Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/20808
Title: Linear Graph Transformations and Fiber Dimension with Shift plus Complex Volterra Operator in Invariant Subspaces
Other Titles: تحويلات البيان الخطي والبعد الليفي مع الازاحة زايداً موثر فولتيرا المركب في الفضاءات الجزئية اللامتغيرة
Authors: Balla, Hoyam Mousa Abdalbage
Supervisor, - Shawgy Hussein AbdAlla
Keywords: Mathematics
Invariant Subspaces
Shift plus Complex
Volterra Operator
Linear Graph Transformations
Issue Date: 10-Feb-2018
Publisher: Sudan University of Science and Technology
Citation: Balla, Hoyam Mousa Abdalbage . Linear Graph Transformations and Fiber Dimension with Shift plus Complex Volterra Operator in Invariant Subspaces / Hoyam Mousa Abdalbage Balla ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2018 .- 212p. :ill. ;28cm .- PhD.
Abstract: We study the spectral properties and complemented invariant subspaces in the Bergman spaces having the codimension two property and also with the spectra of some translation and fiber dimension for invariant subspaces. We determine the index of invariant subspaces in Hilbert spaces of vector-valued analytic functions of several complex variables. We classify similarity, reducing manifolds, unitary equivalence of Volterra operators and Volterra invariant subspaces of Hardy spaces. We show nearly invariant subspaces of the backward shift and shift plus complex Volterra operator. We characterize the analytic continuability of Bergman inner functions and linear graph transformations on spaces of analytic functions. We give the algebraic properties of the index of invariant subspaces of operators and of parabolic self-maps on Banach and Hardy spaces.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/20808
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Linear Graph Transformations....pdfTitele246.36 kBAdobe PDFView/Open
Abstract .pdfAbstract375.4 kBAdobe PDFView/Open
the Research.pdfResearch2.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.