Abstract:
This research focuses on vibration energy harvesting using electrostatic converters. It synthesizes the various works carried out on electrostatic devices, from concepts, models and up to prototypes; Integration of structures and functions has permitted to reduce electric consumptions of sensors, actuators and electronic devices. Therefore, it is now possible to imagine low-consumption devices able to harvest energy in their surrounding environment. One way to proceed is to develop converters able to turn mechanical energy, such as vibrations, into electricity: this research focuses on electrostatic converters using electrets. It develops an accurate analytical model of a simple but efficient cantilever-based electret energy harvester. Therefore, it proves that with vibrations of resonant frequency it is theoretically possible to harvest energy in μW per gram of mobile mass. This power corresponds to the maximum output power of a resonant energy harvester according to the model of William and Yates. The Simulations results are validated by model of William and Yates and other devices, the work includes Design, modeling and simulation by SOILDWORK, ANASYS and MATLAB of electro-mechanical and electrical properties of the structure, description of its behavior in operating model and phases of activity. Simulation results were compared with measured values of the produced prototype chip by other studies. These results can suggest possible modifications to the proposed structure for further optimization and application environment adaptation.