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Chapter 2 

 Subsymmtric Sequences and Minimal Subspaces  

If a Banach space is saturated with subspaces with a Schauder basis, which embed into the linear span of 

any subsequence of their basis ,then it contains a minimal subspace. 

Section (2.1): Minimal Spaces: 

W. T. Gowers proved in [13] the celebrated dichotomy theorem concerning un- conditional basic 

sequences and hereditarily indecomposable spaces using Ramsey- type arguments. In [14] the reasoning 

was generalized and, as an application, a dichotomy concerning quasi-minimal spaces, i.e. those spaces 

for which any two infinite dimensional subspaces contain two further infinite dimensional subspaces 

which are isomorphic, was obtained. Putting these results together Gowers obtained the following 

"classification" theorem . 

Theorem (2.1.1)[12]: ([14]). Let   be an infinite dimensional Banach space. Then E has an infinite 

dimensional subspace   with one of the following properties. The properties are mutually exclusive and 

all can and do occur:  

(i)    is a hereditarily indecomposable space, 

(ii)    has an unconditional basis and every isomorphism between block subspaces of   is a strictly 

singular perturbation of the restriction of some invertible diagonal operator on  ,  

(iii)   has an unconditional basis and is strictly quasi-minimal (i.e. is quasi- minimal and does 

not contain a minimal subspace),  

(iv)   has an unconditional basis and is minimal.  
 

In this section we show that every Banach space saturated with sub symmetric basic sequences 

contains a minimal subspace. It follows that the class (iii) can be restricted to strictly quasi-minimal 

spaces not containing sub symmetric basic sequences and one could split (iv) into minimal spaces with a 

sub symmetric basis or minimal spaces not containing a sub symmetric basic sequences. An example of 

a minimal space not containing any sub symmetric sequence is the dual to Tsirelson's space ([15], [16]), 

whereas Tsirelson's example is a strictly quasi-minimal space ([17]). 

      The method used here extends the technique applied in [18], which reflects the technique of 

Maurey's proof of Gowers' dichotomy theorem for unconditional se- quences and HI spaces ([19]). The 

same method also provides extensions in the class (i) by examining unconditional-like sequences 

introduced in [20] ([18]). Let E be a Banach space. Given a set     by 〈 〉 denote the vector subspace 
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spanned by A. We will denote by   the origin in the space E in order to distinguish it from the number 

zero. 

For standard Banach space we refer to [15]. We say that two Banach spaces       are C-

isomorphic, for      , if there is an isomorphism            satisfying 
 

 
‖ ‖  ‖  ‖   ‖ ‖ 

for     . We say that sequences {  } , {  } n of vectors of a Banach space are C-equivalent, for 

     , if for any scalars           and      we have 

 

 
‖           ‖  ‖           ‖   ‖           ‖  

Assume now that E is a Banach space with a basis {  }   
   

The support of a vector   ∑     
 
   is the set supp     {             }. We use the 

notation       for vectors      , if every element of supp   is smaller than every element of supp  . 

We write       for a vector       and     , if       for all      , and so forth in this manner. A 

block sequence with respect to {  } is any sequence of non-zero finitely supported vectors          

      block subspace is a closed subspace spanned by a block sequence. We will use letters           to 

denote vectors of a Banach space, letters           to denote finite block sequences and capital letters 

       , ... for infinite block sequences. For any finite block sequence x, by lxl we denote the length of 

x, i.e. the number of elements of x. Given any two block sequences {         }    {          } let  

{        }    {        }   {                     } 

For convenience in the reasoning presented in the next sections we will treat { } as a block sequence 

and adopt the following convention: |{ }|           , for any     { }   {       }   

 {         } for any block sequence {         }. While restricting our consideration to the family of 

block sequences we will use the following fact (see e.g. [15], l.a.12). Recall that a sequence {  } of 

vectors of a Banach space is called seminormalized if       ‖  ‖          ‖   ‖        
 

Lemma (2.1.2)[12]: Let E be a Banach space with a basis {  } . Let {{  }   be a seminormalized 

sequence satisfying          
     =          where {  

 }  is the sequence of biorthogonal functional of 

{  
 } .Then for any     there is a block sequence {  } which is        -equivalent to some 

subsequence of the sequence {  } . 

We present some more terminology and a stabilizing lemma. It reflects some combinatorial 

techniques used in [19], [21], [22] and others.  

First we need some more notation. Let E be a Banach space with a basis {  }. Let Q denote the 

set of all vectors of the form ∑               
    {  } 

   where   denotes rationals. Thus   is a 

countable vector space over   and   is dense in E. Most of our arguments shall take place in  . 
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If Z and W are block sequences of {  } in   we write       if Z is a block sequence of W and 

     if except for finitely many vectors, Z is a block sequence of W      denotes      and 

    . Given a block sequence W in   let ∑    (resp. ∑       be the set of all infinite (resp. finite) 

block sequences of W in  . We let ∑   denote the set of all infinite block sequences of {  } in   and let 

∑    denote the set of all finite block sequences of {  } in  . 

Lemma (2.1.3)[12]: ([18]). Let E be a Banach space with a basis {  } and let ∑   be as defined above 

w.r.t. {  }. Let A be a countable set and let    ∑     be monotone         and inclusion, i.e 

     ∑               

          ∑                    

Then there exists    ∑ so that 

      ∑                   

Proof. Without loss of generality we may assume that r is increasing (otherwise consider 

 ̀   =       ⁄ . If the conclusion is false, then by transfinite induction and diagonalization we can 

construct {  }    
 so that if    , then       and               . But this is impossible 

since A is countable. 
 

Definition (2.1.4)[12]: A Banach space   is called C-minimal, for     if any infinite dimensional 

closed subspace of E contains a subspace which is C-isomorphic to E.  

A Banach space E is called minimal if any infinite dimensional closed subspace of E contains a 

subspace which is isomorphic to E.  
 

Definition (2.1.5)[12]: Abasic sequence {  }       is called C-sub symmetric, for    , if it is C-

equivalent to any of its infinite subsequences. 

 A basic sequence {  }       is called sub symmetric, if it is C-sub symmetric, for some 

   .  

However if {   } is a bounded sub symmetric sequence, then it is either equivalent to the unit 

vector basis of    by [23] or it is weak Cauchy and hence {                   } is sub symmetric and 

unconditional. Thus we prefer to use the definition above. 
 

Lemma (2.1.6)[12]: Let E be a Banach space with a basis. If E contains a C-sub- symmetric basic 

sequence, for some constant    , then for any     the space E contains a       -sub symmetric 

block sequence. 
 

Proof. Let {  } be a basis for E. By {  
 }  denote the biorthogonal functionals for {  } . Let {  }     be 

a C-sub symmetric basic sequence, for     . We can assume, picking a subsequence of {  }  if 
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needed by diagonalization, that for some scalars {  }  we have         
              put    

                . Then {  }  is clearly C-sub symmetric.  

Fix    . Pick     satisfying                   . Since         
            , by 

Lemma (2.1.2) there is a block sequence {  }  which is (     )-equivalent to some subsequence of 

{  } . Thus by the choice of   the sequence {  }  is        -sub symmetric.  

We say that a Banach space is saturated with sequences of a given type, if every infinite 

dimensional subspace contains a sequence of this type. Now we present the main results: 
 

Theorem (2.1.7)[12]: Let E be a Banach space saturated with C-subsymmetric basic sequences, for 

some constant    . Then for any    , the space E contains a          minimal subspace. 
  

Proof. We can assume that E is a Banach space with a basis. We will use below the notation introduced 

above. Assume that E is saturated with C-subsymmetric sequences, for some    1, and fix    .  
 

Corollary (2.1.8)[12]: A Banach space saturated with subsymmetric basic sequences con- tains a 

minimal space.  
 

Proof. We may assume that E is a Banach space with a basis. It sufficies to show that for some constant 

    there exists a block subspace so that all further block subspaces contain a C-subsymmetric block 

sequence. If not, one can construct a block sequence {  }   
  so that for all n no block sequence of {  }   

  

is n-subsymmetric. But then no block sequence of {  }   
 is subsymme- tric. Thus by Lemma (2.1.6), the 

block subspace spanned by {  }   
 does not contain a subsymmetric basic sequence.  

 

Notice that we proved above that a Banach space saturated with subsymme- tric sequences 

contains a "uniformly" minimal subspace, i.e. C-minimal for some constant      . 

Pick a scalar     satisfying                         . By Lemma (2.1.6) and the density 

of Q in E the space E is saturated with        -subsymmetric block sequences from the family ∑. We 

shall produce    ∑ so that for any   ∑     there exists   ∑    which is          -equivalent 

to   . By the choice of 6 this will finish the proof of Theorem (2.1.7).From now on, unless otherwise 

stated, we work in Q. Thus e.g. (W) will denote 〈 〉   . Put      .  

Recall that a tree   on an arbitrary set A is a subset of the set ⋃    
  An such that {         }  

            {             }    .  

A branch of a tree   is an infinite sequence {  }    such that  {         }      for any     N.  

Now we introduce some important terminology. We call a tree   on Q a block tree if   ∑  

and for any     the set        {         { }    } contains an infinite block sequence in Q. Any 

branch of a block tree is a block sequence.  
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Moreover, since for any    we have         , every element    is a part of some branch 

of  . 
 

Definition (2.1.9)[12]: Given sequences     ∑     { } | |  | |, a block sequence   ∑   and a 

block tree   on Q we write                     ⋃{       ∑         }, where {  } are block 

trees on Q satisfying the following conditions: 

(i) for every block sequence   ∑         , and every branch Y of   we have that Y > y and the 

sequences           are c-equivalent,  

(ii) for any block sequences       ∑              , and        { },if            , 

then     
    | | | |      

    | | | |, where     { } 
 

This means that a tree of block sequences of Z beginning with a finite sequence x can be 

represented in T in a special way. In fact we will use the relation defined above only in the case when 

| |   | |   | |    | |   .  
 

Claim (2.1.10)[12]: Let      ∑    { } | |    | |    ∑ , and let   be a block tree on Q. Assume 

             . 

(i) Let                . Then there exists a block subtree        which satisfies 

     {  }             . 

(ii) Let | |  | |       .Then       {{        }  {            }   } is a block tree and 

             {  }       .  

Proof. For the first case, in the situation as above define    by putting 

        {  }         ∑           

The second case is obvious by the definition of the relation  , since we can put           

                     ∑       

Given   ∑     put  

      {       ∑  
 
 { })

 

  | |  | |    ∑        

                                          }  

Take       and a pair            .Then there exists   ∑          and a block tree    

on   , such that                               ⋃     
 

    (this means cutting off from    

sequences containing vectors lying outside   ). Then    is also a block tree               satisfying 

                . One only has to realize that for any sequence    ∑  ), the tree            

 ⋃     
 

     satisfies the definition. 



07 
 

Therefore we have shown that the mapping r is monotone,              , then       

     . Hence, on the basis of Lemma (2.1.3), there exists     ∑ which is stabilizing for  . 
 

Claim (2.1.11)[12]: Let              | |   | |. Then for any     ∑     there is a vector yo 

      such that      |  {  }         
 

Proof. In the situation as above, by the stabilization property, for some   ∑    and a block tree   on 

W we have                and Claim (2.1.10) finishes the proof of Claim (2.1.11). Given   ∑     

let 

      {      (∑     { })
 
  | |  | |     ∑     , 

                                                                     }   

Let                     ). There exists    ∑       and a block tree          such 

that                  .Put  

   〈  〉         ⋃{         ∑    }   

Then obviously                          , hence           ). Therefore the mapping   is 

monotone. Let     ∑     be stabilizing for  , chosen on the basis of Lemma (2.1.3). 

Claim (2.1.12)[12]: For any     ∑      we have          . 
 

Proof. By the stabilization property it is enough to prove that               . By definition and the 

stabilization property  

                     . 

Now, if             , then          ) for some      , hence again by the stabilization 

            .  

By the assumption and Lemma (2.1.6) there is a c-subsymmetric block sequence     

 {  }   
   ∑       

Claim (2.1.13)[12]:  { }       { }  ∑      , in particular  { } { }       )  

Proof. Take any block sequence X {  }   
  ∑     Then 

   ∑          

      

    

 

for some scalars {  }    and some sequence {  }          

   {{∑           

    

    

∑        

      

    

}|                              } 
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Obviously every set    is a block tree. Moreover, ∑          {      ∑    } and, by the c-

subsymmetry of the sequence {  } , for any    ∑     every infinite branch of    is c-equivalent to X. 

The "uniqueness" condition is also satisfied.  

We will show that for any block sequence   ∑     there exists    ∑     which is   -

equivalent to    which will finish the proof of the Theorem.  

Let   ∑      We will pick by induction block sequences {   
} and {  }    such that 

             for n  , where      {   
     

} and      {         }     .This implies in 

particular that for any n      sequences {   
     

} and {         }  are  c-equivalent, thus also 

sequences {   
}
   

 and {   
}
   

are c-equivalent. By the c-subsymmetry of the sequence {  } the 

sequences {  } and {  }  are   -equivalent, hence    works.  

Put     . By Claims (2.1.13) and 1     { }                By Claim (2.1.11) there is a 

vector      such that             . 

 Assume now that we have picked vectors    
     

                   such that         

       By Claim (2.1.12)                Therefore for some        there is a tree T on    such 

that                  . Let                        
     

             . Then by Claim (2.1.10) 

               . Hence by Claim (2.1.11) there is a vector          ) such that              

 (W), which finishes the inductive step and the proof of Theorem (2.1.7).  

We should point out that there exist minimal spaces with a subsymmetric basis which do not 

contain any isomorph of    or any                One such space is due to Th. Schlumprecht [24]. We 

do not know if this is the case for symmetric bases.  
 

Section (2.2): Isomorphically Homogeneous Sequences in A Banach Space :  

The starting point is the solution to the Homogeneous Banach Space Problem given by W. T. 

Gowers [26] and R. Komorowski - N. Tomczak-Jaegermann [27]. A Banach space is said to be 

homogeneous if it is isomorphic to its infinite-dimensional closed subspaces; these proved that a 

homogeneous Banach space must be isomorphic to   . 

Gowers proved that any Banach space must either have a subspace with an unconditional basis 

or a hereditarily indecomposable subspace. By properties of hereditarily indecomposable Banach spaces, 

it follows that a homogeneous Banach space must have an unconditional basis (see [26]). Komorowski 

and Tomczak-Jaegermann proved that a Banach space with an unconditional basis must contain a copy 

of 12 or a subspace with a successive finite-dimensional decomposition on the basis (2-dimensional if 

the space has finite cotype) which does not have an unconditional basis. It follows that a homogeneous 

Banach space must be isomorphic to   .  



03 
 

While Gowers' dichotomy theorem is based on a general Ramsey-type theorem for block-

sequences in a Banach space with a Schauder basis, the subspace with a finite-dimensional 

decomposition constructed in Komorowski and Tomczak- Jaegermann's theorem can never be 

isomorphic to a block-subspace. If one restricts one's attention to block-subspaces, the standard 

homogeneous examples become the sequence spaces   and              with their canonical 

bases; these spaces are well-known to be isomorphic to their block-subspaces. Furthermore, there are 

classical theorems which characterize    and             by means of their block-subspaces. An 

instance of this is Zippin's theorem ([28]): a normalized basic sequence is perfectly homogeneous (i.e. 

equivalent to all its normalized block-sequences) if and only if it is equivalent to the canonical basis of 

co or some   . See also [28].  

So it is very natural to ask what can be said on the subject of (isomorphic) homogeneity 

restricted to block-subspaces of a given Banach space with a Schauder basis: 
 

Question (2.2.1)[25]: If a Banach space X with a Schauder basis        ~ is isomorphic to its block-

subspaces, does it follow that X is isomorphic to    or            

 

Note that such a basis is not necessarily equivalent to the canonical basis of    or some gp; take 

   with a conditional basis. 

In the other direction, if a Banach space is not homogeneous, then how many non-isomorphic 

subspaces must it contain? This question may be asked in the setting of the classification of analytic 

equivalence relations on Polish spaces by Borel reducibility. This area of research originated from the 

works of H. Friedman and L. Stanley [29] and independently from the works of L. A. Harrington, A. S. 

Kechris and A. Louveau [30], and may be thought of as an extension of the notion of cardinality in 

terms of complexity, when one compares equivalence relations. 

If R (resp. S) is an equivalence relation on a Polish space E (resp. F), then it is said that (E,R) is 

Borel reducible to (F,S) if there exists a Borel map          such that                       . An 

important equivalence relation is the relation   : it is defined on   by 

                          

The relation    is a Borel equivalence relation with    classes and which, furthermore, does not 

admit a Borel classification by real numbers, that is, there is no Borel map f from    into   

(equivalently, into a Polish space), such that                 such a relation is said to be non-

smooth. In fact    is the   minimal non-smooth Borel equivalence relation [30]. 

There is a natural way to equip the set of subspaces of a Banach space X with a Borel structure, 

and the relation of isomorphism is analytic in this setting [31]. The relation    appears to be a natural 
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threshold for results about the relation of isomorphism between separable Banach spaces [32], [33], 

[34], [35]. ABanach space X is said to be ergodie if    is Borel reducible to isomorphism between 

subspaces of X; in particular, an ergodic Banach space has continuum many non-isomorphic subspaces, 

and isomorphism between its subspaees is nonsmooth. The results in [31], [32], [33], [34], [35] suggest 

that every Banach space non-isomorphic to 62 should be ergodic, and we also refer to these articles for 

an introduction to the classification of analytic equivalence relations on Polish, spaces by Borel 

reducibility, and more specifically to complexity of isomorphism+ between Banach spaces. 

Restricting our attention to block-subspaces, the natural question becomes the following: 
 

Question (2.2.2)[25]: If X is a Banach space with a Sehauder basis, is it true that either X is isomorphic 

to its block-subspaces or    is Bore1 reducible to isomorphism between the block-subspaces of X ? 
 

Let us provide some ground for this conjecture by noting that, if we replace isomorphism by 

equivalence of the corresponding basic sequences, it is completely solved by a result of the author and 

C. Rosendal using the theorem of Zippin: if X is a Banach space with a normalized basis         then 

either          is equivalent to the canonical basis of                       is Borel reducible to 

equivalence between normalized block-sequences of X. 

A. M. Pelczar has proved that a Banach space which is saturated with subsymmetric sequences 

contains a minimal subspace [36]. The aim is to prove the isomorphic counterpart of her theorem. The 

natural generalization is to replace subsymmetric sequences by sequences which are isomorphieally 

homogeneous, i.e. such that all subspaces spanned by subsequences are isomorphic. However, it will be 

enough and more natural with our methods to consider embeddings instead of isomorphisms, which 

leads us to a stronger result: if a Banach space X is saturated with basic sequences whose linear span 

embeds in the linear span of any subsequenee, then X contains a minimal subspace . 

In combination with a result of C. Rosendal [35], it follows that if X is a Banach space with a 

Schauder basis, then either    is Borel reducible to isomorphism between block-subspaces of X, or X 

contains a block-subspace which is block-minimal.This improves a result of [34] which states that a 

Banach space contains continuum many non-isomorphic subspaces or a minimal subspace [37]. 

Combinatorial methods about subsequences or about block-sequences are often used in Banach 

space theory; but they are less frequently combined. Hopefully, our methods could lead to other 

applications in that area. 
 

Let X be a Banach space with a Schauder basi        . If        is a finite or infinite block-

sequence of X then         will stand for its closed linear span. We shall also use some standard 

notation about finitely supported vectors on        , for example, we shall write     and say that   



03 
 

and   are successive when                            The set of normalized block-sequences in 

X, i.e. sequences of successive blocks in X, is denoted bb(X). 

Let Q(X) be the set of non-zero blocks of the basis (i.e. finitely supported        if we deal 

with a complex Banach space). We denote by       ) the set of block-bases of vectors in       and by 

      the corresponding set of block-subspaces of X.  

The notation    
               

      will be used for the set of finite (resp.         length  ) 

block-sequences with vectors in     ; the set of finite block-subspaces generated by block-sequences in 

   
      will be denoted by        ).  

We shall consider      ) as a topological space, when equipped with the product of the discrete 

topology on      As      is countable, this turns      ) into a Polish space. Likewise,       is a 

Polish space.  

For a finite block sequence  ̃                  
       we denote by     ̃  the set of elements 

of    
      whose first n vectors are             ; this is the basic open set associated to  ̃.  

The set      is the set of increasing sequences of integers, which we sometimes identify with 

infinite subsets of  . It is equipped with the product of the discrete topology on  . The set       is the 

set of finite increasing sequences of integers. If                             then [a] stands for the 

basic open set associated to a, that is the set of increasing sequences of integers of the form 

{                        } If       , then      is the set of increasing sequences of integers in A 

(where A is seen as a subset of  ). 

We recall that two basic sequences         and          are said to be equivalent if the map 

                       defined by          for all     is an isomorphism. For     1, they are C-

equivalent if ‖ ‖ ‖   ‖    . A basic sequence is said to be (C-)subsymmetric if it is (C-)equivalent to 

all its subsequences. 

We shall sometimes use "standard perturbation arguments" without being explicit. This 

expression will refer to one of the following well-known facts about block-subspaces of a Banach space 

X with a Schauder basis. Any basic sequence (resp. block-basic sequence) in X is an arbitrarily small 

perturbation of a basic sequence in        (resp. block-basic sequence in        , and in particular is 

   -equivalent to it, for arbitrarily small     . Any subspace of X has a subspace which is an 

arbitrarily small perturbation of a block-subspace of X (and in particular, with      -equivalence of the 

corresponding bases, for arbitrarily small     . If X is reflexive, then any basic sequence in X has a 

subsequence which is a perturbation of a block-sequence of X (and, in particular, is     -equivalent to 

it, for arbitrarily small    ). 
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We shall also use the fact that any Banach space contains a basic sequence. 

Finally, we recall the definition of unconditionality for basic sequences: a Schauder basis 

        of a Banach space X is said to be unconditional if there is some      such that for any    , 

any norm 1 vector    ∑        ‖∑       ‖     

We recall different notions of minimality for Banach spaces. A Banach space X is said to be (C-) 

minimal if it (C-)embeds into any of its subspaces. If X has a Schauder basis        , then it is said to 

be block-minimal if every block-subspace of X has a further block-subspace which is isomorphic to X, 

and is said to be equivalence block-minimal if every block-sequence of         has a further block-

sequence which is equivalent to        . 

The theorem of Pelczar [36] states that a Banach space which is saturated with subsymmetric 

sequences must contain an equivalence block-minimal subspace with a Schauder basis.  

A basic sequence embeds (resp. C-embeds) into its subsequences if its linear span embeds (resp. 

C-embeds) into the linear span of any of its subsequences. We may now state our isomorphic version of 

Pelczar's theorem: 
 

Theorem (2.2.3)[25]: A Banach space which is saturated with basic sequences which embed into their 

subsequences contains a minimal subspace. 
 

We first prove two uniformity lemmas. For               denote an integer such that if X is a 

Banach space with a basis        with basis constant c, and (       and (        are normalized 

block-basic sequences of X such that                   , then                    are 

      equivalent. We leave as an exercise to the reader to check that such an integer exists. 
 

Lemma (2.2.4)[25]: Let        be a basic sequence in a Banach space which embeds into its 

subsequences. Then there exists       and a subsequence of         which C-embeds into its 

subsequences. 
 

Proof. Let         be a basic sequence which embeds into its subsequences, and let c be its basis 

constant. It is clearly enough to find a subsequence         of         and     such that         C-

embeds into any subsequence of         (with the obvious definition). Assuming the conclusion is 

false, we construct by induction a sequence of subsequences    
     of        , such that for all 

        
      is a subsequence of    

       n ew such that        N does not      )-embed into 

   
      . 

Let        be the diagonal subsequence of         defined by        
  Then         does not 

      -embed into   
          

                 So        does not k-embed in        . Now k was 

arbitrary, so this contradicts our hypothesis.  
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Lemma (2.2.5)[25]: Let X be a Banach space which is saturated with basic sequences which embed into 

their subsequences. Then there exists a subspace Y of X with a Schauder basis, and a constant      

such that every block-sequence of Y (resp. in       ) has a further block-sequence (resp. in         ) 

which C-embeds into its subsequences. 
 

Proof. A space which is spanned by a basic sequence which embeds into its subsequences must in 

particular embed into its hyperplanes, so is isomorphic to a proper subspace; by [38] Corollary 19 and 

Theorem 21, such a space cannot be hereditarily indecomposable. Thus X does not contain a hereditarily 

indecomposable subspace; otherwise, some further subspace would be hereditarily indecomposable 

(since the H.I. property is hereditary) and spanned by a basic sequence which embeds in its 

subsequences (by the saturation property). 

So by Cowers' dichotomy theorem, we may assume X has an unconditional basis (let c be its 

basis constant). If    or    embeds into X then we are done, so by the classical theorem of James, we 

may assume X is reflexive. Thus by standard perturbation arguments, every normalized block-sequence 

in X has a further normalized block-sequence in X which embeds into its subsequences (here we also 

used the obvious fact that if a basic sequence         embeds into its subsequences, then so does any 

subsequence of           

Assuming the conclusion is false, we construct by induction a sequence of block-sequences 

   
                          , such that for all           

       is a block-sequence of    
         

such that no block-sequence of    
             

 -embeds into its subsequenees.  

Let         be the diagonal block-sequence of         defined by        
   and let         be 

an arbitrary block-sequence of        . 

Then    
          

               is a block-sequence of    
      and so does not       

 -embed 

into its subsequences. So         does not k-embed into its subsequences - this is true as well of its 

subsequences. As k was arbitrary, we deduce from Lemma (2.2.4) that         does not embed into its 

subsequences. As         was an arbitrary block-sequence of        , this contradicts our hypothesis.  

By standard perturbation arguments, we deduce from this the stated result with block-sequences 

in         

Recall that       is equipped with the product of the discrete topology on       which turns it 

into a Polish space. 
 

Definition (2.2.6)[25]: Let X be a Banach space with a Schauder basis, and let               . We 

shall say that        continuously embeds (resp. C-continuously embeds) into its subsequences if there 
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exists a continuous map                such for all             , is a sequence of vectors in 

              which is equivalent (resp. C-equivalent) to        . 
 

This definition depends on the Banach space X in which we pick the basic sequence        ; 

this will not cause us any problem, as it will always be clear which is the underlying space X. 

The interest of this notion stems from the following lemma, which was essentially obtained by 

Rosendal as part of the proof of [35], Theorem 11. To prove it, we shall need the following fact, which 

is well-known to descriptive set theoricians. The algebra   ∑ 
   is the   -algebra generated by analytic 

sets.For any   ∑ 
   -measurable function from     into a metric space, there exists      such that the 

restriction of    to      is continuous.  

Indeed, by Silver's Theorem 21.9 in [39], any analytic set in     is completely Ramsey, and so 

any   ∑ 
   set in      is (completely) Ramsey as well (use, for example, [39] Theorem 19.14). One 

concludes using the proof of ([40] Theorem 9.10) which only uses the Ramsey-measurability of the 

function. 

Lemma (2.2.7)[25]: Let X be a Banach space with a Schauder basis, let                  be a 

block-sequence which C-embeds into its subsequences, and let   be positive. Then some subsequence 

               -continuously embeds into its subsequences. 
 

Proof. By standard perturbation arguments, we may find for each           a sequence          

      such that            for all      , and such that the basic sequences         and        are 

C + e-equivalent. The set                  of couples        ) with this property is Borel (even 

closed), so by the Jankov-von Neumann Uniformization Theorem (Theorem 18.1 in [39]), there exists a 

C-measurable selector                  for P. By the fact before this lemma, there exists         

such that the restriction of   to      is continuous. Write            where       is increasing. By 

composing   with the obviously continuous maps               defined by             

(   
)
   

  and               , defined by              (   
)
   

, we obtain a continuous map 

             which indicates that (   
)
   

    e-continuously embeds into its subsequences.  

We now start the proof of Theorem (2.2.3). So we consider a Banach space X which is saturated 

with basic sequences which embed into their subsequences and wish to find a minimal subspace in X.  

By Lemma (2.2.5) and Lemma (2.2.7), we may assume that X is a Banach space with a Schauder 

basis and that there exists       such that every block-sequence in      ) has a further block-

sequence in        which C-continuously embeds into its subsequences.  

For the rest of the proof X and       are fixed with this property. Recall that the set of block-

subspaces of X which are generated by block-sequences in        is denoted by      ; the set of finite 
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block-subspaces which are generated by block-sequences in    
     ) is denoted by       ). If       

and            , we write       to mean that    min           for all    .  

We first express the notion of continuous embedding in terms of a game. For   (   
)
   

 with 

(   
)
   

       , we define an "asymptotic" game    as follows. A k-th move for Player 1 is some 

    . A k-th move for Player 2 is some                       with         and     

∑   
 
   .  

PlayerII wins the game    if        is C-equivalent to        .  

We claim the following: 
 

Lemma (2.2.8)[25]: Let X be a Banach space with a Schauder basis, and let                be a 

block-sequence which C-continuously embeds into its subsequences.              . Then Player 2 has 

a winning strategy in the game   . 
 

Proof. Let   be the continuous map in Definition (2.2.6). We describe a winning strategy for Player II 

by induction. 

                                    We assume that Player I's moves          and that the k-1 first moves prescribed by the winning 

strategy for Player II were             , with Fi of the form     
        

        , for all        ; 

letting 

                                      

we also assume that                       . We now describe the k-th move of the winning 

strategy for Player II.  

Let    be a k-th move for Player I. We may clearly assume that        . Let     

                            . The sequence   is of the form                          for some 

                 . By continuity of   in    there exists       such that, if 

                                , then                         We may assume that 

max(        
 )    max(         )so as            , we have that        

       [     ]
. So 

                        is an admissible k-th move for Player 2 for which the induction hypotheses 

are satisfied. 

Repeating this by induction we obtain a sequence         which is equal to      where 

             , and so which is, in particular, C-equivalent to        . 
 

Definition (2.2.9)[25]: Given L,M two block-subspaces in     ), define the game      as follows. A k-

th move for Player I is some               , with     , and               . A k-th move for 

Player II is some                      with         and       ⨁ ⨁   for all    . 
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                                  I:                                                          

                           

                                                                                                     

Player II wins GL,M if         is C-equivalent to        . 
 

The following easy fact will be needed in the next lemma: if         and         are C-

equivalent basic sequences, then any block-sequence of        of the form (∑    
    )is C-equivalent 

to (∑    
    )   

. 

 

Lemma (2.2.10)[25]: Assume         is a block-sequence in        which C-continuously embeds 

into its subsequences, and let             Then Player II has a winning strategy in the game     . 
 

Proof.  Assume the first move of Player I was        ; write     (∑    
    ). Letting in the game    

Player I play the integer       times, the winning strategy of Lemma (2.2.8) provides moves 

   
             

       
   for Player II in that game. We let    ∑    

      and    ∑ 
    

 
. In particular, 

                 . 

We describe the choice of    and    at step  . Assuming the  -th move of Player I was        , 

we write    ∑         
    . Letting in the game    Player I play          times the integer   , the 

winning strategy of Lemma (2.2.8) provides moves    

      
                 

      
  for Player II in 

that game. 

We let     ∑         
      and     ∑         

  
 
 particular,         and        

 
  .  

Finally, by construction,         is C-equivalent to        . It follows that         is C-

equivalent to        .  

The non-trivial Lemma (2.2.10) will serve as the first step of a final induction which is on the 

model of the demonstration of Pelczar in [36] (note that there, the first step of the induction was straight 

forward). The rest of our reasoning will now be along the lines of her work, with the difference that we 

chose to express the proof in terms of games instead of using trees, and that we needed the moves of 

Player II to include the choice of finite-dimensional subspaces   's in which to pick the vectors   's. 

This is due to the fact that the basic sequence which witnesses the embedding of X into a given subspace 

generated by a subsequence is not necessarily successive on the basis of X.  

Let L, M be block-subspaces in     ). Let 
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be such that | |  | |     | |  | |          | | denotes as usual the length of the finite sequence  ). 

Such a couple (a, b) will be called a state of the game      and the set of states will be written     ). It 

is important to note that      is countable. The empty sequence in   
      (resp. 

                    will be denoted by  . 

We define            intuitively as "the game       starting from the state (a,b)". Precisely, if 

| |  | |, then write                   and      (         )  with              for    . 

A k-th move for Player I is               , with            if k = 1 and    , and  

        if    . Ak-th move for Player II is                       with         and    

   ⨁ ⨁    ⨁    ⨁   ⨁    for all  .  

                 I:                                                          

                             
         

| |  | |
 

                           II:                                                                     

Player IIwins           if the sequence                       is C-equivalent to the sequence 

                         

Now if | |  | |     , then write                       and                 with     

        for        

A first move for Player II is     . A first move for Player II is (  ,  )              with    

     and      ⨁ ⨁  ⨁   . 

For     , a k-th move for Player I is                  , with                     , 

and               ; a k-th move for Player II is                      with         and  

       ⨁ ⨁    ⨁    ⨁ ⨁   . 

              I:                                                  

                               
         

| |  | |   
 

                             II:                                                                   

Player 2 wins            if the sequence                       is C-equivalent to the sequence 

                            

We shall use the following classical stabilization process, called "zawada" in [36]; see also the 

proof by B. Maurey of Gowers' dichotomy theorem [37]. We define the following order relation on 

       for            , with    |   |                 write      if there exists     such 

that      for all    . 



30 
 

Let T be a map defined on       with values in the set  ∑ of subsets of some countable set ∑  . 

Assume the map  - is monotonous with respect to            and to inclusion on  ∑. Then by ([36] 

Lemma 2.1), there exists a block-subspace          which is stabilizing for                 for 

every         

We now define a map                                iff there exists      such that 

Player II has a winning strategy for the game            
 

Lemma (2.2.11)[25]: Let M' and M be in        If       then         ). 

 

Proof. Let        let              and let       be such that Player 2 has a winning strategy in 

            Let m be an integer such that for any                and                implies 

   . We describe a winning strategy for Player II in the game     : assume Player I's p-the move was 

        (or just    if it was the first move and | || |    ; without loss of generality     . Let 

      ) be the move prescribed by the winning strategy for Player II in          ).Then       

   and     , so     . The other conditions are satisfied to ensure that we have described the p -th 

move of a winning strategy for Player II in the game          . It remains to note that      as well 

as to conclude that           .  

By the stabilization lemma, there exists a block-subspace          such that for any 

               ). 

For           we write              and       

We now define a map                 by            iff there exists        such that 

Player II has a winning strategy for the game      
    ). 

 

Lemma (2.2.12)[25]: Let  ' and M be in                then          ). 

 

Proof. Let                                  be such that Player 2 has a winning strategy in 

     
    ). Define  ́   ́        ̀   , it follows immediately that Player 2 has a winning strategy in 

the game       
        It is also clear that                         

 

So there exists a block-subspace           of    which is stabilizing for p, i.e. for any 

                    
 

Lemma (2.2.13)[25]                          
 

Proof. First it is obvious by definition of    that             . 
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Let               There exists L =*    such that Player II has a winning strategy in 

     
     ; as      , this implies that                

Let (a, b)       There exists        such that Player II Ihas a winning strategy in 

      
    ). As       , this is a winning strategy for      

      as well. This implies that       

     and, by the stabilization property for               .  
 

We now turn to the concluding part of the proof of Theorem (2.2.3). By our assumption about X 

just before Definition (2.2.9), there exists a block-sequence                 ) which is contained in 

   , and C-continuously embeds into its subsequences, and without loss of generality assume that 

                 . We fix an arbitrary block-subspace         generated by a block-sequence in 

       and we shall prove that    embeds into M. By standard perturbation arguments this implies that 

   is minimal. 

We construct by induction a subsequence                   , a sequence            

                   such that      and      ⨁ ⨁    for all    , and such that 

                           for all    . 

By Lemma (2.2.10), Player 2 has a winning strategy in       
 and so in particular            

(recall that   denotes the empty sequence in the sets corresponding to the first and second coordinates). 

This takes care of the first step of the induction.  

Assume                               is a state such that           is a finite subsequence 

of        ,such that        and      ⨁ ⨁   for all        , and such that             ).  

As (a, b) belongs to        there exists         such that Player 2 has awinning strategy in the 

game      
       In particular,       so we may choose    large enough such that     

      and 

   
  ; we let Player I play       

. Player 2 has a winning strategy in the game      
       , where 

           . In other words,        belongs to      . Now       =       so there exists      such 

that Player II has a winning strategy in the game           . Let Player I play any integer   , and 

(     ) with      and      ⨁ ⨁     be a move for Player II prescribed by that winning 

strategy in response to   . Once again, Player II has a winning strategy in              with    

                   
                  

To conclude, note that                  implies in particular that         and        are C-

equivalent, and this is true for any    , so         and         are C-equivalent. Hence         C-

embeds into M. Now        is a subsequence of        , so by our hypothesis,    C-embeds 

into        and thus   -embeds in M, and this concludes the proof of Theorem (2.2.3). 
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As a consequence of our proof we obtain a uniform version of Theorem (2.2.3). 

Theorem (2.2.14)[25]: Let                . If a Banach space is satlzrated with basic sequences 

which C-embed into their subsequences, then it contains a      -minimal subspace. 
 

D. Kutzarova drew our attention to the dual    of Tsirelson's space; it is minimal [41], but 

contains no block-minimal block-subspace (use, e.g., [41] Proposition 2.4 and Corollary 7. b.3 in their 

   versions, with Remark 1 after [41] Proposition 1.16). So Theorem (2.2.3) applies to situations where 

Pelczar's theorem does not. On the other hand, we do have (recall that a basic sequence         is 

isomorphically homogeneous if all snbspaces spanned by subsequences of        are isomorphic): 
 

Corollary (2.2.15)[25]: A Banach space with a Schauder basis which is saturated with isomorphically 

homogeneous basic sequences contains a block-minimal block-subspace. 
 

Proof.  Let X have a Schauder basis and be saturated with isomorphically homogeneous basic 

sequences. By the beginning of the proof of Lemma (2.2.5), we may assume X is reflexive. By Theorem 

(2.2.3), there exists a minimal subspace Y in X, which is a block-subspace if you wish; passing to a 

further block-subspace assume furthermore that Y has an isomorphically homogeneous basis. Take any 

block-subspace               ; then Y embeds into Z. By reflexivity and standard perturbation 

results, some subsequence of         spans  a subspace which embeds as a block-subspace of Z. As 

         is isomorphically homogeneous, this means that Y embeds as a block-subspace of Z.  

We recall that a Banach space is said to be ergodic if the relation    is Borel reducible to the 

relation of isomorphism between its subspaces. 
 

Corollary (2.2.16)[25]: A Banach space is ergodic or contains a minimal subspace. 
 

Proof. We prove the stronger result that if X is a Banach space with a Schauder basis, then either    is 

Borel reducible to isomorphism between block-subspaces of X or X contains a block-minimal block-

subspace. 

Assume    is not Borel reducible to isomorphism between block-subspaces of X. By [35] 

Theorem 19, any block-sequence in X has an isomorphic ally homogeneous subsequence. In particular, 

X is saturated with isomorphically homogeneous sequences, so apply Corollary (2.2.15).  
 

Corollary (2.2.17)[25]: A Banach space X contains a minimal subspace or the relation    is Bore1 

reducible to the relation of biembeddability between subspaces of X. 
 

Proof. Note that the relation     of biembeddability between subspaces of X is analytic. By [35] 

Theorem 15, if    is not Borel reducible to biembeddability between subspaces of X, then every basic 

sequence in X has a subsequence         which is homogeneous for the relation between subsequences 
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corresponding to    , that is, for any subsequence         of                   
           . This 

means that        embeds into its subsequences. So X is saturated with basic sequences which embed 

into their subsequences. 

We conclude with a remark about the proof of Theorem (2.2.3). The sequences (  )   
 | |  

(associated to a subsequence of         and                              (with 

          equivalent to     
      in our final induction may clearly be chosen with       for all  , 

for an arbitrary sequence         of block-subspaces of   . Also,         C-continuously embeds into 

its subsequences, i.e. there is a continuous map                such that f(A) is C-equivalent to 

       for all           . 

By combining these two facts, it is easy to see that Player II has a winning strategy to produce a 

sequence         which is   -equivalent to        , in a "modified" Gowers' game, where a p-th move 

for Player 1 is a block-subspace          with      , and a p-th move for Player II is a couple 

                           with       and        ⨁ ⨁   . 

This is an instance of a result with a Cowers-type game where Player II is allowed to play 

sequences of vectors which are not necessarily block-basic sequences. 

 

 


