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Chapter 1 

Distortable Banach Space with Operation 

In fact, we make use of just one consequence of the axiom    
shown by Jensen, which is widely used 

by mathematical logicians. We construct a “Tsirelson like Banach space” which is arbitrarily distortable. 

Section (1.1): Few Operations  in Banach Spaces : 

Let i, j, be ordinals,   the first infinite ordinal,    the first uncountable ordinal. Let           be 

natural numbers, and let a,b,c,d be reals, and       elements of a (vector, or norm, or Banach space). 

Theorem (1.1.1)[1]: Assume the axiom V = L holds. Then there is a Banach space  ̅ , and  an  element  

of the  space     (i<  ) such  that:  

(i) span{  : i <  } is dense in    ̅, ‖  ‖  = 1, and  there are projections    (  <  ) of norm  1 of    ̅,  into 

itself,       ) = 0 for i         )  =   , for i    .So the density character  of     ̅is   ,  and  it has  a 

basis  {   : i <   }. 

(ii) If T: B  B is (linear, bounded) operator, then for some real a, T  =a    for all but countably many i 's. 

So T-aI is  an  operator  with  a separable  range. 

Stage (1.1.2)[1]: Let {  : i <  } generate freely  a  vector  space  H  over Q  (the rationals).  For  a set  I  

of ordinals  let      and  also  H(I) denote span{  : i   I} (= the subvector  space spanned  by   ,   ). As 

an ordinal   is {j : j <  },      is the  vector  space  spanned  by {    : j <   }. Let   
 (' (m <𝜔, <   1) be 

finite subsets of  , increasing with m, and       
  For subsets                  〈          〉  is the 

span  of            We usually  omit  H  and  write   instead  of {   }. 

Stage  (1.1.3)[1]: A subset  of     is called  closed  if  for each  limit ordinal        which 

satisfies (  j < i) (  ) (          ) (      ) belong  to I. I is unbounded if (     ) (   

   )  (         )  A set of     is called  stationary  if  it has a non-empty intersection with every  

closed  unbounded subset  of    . 

Stage (1.1.4)[1]:  By Jensen  [2], if V  = L then there are sets     functions     (i <   ) and     {0, 1} 

such  that 

(i)     is a two-place  function  from      into  the  reals,    a subset  of  i. 

(ii) For every  subset  D  of      and  two-place  function  from  H into  the reels, and     {0, 1}, { i <    

:          ⁄    ,       } is a stationary subset of   . From now on    are as above.   

Stage (1.1.5)[1]: In a norm space  Z, for       , we say z is good over    if (    ) ‖   ‖   

‖ ‖ ‖ ‖     ‖ ‖     

If                 we say (       ) is good over        ‖  ‖    and for any reals      and  

x    

‖∑    

 

   

  ‖  ‖∑    

 

   

‖  ‖ ‖   

Note that  

(i)      is good over    iff     is good over X;  

(ii) if (       ) is good over  X  then  so is every  sequence from            

 



 

2 
 

Stage (1.1.6)[1]: Suppose Y,Z are norm spaces, Y   Z  = X, and let  W be a vector space such that  

Y, Z  are subspaces of it, and  W = Y + Z  (as vector spaces). We can define a norm on W which 

extends the norms on Y and Z, and get a norm space, as follows: 

 ‖ ‖     {‖ ‖  ‖ ‖                    }   

In this case the unit ball of W is the convex hull of the unit balls of Y and Z. We call this    -

amalgamation. Note that 

(i)  if  y  Y  is good  over  X,it will be good  over  Z; and 

(ii)  if  also  z Z is good  over  X  then  ‖   ‖ = 2. 

Stage (1.1.7)[1]: Suppose that in stage (1.1.6)Y= 〈         〉   〈         〉 (       ),           

are good over X. Then   there is another way to define a norm on W extending the norms on Y 

and Z: for  x  X 

‖∑     ∑      

 

   

 

   

‖     ,‖∑     

 

   

 ‖  ‖∑     

 

   

 ‖- 

We call this   -amalgamation (unlike   -amalgamation, it apparently does not depend only on 

Y and Z, but also on span {       },  and span {       }.  

Note that 

(i) (       ),   is good over  Y, 

(ii)  for              , is good  over  X and in particular ‖     ‖     

(iii)                                       〈         〉 〈              〉 in the above-mentioned way 

and  then  amalgamate  ́  〈              〉  〈 ́          〉 〈 ́               〉  we get the same  

norm. 

Stage (1.1.8)[1]: We shall define by induction on      norm spaces   , increasing with    such  that 
    as a+ vector space is    and  for some     , infinite  sets      and   elements    

   
     (for 

     when    = 0, and     
                  when    =1,  such that (not distinguishing  

strictly between subspaces of    and of    ) 

(i)   if                      , a  natural number,        
 , is defined, 

then for  infinitely   many         

             ( ́) the amalgamation of  the  triple     
  ,〈 (  

 )   
 〉 〈 (  

 )         〉 

                   is by  the    -amalgamation, i.e.,  for  x      
   

‖   
  ∑       

 

   

‖     ,‖   
   ‖ ‖∑       

 

   

‖-   

             (  ́) the amalgamation of the triple 〈 (  
 )   

 〉 〈 (  
 )   

    
 〉  〈 (  

 )   
          〉 

              is by  the    -amalgamation. So  in  particular 

(ii)      is good over     , and  if               then  (        )is good over     .We        

also demand 

(iii)  if,                      , k a natural number,    = 1, then  for infinitely  

many m   the  amalgamation of  the  triple 

 (  
 ) 〈 (  

 )     
              

 〉 〈 (  
 )   

          〉 
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                  Is by    amalgamaon for  i limit   =      for  i < ,‖∑        ‖        |  |  

Stage (1.1.9)[1]: Now we do the induction step, so we suppose the norm on    is defined,    

  and we call the norm space    In this stage we shall define   
   

  (m  ) and    , and  in  the  

next  stage  we  shall  define  the  norm  on      . Remember that     is a two place function from  

   to R given by the Jensen diamond (see Stage (1.1.3)). 

If there  is a  (bounded) operator  T  on     ̅̅ ̅ such  that  for  every  x, y,    ,   (x,y)=‖   

 ‖, it is unique,  and  we call it   . 

If    is not  defined  we do  not  define   ,  
 ,   

   So suppose    is defined.  

(i) If Y is a Banach space, T an operator on Y, H Y   a subspace, then let C(H,T,Y) = 

sup{d(Ty,〈   〉        good over H}, where  d(     ) is the distance between    

and    i.e., inf{‖    ‖:    }, and let 

             {             〈   〉            } 

                  and y is good over H. 

                   Note that c(H,T,Y) ‖ ‖ and it decreases  with  H. 

                    Now if      , choose    
   

  in   such  that: 

(ii) ( ́)      
      

    
         

        ̅    ⁄ , 

                  (  ́ )   
 is good  over  H(  

  , 

                  (   ́  )     
   (  

 )     ⁄      
        ̅    ⁄ ,  

                  ( ́v)   ‖   
    

 ‖     ⁄  

               Clearly    ⁄      
        ̅ is a real number of absolute value   ‖ ‖, hence there is an                     

infinite  set     such  that 

(iii) for       in   ,   ⁄  |   ⁄ (     
        ̅ )     ⁄       

        ̅  |.   

(iv) If      choose  a p = p(m,i)<   and      
  {        

          } such  that: 

(v)  for every       
  , 

‖∑        
 

    

   

  ‖     ‖       
   ‖ 

         (notice  each       
 is good  over     

  ), (ii) if  among  the  p 's satisfying (i) there  is a maximal    

one,  this will be our  p; otherwise  choose  p = m. 

Stage (1.1.10)[1]:  Now we have to define the norm on     (after we have defined  it on    ),  and  

define,  if  necessary,    
    

  (   ) or       
   

We have to satisfy the requirements (i) and (ii) from Stage (1.1.8); when      they are 

satisfied by the induction hypothesis. Clearly there are only countably many appropriate 

requirements, so we can find a list of them of length w, each appearing infinitely many  times. 

Let {  : n <  } be a list of   {     }. Now we define by induction  on n <   

a finite set   i , and a norm space   
  which as a vector space is      { } (we shall  not  

distinguish)  such  that 

(i)       , 

(ii)     
  is a subspace  of    

    

(iii)           
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(iv) in   
      is good  over  H(  ). 

For  n = 0 let    be the  empty  set,  and  the  norm    
  is    ‖   ‖  | |. 

Suppose we have defined    
  for  n,  and   let   us   define    

   .   Let 〈               〉 be the n-th  in 

the list of cases of (i)and (ii) from Stage (1.1.8). Assume for now that       (the case   = 1 is 

just simpler). If{           }   , we let         {  } and we define the norm of   
   by     

amalgamation of H(  ),   
 ,H(     ),)  (see Stage (1.1.7). Now if {           }   , let      

{         } (as       · necessarily {           } {         } By the induction  hypothesis,  (i) of 

Stage (1.1.9) holds for       ··    hence there is an m      satisfying 

(i)        
  (possible   as  ( i)  says  "for   infinitely  many   m 's" and         

    
  ; increase  with 

m,  and     is finite),  

(ii) the amalgamation of the  triple   (  
 ) 〈 (  

 )   
 〉 〈 (  

 )    
  〉is an   -amalgamation. 

(iii) the  amalgamation of the  triple 

 (  
 ) 〈 (  

 )   
    

 〉 〈 (  
 )   

    
     

  〉 

is an   -amalgamation. We choose a finite      such that                  and   
    

  

        (this is trivial).  Now we define   
    by successive amalgamation. 

( ) We make an    -amalgamation of the triple         
         

  :  , is good  (in it) over 

       
   by (a) of Stage (1.1.6).        

  { }  (defined in   , and 〈 (     
 )   

 〉  (possible 

as   is good over  (     
 ) by ( ) and   

   is good  over        
  ,  by the choice  of m  to 

satisfy  (ii) and  (i) of Stage (1.1.7)). By (i) of Stage (1.1.7),     is good  over 〈  (     
 )   

 〉 in the  

amalgamated space  we have  just  defined. 

( )  We make  the    -amalgamation〈 (     
 )   

 〉          〈 (     
  { })   

 〉  

(with the  norm  defined in    and call it   
   By (i) of Stage (1.1.7)    is good  over 

             
    

It is easy  to check  that  (i) and  (ii) of (a) hold  for  ,         and  m  (by (iii) of Stage 

(1.1.7). 

So   
  is defined for every i, and let     =⋃      . 

Clearly     as a vector space is     ( a s         ). Each requirement  ,         

  appears in our  list  infinitely   many  times  so  for  every  n big  enough {        }    so 

clearly  (i)  holds  for  i + 1. 

Stage (1.1.11)[1]: We  have  defined     for     .  Let         
   (so as a vector space it is H), 

and  ̅  its completion, is the  Banach space  which  exemplifies our theorem. 

So  let  T  be an  operator on  Z and  we shall  prove it is as  mentioned in  the theorem, 

i.e.,  for  some  a, for  every  large  enough i, T   = a    We  define  a two place  function f from   

H  into  R : 

       ‖    ‖ 

By Stage (1.1.3)  

  {        ⁄      } 

is a stationary subset of     (see Stage(1.1.3)). 
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Stage (1.1.12)[1]: For  each  finite-dimensional subspace G of Z  and      there is   
  good over G 

such that 

     
      

          ̅      ⁄       
         ⁄       ̅    ⁄   

For each      there is          such  that        ̅     Now for  each       , {       

            
                                         }  is countable, hence      

           . Now    {                  } is a 

closed unbounded subset  of    (closed-trivially by  the  definition, unbounded because      

increases with  , so  if                                  and      is in this set). As I is 

stationary (see Stage (1.1.3) for definition, and Stage (1.1.11) for the fact) there is       (I from 

Stage (1.1.11)). Clearly T maps    ̅̅ ̅̅  into   hence it maps    
̅̅ ̅into    

̅̅ ̅  and 

 ( (  
 )    ̅)   ( (  

 )      
̅̅̅) 

   ⁄ ( (  
 )    ̅)     ⁄ ( (  

 )      
̅̅̅̅ ) 

(                        ⁄ )   

Stage (1.1.13)[1]: Now we shall prove that for every     ,      〈     〉 (     as chosen  at the  end  

of Stage  (1.1.12)[2],  and  will remain  fixed). 

For this it suffices to prove that for any real     , (    〈 (  
 )   〉)       for some 

   . So  let      be  given.   Now        is  in  the  closure   of  Z  = span {       } so for 

some         and      , and distinct         , (for         

(i) ‖    ∑              ‖     

So we can choose     , and            .      such that 

 {                }    {       }  

Now by ( i) (from Stage (1.1.8), for infinitely many     , i and  ii from (i) hold (for 

our            ). So we can choose some m for which {              }      
 ; and   ⁄    

.Clearly 

(ii) ∑                   
  {       }  

and by I of (i)  and Stage (1.1.7) 

(iii)    +  
 is good  over    

   Now  we  shall  write  a series of inequalities which will prove  

      〈 (  
 )   〉     ; for notational convenience let x range over  (  

 )  and  a,b   range  over  

R. 

(iv)  ( (  
 )      ̅)                                                   [                          ] 

 c( (  
 )    ̅)                                                  [                                ] 

             (     
 ) 〈  

       
 〉    

   
   

‖  (     
 )   (     

 )    ‖   [   ‖      ‖       
      

      

                                       ‖    
     

 ‖    ⁄                          

         (1.1.9) 

   
   

‖     
         

   ‖    ⁄                                  [              ́  ] 

   
        

(‖  
     

    (   
    )‖                                                                        
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 ‖       (    
    )‖     ⁄   )     

         

(‖  
     

     
    ‖   

 ‖          
    ‖    ⁄   )                                                                    

   
        

‖  
     

     
    ‖     

        

‖          
    ‖    ⁄           

                   [   ‖   
    

 ‖    ⁄  ‖      ‖   ] 

            
      

‖   
     

     
    ‖    ⁄     

      

‖           
    ‖      ⁄   

                                                                                                       [                 ] 

 (   
  〈  

 〉)     
     

‖           
   ‖    ⁄                            

                                                           [by  (ii) of stage (1.1.9)] 

 ( (  
 )      ̅)    ⁄     

     
‖           

   ‖    ⁄               

Comparing the first and last elements we see  that 

(v)          ‖           
   ‖    ⁄      

Now by the choic of   

(vi)   ⁄     

Combining we get        〈  
      〉        〈  

    
 〉    ⁄         

Stage (1.1.14)[1]: For each     we define an operator        ̅          for 

              =              

it is easy  to check  that: 

(i)     is well defined  and  is a projection  with  norm  1 onto      

(ii) for                    

(iii) if          limit,  then  for sorne    ,        . 

Stage (1.1.15)[1]: Let     be as in Stage (1.1.13). So for every         〈 ̅    〉             

  
 ,   

    
̅̅ ̅.  

 We  shall  prove  that  for  some          ,  and  for  every      ,    
    . Suppose 

not, so   ={         ‖  
 ‖   } uncountable. For each     choose aminimal     such that  

      
     (it exists as      

     
 ,   because   

    
̅̅ ̅   

By  (iii)  of  Stage (1.1.14)     is  a  successor  ordinal, so  for  some          

{           }is  uncountable. So for each       , for some real   
           

     
     So 

for some           {    }  and s    {        
   } is uncountable. So for each      , 

        
       

     

By Stage (1.1.3),  ́  {                          ⁄ }   D;} is a stationary subset  of    Let 

  {       is limite     and       is unbounded below      
                                        

     {        
        }      

                                     }                                              

 

As in Stage (1.1.12), we can prove A is closed and unbounded so        , and choose  in  it  an 

element  . Now for infinitely many    , p(m,     . Otherwise choose      such that 

(i)               
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and choose         .By (ii) of Stage(1.1.9), for some          
    

〈    
     〉 〈    

       
         

 〉 have   -amalgamation. Now checking (ii) of Stage (1.1.9), we 

see that    , was an appropriate candidate for being             
  hence       , contradiction. 

So for         
  {       } hence         

  {        }. Now for  every m, (see(ii) 

of stage (1.1.8)  

‖ ∑     
 

      

   

‖     
 

‖    
 ‖     

‖ ( ∑     
  

      

   

)‖  ‖     ( ∑     
  

      

   

)‖ 

[   ‖    ‖                      ] 

                          ‖ ∑          
 

      

   

‖ 

[             
  {        }]  

                        ∑ ‖         
 ‖

      

   

 

               

        

Hence ‖ ‖                  , as a > 0, m (m < w) arbitrarily large, we get a 

contradiction. 

Stage (1.1.16)[1]:  (we  omit O as a stage). We now want to show that          is eventually 

constant. Otherwise there are distinct reals      such that 

(i)  for      , 2 and       and     there is           and |     |      w.l.o.g.    

 ,    , (otherwise, we look  at  the  operator   (     )          ⁄  -the identity operator). 

Let           be    arbitrary,        ⁄   Choose              |  |    |    |  

   By  ( i)  of Stage(1.1.8)[2] , for  k = 1,   =            we  can  find               such  

that  (i)  and  (ii) of (a)  holds  for   m  and  for  m (1)  and 

     ⁄                       

We now try to get a contradiction to the choice of   
 . We repeat Stage (1.1.13) with    for     

so (ii), (iii), (iv) holds ((i) is trivialized-we know better), but we want to deviate in the middle of 

(iv):  

 ( (  
 )     ̅)     

        

(‖  
     

     
    ‖ 

                                                             ‖           
    ‖      ⁄  

So for some a, b,    ,    we get this infimum up to 1/m, so 

 ( (  
 )      ̅)    ⁄  ‖  

     
     

    ‖  ‖           
    ‖   

[   ‖   
    

 ‖     ⁄               ]  
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‖   
         

    ‖  ‖           
    ‖     ⁄           [             ] 

‖   
         

    ‖     {‖           ‖ ‖    
    ‖}    ⁄          

[         
                  (  

 )] 

 ‖   
         

    ‖     {|    | | |}    ⁄                                  

  (   
  〈 (  

 )   
 〉)     {|    | | |}    ⁄                                         

  ( (  
 )      

̅̅ ̅)     {|    | | |}    ⁄                                                 

We can conclude that 

(ii)  | | |    |     , 

(iii)   ‖   
         

    ‖   (   
  〈 (  

 )   
 〉)      

(for (ii) look at the first and last terms in our series of inequalities, for (iii), if  it fails use this in the 

passage from the fifth term to the sixth term, and we shall get a contradiction). 

Combining (ii) and (iii) we get 

(iv)  ‖   
      

    ‖   (   
  〈 (  

 )   
 〉)       . Now remember  |  |        ⁄   hence 

(v)  ‖   
    ‖   (   

  〈 (  
 )   

 〉)       

                    Similarly  for   instead     (d)  holds,  but |    |    hence  for  some    ́  (  
 ) 

(vi) ‖   
    

    ́‖   (   
  〈   

 〉)       

                   By the version of (iv) for               
     and the choice of    

  in Stage (1.1.10) 

(vii)  (   〈 (  
 )  〉)   ( (  

 )      ̅)    ⁄      Now    is good over 〈 (  
 )   

   〉                 hence  

(viii)   (    (  
 ))      ‖   

        ‖ 

                         
       

[‖   
     

     ‖  ‖        
    ‖] 

   (   
  〈   

    
 〉)                         

                                                                                [      ] 

                (   
   (  

 ))        

So   contradicts the definition of       ⁄   (  
 )   

̅̅ ̅   
̅̅ ̅) and the choice of   

 . 

Section (1.2): Distortable Banach Space: 

We consider the following notions. 

Definition (1.2.1)[3]:  Let   be an infinite dimensional  Banach  space,  and  ‖ ‖ its norm.  If | | is an 

equivalent norm on   and      we say | |  is a   -distortion of   if for each infinite dimensional 

subspace    of    we have 

   {
  

  
            ‖  ‖  ‖  ‖    }     

  is called  -distortable if there exists a   -distortion on   .   is called distortable  if   is λ-distortable  

for some   > 1, and     is called arbitrarily distortable  if X  is   -distortable for all   > 1. 

From  the proof  of [5, Theorem  5.2, p.145]  it follows that each  infinite  dimensional uniform  

convex  Banach  space  which  does not contain  a copy  of   ,      ,  has  a distortable subspace.  

In [6] this result was generalized to any infinite dimensional  Banach space which does not contain a 

copy of    ,      , or    . 
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We construct a Banach space   which is arbitrarily distortable. We first want to mention the 

following questions which are suggested by the existence of such a space. 

Problem. Is every distortable Banach space arbitrarily distortable? Is, for example, Tsirelson’s space T 

(as presented in [7, Example 2.e.1]) arbitrarily distortable? 

We first want to introduce some notations. 

The vector space of all real valued sequences (  ) whose elements are eventually zero is denoted  

by    , (  )  denotes  the usual  unit vector  basis of     i.e.,   (j)=1  if     and    (j)= 0 if      

For    ∑     
 
        the set supp( )={        } is called  the support  of   .   If   and     are  two  

finite  subsets  of   we write      if max(   < min   ), and  for        we write       if  

supp(   supp( ). 

For    ⊂   and   ∑  iei
 
i 1    c00  we put      ∑  iei.i   For the construction of   we need a 

function   [       [    ) having the properties (  ) through (  ) as stated in the following lemma.  

The verification of (  ), (  ), and (ii   are trivial while the verification of (    and (   are straightforward. 

Lemma (1.2.2)[3]: Let     ) =           , for        Then    has the following properties:  

(i)            and           for all      , 

(ii)   is strictly increasing to  , 

(iii)         
    

     for all q    

(iv) the function      
 

    
      is concave, and 

(v)                               

For the sequel we fix a function   having the properties stated in Lemma (1.2.2) On      we define by 

induction for each      a norm | |   For   ∑          . 

Let | |        |  |  Assuming that | |  is defined for some               

| |       
   

          
  ⊂ 

 

    
∑|     | 

 

   

  

Since        it follows that (| | ) is increasing for any       and since         for all     it 

follows that |  |     for any      and     .Finally,  we put for       

‖ ‖  | |     
    

Then ‖ ‖ is a norm on     and we let X  be the completion of     with respect to ‖ ‖  The following 

proposition states some easy facts about X . 

 

Proposition (1.2.3)[3]: 

(i) (  ) is a 1-subsymmetric and 1-unconditional basis of X; i.e, for any   ∑          
    and 

strictly increasing sequence     ⊂    and any        ⊂ {    } it follows that 

‖∑      

 

   

‖  ‖∑        

 

   

‖  

(ii) For     X  it follows that   

‖ ‖     ,| |      
 

    
∑‖     ‖

 

   

   
          

                           
- 
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 (Where | |        |  |for∑       
 
       

Proof. Part (i) follows from the fact that (  ) is a 1-unconditional and 1-subsymmetric basis of the 

completion of      with respect to | | for any      , which  can  be verified by induction for every k 

 N. Since      is dense in X it is enough to show the equation in (ii)  for an      .  If ‖ ‖  | |  it 

follows for all    ≥ 2 and  finite subsets            of N with            

 

    
∑‖     ‖

 

   

  
 

    
∑|     | 

 

   

   
        

   | |  ‖ ‖  

which implies the assertion in this case. 

If ‖ ‖  | |  | |    | |  for some    there are  ,  ́        finite subs of            

and    ́     ́   ́
́  with            and    ́    

́      ́
́́ , and    ́    so that 

 ‖ ‖  | |                                      

 
 

    
∑|     |   

 

   

 

 
 

    
∑‖     ‖

 

   

 

                        
   ̃

  ̃   ̃     ̃
̃

 

    ̃
∑‖  ̃   ‖

 ̃

   

 

 
 

   ́ 
∑‖  

́    ‖

 ̃

   

 

 
 

   ́ 
∑| ́    | ́

 ̃

   

 

 | |   ́  ‖ ‖       

which implies the assertion. 

Remark (1.2.4)[3]:   

(i)  The equation in Proposition (1.2.3). determines the norm ‖ ‖, in the following sense: If 

‖ ‖  is a norm on     with ‖  ‖=1 for all     and with the property that 

‖ ‖     ,| |     
   

          

 

    
∑|‖     ‖|

 

   

- 

for all       , then it follows that ‖ ‖, and ‖| |‖, are equal. Indeed one easily shows by induction for 

each m   IN and each         with #supp( )= m that ‖  ‖   =|‖  ‖| . 

(ii)  The equation in Proposition (1.2.3) is similar to the equation which defines Tsirelson’s space 

T [7, Example 2.e.1]. Recall that T is generated by a norm ‖ ‖ on     satisfying  

‖ ‖     ,| |     
   

        

 

 
∑‖     ‖ 

 

   

- 
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(where ℓ ≤    means that ℓ ≤ min  ). Note that in the above equation the supremum is taken over all 

“admissible collections”            (meaning that ℓ ≤   ) while the norm on X is computed by 

taking all collections            . This forces the unit vectors in T to be not subsymmetric, 

unlike in X. The admissibility condition, on the other hand, is necessary in order to imply that T does not 

contain any   ,      , or   , which was the purpose of its construction. We will show that X does 

not contain any subspace isomorphic to   ,      , or     and secondly that   is distortable, which 

by [4] implies that it cannot contain a copy of   ,  either. Thus, in the case of  , the fact that   does not 

contain a copy of     is caused by the factor 
 

    
(replacing the constant factor 

 

 
  in T) which decreases to 

zero for increasing  . 

In order to state the main result we define for l   N, l ≥ 2, and    X 

‖ ‖  ,    
          

 

    
∑‖     ‖

 

   

-  

For each l   N, ‖ ‖  is a norm on X and it follows that 

 

    
‖ ‖  ‖ ‖  ‖ ‖                  

Theorem (1.2.5)[3]:  For each l  N, each ε > 0, and each infinite dimensional subspace Z of X there are 

  ,      Z with ‖  ‖= ‖  ‖= 1 and in particular, ‖ ‖ is an f(l)-distortion for each l  N. 

Proof.  Let Z be an infinite dimensional subspace of X and ε > 0. By passing to a further subspace and 

by a standard perturbation argument we can assume that Z is generated by a block of (  ) 

Choice of    : 

By Lemma (1.2.8) and Lemma (1.2.9) one finds        
 ⊂Y, with            so 

that ‖  ‖           , and so that  

‖∑  

 

   

‖  
 

    
  

Thus, choosing 

    ∑  

 

   

‖∑  

 

   

‖⁄  

it follows that 

‖  ‖  
 

    
∑‖  ‖

 

   

‖∑  

 

   

‖⁄ [
                 

                        
] 

which shows the desired property of   . 

Choice of   : 

Let n   N so that 
  

 
   and choose according to Lemma (1.2.8) normalized elements        

  of Z so that        
  is (1 + ε/2)-equivalent to the unit basis of    

  and put 

   ∑   
 
   ‖∑   

 
   ‖⁄ . 

Now let   , . . . ,     be finite subsets of N so that          . . .       and so that 
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 ‖  ‖  
 

    
∑‖      ‖ 

 

   

 

We can assume that    is an interval inIN for each    ≤  . For each     N there are at most two elements 

       {1, . . . , n} so that supp(   )       and supp       ⁄         . Putting for i = 1, 2, . . . ,   

  ̃   {    (  )             (  ) ⊂     } 

it follows that ‖      ‖  ‖  ̃    ‖  
 

 
, and, thus, from the fact that (  ̃    :    1,2,…..,  ) is a block of 

a sequence which is (1 + ε/2)-equivalent to the   
  unit basis, it follows that 

‖  ‖  
 

  
 

 

    
∑‖  ̃    ‖  

 

 
 

    ⁄

    
‖∑  ̃    

 

   

‖    
 

    
 

 

   

 

which verifies the desired property of   . 

Remark (1.2.7)[3]: Considering for n  N the space   
 ⁄
 (see for example [8]) which is the completion 

of     under the norm‖ ‖(    ⁄ )  satisfying the equation 

‖ ‖           ,| |     
            

 

 
 ∑‖  ‖       

 

   

- 

for all       and putting for      
 ⁄
  

|‖ ‖|           
          

∑‖  ‖   

 

   

 

E. Odell [5] observed that |‖ ‖|        is a c · n distortion of      (where c is a universal constant). 

In order to show Theorem (1.2.6) we will state the following three lemmas, and leave their proof 

for the next section. 

Lemma (1.2.8)[3]: For n    IN it follows that 

‖∑  

 

   

‖  
 

    
 

For the statement of the next lemma we need the following notion. If Y is a Banach space with basis (  ) 

and if 1 ≤ p ≤   we say that    is finitely block represented in Y if for any ε > 0 and any n  N there is a 

normalized block (      
  of length n of (  ), which is (1 +  )-equivalent to the unit basis of   

  and we call 

(  ) a block of (  ) if    ∑     
  
         for i = 1, 2, . . . and some 0 =         in I   and (  ) ⊂R. 

Proof. By induction we show for each n N that ‖∑   
 
   ‖  

 

    
.  If  n = 1 the assertion is clear. Assume 

that it is true for all  ̃<  , where   ≥ 2. Then there is an   N, 2 ≤   ≤  , and there are finite subsets of N, 

         . . .      , so that 

               ‖∑  

 

   

‖  
 

    
∑‖   (∑  

 

   

)‖

 

   

 

                
 

    
∑

  

     

 

   

          [where            ∑    ] 
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∑

 

 
 

  

     

 

   

                                                       

       
 

    

 

 

  
 

 
 
           [                              ] 

 
 

       
 

 
 
                                                                     

       
 

    
                     [                            ]  

Since it is easy to see that ‖∑   
 
   ‖  

 

    
, the assertion follows. 

Lemma (1.2.9)[3]:     is finitely block represented in each infinite block of (  ). 

Proof . The statement of Lemma (1.2.9) will essentially follow from the Theorem of Krivine ([9] and 

[10]). It says that for each basic sequence (  ) there ia a  1 ≤ p ≤   so that    is finitely block represented 

in (  ). Thus, we have to show that   , 1 < p ≤  , is not finitely represented in any block basis of (  ). 

This follows from the fact that for any 1 < p ≤  , any   N and any block basis        
  of (  ) we have 

‖
 

   ⁄
∑  

 

   

‖  
 

   ⁄

 

    
   

     ⁄

    
 

and from (iii). 

Lemma (1.2.10)[3]: Let (  ) be a block basis of (  ) with the following property: There is a strictly 

increasing sequence (  ) ⊂ N, a sequence (  )⊂   with            and for each n a normalized 

block basis (     )
   

  
 which is (1 +  )-equivalent to the   

  -unit basis so that 

   
 

  
∑       

  

   

 

then it follows for all     

   
    

   
    

    
    

‖∑   

 

   

‖  
 

    
  

 

Proof. Let     
 

  
∑       

  
   , for     and (      )

   

        -equivalent to the   
   unit basis. 

For    ̃      and     with   <      ̃ we will show that 

   
   

‖      ̃   ‖  ‖      ̃‖                                

where 

 ̃    ∑  ̃  

 

     

     ( ̃  ∑  ̃  

 

     

  ) 

and     N is chosen big enough so that   <  ̃   . 

This would, together with Lemma (1.2.7), imply the assertion of Lemma (1.2.9). Indeed, for    N 

it follows from (1) that  
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 ‖∑  

 

   

‖               Lemma          

                            
   

‖   ∑     

 

   

‖       [sub symmetry] 

    
    

   
   

‖   
 ∑    

 

   

‖      

                 
    

   
   

   
   

‖   
    ∑    

 

   

‖ 

                    
    

   
    

   
   

‖   
    

 ∑    

 

   

‖ 

                                                           

    
    

   
    

      
    

‖∑   

 

   

‖   

In order to prove (1) we show first the following 

Claim (1.2.10)[3]: For        , and   N, with   <    <   and α, β     
   it follows that  

‖     ‖  ‖     ‖     {‖         ‖  ‖ ‖ ‖ ‖  ‖         ‖}  

We show by induction for all     , all        , and     N, with #supp( ) +#supp( ) ≤  , and 

  <    <   and all   ,   , α, β    
  that 

                  ‖     ‖    ‖     ‖ 

    {  ‖         ‖    ‖ ‖   ‖ ‖    ‖         ‖}  

For  = 0 the assertion is trivial. Suppose it is true for some ≥ 0 and suppose         ,  

  <    <   and #supp   ) + #supp( ) =   + 1. We distinguish between the following cases. 

Case (i). ‖     ‖  |     |  and ‖     ‖  |     |  

If ‖     ‖ = | | , then 

  ‖     ‖    ‖     ‖    ‖ ‖    ‖     ‖ 

                                                                      ‖ ‖    ‖         ‖  

If  ‖     ‖= | |   we proceed similarly and if ‖     ‖   , and ‖     ‖=   if w.l.o.g.,    ≤   , 

it follows that 

  ‖     ‖    ‖     ‖                   

                                                                  ‖ ‖    ‖         ‖  

 

Case (ii). ‖     ‖  |     | . 

Then we find  ≥ 2 and          . . .     so that    ∩ supp( )    for   = 1, . . . ,   and 

                      ‖ ‖    ‖         ‖ 
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*∑  ‖     ‖  ‖         ‖

   

   

+    ‖     ‖ 

            
  

    
∑  ‖     ‖  

   

   

{
 
 

 
 

  

    
‖             ‖    ‖ ‖

                                                         
  

    
‖     ‖    ‖          ‖

 

                         [By the induction hypothesis] 

                      {  ‖         ‖    ‖ ‖   ‖ ‖    ‖         ‖}   

which shows the assertion in this case. 

In the case‖     ‖  |     | we proceed like in Case (ii).  

In order to show the equation (1) we first observe that for all     , |      ̃|  

‖      ̃   ‖ (which easily follows by induction for each   N) and, thus, that          ‖     

 ̃   ‖  ‖      ̃‖ . Since every subsequence of (  ) still satisfies.the assumptions of Lemma (1.2.9) 

it is enough to show that 

       
   

‖      ̃   ‖  ‖      ̃‖  

This inequality will be shown by induction for each       and all   <    < ̃ with #supp( )+#supp( ̃) ≤ 

 . For   = 0 the assertion is trivial. We assume the assertion to be true for some   ≥ 0 and we fix  ,  ̃ 

     with  <  < ̃ and #supp( )+#supp( ̃) =     

We consider the following three cases: 

Case (i). ‖      ̃‖  |      ̃|  for infinitely many    N. Since  

|      ̃   |
 
 |      ̃| ,   N , 

the assertion follows. 

Case (ii). For a subsequence (  ́) of (  ) we have 

‖    ́   ̃‖  
 

     
∑‖  

        ́   ̃ ‖

  

   

 

where    ↑   and   
      

         
   

are finite subsets of N. Since     ) →   for   →   it then 

follows that 

       
   

‖      ̃   ‖    ‖      ̃‖  

Assume now that neither Case i nor Case ii occurs. By passing to a subsequence we can assume 

Case (iii). There is an   ≥ 2 so that 

   
   

(‖      ̃   ‖  
 

    
∑‖  

          ̃    ‖

 

   

)    

where    
        

   
are finite subsets of IN with the following properties: 

(i)  supp(      ̃   )     
     ,   , and     (      ̃   )⊂    

   
   

 

(ii) The set supp( ) ∩   
               does not depend on   (note that supp( ) <  , and we 

denote it by   
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(iii)   There are subsets e   ̃<  ̃ < · · · <   ̃of supp( ̃) and integers    so that supp( ̃   ) ∩  
    

  ̃+  for    N, (we use the convention that  < E for any finite E ⊂N), 

(iv)  for     and 1≤ ≤     we have either supp(  (n,  ))⊂   
   

or supp(        )    
       

                  Indeed, letting for     

  ̃
   

 

{
 
 

 
    

        
                                                  

              
                                      

           { ̃     (     ̃ )    
     }

            { ̃     (     ̃ )    
     }  

 

          The value ∑ ‖  
          ̃    ‖ 

    differs from∑ ‖  ̃
   

       ̃    ‖     
⁄ 

   , which                     

shows that (iv)) can be assumed. 

(v) For     the value 

      
   

{                 ⊂   
   }

  
 

exists.Now we distinguish between the following subcases. 

Case (iii)  ́ . There are          , so that 1 ≤      ≤     − 2 <     ≤    and 

‖      ̃   ‖  
 

    
 ,∑‖  

      ‖  ‖   

   
      ‖

     

   

 ∑ ‖  
       ‖

     

       

 

                                                          ‖   

   
     ̃    ‖  ∑ ‖  

     ̃    ‖

 

       

- 

In this case it follows that 

‖      ̃   ‖  
 

    
*∑‖  

      ‖  ∑‖  
       ‖  ∑‖  

     ̃    ‖

 

     

   

     

   

   

+ 

              
 

    
*∑‖  

      ‖       ∑‖  
     ̃    ‖

 

     

   

   

+ 

[By (iv)) and the fact that (      )
   

  
 is (1 +   )-equivalent to the   

  -unit basis]  

 ‖      ̃‖       

Note that 

[                 ] 

which implies the assertion in this case. 

Case  (iii)     ́ . There is an 1 ≤    ≤   so that 

 

‖      ̃   ‖  
 

    
*∑‖  

      ‖  ‖     
          ̃    ‖
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 ∑ ‖  
         ‖

 

       

+  

Then the assertion can be deduced from the induction hypothesis (note, that by a) and the fact that   ≥ 2 

we have that #supp‖     
       ̃    ‖< #supp    ̃    ). 

Case (iii)     ́  ... There is an    <   so that 

            ‖      ̃   ‖   

 
 

    
*∑‖  

      ‖  ‖     
         ‖  ‖      

        ̃    ‖

     

   

 

 ∑ ‖  
     ̃    ‖

 

       

+ 

We can assume that supp( )    and supp( ̃)    (otherwise we are in case 3b). If     (as defined in v) 

vanishes it follows that 

   
   

‖  
         ‖  ‖    

    ‖  

Otherwise there is a sequence (  )⊂N with    
   

     so that 

    

        
 

  
∑      

  

   

 

and so that  

   
   

  
  

         

Since the sequence (    
            ⁄

   
 is asymptotically equal to the sequence (  ̃) with   ̃  

 

  
∑       

  
    (note that (  ̃) satisfies the assumption of the lemma) we deduce from the induction 

hypothesis for some infinite N ⊂ IN that 

   
   
   

‖    
         ‖         

   
‖  

  
 

    
   ̃   ‖ 

                                       ‖  
 (

 

    
)      ‖ 

                                 ‖  
 (

 

    
)         ‖  

Similarly we show for some infinite M ⊂ N, that 

   
   
   

‖      

        ̃    ‖  ‖                
̃  ̃  ‖  

From the claim at the beginning of the proof we deduce now that 

            
   

‖      ̃   ‖ 

 
 

    
∑‖  

      ‖  ‖    
           ‖
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                      ‖                 
̃  ̃  ‖  ∑ ‖  ̃  ̃ ‖

 

       

                                             

 
 

    
*∑‖  

    ‖  ∑ ‖  ̃  ̃ ‖

 

       

     

   

                                                   

 max{‖    
       ‖  ‖  ̃     

  ̃  ‖ ‖    
    ‖  ‖     ̃     

  ̃ ‖}] 

[             ]                                            

 ‖      ̃‖                                                                                             

which shows the assertion in this case and finishes the proof of the Lemma. 

Corollary (1.2.11)[257]. i) (  ) is a 1-subsymmetric and 1-unconditional basis of X; i.e; for 

any    ∑             
     and strictly increasing sequence      ⊂    and any 

       {    } it follows that 

‖∑         

 

   

‖  ‖∑           
 

 

   

‖    

ii)  For      X it follows that   

‖  ‖     {|  |      
 

      
∑‖          ‖

   

   

   
                

                                 
} 

(Where |  |        |     | for ∑         
 
       

Proof. Part (i) follows from the fact that (  ) is a 1-unconditional and 1-subsymmetric basis 

of the completion of     with respect to | | for any     , which can be verified by 

induction for every    N. Since     is dense in X it is enough to show the equation in (ii) for 

an       .If ‖  ‖  |  | it follows for all   ≥0 and finite subsets                  of N 

with                  

 

      
∑‖          ‖

   

   

  
 

      
∑|          | 

   

   

   
        

   |  |  ‖  ‖  

which implies the assertion in this case. 

If ‖  ‖  |  |  |  |    |  |  for some     there are      ́        finite 

subs of N                 and   ́   ́        ́ ́with                  and  

   ́  ́        ́ ́   and   ́    so that 

                         ‖  ‖  |  |  

                  
 

      
∑|          |   

   

   

  
 

      
∑‖          ‖

   

   

 

    
   ̃

 ̃  ̃       ̃    ́

 

 ( ̃)
∑‖  ̃         ‖

 ̃
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 ( ́)
∑‖  ̃         ‖

 ̃

   

                                                 

 
 

 ( ́)
∑|  ̃         | ́

 ̃

   

                                                

                                   |  |   ́  ‖  ‖, 

which implies the assertion. 

Corollary (1.2.12)[257]. For each      N, each ε>0, and each infinite dimensional 

subspace Z of X there are     ,        Z with ‖    ‖= ‖    ‖=1and ‖    ‖        and 

‖    ‖    
   

      
  In particular, ‖ ‖   is an       - small distortion for each       N. 

Proof.(see [3]). Let Z be an infinite dimensional subspace of X and ε > 0. By passing to a 

further subspace and by a standard perturbation argument we can assume that Z is generated 

by a block of (  ) 

Choice of      : 

By Corollary (1.2.14) and Corollary (1.2.15) one finds             
   ⊂Y, with      

                 so that  ‖ ∑        
   
    ‖             , and so 

that‖∑        
   
   ‖      

   

      
.Thus, choosing 

     ∑       

   

   

‖∑       

   

   

‖  ⁄  

It follows that 

‖    ‖    
 

      
∑‖       ‖

   

   

‖∑       

   

   

‖  ⁄ [
                         
                                  

] 

Which shows the desired property of      

Choice of     : 

Let n N so that 
      

 
   and choose according to Lemma(1.2.8) normalized 

elements                  of Z so that           
  is (1 + ε/2)-equivalent to the unit 

basis of    
  and put 

     ∑     

 

   

‖∑     

   

   

‖⁄   

Now let    . . .            be finite subsets of N so that  

       . . .           

And so that  ‖    ‖    
 

      
∑ ‖            ‖ 

   
    

We can assume that        is an interval in IN for each   ≤    .  

For each   N there are at most two elements        {1,…,n}so that supp       

         and supp            ⁄          . Putting for                    ̃     = 

{                            ⊂       } it follows that ‖            ‖  
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‖  ̃           ‖  
 

 
, and, thus, from the fact that (  ̃           :    1,2,…..,    ) is a 

block of a sequence which is (1 + ε/2)-equivalent to the   
  unit basis, it follows that 

‖    ‖    
   

  
 

 

      
∑‖  ̃             ‖  

 

 
 

    ⁄

      
‖∑  ̃             

   

   

‖

   

   

 

                                                
 

      
  

Which verifies the desired property of     . 

Corollary (1.2.13)[257]. For    IN it follows that 

 ‖∑  

 

   

‖  
 

    
 

For the statement of the next lemma we need the following notion. If Y is a Banach space 

with basis         and if     we say that      is finitely block represented in Y if for any ε 

> 0 and any     there is a normalized block (           
  of length n of        ,which is (1 

+  )-equivalent to the unit basis of     
  and we call         a block of         if         

∑             
  
         for   = 1, 2, . . . and some 0=         in I   and       ⊂R. 

Proof 

By induction we show for each    N that   ‖∑   
   
   ‖  

 

    
.  If   = 1 the assertion is 

clear. Assume that it is true for all  ̃   , where   ≥ 2. Then there is an       ,     

   , and there are finite subsets of  N,                 , so that 

‖∑  

   

   

‖  
 

      
∑‖      (∑  

   

   

)‖

   

   

          

 
 

      
∑

  

     

   

   

 [                    ∑    ] 

 
   

      
∑

 

   
 

  

     

   

   

        

                                     
   

      

 

   

 (
 

   
)
 [                                    ] 

 
 

        (
 

   
)
                

                     
 

    
         [ roperty                         ] 

Since it is easy to see that  ‖∑   
   
   ‖  

 

    
, the assertion follows. 

Corollary (1.2.14)[257].     is finitely block represented in each infinite block of (  ). 

Proof . 

The statement of Lemma(1.2.8) will essentially follow from the Theorem of Krivine 

([3] and [4]). It says that for each basic sequence         there is     so that      is finitely 
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block represented in        .Thus, we have to show that     ,     is not finitely represented 

in any block basis of (  ). This follows from the fact that for any      , any   N and 

any block basis           
  of (  ) we have 

‖
 

     ⁄
∑     

 

   

‖  
 

     ⁄

 

    
   

       ⁄

    
  

and from (   ). 

Corollary (1.2.15)[257]. Let         be a block basis of (  ) with the following property: 

There is a strictly increasing sequence (  )⊂N, a sequence     ⊂   with            

and for each n a normalized block basis (         )   

  
 which is (1 +  )-equivalent to the  

  -

unit basis so that  

        
 

  
∑          

  

   

 

 

then it follows for all       

   
    

   
    

    
      

‖∑        

   

   

‖  
   

      
  

Proof . 

Let          
 

  
∑          

  
   , for     and (         )   

        -equivalent to the 

  
   unit basis. For        ̃      and     with    <         ̃ we will show that 

                                 
   

‖                ̃
   ‖  ‖          ̃‖  

where 

    ̃
    ∑     ̃  

 

     

      (    ̃  ∑     ̃  

 

     

  ) 

and    N is chosen big enough so that         <     ̃
   . 

This would, together with Lemma 4, imply the assertion of Corollary(1.2.15) . 

Indeed, for       N it follows from (2) that 

    

       
 ‖∑   

    

   

‖                              

                                                      lim
   

‖   ∑     

    

   

‖         [sub symmetry] 

                                     
    

   
   

‖        
 ∑     

    

   

‖ 

                                                        
    

   
   

   
   

‖        
    ∑     

    

   

‖ 
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‖        
         

 ∑     

    

   

‖ 

                              

                                             
    

   
    

      
      

‖∑        

    

   

‖  

In order to prove (2) we show first the following 

Claim. For            , and   N, with    <    <      and   ,β     
   it follows that 

‖       ‖  ‖        ‖   

   {‖           ‖  ‖    ‖ ‖  ‖  ‖             ‖}  

We show by induction for all     , all            , and     N, with #supp(  ) 

+#supp(    ) ≤  , and    <    <      and all   ,   ,   ,β    
  that 

         ‖       ‖    ‖        ‖ 

    {  ‖           ‖   ‖    ‖   ‖  ‖    ‖  
           ‖}  

For  = 0 the assertion is trivial. Suppose it is true for some   ≥0 and suppose            , 

  <  <      and  #supp    ) + #supp(    ) = +1. We distinguish between the following 

cases. 

Case (i). ‖       ‖  |       |  and  ‖        ‖  |        |  

If ‖       ‖ =|  | , then  

  ‖       ‖    ‖        ‖    ‖  ‖    ‖        ‖ 

       ‖  ‖    ‖    
         ‖  

If ‖        ‖=|    | we proceed similarly and if ‖       ‖    , and ‖        ‖=   

, and if w.l.o.g.,    ≤   , it follows that 

  ‖       ‖    ‖        ‖     
           

     

   ‖  ‖    ‖    
         ‖           

Case (ii). ‖       ‖  |       |   

Then we find    0 and        . . .            so that          supp (  ) 

   for   = 1,. . .,     and  

           ‖       ‖    ‖        ‖ 

 
  

       
[∑ ‖          ‖  ‖                ‖

   

   

]    ‖        ‖ 

                                  
  

      
∑ ‖          ‖

   

   

 

                                   {

  

       
‖                      ‖   ‖    ‖

                                                         
  

       
‖             ‖    ‖  

            ‖
                                                              

                 [By the induction hypothesis] 

        {  ‖           ‖    ‖    ‖   ‖  ‖    ‖  
           ‖}  

which shows the assertion in this case. 
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In the case‖        ‖  |        | we proceed like in Case (ii). 

  In order to show the equation (2) we first observe that for all     , |      

    ̃|  ‖               ̃
   ‖ (which easily follows by induction for each   N) and, 

thus, that           ‖               ̃
   ‖  ‖          ̃‖ . Since every subsequence 

of (       ) still satisfies. the assumptions of Corollary (1.2.15) it is enough to show that 

       
   

‖               ̃
   ‖  ‖          ̃‖  

This inequality will be shown by induction for each       and all    <    <    ̃ with 

#supp(  )+#supp(    ̃) ≤  . For   = 0 the assertion is trivial. We assume the assertion to be 

true for some   ≥ 0 and we fix   ,    ̃      with   <  <    ̃ and #supp(  )+#supp(    ̃) 

=     

We consider the following three cases: 

Case (i).  ‖               ̃‖  |               ̃|  for infinitely many    N. Since 

|               ̃
   |

 
 |               ̃| ,   N ,the assertion follows. 

Case (ii). For a subsequence       ́
 of         we have 

‖         ́
      ̃‖  

 

     
∑‖      

   
          ́

      ̃ ‖

  

   

 

where   ↑  and                        
   

are finite subsets of IN. Since     )→   

for   →   it then follows that  

       
   

‖               ̃
   ‖    ‖          ̃‖  

Assume now that neither Case (i) nor Case (ii) occurs. By passing to a subsequence we can 

assume 

Case (iii). There is an   ≥ 0 so that 

   
   

(‖               ̃
   ‖  

 

       
∑‖      

   
                ̃

    ‖

    

   

)    

where                   
   are finite subsets of IN with the following properties: 

(i) Sup(            ̃   ) ∩       
   

  ,       , and supp(           

 ̃   )⊂    
          

   
 

(ii) The set supp(  )∩      
   

               does not depend on   (note that supp(  ) <  , 

and we denote it by         
    

(iii) There are subsets   ̃<   ̃   < · · · <    ̃       supp(  ̃) and  integers    so that supp 

(    ̃    ) ∩      
   

    ̃     +  for    N,(we use the convention that       for any 

finite      ⊂N), 

(iv) for        and 1≤ ≤     we have either  supp(         ) ⊂       
   

or 

supp                   
   

     

Indeed, letting for        
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   ̃        
    

{
 
 

 
        

   
         

   
                                                

                     
   

                                     ⁄

           , ̃     (        ̃ )        
   

  -          

          , ̃     (        ̃ )        
   

  -         

  

The value∑ ‖      
   

              ̃
    ‖   

    differs from 

∑‖   ̃       
   

(             ̃
   

)‖

   

   

 

at most  by          ⁄ which shows that iv) can be assumed. 

v) For        the value 

      
   

,                    ⊂       
   

-

  
 

exists. Now we distinguish between the following subcases. 

Case (iii)a. There are          , so that 1 ≤      ≤     − 2 <     ≤       and‖           

  ̃
   

‖  
 

       
* ∑ ‖      

       ‖  ‖        
               ‖

    
    ∑ ‖   

     
       

   
          ‖   ‖        

   
(          ̃

   
)‖  ∑ ‖      

   
(  ̃

   
)‖   

       +  In this 

case it follows that   

‖             ̃
   ‖

 
 

       
*∑‖      

   
    ‖

   

   

 ∑‖      
   

         ‖  ∑‖      
   

   ̃
    ‖

    

     

   

     

+

 *∑‖      
   

    ‖       ∑‖      
   

   ̃
    ‖

 

     

   

   

+ 

[By iv) and the fact that (         )   

  
 is (1+  )-equivalent to the   

  -unit basis] ≤‖   

    ̃‖                [         ] which implies the assertion in this case. 

Case (iii)b. There is an 1 ≤    ≤     so that 

‖             ̃
   ‖

 *
 

      
∑‖      

   
    ‖  ‖        

   
              ̃

    ‖

     

   

 ∑ ‖      
   

   
    ‖

   

       

+  
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Then the assertion can be deduced from the induction hypothesis (note, that by i) and the 

fact that     we have that #supp‖        
   

      ̃
    ‖ < #supp      ̃

    ). 

Case (iii)c. There is an    <     so that 

‖             ̃
   ‖

 *
 

      
∑‖      

   
    ‖  ‖        

   
            ‖

    

   

 ‖(         )
   

           ̃
    ‖  ∑ ‖      

   
   ̃

    ‖

   

       

+  

We can assume that supp(  )    and supp(  ̃)    (otherwise we are in case (iii)b). If 

    (as defined in e)) vanishes it follows that       ‖      
   

            ‖    ‖   

     
      ‖  Otherwise there is a sequence (  )⊂N with    

   
     so that 

        
           

 

  
∑         

  

   

 

and so that 

   
   

  
  

        

Since the sequence (        
               ⁄

   
is asymptotically equal to the sequence 

     ̃   with     ̃   
 

  
∑          

  
     (note that(     ̃  ) satisfies the assumption of the 

lemma) we deduce from the induction hypothesis for some infinite N⊂IN that 

                    
   
   

‖        
   

            ‖

           
‖      

             ̃     ‖     ‖      
  .

  

    

/      ‖

 ‖        
  .

  

    

/         ‖  

Similarly we show for some infinite M⊂N, that 

   
   
   

‖          

   
(           ̃ 

   )‖ 

                  ‖       
     ̃         

   ̃  ‖  

 From the claim at the beginning of the proof we deduce now that 
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‖             ̃
   

‖

 *
 

      
∑‖      

      ‖  ‖        
             ‖

    

   

 ‖             ̃         
   ̃  ‖  ∑ ‖   ̃        ̃ ‖

   

       

+

 
 

      
*∑‖      

      ‖

     

   

 ∑ ‖  ̃        ̃ ‖

   

       

    ,‖       
         ‖ ‖   ̃           ̃  ‖ ‖        

      ‖

 ‖      ̃         
   ̃  ‖-+ [            ]  ‖        ̃‖  

which shows the assertion in this case and finishes the proof of the Corollary  

 


