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Chapter 1

Distortable Banach Space with Operation
In fact, we make use of just one consequence of the axiom ¢y, shown by Jensen, which is widely used
by mathematical logicians. We construct a “Tsirelson like Banach space” which is arbitrarily distortable.
Section (1.1): Few Operations in Banach Spaces :
Let i, j, be ordinals, w the first infinite ordinal, w, the first uncountable ordinal. Let k,1, m, n, p be
natural numbers, and let a,b,c,d be reals, and x,y, z elements of a (vector, or norm, or Banach space).
Theorem (1.1.1)[1]: Assume the axiom V = L holds. Then there is a Banach space z, and an element
of the space z, (i<w,) such that:
span{z;: i <w;}isdenseinz , ||z;|| =1, and there are projections p,,(a <w;) of norm 1 of z*, into
itself, pg(z;) =0 fori=B,pg(z) =z, fori < B .So the density character of z is w;, and ithas a
basis {z; : i < w;}.

(it) If T: B— B is (linear, bounded) operator, then for some real a, Tz;=a z; for all but countably many i 's.

So T-al is an operator with a separable range.

Stage (1.1.2)[1]: Let {z;: i <w,} generate freely a vector space H over Q (the rationals). For aset |
of ordinals let H; and also H(l) denote span{z;: i € I} (= the subvector space spanned by z;,i€I). As
anordinal iis {j : j <i}, H; isthe vector space spanned by {z :j<i}. Let (" (M <w, <i < w1) be
finite subsets of i, increasing with m, and i =U,,, I]" For subsets A; A, ... of H,(A; A, )y is the
span of A, UA, U ....... We usually omit H and write y instead of {y }.

Stage (1.1.3)[1]: A subset of w; iscalled closed if for each limit ordinal i < w; which
satisfies (Vj <i) (3a) < a<irael) (3j < w,) belong to I. I is unbounded if (Vi € w,) (3j <

...........

wq) (i<jrjel) Asetof ISw, iscalled stationary if it has a non-empty intersection with every
closed unbounded subset of w ;.

Stage (1.1.4)[1]: By Jensen [2], if V =L then there are sets D; functions f; (i <w,)and r; €{0, 1}
such that

(i) f;isatwo-place function from H; into the reals, D; a subset of i.
(ii) For every subset D of w; and two-place function from H into thereels,and r € {0, 1}, {i < w,

:DNi=D;f/H;=f,r; =r }isastationary subset of w,. From now on f; are as above.
Stage (1.1.5)[1]: In a norm space Z, forz € Z, X Z, we say z is good over X if (Vx € X) ||z + || >
llzIl, lIxll and |[z]| = 1.

Ifzg .....7zx € Z,XCZZ we say (zg .....zx) is good over X if||z,|| = 1 and for any reals a, and

X € X
k

k
D am x| = || am| Il
i=0 i=0
Note that

(i) (zo) is good over X iff zy is good over X;

(i) if (zg .....z) 1S good over X then so is every sequence from (zg .....zy)
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Stage (1.1.6)[1]: Suppose Y,Z are norm spaces, Y NZ = X, and let W be a vector space such that
Y, Z are subspaces of it,and W =Y +Z (as vector spaces). We can define a norm on W which
extends the norms on'Y and Z, and get a norm space, as follows:

Iwll = inf{llyll + llzIl:y € Y;z €Zw =y + z}.
In this case the unit ball of W is the convex hull of the unit balls of Y and Z. We call this N; -
amalgamation. Note that
(1) if y €Y isgood over Xt will be good over Z; and
(ii) if also zeZ is good over X then ||y + z|| =2.
Stage (1.1.7)[1]: Suppose that in stage (1.1.6)Y=(X,yg ... V)L Z = (X, Zg v+ Zj) (Vo we - Vi), (Zg o= Zi)
are good over X. Then there is another way to define a norm on W extending the norms on Y
and Z: for x eX

i

E CnZns X

n=0

i

k Kk
Z bnVn+ Z CpnZy + X|| = max Z bnayns X|l,
n=0 n=0

n=0
We call this N,-amalgamation (unlike N;-amalgamation, it apparently does not depend only on
Y and Z, but also on span {yj .....yx}, and span {yg .....Vx}-
Note that
(zg -...-zg), 1S good over Y,
forn <1,m < kz, +y,, isgood over X and in particular ||z, + y,|l = 1,

if1(1) < 1,and we first amalgamate X, (X, yo ..... k), (X, Zg, -...., Z1(1)) in the above-mentioned way
and then amalgamate X=(X Zg - --,Z1(1)): (X' Yoo eoe e s Yk (X' Zi(1)4+1r ==+ Zi)» WE get the same
norm.

Stage (1.1.8)[1]: We shall define by induction on i < @1 norm spaces Zi, increasing with isuch that
Z; as a+ vector space is Hiand for some i's, infinite sets S;cwand elements y™y™ € H; (for
m < ) when r;= 0, and y;; (m < w,1 <1< p(m,i) when r;=1, such that (not distinguishing
strictly between subspaces of Hi and of Z1)
Q) if y<ay<o < <oag<iw=<ika natural number, r, = 0,y3, is defined,
then for infinitely manym € S,
(f) the amalgamation of the triple H(IZ),(H(II), yi), (H(IIM), Zag, - Zak)

is by the N,-amalgamation, i.e., for xe H(I{")
K

k
Ay + ) bizgs || = maxd layl + xll, || biza +x||
i=0 i=0
(i1) the amalgamation of the triple (H(IZ"), yi), (H(II"), yi, yim), (H(I"), v, Zag, .- Zaxe)
is by the N;-amalgamation. So in particular
(i) =z, isgoodover H,,and ify < ay < oy < --.< agthen (z,, ... Zak)is good over H, .We
also demand
@) ifiy<o <o <--.<ag <i, w<i, k anatural number, r, = 1, then for infinitely
many m< w the amalgamation of the triple
H(L), H), v - Vi) b (H), Y7 Zaos - Zak)
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Is by N, amalgamaon for i limit z;=U;-; zifor i <w,[[Xi<ia1z|| = max;<,|ail.
Stage (1.1.9)[1]: Now we do the induction step, so we suppose the norm on H; is defined, i >
w and we call the norm space Z; In this stage we shall define y"y{" (m< w)and S;, and in the
next stage we shall define the norm on H;,;. Remember that f; is a two place function from
H; to R given by the Jensen diamond (see Stage (1.1.3)).

If there is a (bounded) operator T on Z, such that for every x,vy, € Hj, f;(x,y)=||Tx —
y||, it is unique, and we call it T;.

If T; is not defined we do not define S;,y{", yi" So suppose T; is defined.

0] If Y is a Banach space, T an operatoron Y,H <Y asubspace, then let C(H,T,Y)=
sup{d(Ty,(H,y)):y € Y,y good over H}, where d(y,, H;) is the distance between y,
and Hy i.e., inf{|ly; — x||:x € H;}, and let

ce(H, T,Y) = sup{d(Ty,H):d(Ty,(H,y)) = c(H,T,Y) — €}
and y isgood over H.
Note that c(H,T,Y)< ||T|| and it decreases with H.
Now if r; = 0, choose yi"y;" in H;such that:
(i) @ d(Ty™ HAR,y™) > c(HUM), T, Z) — 1/m,
(1) y{"is good over H(I™),
(i (Tyy, H(IY) = ¢/m(HAM, T, Z) — 1/m,
(v) Ty —yi"ll <1/m.
Clearly ¢y (H(I{™), T;, Z)is a real number of absolute value < ||T||, hence there is an
infinite set S; < w such that

(iii)y fork<m#nin s, 1/k> |c;/p, ((HA™), T, Z)) — ¢y /n (HAM), T, Z)))-

(iv)  Ifr; = 1 choose a p=p(m,i)<w and y;; € {z,: maxlj" < a <i,a € D;} such that:

(V) for every x € H(I™),

p(m)
Z a.yi; +x|| = sup”alyi,“} +X”
i=0
(notice each {1 is good over H(I{")), (ii) if among the p's satisfying (i) there is a maximal
one, this will be our p; otherwise choose p = m.
Stage (1.1.10)[1]: Now we have to define the norm on H;,(after we have defined it on H; ), and
define, if necessary, yi" yi" (m < w) or y;j.

We have to satisfy the requirements (i) and (ijfrom Stage (1.1.8); when a, < i they are
satisfied by the induction hypothesis. Clearly there are only countably many appropriate
requirements, so we can find a list of them of length w, each appearing infinitely many times.

Let {Bn:Nn < w} be alist of i = {j:j < i}. Now we define by induction on n < w
a finite set], < i, and a norm space Z" which as a vector space is H(J, U {i})(we shall not
distinguish) such that
(D)o Jn+1s
(ii) ZMis a subspace of zZM*!

(iii) i =Uncg Jn



(iv) inZ™ z; is good over H(J,).
For n =0 let Hy be the empty set, and the norm Z?is |[lazll = |al-
Suppose we have defined z! for n, and let us define ZP*1. Let(kY,a, _ax_4)be the n-th in
the list of cases of (i)and (ii) from Stage (1.1.8). Assume for now that r, = 0 (the case r,=1is
just simpler). 1f{ay a,_,} @], we let J,,; =], U{By}and we define the norm of Z!*'by N; —
amalgamation of H(J,), Z{", H(J,+1),) (see Stage (1.1.7). Now if {ao‘._"_‘ak_l}g]n, let J,—y=
{Bo....Bi} (asy < ap <+ necessarily {a, _ax_1}<{B, _p;} By the induction hypothesis, (i) of
Stage (1.1.9) holds for y < o < -----< B; hence there is anm € S, satisfying
(i) Jnny<Iy (possible as (i) says “for infinitely many m's" and y=up I}},1y'; increase with
m, and ], is finite),
(ii)the amalgamation of the triple H(I3"), (H(Ii), yi), (H(I¥"), zg,, .. )is an N,-amalgamation.
(iii) the amalgamation of the triple
H(P), GO, v, i), (O, v 32, 2 )
is an N;-amalgamation. We choose a finite J,,,.; such that ], CJn+1 €1, By € Jn41@nd yy', vy €
H(J,41) (this is trivial). Now we define Z*** by successive amalgamation.
(v) We make an N, -amalgamation of the triple H(J,), Zi, HJ, U I7"):z;, is good (in it) over
H(J, UIZ) by (a) of Stage (1.1.6). H(J, U I:* U {i}) (defined in o), and (H(J, U II"),y") (possible
as z;is good over H(]n U I;“) by (o) and yy' is good over H(J, U Ig'), by the choice of m to
satisfy (ii) and (i) of Stage (1.1.7)). By (i) of Stage (1.1.7), z; is good over (H(In V) I{}),y{}) in the
amalgamated space we have just defined.
(y) We make the Nj-amalgamation(H(J, U IZ"),y™), H(n41), (H(J, U IR U {i}), y3)
(with the norm defined in (B)and call it Z"*'By (i) of Stage (1.1.7) z; is good over
H(Jn+1) in Z8*
Itis easy to check that (i) and (ii) of (a) hold fory,ay, ....,a, and m (by (iii) of Stage
(1.1.7).
So Z;' is defined for every i, and let Z;;1=Up<, Zi-
Clearly Z;,,as a vector space is H;,,(as B, € J;+1)- Each requirement vy, q,, ...., o, =
i appears in our list infinitely many times so for every n big enough {«, ..., } <], SO
clearly (i) holds for i+ 1.
Stage (1.1.11)[1]: We have defined Z; fori < w,. Let Z =u,,, Z;(soas a vector space it is H),
and Z, its completion, is the Banach space which exemplifies our theorem.
So let T be an operator on Z and we shall prove it is as mentioned in the theorem,
i.e.,, for some a, for every large enough i, Tz, = az; .We define a two place function f from
H into R:
fx,y) = ITz —yll
By Stage (1.1.3)
[ ={i < w;:f/H;,1r; = 0}
is a stationary subset of w; (see Stage(1.1.3)).



Stage (1.1.12)[1]: For each finite-dimensional subspace G of Z and m < w there is yg good over G
such that
d(Ty¢, G,y&) = ¢(G T,Z)(1 — 1/m) d(Tg"y. H) = ¢4/ (G, T,Z) — 1/m.
For each x € Z there is i(x) < w; such that x, Tx, € Zi(x) Now for each o < w;,= {i(x):x €
H, orx = y§ for some finite dimensional G& H,,, m < oo} is countable, hence i(a) =
SUpPAAy < w;. Now A ={j < w;: (Va <j)i(a) <j}is a
closed unbounded subset of w; (closed-trivially by the definition, unbounded because i(a)
increases with a, s0 ifj, =j,jn+1 = i(jn) thenj, <U, jn < w; and Uy, j, is in this set). As | is
stationary (see Stage (1.1.3) for definition, and Stage (1.1.11) for the fact) thereis y e An 1 (Il from
Stage (1.1.11)). Clearly T maps Z, into Z,hence itmaps Z,into Z,, and
c(H(y'), T.Z) = c(H(ly"), Ty, Zy)
ci/m(H(Y), T,Z) = Cl/m(H(I\r/n)'TY'Z_Y)
(as YEAandT,=T/Z,(asy € I).

Stage (1.1.13)[1]: Now we shall prove that for every i >y, Tz; € (Z,,z;) (v is as chosen at the end
of Stage (1.1.12)[2], and will remain fixed).

For this it suffices to prove that for any real € > 0 ,d(Tzi,(H(I{,“),zi)) < 5¢) for some
m< w. So lete >0 be given. Now Tz; is in the closure of Z =span {Zq:a < w1}so for
some 1(0) <w anda; € A, and distinct B(1) < wq, (for1<1(0):

Q) [Tz — T azpnl|| < e
So we can choose k< w, and oy < -+ < o < w;. Y < & such that
{i,B(0), ... 80N} = yc{ap <+ < oy}
Now by (i) (from Stage (1.1.8), for infinitely many m € S, i and ii from (i) hold (for
ourk,y, ay, ..., o). So we can choose some m for which {$(0), .... AN} NnycIP;and 1/m < ¢
.Clearly
(i) X<y arzgay € HAY' U {a, ..., o}
and by I of (i) and Stage (1.1.7)
(iii)  z,+yy'is good over H;"™. Now we shall write a series of inequalities which will prove
d(Tz;, (H(II), z;) < 5¢); for notational convenience let x range over H(I'*), and ab range over

R.
(iv) c(H(I),T,Z) = [asy € A, see stage (1.1.12)]
c(H(I3*).T,Z) = [by c's definition, and (iii)above]

d(T((z; +yy"), (HY, 2 + yy) =
iarjle”T((zi + yi,n) + a(zi + yi,n) +x || > [as || Tz, — z|| <& Tyy' = Tiyy" and
||T1y{(‘rl - y{,“” < 1/m as mentioned in (ii)
of stage (1.1.9)
ianxf”zi +yl+az;+ayl +x||-1/m—¢ > [ by (ii) of (i) ]

inf (|ly™ +ay? +x+ (by +x, )| +
1

a,b,x,x
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(v)

+||zi+azi—(by§n+x1)||— 1/m—¢) = inf (||y§n+ay§n+by{,“+x1||+
2

a,b,xq,x
+||zi + az; — byy’ +X2” —1/m— 8) >
inf1||y{/n + ayy' + byy' + X1|| + a,li),r>l<£(1||zi + az; — byy' + x2|| —1/m—-¢>

a,b,x,x
[as ||Ty{,rl — y{/n” <1/m,||Tz; — 7| < s]
inf ||Ty{,rl —ayy' + byy' + X1|| —1/m+ a,ig,l>£2||TZi + az; — byy' + X2|| —e—1/m—¢

a,b,xq
= [by d’s definition]
d(Tyi, (y)) + irgi”Tzi +az; — by + x| - 2/m — 2e >
[by (ii) of stage (1.1.9)]

c(H(y"),T;,Z,) —1/m + aErgﬁ(lszi + az; — by™ + x|| — 2/m — 2.
Comparing the first and last elements we see that
infa,b,X”Tzi + az; — byy' + X|| < 3/m + 2¢.
Now by the choic of m

(vi) 1/m<e.

Combining we get d(Tz;, (H**?,z;) < d(Tz;, (HY",yy") < 3/m + 2¢ < 5e.
Stage (1.1.14)[1]: For each B < w;we define an operator Pg on Z: Pg(z;) = 0 for
i = B,and Pg(z;)=z; fori <.
it is easy to check that:
() Pgis well defined and is a projection with norm 1 onto Zg;
(ii) for B < «, PgPy = P,Pg = Pg.
(iii) if Py (x) # 0, alimit, then for sorne § < a, Pg(x) # 0.
Stage (1.1.15)[1]: Let T,y be as in Stage (1.1.13). So for every i > §,Tz; € (Z,z; ), so Tz; = d;z; +
Xi, x{ €Z,.

We shall prove that for some 8,y <& < w,, and for every i>§, x{ = 0.. Suppose
not, s0 A;={i < wy:i =y, ||x?|| # 0} uncountable. For each i € A,choose aminimal B; < ysuch that
Pg, (x{) # 0 (it exists as Py(x{) = x?, because x? € Z,).

By (iii) of Stage (1.1.14) B; is a successor ordinal, so for some B <y,A, =
{i € A,:Bi = B+ 1}is uncountable. So foreach i€ Az, for some real d} # 0, Paq;(x{) = dizg. SO
for some a > Oands € {1, =1}, and se A; = {i € A,:sd} > a} is uncountable. So for each i € As,
PeTzi = dixg,sdf > a.

By Stage (1.1.3), [ = {i <wy:1; = 1,f/H; =f;,A3 Ni=D; } =D:} is a stationary subset of w; Let
A = {i < wy:iislimite,i > y,and Az Ni is unbounded below i and
in (iv) of stage (1.1.9) if we ask y[7 in {z,: max I < a, & € A3} the
value of p = p(m,i) does not change}.
As in Stage (1.1.12), we can prove A is closed and unbounded so I N A # @, and choose in it an
element 8. Now for infinitely many m < w, p(m,8) = m . Otherwise choose m, < w such that
() m>=>my=p(m,5) <m



and choose i € A,,i > 68.By (ii) of Stage(1.1.9), for some m > m,, H(I§"),
(H(5"),z;), (HU§), y8h Vs pam)) have No,-amalgamation. Now checking (ii) of Stage (1.1.9), we
see that z,, was an appropriate candidate for being yg}p(m,ﬁ) +1 hence p(m, &), contradiction.

So form,l,yg} € {zq: o € Ay} hence PgTy(ly, € {sbxp:b > a}. Now for every m, (see(ii)
of stage (1.1.8)

b(m,8)
D va| = maxlyml =
I=1
b(m,8) b(m,5)
T > v | = [[PeaT| D vED

[as ||Pg+1]| = 1 by stage (1.1.14)]
P(m,8)

=|[ D PeaTyR
i=1

[as Pg.1Ty§) € {sbxp:b > a}]
P(m,8)

= > Py
L=1

> P(m,8)a

= ma.
Hence ||T|| = ma,asa > 0,m(m < w), as a >0, m (m < w) arbitrarily large, we get a
contradiction.
Stage (1.1.16)[1]: (we omit O as a stage). We now want to show that d;(i < w,) is eventually
constant. Otherwise there are distinct reals d°d* such that
forl =12, 2and a < w, and e > 0 thereisi,a <i < wy,and |d; — d!| < & w.l.o.g.d° =
0,d! = 1, (otherwise, we look at the operator 1/(di — dl)(T — d°I) (I -the identity operator).

Let €>0 be arbitrary, e <1/100 Choose a <B <8 (=Y),|dyl <& |1—dg|<
e By (i) of Stage(1.1.8)[2], for k =1, ay=a,0y = B,i =ywe can find m(1) <m in S such
that (i) and (ii) of (@ holds for m and for m(1) and

1/m(1) <e, 12 m(1) < m.

We now try to get a contradiction to the choice of y". We repeat Stage (1.1.13) with z, for z;
so (i), (i), (iv) holds ((i) is trivialized-we know better), but we want to deviate in the middle of
(iv):

(P T.Z) = it (I +ay + by +x]
+|| Tz + azo — byy' + Xz|| = 1/m).
So for some a, b, x; , X, we get this infimum up to 1/m, so
c(H(IM), Ty, Z,) + 2/m = ||y + ayl® + by + x4 || + ||Tze + az — by + x,|| =
[as ||Ty{(‘f1 - y;“” <1/m) and Tz, = daza]



(i)
(iii)

(iv)
(v)

(vi)

(vii)
(viii)

||Ty{,n +(a+ b)y\‘(’f1 + x1|| + ||Tza + az, — byy' + x2|| —1/m = [by (i) of ()]
||Ty{,‘rl + (a+b)yy" + x2|| + max{ll(da + a)z, + X2l ||—by{,n + x2||} —1/m
[as z,, yi" are good over H(II")]
> ||Ty{,‘f1 + (@a+b)yy' + X1|| + max{|d, + al,|b|} —1/m
> d(Ty!, (H(I?"), y)) + max{|d, + al, |b[} — 1/m
> c(H(I"), T}, Z,) + max{|d, + al, |b|} — 2/m.
We can conclude that
bl, |de + al < 4/m,
||Ty{,‘f1 + (@a+b)yy' + x| < d(Ty{/n, (H(I{/n),y{/n)) +4/m
(for (i) look at the first and last terms in our series of inequalities, for (iii), if it fails use this in the
passage from the fifth term to the sixth term, and we shall get a contradiction).
Combining (ii) and (iii) we get
[ Ty™ — doy™ + x4 || < d(Ty, (H(I), yi")) + 12/m . Now remember |d| <& 1/m <& hence
n||Ty{,rl + x1|| < d(Ty{,n, (H(I{/n),y\‘}‘)) + 13e.
Similarly for B instead o (d) holds, but |1 — dg| < ehence for some x, € H(I}")
[ TyS — yin + X1 || < d(Ty™, ( yi)) + 13e.
By the version of (iv) for (8) fory = y" + Zg and the choice of y3' in Stage (1.1.10)
d(Ty, (H(I"), y)) > c(H(II"), T3, Z,) — 1/m (1). Now Zg is good over (H(Ii"),y™, T) hence

d(Ty, H()) = infy || Ty} — dgzg + x|
= inf [||TyP —ay} + +xq | + [|[dpzs — ayy® + x,|]

a,X,X1
> d(Ty™ (i ym) +1—e>
[by (V)]
>d Ty, H(P) ) + 1 - 14e

So y contradicts the definition of ¢; i) (H(II), T, Z,) and the choice of y".
Section (1.2): Distortable Banach Space:

We consider the following notions.
Definition (1.2.1)[3]: Let X be an infinite dimensional Banach space, and ||-|| its norm. If |-| isan
equivalent norm on X and A > 1 we say || isa A -distortion of X if for each infinite dimensional
subspace Y of X we have

Y1
sup{T+ vz €Y llyall = lyall = 1} 22

X is called A-distortable if there exists a A -distortion on X . X is called distortable if X is A-distortable
forsome A >1,and X is called arbitrarily distortable if X is A -distortable for all A > 1.

From the proof of [5, Theorem 5.2, p.145] it follows that each infinite dimensional uniform
convex Banach space which does not contain acopy of l,, 1 < p < o, has a distortable subspace.
In [6] this result was generalized to any infinite dimensional Banach space which does not contain a
copyof I,,1 <p <o,o0rc,.



We construct a Banach space X which is arbitrarily distortable. We first want to mention the
following questions which are suggested by the existence of such a space.

Problem. Is every distortable Banach space arbitrarily distortable? Is, for example, Tsirelson’s space T
(as presented in [7, Example 2.e.1]) arbitrarily distortable?
We first want to introduce some notations.

The vector space of all real valued sequences (x,,) whose elements are eventually zero is denoted
by cqo, (e;) denotes the usual unit vector basis of ¢y i.e., e;(j)=1 ifi =jand e;(j)=0ifi #j.

For x = )2, aje; €cqo the set supp(x)={i € N:a; # 0} is called the support of x. IfEand F are two
finite subsets of N we write E < F if max(E) <min (F), and forx,y € coowe write x <y if
supp(x) <supp(y).

For E c N and x=)2, x;¢; €coy We put E(x):=}};cg X;¢;. For the construction of X we need a
function : [1,00) — [1, 0 ) having the properties (f;) through (fs) as stated in the following lemma.
The verification of (i ), (ii), and (iii) are trivial while the verification of (iv) and (v) are straightforward.
Lemma (1.2.2)[3]: Let f(x) =log,(x+ 1), forx > 1. Then fhas the following properties:

Q) f(1) = 1andf(x) < xforallx > 1,
(i) fis strictly increasing to oo,
f(x)

(iii) limy_, o il 0 forall g< o,
(iv)  the function g(x) = %,x > 1 isconcave, and

(V) f(x) - f(y) = f(x - y)forx,y > 1.
For the sequel we fix a function f having the properties stated in Lemma (1.2.2) On c,, we define by
induction for each k € Ny a norm |+[x. For x = Y. x, €, € Cqo-
Let [x], = max,en|x, |- Assuming that |x|y is defined for some k € Nywe put

1
1
|X|k1 = max @ZIEi(X)Ik
i=

E;<E,<-<E|
EiCN

Since f(1) = 1 it follows that (|x|y) is increasing for any x € ¢y, and since f(1) > 1 forall1> 2 it
follows that |e;|, = 1 foranyi € N and k € Ny.Finally, we put for x € ¢y,

X1l = kExIx .

Then ||-|| is a norm on ¢y, and we let X be the completion of c,, with respect to ||-||. The following
proposition states some easy facts about X .

Proposition (1.2.3)[3]:
0] (e;) is a 1-subsymmetric and 1-unconditional basis of X; i.e, forany x = )2, x; - ¢; € X and
strictly increasing sequence (n;) € N and any (g;)jen © {—1,1} it follows that

o)

i=1

o

E EiXj " €y

i=1

(i) For x € X it follows that

1
1
Il = max]Ixlo, 22 Y I
i £
1=

E1<E2<"'<E1

9



(Where |x]g = suppen|xnlfordi2, x; - e; € X)

Proof. Part (i) follows from the fact that (e;) is a 1-unconditional and 1-subsymmetric basis of the
completion of ¢y, with respect to || for any k € Ny, which can be verified by induction for every k
€N. Since ¢y, is dense in X it is enough to show the equation in (ii) foran x € cyo. If ||x]| = |x] it
follows for all 1>2 and finite subsets E;, E,, ... E; Of NwithE; <E, < - < E

1
1 max max
Rﬁzym@m—kwﬂbiyu@h< max [ 1< 1l

which implies the assertion in this case.
If |Ix]| = ||k > |xlk_q = |x|, for somek > 1 there are ,1 € N,1> 2 finite subs of E; , E,, ... E;

and E;, E,, ... E{ With E; < E, < - Ejand E;, < E, < - < Ej, and ak € N so that

lIxIl = Ixlx

1
1
=@;mwm
1
1
s@meu
< sy m)Zu o]

E1<E2< <E

m)in 1G]
mZMM

< Xl < IxII
which implies the assertion.

Remark (1.2.4)[3]:
Q) The equation in Proposition (1.2.3). determines the norm ||-||, in the following sense: If

||-]| is a norm on C,, with ||e;||=1 for all i € N and with the property that

1
1
X|| = max{ |X]|,, su — E;(x
I ixlo, ~ sup @;mmm

E;<E,<---<E,
for all x€ Cy,, then it follows that ||-]|, and |||-|||, are equal. Indeed one easily shows by induction for
each m € IN and each xe C,, with #supp(x)=m that ||x || =|lIx ] .

(i) The equation in Proposition (1.2.3) is similar to the equation which defines Tsirelson’s Space
T [7, Example 2.e.1]. Recall that T is generated by anorm ||-||ron C,, satisfying

nm_mmms%Zwah

I<E;<--E; 151
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(where € < E; means that £ <minE,). Note that in the above equation the supremum is taken over all
“admissible collections” E; < E, < -+ < E; (meaning that £ < E,) while the norm on X is computed by
taking all collections E; < E, < --- < E,. This forces the unit vectors in T to be not subsymmetric,
unlike in X. The admissibility condition, on the other hand, is necessary in order to imply that T does not
containany l,, 1 < p < o, or C,, which was the purpose of its construction. We will show that X does
not contain any subspace isomorphic to l,, 1 < p < o, or C, and secondly that X is distortable, which

by [4] implies that it cannot contain a copy of 1;, either. Thus, in the case of X, the fact that X does not
1

contain a copy of 1; is caused by the factor 0

(replacing the constant factor % in T) which decreases to

zero for increasing 4.
In order to state the main result we define for | € N, 1 > 2, and x eX

1
1
x|y = su — Ei(x)|] ¢-
=1 sup m);n Gl

Foreach | € N, ||-||; is a norm on X and it follows that

s Il < Il < Il for x € X
Theorem (1.2.5)[3]: For each I€ N, each € > 0, and each infinite dimensional subspace Z of X there are
71, Z € ZWwith ||z,]|= ||z ||= 1 and in particular, ||-||;is an f(I)-distortion for each € N.
Proof. Let Z be an infinite dimensional subspace of X and € > 0. By passing to a further subspace and
by a standard perturbation argument we can assume that Z is generated by a block of (e;)
Choice of z; :
By Lemma (1.2.8) and Lemma (1.2.9) one finds (y;)}_,CY, withy; <y, < -+ <y, S0

that ||ly;ll =1 —¢,1 <i <1, and so that
i = 1
L = ey
i=1

S5

i=1 i=1

1 1
1 chooseE; = supp(y;)
> — i i 1 1
“21”1 = g(l)zlll)ﬁ”/ ZYI fori = i, ______ ']
1=

i=

Thus, choosing

it follows that

which shows the desired property of z;.
Choice of z,:

Letn e N so that%l < g and choose according to Lemma (1.2.8) normalized elementsx; < x, < -+ <
x,0f Z so that (x;)iL; is (1 + &/2)-equivalent to the unit basis of 1} and put

Zy = Divq Xi/||2%=1xi”'

Now letE,, ..., E; be finite subsets of N so that E; < E, <...< E;and so that

11



1
221l = 75 ) I
We can assume that E; is an interval inIN for each i 15_11 For each i € N there are at most two elements
j1,j2 € {1, ..., n}so that supp(xs) N E; # @ and supp(xs)/E; # @,s = 1,2. Putting fori=1,2,...,1
E =U {supp(xj):j < nand supp(xj) c Ei}
it follows that ||E;(z) Il < ||E(z2) || + % and, thus, from the fact that (E,(z,): i=1,2,....., 1) is a block of
a sequence which is (1 + &/2)-equivalent to the I7 unit basis, it follows that
1 1
lzall < 5+ %leﬁl(zall S AL D | < =

which verifies the desired property of z,.
Remark (1.2.7)[3]: Considering for ne N the space Ty (see for example [8]) which is the completion

of Cyo under the norm||-||(T_1/n), satisfying the equation
1

1
X = max{ |X|g, Su — E;
Il cra m o s =D Bl

for all x €Cyyand putting for x €T/

llam = sup D Eillyn
E wwEp 4

E. Odell [5] observed that [[|x|||(t,1/n) is @ c - n distortion of T; ;,, (where c is a universal constant).

In order to show Theorem (1.2.6) we will state the following three lemmas, and leave their proof
for the next section.
Lemma (1.2.8)[3]: For n € IN it follows that

n

e

_ n
L T iy
i=
For the statement of the next lemma we need the following notion. If Y is a Banach space with basis (y;)
and if 1 <p < oo we say that 1, is finitely block represented in Y if for any £ > 0 and any n€ N there is a
normalized block (z;)iL, of length n of (y;), which is (1 + €)-equivalent to the unit basis of 13 and we call

(z;) a block of (y;) if z; = }(=iki_1+1 ojy; fori=1,2,...and some 0 =kq < k; <---inINg and (o;) CR.

Proof. By induction we show for each neN that ||Y1_; e; If n=1the assertion is clear. Assume

|| -
f(n)’
that it is true for all fi< n, where n > 2. Then there is an 1€EN, 2 <1 < n, and there are finite subsets of N,
E; < E; <...< E,sothat
1 1

1
Zei =%; E; Zei

1=1 1=1
1
1 n;

=— ) — where n; = #E;, and Z n;=n
OPACOR ]
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1
| 1 n;

I 7

S —_
f(D f(?)
n

i) 1)
n

< —
f(n)
Since it is easy to see that ||Y}_; || = % the assertion follows.

[Property (iv) of Lemma (1.2.3)]

[Property (v)of Lemma (1.2.3)]

Lemma (1.2.9)[3]: |; is finitely block represented in each infinite block of (e;).

Proof . The statement of Lemma (1.2.9) will essentially follow from the Theorem of Krivine ([9] and
[10]). It says that for each basic sequence (yy) there iaa 1 <p < oo so that I, is finitely block represented
in (yi). Thus, we have to show that I, 1 <p < oo, is not finitely represented in any block basis of (e;).

This follows from the fact that for any 1 < p <o, any n€N and any block basis (x;){L, of (e;) we have
1

1 - 1 n nl-1/p
nl/lozXi “nl/Pf(n) ~ f(n)

=1

and from (iii).
Lemma (1.2.10)[3]: Let (y,) be a block basis of (e;) with the following property: There is a strictly
increasing sequence (k,) < N, a sequence (g,)<R, with lim,_,. €, = 0 and for each n a normalized

block basis ((n, i)):(:1 which is (1 +&,)-equivalent to the 13"-unit basis so that

kp
1 |
h=g2ﬂm)
=1

then it follows forall1 € N
1 1
lim lim ... lim Z Al = —.
n{—00Nn,—>0 nj—oo e ym g(l)

Proof. Lety, = %2213’(“' i), forn € Nand (y(n, i)):(:l(l + £,,)-equivalent to the £ unit basis.

For x,X € ¢y and m € N with x < e, < X we will show that

lim ||x + y, + ™| = lIx + e + %I, (1)
n—»>o00
where
(o] co
&M = Z X " €its, (i = Z Xi 'ei>
i=m+1 i=m+1

and s, € N is chosen big enough so that y,< §™.
This would, together with Lemma (1.2.7), imply the assertion of Lemma (1.2.9). Indeed, for 1 EN
it follows from (1) that

13



1
% = Z e; (Lemma (1.2.7))

i=1
n—-oo

1
= lim [[e; + z €i4n " [sub symmetry]
i=2

1
= lim lim yn1+2ei+n
i=2

nq;—00 n—>00

n;—00 n—>oom-—0oo

1
= lim lim lim |ly,, +e, + Z €i+m
i=3

1
= lim lim lim ||y, +yn, + 2 €i+m
i=3

Nn{—00 Ny—>00MmM—00

= lim lim ..... lim zym .

n{—0 ny;—>0 nl—)OO

In order to prove (1) we show first the following
Claim (1.2.10)[3]: For X,y € cqg, and neN, with x < e, <y and a, p € R{ it follows that
lIx + aeqll + lIBen + yll < max{llx + (a+ Beyll + llyll, IxIl + [[(e + Ble, + ylI}-
We show by induction for all k € Ny, all x,y € ¢y, and n € N, with #supp(x) +#supp(y) <k, and
x < e, <yandall qq, q;, a, p ER} that

qqllx + aty [ + q2l1Ben + i
< max{qq|[x + (a+ Beyll + q:llyll, q1 l[xIl + g2 l[(e + Bley + ylI3.

For k= 0 the assertion is trivial. Suppose it is true for somek> 0 and suppose X,y € ¢,
X < e, <y and #supp (x) + #supp(y) = k + 1. We distinguish between the following cases.
Case (i). lIx + aey |l = [x + aeplo and [|Be, +yll = [Ben +ylo
If ||x + ae, || = |x]o, then
q1llx + aty |l + q2llBen + yll = q4lIxIl + q2lIBen + vl
< qq[Ix[l + g2/l (ax + Blen + yll.
If ||Ben + yIl=1ylo we proceed similarly and if ||x + ae,|| = a, and ||Be, + yl|= B if w.l.o.g., q; < q3,
it follows that
q1llx + atyll + gz llBen + yll = qra+ q2 B < g (a+ B)
< qqlIxll + qzlleq(a + B) +yll.

Case (ii). ||x + aep|| # |x+ aeylo-

Thenwe find1>2 and E; < E, <...<E;sothat E;N supp(x) # @ fori=1,...,land
Q1 lIxll + qzlleq (e + B) +yll

14



1-1
=5 Z IE,GOll + 1B, G + aen)ll| + auliBes + i
( Y1
f(l) IE1(0) + (@ + Blenll + g llyll
= f(l)z IIE; GOl + or
(fg 10Ol + all e+ e +y

[By the induction hypothesis]

< max{q, [[x + (a + B)eyll + q2llyll, a1 1]l + g2 ll(a + Blen + ylI3,
which shows the assertion in this case.

In the case||Be, + yI| # |Ben + ylowe proceed like in Case (ii).

In order to show the equation (1) we first observe that for all k € Ny, |x + e, + X[ <
||x + yn + %™ (which easily follows by induction for each keN) and, thus, that liminf, ., ||x + y,, +
32(“)” > ||x + e, + X|| . Since every subsequence of (y,,) still satisfies.the assumptions of Lemma (1.2.9)
it is enough to show that

lim infl|x + y, + %] < llx + ey, + 1.

This inequality will be shown by induction for each k € N, and all x < e, <X with #supp(x)+#supp(¥) <
k. For k = 0 the assertion is trivial. We assume the assertion to be true for some k > 0 and we fix x, X
€ oo With x<e,, <X and #supp(x)+#supp(X) =k + 1

We consider the following three cases:
Case (i). ||[x + yn + X|| = |x+ y, + ¥|, for infinitely many n €N. Since
|x +yn +&™| < |x+y, + %o, neN,
the assertion follows.
Case (ii). For a subsequence (y,) of (y,) we have

I+ 3 + %l = - )Z”E M+ v+ 9|

wherel, 1 w0 and E,™ < E,™ < ... < Eln(“)are finite subsets of N. Since f(l,) — oo for n — oo it then
follows that
lim inf||x +y, + f((n)” =1<||x+e, +X|.
n—»>oo
Assume now that neither Case i nor Case ii occurs. By passing to a subsequence we can assume
Case (iii). There is an 1> 2 so that

lim | [|x +y, + @] -
n—-oo

(D) - Z”E x4y +xM) | =

where El(“) << El(n)are finite subsets of IN with the following properties:
(i) supp(x + yn + ™) n E;™ # 9,i <1, and supp(x + y, + x™)cul_, E;™

(i)  Thesetsupp(x) N E;™,i= 1,...,1does not depend on n (note that supp(x) <o), and we
denote it by E;™

15



(iii)  There are subsets e E;<E, < - - - < Ejof supp(%) and integers r,, so that supp(X™) NE;™ =
E,+r,for n €N, (we use the convention that @< E for any finite E cN),
(iv)  fori<land1<j<k, we have either supp(y (n, j))c E;™or supp(y (n,j)) N E™ = g.
Indeed, letting fori <1
( E™IifE™ n supp(y,) = @
F | Suppn) U E™\supp(y(n,s)
E, "= " < )
where s = min{3: supp(y(n,3)) n E;'"” # ¢}
L an + d t = max{5: supp(y(n,©)) n ;™ = ¢}
The value T_, [|E™ (x + y, + %™)|| differs fromz]_, | ™V +y, + 5™ | 24 . which
n
shows that (iv)) can be assumed.
(v) For i < 1the value

i < ko, supp(y(n, ) < B}
gi = lim
n—oo kn
exists.Now we distinguish between the following subcases.
Case (iii) ). Therearel; 1, € N, so that 1 <11 <l, -2<I, <] and

1, -1
+ ) [EPow]

i=11 +1

%+ yn + 0| = = Z IE@ || + [|E® e+ )

1
+[EPGa+xO + D, IECE)
i=I, +1
In this case it follows that

I+ v + 2] < 5 ZME @9 + Z e + Z IE; <“><>~<<n>>||]

111 112

S0 Z“E Dl +1+e, + Z IIE: ™ &)l

i=l,
[By (iv)) and the fact that (y(j, n))jzn1 is (1 + €,)-equivalent to the lln-unit basis]
<|x+epn+X|+e,,
Note that
[ +1+(0-1 +1) <]
which implies the assertion in this case.
Case (iii) 11). Thereisan 1 <1; <1 so that

1; -1

1
I+ i+ 5 = g5 | 2 IE 0N + 181, s+ v+ 5]
i=1

16



1
« Y e

i=l; +1
Then the assertion can be deduced from the induction hypothesis (note, that by a) and the fact that 1 > 2
we have that #supp||Ey, ™ (x + &™) ||< #supp(x + x™)).
Case (iii) 111)... There is an 1; <1 so that

”X +ynt X(n)” =
1 1, -1
= f(_l) Z ”EI(H)(X)” + ”Ell'(n)(x + yn)” + ||E11 +1(n)(yn + i(n))”
i=1

1
I ]
i=I; +2
We can assume that supp(x) # 0 and supp(X) # 0 (otherwise we are in case 3b). If ql, (as defined in v)
vanishes it follows that

lim [|E™ (x + yw)|| = [|EL, *®|-
Otherwise there is a sequence (j,,)=N with rllinolo jn = oo so that

Jn

1 .

E(yn) = k—z y(n,j)
n ]=1

and so that

)
llmk—n=ql1 > 0.

n—-oo n

Since the sequence (E;, () (yn)/qly )neN is asymptotically equal to the sequence (y,) with y, =
],inZi:‘;l y(n,j) (note that () satisfies the assumption of the lemma) we deduce from the induction

hypothesis for some infinite N c IN that

" " X ~
lim [|Ey, @ G+ vl = gl lim ||Eix(qT + 7a) )”
1

neN
' qll

X X
Ei (E) + q11 €m ||
Similarly we show for some infinite M c N, that
Illi—r>¥>lo||E11+1 (n)(yn + )~((n))” = ” q11+1 em t+ E11+1 ()N() ”

neN
From the claim at the beginning of the proof we deduce now that

lim inf||x +y, + )”((n)”
n—»>oo

<dql

1, -1
1
<{ ; IE@ G|l + [[En *6O + als em]|
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Hlale +en+ B @+ ) E®]

i=I; +2

<75 ZIIE GOl + Z IE®

i=ly +2
s max{[E5 GO + el + | By, @ L IEE 0Ol + [l em + i, GO

[ql; +qli4q =1]
< llx+em +XI,
which shows the assertion in this case and finishes the proof of the Lemma.
Corollary (1.2.11)[257]. i) (e;) is a 1-subsymmetric and 1-unconditional basis of X; i.e; for
any x, = >,i2,(x.)i - e; € X and strictly increasing sequence (n;) € N and any
(g)ien{—1,1} it follows that
Z(Xr)l el

S1 (Xr)i " €

1) For x. € X it follows that

€+2
1
x|l = max{|xr|o, pe e e 1>i(xr)||}
i=1

r<r+i1<---<(r—1)e42
(Where [x,lo = supnen|(x)nl for T2, (x,); - &; € X)
Proof. Part (i) follows from the fact that (e;) is a 1-unconditional and 1-subsymmetric basis
of the completion of cy, with respect to |-|for any k € Ny, which can be verified by
induction for every k eN. Since c, is dense in X it is enough to show the equation in (ii) for

an x, € coo.If [|x:]| = |x.|oit follows for all € >0 and finite subsets r, r+ 1, ...(r — 1)4, 0f N
withr<r+1<--<(r—1)¢»
€+2 €+2
e = Dl = T2 +2)Z|(r DGl < B Il < Il
i=1
which implies the assertion in this case.
I %0l = %]k > |Xelkeq = |%c|o for some k = 1 there are e + 2,1 € N, e > 0 finite

subsof N,r,r+1,...(r—1)c4pand f, r+ 1, ..., fjwith r<r+1 < - < (r—1)4pand
r<f+1<--.<fj,and ak € N so that

1%l = 1%¢ |k
€+2 €+2

1 1
= f(e n Z)ZKF — 1)i(Xr)|k—1 < m;”(r — 1)i(Xr)”

1
< sup ~2|(f—1>i(xr)||
2<1 f(1) -
F<F+1<-<(F-1)4 -

18



1
1 ~

1
1O,
=@;|(r— 1)l

=< |Xr|k-i-1 < ”Xr”a
which implies the assertion.
Corollary (1.2.12)[257]. For each € + 2 €N, each £>0, and each infinite dimensional

subspace Z of X there are Xry3, Zrya € Z With ||x,.43l1= IXr42l|=1and ||Xr43lle42 = 1 — € and

1+

IxXrsalless < —— o In particular, ||-||c;2is an f(e + 2)- small distortion for each € + 2 € N.

Proof.(see [3]). Let Z be an infinite dimensional subspace of X and € > 0. By passing to a
further subspace and by a standard perturbation argument we can assume that Z is generated
by a block of (e;)
Choice of x,., 3 :

By Corollary (1.2.14) and Corollary (1.2.15) one finds ((x,41))f3cY, with x,.,, <
Xry3 < o+ < (Xpp1)erz SO that || CE iy ))||=1—e1<i<e+2 andso

that|| 262 (x4 1)i||Xr41 < ———=.Thus, choosing

€+
g(e+2)
€+2 €+2
Xr+3 = z(xr+1)i/ Z(Xr+1)i
€+2

Z(Xr+1)i

i=1

It follows that

Iraalless = ooy z)zu(xrﬂ) [ /

Which shows the desired property of x,, 3
Choice of x,.,4:

Let neN so that ——
elements X, 41 < Xppp < -+ < (Xp)n0f Z so that ((x.);)iz; is (1 + &/2)-equivalent to the unit
€+2

basis of 1} and put
n
Xr44 = Z(Xr)i/ Z(Xr)i .
i=1 i=1

Now let r,..., (r — 1), be finite subsets of N so that
r<r+1<...<(r—1)6+2

And SO that ”Xr+4”e+2 =

[choose(xr+1)i = supp(Xr4+1)i
fori=1,...... ,E+ 2

4(”2) < e and choose according to Lemma(1.2.8) normalized

ST — DG

We can assume that (r — 1); is an interval in IN for each i < e + 2.
For each i EN there are at most two elements jy,j, € {1,...,n}so that supp(X;)js N

(r—1); # @ and supp(x,)js/(r —1); # @, s = 1,2. Putting fori = 1,2.., (e +2)(F — 1);=U
{supp(r — 1);:j < nand supp(x,); € (r — 1)1} it follows that ||(r — 1); Xr4 )|l <
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(T — 1) Xrya) |l + % and, thus, from the fact that ((f — 1);(Xr44): 1=1,2,.....,e+ 2) isa
block of a sequence which is (1 + &/2)-equivalent to the 17 unit basis, it follows that

€+2
€+2 5 e 1+¢/2
realless < 5=+ gy DN = Dea el S5+ g Z@ Ders (Krva)
i=1
L1
fe+2)

Which verifies the desired property of X, 4.
Corollary (1.2.13)[257]. For n €IN it follows that

n
n
For the statement of the next lemma we need the following notion. If Y is a Banach space
with basis (x.41); and if e > 0 we say that 1., is finitely block represented in Y if for any €
> 0 and any n € N there is a normalized block ((x,4+2)i)ix; of length n of (x.,1);,which is (1
+ g)-equivalent to the unit basis of 12, ; and we call (x,,,); a block of (x;41); If Xr42)i =

Z};’ki_lﬂ(a )i(Xr42)j fori=1,2,...and some 0=k, < k; < ---inINy and (a"); cR.
Proof

By induction we show for each n €N that [[X{2}e;|| = 7. 1f n = 1 the assertion is

clear. Assume that it is true for all @ < n, where n > 2. Then thereisan e+ 2 €N, 0 <e <
n — 2, and there are finite subsets of N, r<r+1 < :-- < (r — 1), SO that

zei =ﬁz (r—1); (; ei)

f(e + Z)Z f(n;)

€+2

[where n; = (r — 1);,and Z n; = nj

€+2
€+ 2 1 n;

~fe+2) __1e+z'f(ni)

n
€+ 2 ¥
2 _ [Property (iv) of Corollary (1.2.13) ]

f(e t2) f(e+2)

n

" fe+2) f(%)

n
< f(_) [Property(v) of Corollary (1.2.11)]
€+2

Since it is easy to see that ||[X{7e; the assertion follows.

[
Corollary (1.2.14)[257]. ]; is finitely block represented in each infinite block of (e;).

Proof .
The statement of Lemma(1.2.8) will essentially follow from the Theorem of Krivine
([3] and [4]). It says that for each basic sequence (x+1)n there is e > 0 so that 1., is finitely
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block represented in (x,41);.Thus, we have to show that I.,,, € > 0 is not finitely represented
in any block basis of (e;). This follows from the fact that for any 0 < € < o0, any neN and
any block basis ((x;);j)i=, of (e;) we have

1 n
WZ(Xr)i
i=1
and from (iii).

Corollary (1.2.15)[257]. Let (x+4+1)n be a block basis of (e;) with the following property:
There is a strictly increasing sequence (k,)<N, a sequence (¢,)<R, with lim,_,, &, =0

n nl-1/e+1

> L =
~ nl/e+1f(n) f(n)

. . Kp L i
and for each n a normalized block basis (xr+1(n, i))i=1 which is (1 +&,)-equivalent to thel{-
unit basis so that

kn
1
(Xr+1)n = k_z Xr+1(n: i).
M=

then it follows for all e + 2 € N
€+2

z(xr+1)ni

i=1

€+ 2

n;—>oon,;—>0o n€+2—)00

Proof .
Kn i
Let (Xp41)n = kiZ};“l Xr+1(n,i), forn € N and (Xr+1(n, i))i=1(1 + £,)-equivalent to the

111‘n unit basis. For x., (x;) € cgo and m € N with x,. < e, < (x,) we will show that

(2) rlll_)nc}o”Xr + (Xpg1)n + (Xr)(n)” = ”Xr +em+ (Xr)”;
where
)™ = }S(&%-qﬂn<&3=:§§<nm-q)

and s, €N is chosen big enough so that (x,41)n< (x,)™.
This would, together with Lemma 4, imply the assertion of Corollary(1.2.15) .

Indeed, for € + 2 €N it follows from (2) that
€e+2

e+ 2
- €; Corollary (1.2.13
e T 2;1 ( y (1.2.13))
1=
e+2
= lim ||eq + 2 €itn " [sub symmetry]
n—oo
i=2
e+2
= lim lim (Xr+1)n1 + Z €i+n
nl—)OO n—>oo
i=2
€+2
= lim lim lim (XrH)n1 +e, + Z €itm
nl—)OO n—-oom—0oo
i=3

21



€e+2

(Xr+1)n1 + (Xr+1)n1 + 2 €i+m
i=3

= lim lim lim

nq—00 Ny —0om—co

€+2
= lim lim ..... lim E X
14200 Ny—>00 Neyp—>00 ( r+1)r11
i=3

In order to prove (2) we show first the following
Claim. For X, X;41 € Cgo, and neN, with x. < e, < x,,, and o, € R{ it follows that
”Xr + aren” + “Ben + Xr+1” =
max{|[x; + (" + Blen|l + Ixrs1ll, X[l + | (" + Blen + Xpiq [}
We show by induction for all k € Ny, all X, X411 € cgg, and n € N, with #supp(x,)
+#supp(Xr4+1) <k, and x, < e, < x4, and all q4, q5, o, €R} that
Aqllxr + a"toll + q2l[Ben + xriq|l
< max{qq||x; + (" + Benll + qzl[xr+1ll, aalIxcll + g2 [ (" + Blen + Xr44]l3-
For k= 0 the assertion is trivial. Suppose it is true for some k>0 and suppose Xy, Xr4+1 € Coo»
Xr<en< Xr41 and #supp (x,) + #supp(x,41) =k+1. We distinguish between the following
cases.
Case (i). llxy + a’epll = |x; + a"enlo and [|Ben + Xr4all = [Ben + Xr41lo
If [|x, + aey || =[x¢]0, then
qllxr + a'eqll + qzllBen + Xrpqll = qullxcll + q2llBen + xpsqll
< qqlIxcll + gzllen (a0 + B) + Xriq |l
If [|Bey + Xpriql=IXr11loWe proceed similarly and if ||x, + ofe, || = oF, and ||Be,, + X,+11|= B
,and if w.l.0.g., q; < q,, it follows that
qallxr + o"enll + qzlIBen + Xppall = q10" + g2 B < gz (" + B)
< qqllIxcll + gzllen (o + B) + Xriql-
Case (ii). ||x, + eyl # |x + a"eplo-
Thenwefinde=>0andr<r+1<...<(r—1)¢, sothat (r—1); nsupp (x;)
=@fori=1, .. €+ 2and

q1”Xr + O(ren” + qz“Ben + X1'+1”
e+1

DG = DGO+ 11 = Desn G + enll| + allBen + xpaall
1e+1

d1
smz I (=1

T 1 (r = Derz () + (@ + Bleqll + dzllxpql

4
fle+2)

f(e+2)
+ or
o 10 = Dz GOl + a2l (@ + Blen + Xprq |l

[By the induction hypothesis]

=< rnax{q1||xr + (a" + B)en” + q2”Xr+1”: Q1||Xr|| + QZ”(OCF + B)en + Xr+1”}:
which shows the assertion in this case.
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In the case||Be, + Xr411l # |Ben + Xr41|oWe proceed like in Case (ii).
In order to show the equation (2) we first observe that for all k € N, |xr +eqm +

()|, < % + Gre1dn + ™| (which easily follows by induction for each keN) and,

thus, that lim infy, o |[x; + Krr1)n + G @|| = ||%: + em + 1)|| - Since every subsequence
of ((x,41)n) still satisfies. the assumptions of Corollary (1.2.15) it is enough to show that
lirrlrlglf”xr + Kprdn + GO @ < % + em + )|

This inequality will be shown by induction for each k € N, and all x, < e, <(x,) with
#supp(x,)+#supp((x,)) < k. For k = 0 the assertion is trivial. We assume the assertion to be
true for some k > 0 and we fix x,,(X,) € Coo With x,<e,,<(x,) and #supp(x,)+#supp((x,))
=k+1

We consider the following three cases:
Case (i). [|xr + (redn + GO = [%r + (Krs1)n + (%), for infinitely many n €N. Since
|xr + Xr41)n +&j(n)|0 < |xr + Kr41)n +®|0, neN ,the assertion follows.

Case (ii). For a subsequence (X,41),0f (X141)y We have

In
”Xr + (Xr’-l-l)n +@” = %Z || (r— 1)i(n)(xr + (Xr,+1)n +’(—X\r—)’) ||
=1

where I,toand r™ < (r+ 1™ < - < (r — 1)l(:)are finite subsets of IN. Since f(l,)— o
for n — oo it then follows that
lirrlrlﬂi)glf”xr + Krydn + GO®|| =1 < [|x + en + Go)||-

Assume now that neither Case (i) nor Case (ii) occurs. By passing to a subsequence we can
assume
Case (iii). There is an € > 0 so that

€+2
_— 1 S
. ( _ _ 1y —
gggo<llxr+(xr+1)n+(xr) "It _§_1||(r D (xr+(xr+1)n+(xr><n>>||>—0

where r™ < ... < ((r — 1) 4, )™are finite subsets of IN with the following properties:
SUp(xr + Ky Dn + X)) N r = D™ = 0, i < e+ 2, and supp(x; + (Xpp1)n +
g™)cus? (r— 1™

(ii) The set supp(x,)N(r — 1)1(“),1 = 1,...,€ + 2 does not depend on n (note that supp(x,) <o),

and we denote it by ((r — 1);)™

(i) There are subsets <t + 1< - - - < (F — 1),,Supp(X;) and integers r, so that supp

() @) N(r— D™ = (F — 1);+r,for n €N, (we use the convention that @ < r — 1 for any
finite (r — 1)cN),

(iv) fori < e+ 2 and I<j< k, we have either supp(x;+,(n,j)) c (r — 1)™or

supp(xr41(0,j)) N (r — D™ = o.
Indeed, lettingfori<e+ 2
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(= Dif ¢ =D N supplyn) = 9

SUPP (xr41(n,5) U (r = D™ /supp(xrs1(n, )
where s = min{”s’: supp(Xp1(0,3)) N (r— D™ = Q)}
lan+dt= max{"s’: supp(xr41(n, D) N (r— )i(n) * Q)}

The value}£*? || (r—1);™ &, + Gerdn +5™) || differs from
€e+2

Z | = D (e + Gradn + ) |

at most by 2(e + 2 )/k,which shows that iv) can be assumed.
V) Fori < e + 2 the value

((F— Dey)™ =4

~ {i=knsupp@ra () € r = DM}
q; = lim
n—,oo kn
exists. Now we distinguish between the following subcases.
Case (iii)a. Therearel; I, € N,sothat 1 <1; <l —2<1, <e+2 and|[x; + Kpy1)n +

T = s [ 2| e = DTG || + || ¢ = DI e+ Gerd) ||+ 2 -

D G| + [ = DI (Gradn + D) || + 222 4[| @ = DI & D[] 1n this
case it follows that
”Xr + (Xr41)n + Xr(n)”
|

11
1
§ (n)
< ——m— —1).
T fle+2) - ” (r =1 Cer)
€+2

1>
D o= DRG] + D= DO |

i= 11 i=l,
Z||(r DM x| + 1+sn+Z||(r 1>§“)(3<7<“>)||]

i= 12
[By iv) and the fact that (xrﬂ(j,n))j:“1 is (1+g,)-equivalent to the 1™ -unit basis] <||x, +

em + X|| + &€, , Note that [l; + 2 <1, ] which implies the assertion in this case.
Case (iii)b. There isan 1 <1; <€ + 2 so that

% + i dn + 5|
1 —

= fcr2) _1|_ ) 2 || (r— 1)i(n) (xr)

Y e-neeo|

+ || (r— 1)1(11)(Xr + (Xr41)n + Xr(n)) ||
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Then the assertion can be deduced from the induction hypothesis (note, that by i) and the
fact that € = 0 we have that #supp ” (r— 1)1(I‘) (xr + ™) ” < #supp(x, + X ™).
Case (iii)c. Thereisan 1; < € + 2 so that

% + s + |

-1
1
- fle+ 2) Z || (r— l)i(n)(xr) | + || (r— 1)1(f)(xr + (Xr+1)n)||
i=1
€+2
(n) _
+ |((r-—-1)11+1) ? ((Xr+1)n +—Xr(n))||—k :E: ||(r 1)(n)( (n))”
i=l, +2
We can assume that supp(x,) # 0 and supp(X;) # 0 (otherwise we are in case (iii)b). If
qu, (as defined in €)) vanishes it follows that lim, || (= D™ (xr + Kraa)n) ” _ || (r —

1)?; (xr)

|. Otherwise there is a sequence (j,)=N with lim j,, = oo so that
n—>oo

Jn
) 1 2 ‘ :
(r— 1)11 (Xr+1)n = K Xr+1(n:])
n =
]_
and so that

llm]——ql1 > 0.

n-oo kK

Since the sequence ((r — 1)1“) Xr+1)n/4a1, )nENis asymptotically equal to the sequence

KD With(X 1) = ]ln }glxrﬂ(n,j). (note that((X,+1)n) satisfies the assumption of the

lemma) we deduce from the induction hypothesis for some infinite NcIN that

Jim [| = DE G + Geradn) ||
X
e
qdi1,

neN

= qy, lim [|(r = D (@), + D))l =ay,

‘((r—l)) r(q11)+qllem

Similarly we show for some infinite McN, that
Jim, [ &= D (Gerdn + @®)||

neN

= ” d1i41 €m + (T - 1)11+1 (Xr) ”
From the claim at the beginning of the proof we deduce now that
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lim ||x; + (%pp1)n + 5|
n—>oo

-1
1
=lfer 2 2 1= DF Gl + || = DI ) + au, em|
i=1
€+2
Flayatent G-, @[+ D I E- DI
=1, +2

1, -1
1

< erD IZ; |(r = DF |
€e+2

+ D IE- D&

+max {||(r = DI 6) + e | + | G = Dipn & || || 6 = DF )

+lem+ F— Dy, & II}] la1,+1 +ai, = 1] < Ixr +em + %,

which shows the assertion in this case and finishes the proof of the Corollary
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