the joint  inclusion or exclusion of  

the pairs           for     . If the primes are  dropped,   (36)  becomes  (39)  and  the result  

follows. 

Another identity which  is satisfied  in     is  the  following. 
 

Theorem (5.1.14)[185]: If   is in     and      , then for all real   with ∑      
   , equation  

(40) holds  for all  elements           . 

∑       

 

   

‖              ‖
  
                          (  ) 

In  (40), the  inner  sum  is  taken  over   all  choices  of  sign    as  the   ’s range  independently 

from    to   ;  the  sum  has         terms. 

The proof is reserved for [191].  Krivine [193] introduced an inequality which determines 

whether a space  is isometrically isomorphic to a subspace of    . For   technical reasons, the proof 

in [193] fails when     . Theorem (5.1.14) illustrates what happens to Krivine's inequality in this 

case. Further implications will be considered in [191]. 
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In  1970,  Koehler  [194]  defined a    space  to  be a complex  Banach  space  on  which  a  

form  〈          〉 is defined satisfying (41)-(44). 

〈       〉  ‖ ‖                                                                  (  ) 

〈          〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  〈          〉                                                 (  ) 

〈 〉 is linear in                                                                          (  ) 

〈 〉 is conjugate linear in                                                    (  ) 

Various properties of    spaces are then discussed which parallel the development of Hilbert spaces.  

Among them are a proof that any     space satisfies (39) and the construction through a polarization 

formula of a form 〈          〉 on any complex Banach space which satisfies (39). Thus, by Theorem 

(5.1.6), we can identify     and    and deduce the following corollary. (Note that one direction is 

immediate upon consideration of 〈             〉.) 

Corollary (5.1.15)[185]: A form 〈          〉 satisfying (41)-(44) can be defined on a complex 

Banach space if and only if ‖    ‖   is a polynomial in   for every  and  in  . 

Section (5.2): Polynomials Norms in Banach  Spaces: 

We shall consider real Banach spaces, and, except where    indicated,    (   ) with real-

valued functions and real scalars. The phrase  "  is embeddable in    '' is an abbreviation for "  is 

isometrically isomorphic to a subspace of    (   ) for some (   )." Although     was introduced 

and motivated in [11], that paper and this one are largely independent. 

      Norm functions. Suppose   〈       〉 is the real vector space spanned bythe   ’s and   is a 

real function of   real variables. Under what circumstances does ‖∑    ‖   (       ) make 

(  ‖ ‖) a Banach space? For   (       ), let   ( )   (       ). From the standard 

definition of the norm, it is evident that   conditions (i), (ii) and (iii) are necessary and sufficient. 

(Here,   is an arbitrary real.) 

(i)  ( )    and  ( )    implies  ( )   (    ) 

(ii)  (  )  | | ( ) 

(iii) ( )   ( )   (   ) 

Condition (iii) is cumbersome to verify; the following lemma simplifies matters. 
 

Lemma (5.2.1)[195]: Conditions (i), (ii) and (iii) are equivalent to (i), (ii) and (iii). 

(D)   ( )   (    ) is a convex function in   for all   and  . 

Proof. Assume (i), (ii) and (iii) and fix   and  . Then for         (  )  (   ) (  )  

  (     )  (   ) (     )   (       )  ( (   )( )   (   )   )  

 (  (    (   )  ) )   (    (   )  ). Conversely, assume (A), (B) and (D), then 

 ( )   ( )   ( )   ( )    .
 

 
/   (   ). 
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Observe that it is sufficient to check   on all two-dimensional subspaces of  . For a 

discussion of a different condition on two­dimensional subspaces, see Dor [197]. We shall consider 

spaces   in     for which  ( )  ‖    ‖   is a polynomial in   of degree   . When   is given  in 

this  way,  we shall tacitly assume that ‖     ‖       .
 

 
/ for     and 

‖ ‖          
    ( );  that is,  (B) is  implicit. 

 

Theorem (5.2.2)[195]: Suppose   is a nonnegative polynomial of degree   . Let   〈   〉 and 

define ‖ ‖ on   by ( )  ‖    ‖  . Then (  ‖ ‖) is a Banach space if and only if     ( )  ( )  

(    )(  ( ))
 
   for all  . 

Proof. With ‖     ‖   defined as above, we need verify (A) and (D). Suppose (  ‖ ‖) is a Banach 

space, then,  ( )  ‖    ‖   ( )
 

    ( ) is convex. If   and   are linearly dependent then 

‖    ‖  |    |, and for  ( )  (    )          (    )(  ) . If   and   are linearly 

independent, then   ( )    and   is convex if and only if   ( )  (  )   ( ( ))
    

.   ( )  ( )  

(    )(  ( ))
 
/   . 

On the other hand, suppose    (( )  ( )  (    )(  ( ))
 
)    and ‖ ‖ is defined  as  

above. If ‖     ‖    for (   )  (   )  then either  (  )    or        . As the hypothesized 

condition is translation-invariant, assume      in the first case. Since   ( )    we have   ( )  

 ;  let    ( )     
   (  )         , for small  . Then    ( )  ( )  (    )(  ( ))

 
 

   
  (    )      (     ) hence       ( )      

   and (  ‖ ‖) is a valid one-dimensional 

space. In the second case,  let   ( )     
   (  ) for     ,      and    large. 

Then      and (  ‖ ‖) is again  one-dimensional. 

Now suppose  ( )   . Let                  be given; (D) will be satisfied 

provided  ,  ( ) is convex,  where 

    ‖       (     )‖   |    |   ((    ) (    )). 

(If       , then,   is a constant and so convex). Note that     is again  a positive polynomial of 

degree      so that    is continuous. It suffices, therefore, to check that    ( )    for   
  

 
. As 

above,     ( )    provided    ( )   ( )  (    )(  ( ))   . A computation shows  that this 

expression equals  (     ) (    )     (   ( )  ( )  (    )(  ( )) ), where   (   

 ) (    ). Thus, if        (     )(  )     then every   is convex and  (  ‖ ‖) is a Banach 

space. 

It follows from Theorem (5.2.2) that the  two-dimensional  spaces  in     are  characterized 

by  ( )  ‖    ‖  , and that a study of such polynomials is appropriate. Note also that generators 
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may be chosen to make any computations easier; in general, (D) must be separately verified for each 

two-dimensional subspace. 

The cone    . Let      consist of all polynomials   of degree     for which   ( )    and  

   ( ( ))     ( )  ( )  (    )(  ( ))   . 

If  ( )  ∑(  
 
)    

  then 

   ( ( ))     (    ) ((∑(
  

 
)    

 ) (∑(
    

 
)      

 ) 

      (∑(
    

 
)      

 )
 

) 

We shall omit the subscript    when it is superfluous. As defined,    ( ) is a polynomial with 

nominal degree     ; the coefficients for         and       actually vanish  identically. 

 

Theorem (5.2.3)[195]: The set     is a closed cone. 

 

Proof. Suppose p is in    . Then  ( )    and for          and  (  )     ( ) so    is in 

   . If    is  in    , then         and  (     )    (  )   (  )      
           

   

(    )  
   

 .Since     
   we have (      

  )
 

  (    )
 

 |  |so that     
           

   

(    )  
   

    .(  
    )

 

  (    
  )

 

 /
 

   (    
  )

 

 (    
  )

 

  (    )(|    |      )   .   

Thus,     forms a cone. 

Associate  ( )  ∑(  
 
)    

  with the element (        ) in       and pull back the usual 

topology. Convergence is then or coefficient-wise. If *  + is a sequence of polynomials in     and 

     then  (  ( ))   ( ( )). Hence     is closed. 

By the proof of Theorem (5.2.2),  if   ( )  is in       then  so is 

(    )   (
(    )

(    )
) 

For future reference, observe   that,  if     and    are in     and  ((     )(  ))    then 

 (  (  ))   (  (  ))      
  (  )  (  )    (  )  

  (  )and    
 (  )  

 (  )   . 

Since      is a cone, it is natural to study its extreme elements. For   ( )  (   

 )      ( )   . Suppose        , with     in      If    , then     and    must both be 

either point-wise nonnegative constants. Suppose    , then  we  may normalize      so  ( )  

(   )  , hence   (  )    (  )   .   As in  the  proof of  Theorem (5.2.2), it follows that  

  ( )    (   )
   so each     is a multiple of  . We have proved  that (    )   is an  extreme 

element  in     . Since     is a cone, ∑(      )
   is in     This is to be expected in light of  

Theorem (5.2.2) applied to the subspace of     generated by  (       ) and  (       ). If    

    (   
         )   (       

 ) so that     implies   ( )   . Hence the extreme 

elements of     are precisely (    ) . Surprisingly enough,   the same  is  true for      . 
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Theorem (5.2.4)[195]: The extreme functions of   , are (    ) ;  indeed, if    is  in    then  

 ( )  (      )
  (      )

    
  for some    and    . 

 

Proof. Write  ( )  ∑( 
 
)    

 , then  (  )    ( ( ))   (       
  )   (           ) 

  

(              
 )   (           )          

 . If  (  )   ,  then,  as  before,   ( )  

  (    )
 . If  ( (  ))   , then  with  ( )   (    )  ( ( ))   . As the conclusion is 

invariant under translation, assume     . In this case, since  ( )           
  and          . 

As     ( )   , let        ,  then          and        . If       
       then  ( ( ))  

    
 (    ) , so     and  ( )    (    )

     . (In general  ( )    ( (    )   )
  

 (    )
 .) If the degree of  ( ( ))  is less than  four,  then   by  a  similar  argument,  ( )  

  (   )
        . Finally, suppose that  ( ( )) is a positive quadratic and let   ( )   ( )   , 

then  (  ( ))   ( ( ))      ( ). Since    is quadratic, and        (   ( ))   ( ( )) is 

continuous, goes to infinity quadratically in  , and achieves a minimum      at     . Thus 

 ( )     is in   ,  .   (  )/   ; hence  ( )       ( (    )   )
   (    )

  , which  may  

be  rewritten as  in  the  conclusion. 

By considering (    )  .
(    )

(    )
/ instead of  , we may replace   

  by    (    )   for any 

pre-selected   and  .  It would be nice if this  pattern continued for     ;  unfortunately,  this  is  

not the  case. 

Theorem (5.2.5)[195]: If     then there exists a polynomial   in     which cannot be written 

 ( )  ∑(      )
  . 

 

Proof Fix   and let  ( )          . A computation shows that    ( ( ))  (         

   )    (       )      (    )     . Since    , each term bu (    )   is positive. 

For| |    (    )       ; for | |    (       )      (    )     (        

  )    .  Thus     ( ( ))    and   is in     . 

Suppose          ∑(      )
  ;  from  the  coefficient of     and      ∑  

   
     

and   (  
 
)∑   

   
    . Since    , the first implies that        for  each   ,  and  this  

contradicts the  second. 

The coefficient   for    is not the best possible. The following proposition provides a sharp 

estimate. 
 

Proposition (5.2.6)[195]: If             is in     then 

      (    ) (   ) 

where ( (   ))
 
 (  )  (     )   (    )    (       )    . 

We see then that  there  are  extreme  functions  in        , which are  not  of  the  form  

(    )  . 
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Proposition (5.2.7)[195]: The extreme rays of     are generated by 

(    )    (
(    )

(    )
) 

where   ( )                                     and | |  
 

 
 or | |    

 

Proof. As in Theorem (5.2.3), we consider special cases and then subtract various (    ) ’s. Then 

   are those polynomials for which   (  ( ))    and   ( ) is at most quartic. 

As Proposition (5.2.7) is not directly relevant to the rest of this section and its proof is 

tedious, we omit the details. The general question of finding the extreme rays of      for     

remains open. 

Let     denote the closure of the cone of polynomials of the form ∑ (      )
   

         

    with equality if and only if          .  As any      distinct      powers are linearly 

dependent, we may assume that       .   Suppose  ( )  ∑(  
 
)    

 . Then         where 

  ( )  ∑ .  
( )    

( )/
  

    
   . Since ∑.  

( )/
  

     and ∑.  
( )/

  

   , we may take 

|  
( )|    |  

( )|   .   Thus there exists  a convergent  subsequence  with  limit      and    so that 

one may write  ( )  ∑ (      )
      

    for all   in    . Similar considerations apply for the 

generalization of     to several variables. 

In [196] we showed that    (   ) is in    , that is, ‖    ‖   ∫|    |     is  a  

polynomial in   for  all   and   . The converse, as we shall see, is false. Suppose that    〈   〉 is a  

two-dimensional space in      then   ( )  ‖    ‖   is in     · Suppose  that   is embeddable  in 

   (   ), then  ( )  ∑(  
 
)    

  ∫((    ))
  
   ‖    ‖  . By Holder's inequality, since 

∫         and ∫         so that the integral can be broken up and    ∫          . Let 

   *     ( )   +       ;  let          and     on  . Then we have    ∫       

      , and     ∫    
 

   ∫    
  

  . If  ( )   (   *(    -+), then    ∫   
 

  
   for 

         and     ∫   
 

  
  . 

Conversely, suppose there exists  a  nonnegative  measure   and   ’s so  that    ∫   
 

  
   

and     ∫    
 

  
  . Define (   ) as follows:     *  +     on   and  *  +      

∫    
 

  
  . Let ( ( )  ( ))  (   ) on   and (   ) on  *  +. Then 

‖    ‖   ∫ (    )  
 

  

   (    ∫    
 

  

  )                         

 ∑(
  

 
)   ∫   

 

  

   (    ∫    
 

  

  )     ∑(
  

 
)    

   ( )  



126 
 

Fortunately, this transforms the embedding problem into the classical moment problem, 

which has been studied extensively. The complete solution is  known,  see  for  example  see  [198], 

and we  may  combine this solution with  the  previous discussion  to obtain the  following  theorem. 
 

Theorem (5.2.8)[195]: Let   be a two-dimensional Banach space in     with generators   and   and 

let  ( )  ‖    ‖   ∑(  
 
)    

 . Define the (   )  (   ) matrix   (   ) by          for 

        . Then   is embeddable in     if and only if the  matrix     is  positive semidefinite. 

Further,     is embeddable in     if and only if     is in    . 

Corollary (5.2.9)[195]: If   is two-dimensional space in     then   is embeddable in   . There are 

two-dintensional spaces in        , which are not embeddable in    . 
 

Proof. Combine Theorems (5.2.4), (5.2.5) and  (5.2.8). 
       

The case for higher dimensions is less clearcut. Professor J. H. B. Kemperman [199] has 

pointed out, using techniques from [200] and [201], that the analogous moment problem in more 

than one variable has a solution which requires knowledge of all polynomials  (          ) of total 

degree     which are  nonnegative for  all  real    . 

Specifically, one transforms the polynomial  (       )  ‖             ‖
  

 for a 

space   〈       〉 into a family of equations  (       )  ∫   ∫   
     

           

     , with inequality if ∑     .   Suppose  (          )    for all real  , and   

 (       )  ∑ (       )  
     

  
,   where the sum is taken over all    ∑     . Then 

certainly ∫   ∫ . (       )/    ∫ (       )  (       )   . It turns out this  condition  

holding for  all  such    is sufficient  for  the  existence of  a  measure  with   the desired   property. 

Since   is  real,  it  is  unreasonable to  embed   in  an      space with  complex  scalars;  one  

might, however, embed   in an    (   ) space  with  real scalars but complex-valued functions. 

This situation is taken care of by  the following theorem. 
 

Theorem (5.2.10)[195]: There is an isometry from the space of all complex­functions in    (   ), 

taken with real scalars, into real    (   ), where (   ) consists of      copies of (   ). 
 

Proof. It is well known that   
  is embeddable in any infinite dimensional Banach  space. Let   and   

be orthogonal generators of   
  and let  ̅ and  ̅ be their isometric images in    . Then ‖     ‖   

‖  ̅    ̅‖   ∑(       );  by the end, we  may say that (     )  ∑ (       )
      

   . 

Define the mapping   from    (   ) with complex-valued functions to    (   ) as  follows: if 

       is the decomposition into real and imaginary parts,  then  ( )          on  the    th
  

copy of  (   ). For real     (         )     (  )     (  )  ‖ ( )‖
   ∑ ∫ (     

    
   

   )
     ∫ (     ) 

 
   ∫ | |  

 
  ‖ ‖   so   is an  isometry. 
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We may actually choose    and    by:         ( )   (    (   )  ), where  ( )  

 .(  
 
)(    )/

  

  
. Hilbert has proved that    and    may be chosen to be rational; see Ellison [3] 

for an extended discussion. In any case; it suffices to consider embeddings into real    . 

A counterexample is the remaining case for embedding is the three-dimensional one for   . 

We shall construct a three­dimensional space in   , which is not embeddable in   . Consequently, 

there are spaces with arbitrarily large dimensions which are not embeddable in   . This example is 

drastically simplified from the one appearing in [196]. 

Suppose   〈     〉 and a polynomial  (   ) with total degree   is given. Let ‖ ‖ be 

defined on   by ‖       ‖   (   )  ‖       ‖ ; for      is  defined in the usual way. 

In view of Lemma (5.2..1), we need check (A), (B) and  (D) on every  two-dimensional. 

Subspace of  . Conditions (A) and (B) will be automatic. A two­ dimensional subspace  of   

is  either 〈   〉 or 〈             〉 for  some         .  Thus, for  (   )  ( (   ))
 

 , it 

suffices to show that  ( )   (         ) is convex  for  all        .  (We consider 〈   〉 

separately.)  Adopt the usual  convention that    (   )  .
 

  
/  (   )    (   )  .

  

   
/  (   ), etc. 

Then    ( )  (              
    )(         ). Hence it suffices to show that           

  and,            
  at all points in the plane. If we can verify this for     

 

  then (  ‖ ‖) will be a  

Banach  space. 
 

Theorem (5.2.11)[195]: For   〈     〉, let ‖        ‖        (     )  (     ) . 

Then (  ‖ ‖) is a Banach space which is not embeddable in   . 
 

Proof. Note that ‖        ‖    unless         so that (A) is satisfied. On 〈   〉 ‖   

  ‖  (     )
 

   so 〈   〉 is isometric to   
  and (D) is satisfied. In general, let     

 

 , then 

       
  

 (         
 )        

  

 (         
 ) and        

  

 (           ). We must 

show that          
    and that 

(         
 )(         

 )  (           )
  

   (  (          
 )     

                 
    ) 

    ( )    

For  (   )  ‖       ‖     (     )  (     )  let        , then        

  ,      (   )      (   )      (       )        (       ). Hence  

         
    ( (    )    (          )    (     )    )    

and similarly          
   . Further,           

    (   )(   ) and    
     

           
        (   ) ,   hence 

 ( )     (   )(   )(       )      (   )  
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"-" 

    (   )(   )                                             

Thus (  ‖ ‖)  is a Banach space. 

If   were embeddable in    then  for  some     and  ,       (     )  (     )  

∫ (        )   
 

, so ∫    ∫   ∫   ∫      ∫       , ∫      
 

 
. The first five 

equations imply that        and         - a.e.; this  is contradicted by the sixth. Alternatively, in 

the spirit of the moment problem, ∫ (        )   
 

  
 

 
.   Either proof shows that   is not 

embeddable in    . 

One can make a lengthy plausibility argument that the set of polynomials  (     )  

‖        ‖  has 15 degrees of freedom for spaces in    , and  14  for spaces in   .  The last 

degree of freedom manifests itself here as the coefficient of     . 

Now we show other properties of     . Since        , with  strict inclusion  for     , it 

is not obvious that spaces in      are necessarily as  "nice" as spaces in    . For example,    (   ), 

is uniformly convex and uniformly smooth (see Lindenstrauss and Tzafriri [203] for definition) and 

hence reflexive. Holder's  inequality  says   that,  if ∫     ∫       then |∫        |    for 

      . Thus if  ( )    ∑ (  
 
)   

     
    is in     , then |  |    ; indeed,       ( ), 

where  (  )     (    )    . Clarkson's inequality states that ‖   ‖   ‖   ‖   

 (‖ ‖   ‖ ‖  ) if  ( )  ∑ (  
 
)   

   
    is in    , then  ( )    (  )   ( ( )     ). As a 

whole, these properties extend to    , although numerical constants are  generally weaker. 

Koehler [204] defined a     space to be a Banach space on which a   -fold inner product 

〈        〉 is defined, satisfying certain regularity conditions. In [196] it was shown that     spaces 

and     spaces coincide. Koehler [205] proved that     spaces are uniformly convex. That is,     

spaces are uniformly convex and thus reflexive. To prove uniform smoothness and the other 

regularity conditions we need the analogue to Holder's inequality. 
 

Theorem (5.2.12)[195]: If  ( )    ∑ (  
 
)   

     
        is in     then there are constants so that 

 (    )      (    ). 
 

Proof. Since  
 

 ( ) is  convex,  by  the  triangle inequality on the space induced  by   (  | |)   

(  | |)  , so for     (   )    ( )  (   )  . The set of      equations 

∑ (  
 
)   

     
     ( )                , has a V and ermonde determinant, hence (  

 
)   

may be expressed in  terms of   ( )       . Since   ( ) is bounded one obtains bounds on      

which are, in general, wildly generous. 

Alternatively, a sequence of polynomials with unbounded   ’s has a  subsequence from 

which can be deduced the existence of  ̅ in    ,  ̅( )  ∑ (  
 
) ̅  

     
   ,  not  all    ’s  equal to zero. 

This yields a contradiction. 
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It follows that the set of all points (          ),  , in       so that   ∑ (  
 
)   

     
    

    is  in       forms a closed by Theorem (5.2.3) and bounded set by Theorem (5.2.12). Thus 

functionals, such as  ( ), achieve maxima  and  minima  on   . 

The actual values of  (    ) and  (    ) can be found in a few   instances.  Since  ( ) in 

    implies  (  ) and     .
 

 
/ are in      (       )     (       )  (       )  

 (    ) and  (       )   (    ).  As      spaces are in       (    )    and  (    )  

 ( ).  These coefficients are  a two-dimensional property; consequently  (    ) and  (    ) are 

already determined for       or  . 

In any case,           
  (‖    ‖  ‖ ‖), so ‖  ‖    and  (    )    (    )   . 

Further,  ( ( ))  (  ) (    )(        
 ) so      and  (    )   . The condition in 

Theorem (5.2.12) is, for general   in         (    )  
 — 

   
 , where   

 

  
. From the convexity 

of    , extreme values  are  attained on  extreme elements in     . In this   way, considering 

Proposition (5.2.7),   one can show that  (   )    (   )    and  (   )   
  

 (     

   √  )
 

          . The general problem remains open. 

 

Theorem (5.2.13)[195]: If   is in     then   is uniformly convex, uniformly smooth  and  so is  

reflexive. 
 

Proof. The uniform convexity follows from Koehler, or by noting that ‖ ‖  ‖ ‖    ‖   ‖    

implies ‖    ‖      for     so  ( )  (   )   and  ‖   ‖   . Since the set of 

coefficients    , for  which ‖ ‖  ‖ ‖    ‖   ‖    is compact, ‖   ‖ achieves a  maximum, 

which  is  strictly less  than   . 

For uniform smoothness, let ‖ ‖  ‖ ‖   . For    , by Taylor's theorem, ‖    ‖  

‖    ‖    (    )(     
 )    (  ). Thus 

 

 
(‖    ‖  ‖    ‖)         (  ) so 

  is uniformly smooth. 

If   is any Banach space, suppose   ‖ ‖  ‖ ‖    and   ‖   ‖  ‖   ‖   .

 Then        so          (    )          .   That is, ‖   ‖  

‖   ‖  ‖ ‖  ‖ ‖  with equality if and only if ‖ ‖  ‖ ‖  ‖   ‖  ‖   ‖   . In this   

case, by the triangle inequality, ‖   ‖    for | |    so   cannot be in     . Thus, by the 

compactness of   , ‖   ‖   ‖   ‖    ( )(‖ ‖   ‖ ‖  ) for   and   in   in    . Taking 

     ( )   . 
 

Theorem (5.2.14)[195]: If   is in     for     then ‖   ‖   ‖   ‖    (‖ ‖   ‖ ‖  ),  

but  this is  not  necessary  true for    . 
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Proof. For    ,   is embeddable in    . For     ,  let ‖   ‖  ∑ ( 
 
)   

  
    then ‖   ‖  

‖   ‖   ‖ ‖   ‖ ‖    (     )    since  (   )   (   )   . 
 

Fix     and set   ( )     (         )      and ‖   ‖     ( ), then ‖  

 ‖   ‖   ‖   (‖ ‖   ‖ ‖  )        for    . A computation shows that 

   (  ( ))     (    )       ( ( )    ( )), where  ( )     (    )     (       

  )    (     )(           )     (    )     (           ) and  ( )  

  (         )(           )  (    )(           ) . 

As    , the  highest  order  term  of       is 

  (          )     , 

there exist    and    so that  for        and | |    (    )( )    and thus    (  ( ))   . 

As (    )( )    , for        and | |    or | |       (  ( ))   .  On the remaining 

(compact) set,       is positive and | |    | | is  bounded,  so  for  some  further  reduced range of 

 ,    (  )    and      is in     . 

For     take      , then   ( )                        . A direct computation 

shows that   (  ( ))    (     )         (      )      (     )            . If we 

factor out       and  let           , then  we obtain                         ( ). 

(The range  for          is     .) Clearly  ( )   ,  and   achieves its minimum when      

     √              .   Since  (  )          ( )      . This bound is not sharp. This 

example also shows that   (   )   . 

The question of describing spaces dual to spaces in     also remains open.   Indeed it is false, 

in general, that the dual space to a subspace of   (   ) is necessarily embeddable in     
   

     . For  example,  if   
  

(    )
   (     )   (     ) and     is the  subspace  of    

   

generated by   and  ,  then      is not  even  in    ,  let  alone     .  We omit the proof. 

Krivine inequalities. Krivine [206] has described necessary and sufficient conditions for a 

space to be embeddable in     provided    is not an even integer.   Krivine's proof does not apply 

when      because it involves the Taylor series remainder of    ( ). Theorem (5.2.16) discusses 

this case and provides an underlying  reason for this failure when viewed in conjunction with  

Corollary(5.2.9). 
 

Theorem (5.2.16)[195]: (Krivine). lf                then a necessary and  sufficient  

condition for   to be embeddable  in    is that (45) holds for all elements    and all choices of real 

scalars    with ∑     . The sum is taken as the   ’s range  independently from   to    and as the 

  ’s  range  over all  choices of  sign    . The sum has           terms. 
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(  ) ∑ 

 

    

∑         

 

     

∑‖                   ‖
 

  

            (  ) 

Theorem (5.2.17)[195]: If       and   is  in    , then  the sum in (45), taken  with      ,  is  

identically  zero. 
 

Proof. By (Theorem 11 in [196]), it suffices to verify any linear identity on one space in    ,  say  .  

Since in (45) all elements are combined with real coefficients, by Theorem (5.2.10), we may embed 

  isometrically in   .  It therefore suffices to check that (46) holds in  . 

∑ 

 

    

∑         

 

     

∑(                   )
  

 

                  (  ) 

Because of the signs in the inner sum, we may rewrite this in the form ∑      
  ( )

   
   

  (  )
, 

where   indexes all partitions of    into    even  integers and    is the positive multinomial 

coefficient. If we now exchange the order of summation, then (46) becomes (47). 

∑  ∏(∑       
  ( )

 

    

)

  

    

                                      (  ) 

Fix  ; since      , at  least  one of  the    ( )’s  is  zero. Thus, one term in the product is ∑     , 

each term in the sum vanishes and  (47) is verified. 

For     , there  are  spaces in     which are not embeddable in     so that  Krivine’s 

inequalities  do not extend. For       and      (   ), it is not  hard  to show that the left hand 

side of (45) becomes (∫∑     
   )   which is  nonnegative. If, on the other hand,    is the space in 

Theorem (5.2.11),                             , then 

∑∑    ∑‖     ‖
 

 

 

 

 

      

It is possible that a careful study of Krivine’s inequality for such borderline cases could lead 

to an embedding theorem for        . 

Section (5.3): Real Banach Spaces with Polynomials and Identities: 

 

We study linear identities via the duality theory for real polynomials and functions on Banach 

spaces, which allows for a unified treatment and generalization of some classical results in the area. 

The basic idea is to exploit point evaluations of polynomials, as e.g. in [208]. As a by-product we 

also obtain a curious variant of the well-known Hilbert lemma on the representation of the even 

powers of the Hilbert norm as sums of powers of functional . In (generalizing [209] and [210]) we 

prove that under certain natural assumptions identities derived from point evaluations can be 

satisfied only by polynomials. We apply the Lagrange interpolation theory in order to create a 
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machinery allowing the creation of linear identities which characterize spaces of polynomials of 

prescribed degrees. We elucidate the  special situation when all the evaluation points are collinear . 

The work is based on the theory of functional equations in the complex plane due to Wilson 

[209] and Reznick (in the homogeneous case) [210,211], and the classical characterizations of 

polynomials due to Frechet [212,213], and Mazur and Orlicz [214,215], which can be summarized in 

the following theorem. 
 

Theorem (5.3.1)[207]:         be real Banach spaces         be continuous,        * +. 

TFAE 

(i)       (     )  

(ii)        (             )                       

(iii)    is a polynomial of degree at most n for every affine one-dimensional subspace        . 

(iv)  

∑(  )     .
   
 

/  (    )                    

   

   

 

Here we use the higher order differences defined as follows.  

   (         )  ∑ ∑ (  )    (∑  
   

)

  *     + | |  

 

   

 

In particular, 

   (         )  ∑(  )   (
 
 
)

 

   

 (    )  

The theory of linear identities for Banach space norms was developed. Its first and well-known result 

is a theorem of Jordan and von Neumann. 
 

Theorem (5.3.2)[207]: (    ,   -)   Let (  ‖ ‖) be a Banach space such that 

‖   ‖   ‖   ‖     ‖ ‖   ‖ ‖           . 

Then   is isometric to a Hilbert space. 
 

Note that a real Banach space   is isometric to a Hilbert space iff ‖ ‖  is a 2-homogeneous 

polynomial. Theorem (5.3.2) has been the basis of subsequent development with the aim of using 

similar identities in order to characterize the Hilbert spaces, or the classes of Banach spaces allowing 

the polynomial norms, e.g. Carlsson [217], Day [218,219], Giles [220], Johnson [221], Koehler 

[222,223], Lorch [224], Reznick [210,211] and Senechalle [225]. This theory is closely related to the 

isometric Banach space theory, see e.g. Koldobsky and Konig [226]. We develop an abstract 

approach to the theory of linear identities, generalizing Wilson’s and Reznick’s works. The novelty 

lies in giving a new functional-analytic meaning to these identities, finding the link to the Lagrange 

interpolation, and finding a general method for establishing new identities with prescribed properties. 
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Let X, Y be real Banach spaces. We denote by  (       ) (       (     )) the Banach space 

of continuous d-homogeneous polynomials from X to Y (resp. continuous polynomials of degree at 

most d). 

Let             * +  We are go in  )    , using the dot product. For simplicity of 

notation, we put       (     ). Denote the set of multi-indices by 

 (   )  {   *       +  *       +  | |  ∑ ( )

 

   

  } 

One gets dim      | (   )|  .
     
   

/ Further, we put         (    )  Let  (   )   

⋃  (   )  
    be the set of all multi-indices of degree at most d. Clearly, for every          there 

exists a uniquely determined representation  ( )  ∑   (   )    
   where    ∏   

 ( ) 
    for    

 (         )   
   

 

Fact (5.3.3)[207]: 

   ∏     ∑.
     
   

/  .
   
 

/

 

   

            

Moreover, there is a natural linear isomorphism           ∏   , given by the restriction  ( )   

     , where    *               + is an affine hyperplane. In other words, performing i on a d-

homogeneous polynomial means replacing the          coordinate by the constant 1. 
 

Let C(  ) be the space of all continuous functions on (  ) Point evaluations at     (  ) 

belong to the linear dual of  (  ). Point evaluations separate elements of  (  ). For        we 

are going to use the notation           (  )  where  (   )      ( )      (  )  and we will call 

these evaluation functionals nodes. To simplify the language, we will occasionally identify        

with its corresponding node z, calling the elements of   themselves nodes. We are going to 

introduce an abstract formalism suitable for working with nodes and their linear combinations. 

Consider the linear space  (  ) of all formal finite linear combinations of nodes. It is important to 

note that a linear multiple    of the node z is not the same element as the node corresponding to the 

point         Informally, whenever we write     as an element of  (  )), it is understood that we 

are dealing with the element   . In order to distinguish the usual vector summation from the space 

   from the formal summation of the nodes we will introduce the new summation symbol  . So for 

every      (  )there exist              
     that 

                         ∑    

 

   

  

The previous expression is unique if    are assumed pairwise distinct and                     

The operation   formally acts on       ∑   
       and      ∑   

        as  
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     (  ∑    

 

   

) (  ∑    

 

   

)  

Similarly, we define the scalar multiplication of       and x as 

      ∑(   )  

 

   

   

With these operations  (  ) is a linear space. Then 〈 (  )  (  )〉form a dual pair [227] 

with the evaluation 

〈   〉  ∑   (  )

 

   

 

Restricting this dual pairing to subspaces      (         ) of  (  ) leads to a dual factorization of 

the action of   on  (  )so that         ∑   
     (     

     ∑   
     ) and 

      ∑    

 

   

        ∑    

 

   

 

iff 

〈    〉  〈    〉     holds for all          

(and the resp. case of     ). 

Thus we have a (non-unique) representation of the elements of       
  (resp.      

 ) as elements 

in  (  ), given by 

〈   〉  〈    ∑   
     〉  ∑   (  ) 

 

   

 

         (         )       ∑   
       We let     (  ) be the subspace consisting of all 

elements for which 

〈    ∑    

 

   

〉                           

Then     
    (  )   . Suppose   *         +    

 . We say that the corresponding set of nodes 

  *         + is       independent if the nodes are linearly independent as elements of     
 . For 

simplicity, if the space     
 . is understood, we will often drop the boldface notation and say that A is 

a set of nodes, and that A is     . -independent. It is clear from basic linear algebra that A is     -

independent iff there exist dual elements *         +        so that   (  )     
 , where   is the 

Kronecker delta. If {         + are      -independent then   | (   )|  In case 

of   | (   )|     
      (*  +   

 ) and we call *  +   
  a basic set of nodes for      A classical 
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example of a basic set of nodes for      is the set  (   ) (Biermann, see [208]). The following result 

is immediate. 
 

 

Proposition (5.3.4)[207]: Let     | (   )|    *  +   
  is a basic set of nodes for      and *  +   

  

      is its dual basis, then for all          

  ( )   ∑ (  )  ( )  

 

   

       

The following is a general characterization of basic sets of nodes [228,208]. 
 

Theorem (5.3.5)[207]: Let    | (   )|  (   )    *         +  Let *  +   
     . Then *  +   

  

is a basic set of nodes for       iff it holdsdet 

    

(

 
 
  
    

     
  

  
     

  

 
  
  

  
     

    
  
)

 
 
    

Moreover, if *  +   
  is a basic set of nodes for     , then every P        can be written uniquely as 

 ( )   ∑   
  〈      〉

 . 
 

The same notation and terminology applies to the case of      spaces. Analogously, for 

    | (   )|  we say that *  +   
     is a basic set of nodes for       if these elements form a 

linear basis of      
 . Observe that basic sets of nodes exist, as the pointwise evaluations form a 

separating set of functionals for     . The following is a general characterization of basic sets of 

nodes for     , analogous to Theorem (5.3.5), see [228]. 

 

Theorem (5.3.6)[207]:L Let   | (   )|  (   )  *         +  Let *  +   
      . Then *  +     

  

is a basic set of nodes for       iff it holds 

   

(

 
 
  
    

     
  

  
     

  

 
  
  

  
     

    
  
)

 
 
    

Moreover, if *  +     
  is a basic set of nodes then every node            

   can be written 

uniquely as a linear combination of the elements in *  +     
 . More precisely, 

       –∑   
            *  +     

  form a solution of the system of linear equations 

∑    
        

 

   

(   ) 

The generalized Lagrange formula is an expression of linear dependence of nodes in the dual of     . 
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Theorem (5.3.7)[207]: (Generalized Lagrange formula). Let   | (   )| *  +    
  be a basic set of 

nodes for     . Then for every         *  +    
  there exists a unique set of coefficients   ( )      

such that        ∑    
    ( )  . The functions     ( ) are polynomials of degree at most d, 

given by the formula 

  ( )   

   

(

 
 
 

  
    

     
  

  
     

  

 
  
  

          
 

  
       

     
  )

 
 
 

   

(

 
 
 
 

  
    

     
  

  
     

  

 
  
  

  
     

    
  

 
  
       

     
  )

 
 
 
 

 

Then *     +    
  is a biorthogonal system in            

  and the formula 

 ( )   ∑  ( ) (  )

 

   

 

is valid for           . 

We remark that the problem of characterizing geometrically basic sets of nodes for       , 

when     , is open, and it is important for approximation theory and its applications in numerical 

mathematics. We refer to [228,229,230] for more results and references. An interesting special case 

is due to Chung and Yao [229], for certain implicitly described sets of nodes. Let us briefly describe 

this elegant result. 

Let              
      , be such that every affine hyperplane in    contains at most n 

points of              Then for every     *       + such that        there exists a unique point 

     
  such that 〈      〉       for every       and 〈      〉     for every     . Indeed, by the 

hypothesis the points           , lie in an affine hyperplane H not containing 0, and        for every 

   . Define 

   ( )   ∏
  〈    〉

  〈     〉

 

       

             

Then hI is well defined and            . Further, if    *       + is such that 

               (    )         (  is the  Kroneckerdelta). Hence the set *        *       +     

  + is a basic set of nodes for         (since the cardinality of this set is .
 
 
/              )  

Let     (     )         ̃     ( (  )  (  )) be defined as 
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 ̃ (  ∑   (  )

 

   

)    ∑   (  )

 

   

 

We introduce a partial ordering for elements of ⋃   
   (  ) by setting for                    

         ( 
 ) and                            ( 

 ) 

         ̃                      (     )  

Definition (5.3.8)[207]: We say that a polynomial          is compatible with     (  )if 

            ̃                  (     ) 

Let X, Y be Banach spaces and         be a continuous mapping. Then we say that f is 

compatible with     (  )     ∑        
 
    

〈     〉  ∑      (   )               

 

   

  (    ) 

Remark (5.3.9)[207]: Clearly, if X, Y are Banach spaces, then a continuous mapping         is 

compatible with                         ( 
 )           (  

         
 ), iff 

∑   

 

   

(∑  
   

 

   

)                                              (  ) 

The expression (48) is called a linear identity. In particular, Frechet Theorem (5.3.1) is equivalent to 

saying that f is a polynomial of degree at most n iff f is compatible with an element       

 (    )(resp.        (  ) where 

        ∑ ∑ (  )     
 

  *       + | |  

   

   

(   ∑  
   

) 

        ∑(  )     .
   
 

/

   

   

(   )   (  )                          (  ) 

Moreover, the linear operator            defined by 

 (              )   ∑  

   

   

 

satisfies  ̃(    )          so in particular              It is easy to see that           leads to a 

linear mapping                defined as   ( )           The adjoint linear operator     

     
      

  coincides with  ̃ (if the duals are represented using the canonical evaluations). The 

following is a simple consequence of the definitions. 

 

Fact (5.3.10)[207]: Let      (  )      (  )     be Banach spaces and          be 

continuous. Suppose that     . Then the compatibility of f with x implies the compatibility of f 

with y. Consequently, if  ̃      for some bijection      (  )  then f is compatible with x iff f is 

compatible with y. 
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The implication in Fact (5.3.10) cannot be reversed. For example, let       and let      

  (  ) be defined by 

    (  )   (  ∑(  )     .
   
 

/ (     )

   

   

) 

    ∑(  )     .
   
 

/ (     )

   

   

 

 (x and y differ only in the third coordinate of the first node). Then clearly     . It is also clear that 

the compatibility of a continuous           with y is equivalent to the compatibility of f with       

from (49), and therefore the space of those continuous          compatible with y is     . On the 

other hand, if          is defined as   (     )     then 〈   〉  (  )     , and therefore P is 

not compatible with x. In fact, it will follow from Theorem (5.3.22) that the only continuous 

functions on    compatible with x are the constant functions. 

In this section, we establish basic results concerning compatibility and show that, under some 

natural assumptions, polynomials are the only continuous mappings satisfying linear identities. 
 

Lemma (5.3.11)[207]: Let      (  ). TFAE 

(i) For every Banach spaces X, Y every    (       ) is compatible with x. 

(ii) Every           is compatible with x. 

(iii)〈   〉    for every       . 

 

Proof. The implications (i)⇒(ii)⇒(iii) are clear. 

(iii)⇒(ii): Suppose that (iii) holds, and let                  ( 
 ), then          , hence 

       , and therefore P is compatible with x. 

(ii) ⇒ (i): Suppose that every        is compatible with x. Let X, Y be Banach spaces and 

   (       )  Let    (    ) and choose       arbitrary. Then               , and therefore 

   〈           〉    (     ). Since   was arbitrary, we conclude that          .  
 

Lemma (5.3.12)[207]: Let X, Y be Banach spaces and let   ∑   
    (    ), where    

 (       ) are k-homogeneous summands. If P is compatible with      (  ), then each nonzero 

summand    is compatible with x. 
 

Proof. By assumption, 

〈     〉   ∑      

 

   

        for all    (    )  

In particular, fixing L, composing   (       ), and using the homogeneity of    we obtain 

   〈  (  (      ))  〉  ∑      

 

   

      for all    (     )  
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The right hand side, for a fixed L, is a Y -valued polynomial in t. Thus each 〈      〉     , 

otherwise for some t the total value could not be zero.  

The following result was proved by Reznick. We give a proof using our formalism. 

Lemma (5.3.13)[207]: Let X, Y be Banach spaces and let         (       )      (  ). Then 

P is compatible with x iff the polynomial      from       is compatible with x. 
 

Proof. On one hand, there exists a one-dimensional subspace       such that         
       . 

So for every L :       we have that 〈     〉     . Consequently,    is compatible with x. On 

the other hand, if td is compatible with x, then so is every   ( )           (  ) . Indeed,   ( ) 

is a composition of a linear projection of    onto a one-dimensional subspace      , and the 

polynomial    defined on        If         then by Theorem (5.3.5)   ( )   ∑    
  ( ), so Q 

is compatible with x, being a sum of finitely many polynomials compatible with x. Lemma (5.3.11) 

then finishes the proof.  
 

Corollary (5.3.14)[  ]: An element                         ( 
 ) is compatible with       

(or any other nonzero d-homogeneous polynomial) 

iff                               
   

 

Corollary (5.3.15)[207[: Let         . Then for any        there exist a finite collection of 

linear      ( 
 ) and      *  +               | (   )|, such that    ∑   

           

Proof. Suppose, by contradiction, that the linear span   span*        (  )+ in the space       

is a proper subspace, i.e. there exist some          \ H and a linear functional x which is zero on H 

and nonzero on Q . Thus P is compatible with x, but Q is not. This contradicts Lemma (5.3.13). 

Hence               is a finite linear combination of elements of the form     . By 

Caratheodory lemma [208], we infer that the number of summands can be chosen not to exceed the 

dimension of the space     .  
 

The above corollary is analogous to the celebrated Hilbert lemma, which claims that for 

given       there exists a finite collection *         +    ( 
 )  such that 

‖ ‖  
   ∑  

  ( )      

 

   

 

The difference lies in the value of coefficients   , which in the Hilbert case can be chosen to 

be positive. Such conclusion is false in our setting, by easy examples when Q is non-positive or non-

convex and  ( )      ( ). Much subtler counterexamples follow from the work of Neyman [231], 

who proved that there exists a finite dimensional Banach space whose norm taken to   th power is 

an n-homogeneous polynomial Q but the space is not isometric to a subspace of    space. It follows 
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that the polynomial        may be convex and non-negative and yet it admits no formula with all 

    . 

Next, we investigate the properties of                     , which lead to compatibility. 

We restrict our attention to the case when there is k such that for every       the vectors    and    

are linearly independent. (This assumption is natural, since if the vectors xi are nonzero and fail this 

condition, then there clearly exist nonzero    such that all d homogeneous continuous functions are 

compatible with x.) An interesting example in this direction is derived from the polarization formula 

below. The second part (50) is an easy observation of the present authors, which follows by 

inspection of the classical proof (e.g. [232, p. 8]). 
 

Proposition (5.3.16)[207]: (Polarization formula). (See [233,214].) For every    

  (       )  where X, Y are Banach spaces, there exists a unique symmetric n-linear form  ̃   

   (       )            ( )     ̃ (       )  The following formula holds. 

 ̃(         )    
 

    
∑              

     

(∑    

 

   

)   

On the other hand, for every       (      )    , or k −n odd and positive the following 

formula holds. 

∑              

     

(∑    

 

   

)                                     (  ) 

In the remaining case when               is even, there exists       such that the left 

hand side in (50) for                   , is nonzero. 
 

Translated into our language, we see that       ∑             (  ∑   
      )    ( 

 ) is 

compatible with k-homogeneous polynomials iff either       or       is a positive odd number. 

Note that to each summand involved in the definition of     we can find some other summand which 

is its multiple. Under the assumption that *  + contains a vector which is linearly independent with 

any other vector from *  +, we will prove in Theorem 3.8 that every continuous mapping which is 

compatible with                               ( 
 ) is necessarily a polynomial of degree at 

most n. 

In particular, the Jordan–von Neumann Theorem (5.3.2) follows immediately from this 

statement. The result was proved by Reznick under the assumption that the continuous function f is 

homogeneous. 

In the proof of Theorem (5.3.18) we will use the following result due to Wilson [209].The 

original statement in [209] is for functions on   , but the proof works with no change for arbitrary 

mappings between Banach spaces. 
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Theorem (5.3.17)[207]: (See [209].) Let X, Y be Banach spaces,        be a continuous mapping 

and let                        ( 
 )     * +  Suppose that for every       the 

vectors    and      are linearly independent, and that       . Let     be the number of distinct 

directions determined by the vectors             . If f is compatible with x, then f is compatible with 

    , from (49). 

 

Proof. Let      (      )               . By Fact (5.3.10) we may suppose wlog that          

and     = 1. Then        for every         . By Remark (5.3.9) the mapping f for every x, y   X 

satisfies 

∑   (       )       ( )   

 

   

                            (  ) 

First, let us suppose that             are pair wise linearly independent, i.e.                

    –      
  

  
  for       *       +  Then     = 0 iff  j = i. 

In the first step, we subtract (4) from the equation derived from (4) by replacing x by   
   

  
  

and y by     . We obtain 

∑  

 

   

( (             
 )   (        ))      ( (   )   ( ))      (  ) 

Note that since        , we have eliminated the terms with      

In the second step, we subtract (52) from the equation derived from (5) by replacing         

 
  

  
                 Weobtain 

∑  

 

   

( (         (         ) )   (              ) 

                                    (               )   (         )) 

                                           ( (    )    (   )   ( )   ) 

In this step we have eliminated the terms with i = 1. 

We continue in this manner. In the      step we subtract the last equation from the equation 

derived from the last one by replacing x by   
    

    
 and   by    . Since the substitutions replace 

          by               
  and since             , the subtraction eliminates the terms with i 

=k −1. After n +1 steps we arrive at 

    ∑(  )     

   

   

.
   
 

/  (    )     

and since         , we see that f is compatible with     . 
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Now consider the case when some pairs of the vectors           are linearly dependent. Then 

in some steps we eliminate terms corresponding to more than one value of i. It is easy to see that 

after      steps we arrive at 

    ∑(  )     .
   
 

/

   

   

  (     )     

and therefore f is compatible with      . 
 

Theorem (5.3.18)[207]: Let X, Y be Banach spaces,          be a continuous mapping and 

                             ( 
 )              * +. Suppose that for every       

   the vectors    and       are linearly independent, and that                    be the number 

of distinct directions determined by the vectors            . If f is compatible with x, then f is a 

polynomial of degree at most p. 
 

Proof. First let m = 2. Since f is compatible with x, it is compatible with       by Theorem (5.3.17). 

By Theorem (5.3.1) the mapping f is a polynomial of degree at most p. 

The case      . By Fact (5.3.10) it is enough to find a      (  ), such that     , and y 

satisfies the assumptions of the previous case. So we claim that there exists a linear operator 

          such that the couple   (  ) and   (    ) is linearly independent for all        . 

(The number of distinct directions determined by   (  )       (    ) is clearly less or equal to p + 

2.) This is easily seen as follows. Let         *       +          *       +, be a system of 

2-dimensional subspaces of   . There exists an (m−2)-dimensional subspace      such that 

        * +     *       +. (                     
  ) Then the orthogonal projection T in 

  , with kernel F and two-dimensional range      , clearly satisfies the condition.  
 

If      (  )         are Banach spaces, then the set of all continuous mappings from X to 

Y which are compatible with x is clearly a linear space. We are now ready to describe this space 

more precisely. 
 

Theorem (5.3.19)[207]: Let                           ( 
 )            * +  Suppose 

that for every          the vectors xk and      are linearly independent, and that       

             be the number of distinct directions determined by the vectors            . 
 

Then there exists     *       + such that if X, Y are Banach spaces and f : X →Y is a 

continuous mapping, then f is compatible with x iff     ∑         for some     (
       ) (if A is 

empty, the sum is understood to be equal to 0). 
 

Proof. Let A be the set of all     *       + for which there exist Banach spaces X, Y and a nonzero 

polynomial from  (       ) which is compatible with x. By Lemma (5.3.13), if k   A, then for every 

Banach spaces X, Y every polynomial from  (       ) is compatible with x, and the same holds also 
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for their linear combinations. Let now X, Y be Banach spaces and        be a continuous 

mapping compatible with x. By Theorem (5.3.18) the mapping f is a polynomial of degree at most p. 

Say    ∑   
      where      (

       )  If        for some     *       +  then it follows 

from Lemma (5.3.12) that k   A. Hence    ∑       .  

It may happen that the set A from the above theorem contains some gaps. In fact, we have 

even the following. 

Theorem (5.3.20)[207]: Let                             be given integers and let ≥ . Then 

there exists                          ( 
 )       where           are pairwise linearly 

independent vectors and      for            , such that x is compatible with                   

 *        . . ,  }. 
 

Proof. Consider the linear subspace E of Πm,d generated by     
               *       + 

*            +. Choose for every       some nonzero l-homogeneous polynomial    

                   for every      . 
 

Now, let              
  be pairwise linearly independent vectors such that the restriction 

map            (*         +)     
  defined by 

 ( )       *         +           

is one-to-one and not surjective (for example, take a pairwise linearly independent basic set of nodes 

for       and add one point which is not a multiple of any of the nodes). Then  (  )     ( ) for 

every       and  (    ) is a proper subspace of   . It is easy to see that there exists    

 (         )     
     * + such that   ( ( ))      and   ( (  ))      for every      . It is clear 

that if                      ( 
 ), then x is not compatible with    for every      , but it is 

compatible with members of E by Lemma (5.3.11). We may of course suppose that               

        . Lemma (5.3.13) then concludes the proof.  

More can be said if the points             lie in an affine hyperplane not containing 0. 
 

Lemma (5.3.21)[207]: Let                           ( 
 )            * +  where 

            are distinct and lie in an affine hyperplane not containing 0. If every polynomial from 

      is compatible with x, then the same holds for every polynomial from     . 

 

Theorem (5.3.22)[207]: Let                           ( 
 )            * +  where 

             are distinct and lie in an affine hyperplane not containing 0, and               

           . If ∑   
         , then there exists     *       + such that if X, Y are Banach spaces 

and f : X →Y is a continuous mapping, then f is compatible with x iff f is a polynomial of degree at 

most l. If ∑   
         , then there is no nonzero mapping compatible with x. 
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Proof. Since             are pairwise linearly independent, Theorem (5.3.19) applies. Let   

*       + be a set whose existence is ensured by Theorem (5.3.19).   ∑   
       , then          

  , is compatible with x and therefore A is nonempty. Let     be maximal. Since every polynomial 

from       is compatible with x, by Lemma (5.3.21) every polynomial from       is also. Hence 

    *       +  This argument also shows that if A is nonempty,  then      is compatible with x, 

and consequently   ∑   
         . Hence   ∑   

         , then there is no nonzero mapping 

compatible with x.  
 

Some information on the exact value of l can be derived from the geometrical properties of 

the set *           +. Clearly there is no lower bound on l, since to each             we may take 

           such that If ∑   
         , and then there is no nonzero mapping compatible with x. Even 

if we demand that   ∑   
       , it is easy to find such             so that some          (  )  

is not compatible with x. Indeed, take          which is not constant on             and then find 

            such that     ∑   
      (  )     . However, there is a simple upper bound in terms of the 

dimension of the affine hull of the points            . It will be given in Corollary (5.3.26). In the 

proof of Lemma (5.3.24) we will use the following simple fact. 
 

Fact (5.3.23)[207]: If        is a union of n distinct lines containing 0, then M is a null space of 

an n-homogeneous polynomial          Indeed,  let  ( )       
   ( )  where   (  )  are 

chosen so that their kernels coincide with the given lines. 
 

If       , we denote by aff(M) the affine hull of M. 

Lemma (5.3.24)[207]: Let               
          * +, be distinct and denote by d the 

dimension of aff (*           +). Then there exist    *           } and a polynomial      

  of degree at most         such that  (    )    and  (  )    for every     *         

 +   *  +  
 

Proof. We may wlog suppose that m =d. The case d = 1 is trivial. Let    . We may further 

suppose wlog that             are affinely independent, that        (*           +) is a 

hyperplane in    (i.e. it is a subspace), and that        . Using a similar argument as in the proof 

of Theorem (5.3.18) we construct a linear mapping         such that  (  )      (    ) lie on a 

line       (    )    and  (    )     (  ) for all        . 

Now, there exists       such that the line        which contains z and  (    ) does not 

contain  (  ) for all         1. Let           be distinct lines which contain z and some 

 (  )        . Then        . By Fact (5.3.23) (since a translation of a polynomial of degree 

r is again a polynomial of degree r) there exists a polynomial         of degree         

such that the nullspace of  ⋃   
      Then                   is the desired polynomial.  
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Proposition (5.3.25)[207]: Let                           ( 
 )      * +  where 

            are distinct and                         , and denote by d the dimension of aff 

(*           +). If every          is compatible with    then         . 
 

Proof. By Lemma (5.3.24) there exist    *           + and a polynomial         of degree 

at most n + 2 − d such that  (   )      and  (  )     for every   *          +   *  +. Then P 

cannot be compatible with x, since otherwise we would have 

    〈    〉  ∑   (  )      (   ) 

   

   

 

and therefore      , a contradiction. Hence        .  

 

Corollary (5.3.26)[207]: Let                           ( 
 )         * +, where 

            are distinct and lie in an affine hyperplane not containing          for             

and ∑   
       . Let   be as in Theorem4.4 and denote by d the dimension of aff (*           +)  

Then           

 

For example, if in Corollary (5.3.26) the points             are affinely independent, then d = 

n + 1 and there fore     . Corollary (5.3.26) also shows that in order to achieve the maximal 

possible value of l in Theorem (5.3.22) (i.e. l =n), it is necessary that             be collinear; see 

Theorem (5.3.30) for more general result. 
 

In order to generate linear identities, we can use Theorem (5.3.7) on the generalized Lagrange 

formula. In fact, the Lagrange formula is an expression of linear dependence of functional in the dual 

of     . Let *  +   
      be a basic set of nodes for      and let *  +   

       be its dual basis. 

Given         *  +   
  , there exists a unique set of coefficients       ( )      such that P(z) = 

∑   ( ) (  )
 
    for every P       , and   ( )     ( )            . Then every P         is 

compatible with   ( )             ( )     (  )z. 

 

Lemma (5.3.27)[207]: Let *  +   
     be a basic set of nodes for 

          
    *  +   

               ( )           ( )    (  )z. If every        is 

compatible with x, then      
 

Proof. Assume wlog that   ( )     . Considering the dual basis of  *  +   
 we see that there exists 

         such that   (  )            (  )                     . Further, it is clear that there 

exists          (these are the affine functions on   ) such that  (  )      and  ( )     . Then 

clearly                   (  )       (  )      for             and  ( )     . But 

then 〈    〉    ( ) (  )     , hence P is not compatible with x, and therefore        
 

The following theorem describes a method of generating linear identities which, for 

prescribed d, characterize polynomials of degree at most d. 
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Theorem (5.3.28)[207]: Let *  +   
       be a basic set of nodes               

    *  +   
   , 

and let       ( )               ( )     (  ) . Let T :             , be an affine one-to-

one mapping such that       (  ). Then       ( )            ( ) are the unique coefficients 

with the following property. Let         (  )                (   )    (  )  ( ).  If X, Y are 

Banach spaces and f : X →Y is continuous, then f is compatible with y iff  f is a polynomial of 

degree at most d. 
 

Proof. Since   (  )       (   )   ( ) lie in an affine hyperplane not containing 0, Theorem (5.3.22) 

applies. It follows that it suffices to prove the theorem for                 , and it also follows 

that the space of those continuous          which are compatible with y is      for some 

        * + or a trivial space. If                             so       is compatible with x, and 

therefore 〈   〉       By Lemma (5.3.11) every member of      is compatible with y. Hence the 

space of compatible functions is nontrivial and      . On the other hand, if         , then    

       (  )    can be extended to a member of      , which is compatible with y by the 

definition of l. It follows from Lemma (5.3.11) that every polynomial from       is compatible with 

x. By Lemma (5.3.27) we conclude that     . Theorem (5.3.7) then yields the uniqueness part.  
 

A special case of Theorem (5.3.28) in dimension one corresponds to the classical Lagrange 

interpolation polynomial. 
 

Theorem (5.3.29)[207]: (Classical Lagrange interpolation). Let                         * +, be 

distinct. Then there exists a unique set of coefficients                  * +  such that every P         

is compatible with                     (  )    . Moreover, 

    ∏
       
     

         

 

       

 

The following theorem characterizes those                         ( 
 ) which can be used to 

characterize polynomials of degree at most n, the highest possible degree. It is a generalization of the 

equivalence of the conditions (i) and (iv) in Theorem (5.3.1). 
 

Theorem (5.3.30)[207]: Let              
          , be distinct points. TFAE 

(i) The points             lie on a line not containing 0. 

(ii) There exist              * + such that if X, Y are Banach spaces and       is a 

continuous mapping, then f is compatible with                   (  )     iff f is a 

polynomial of degree at most n. 
 

Moreover, the coefficients           from (ii) are uniquely determined, and if        is 

an affine one-to-one map and                 , are such that  (  )    , then 
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   ∏
       
     

 

       

                

 

Proof. (i)⇒(ii): Suppose that (i) holds. Since             lie on a line not containing 0, there exists 

an affine one-to-one map        and                 , such that  (  )     and 

   ( ). Combining Theorem (5.3.28) with Theorem (5.3.29) gives (ii) and also the moreover part. 

(ii)⇒ (i): Denote by d the dimension of aff(*           +). If (ii) holds, then it follows from 

Proposition (5.3.25) that         , and therefore             are collinear. 

Suppose by contradiction that             lie on a line containing 0. It is easy to construct a 

continuous function        which is not a polynomial but it is linear on every one-dimensional 

subspace of   . Let    (  ). As             lie in a one-dimensional subspace, the same holds 

for  (  )      (    ). Hence there exists        such that  ( (  ))   ( (  )) for all  . Since   

is compatible with  , we obtain              . Hence f is compatible with x. But this is a 

contradiction, since f is not a polynomial.  

 


