Chapter 1
Spectral Properties and Invariant Subspaces

We show that if an invariant subspace J contains a function that is bounded away from 0
on some neighborhood of a point A on the unit circle T, then the spectrum of z[]],
multiplication by z, when regarded as operating on the quotient space L% (ID)//, does not
contain the point 2. A consequence of this result is that the spectrum associated with the
invariant subspace of all functions vanishing on a prescribed Bergman space zero sequence
coincides with the closer of the sequence.

Section (1.1): Invariant Subspaces in the Bergman Space

Let L% (ID) denote the standard Bergman space of all holomorphic functions on the open
unit disc D in the complex plane C that satisfy the integrability condition

1/2
Ifllz = (jlf(Z)IzdS(Z)> <o (1
D

Here, dS denotes area measure in C, normalized by a constant factor

dS(z) = dxdy/n’ z=x+1iy

A closed subspace J of L2 (D) is said to be z-invariant, or just invariant, proved the product
zf belongs to / whenever f € J. Here, we use the standard notation z for the coordinate
function

z(A)=21, LeD

The structure of the lattice of invariant subspace in L2 (ID) has attracted a lot of attention from
operator theorists as well as function theorists , but most results have been disappointing, in
the sense that one realizes that no simple characterization such as is known for the Hardy
space H2(D) is possible for the Bergman space. The famous theorem on the invariant
subspace of H? (D) is due to Arne Beurling [2], and it asserts that every z-invariant subspace
J of H? (D), analogously defined as for the Bergman space, is either trivial, that is, ] = {0},or
has the form J = uH? (D) ,where u is an inner function, that is, a bounded analytic function
on D with non-tangential boundary values having modulus 1 almost everywhere .

Given an invariant subspace J of Bergman space L% (ID), consider the operator z[/]: L% (D) /
] = L%(D) / ] defined by the relation

zI(f+)) =zf +], f € La(D) (2)

We write o(z[]]) for the spectrum of the operator z[J], which consists of those A € C for
which the operator A — z[]], acting on L (D) / J,is not invertible. It is well known that the
spectrum o(z[/]) is a compact subset of the closed unit disc D. Because the lattice of
invariant subspace of the Bergman space is very rich, it is appropriate to also consider another
spectral notation (we may call it the weak spectrum): ¢'(z[J]) denote the collection ofall 1 €
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C for which the operator A — z[J]: L2 (D) / ] - L%(ID) /] is not onto. What can go wrong is
that 1 — z[J] need not be one-to-one even if it is onto; this occurs precisely (for A € D) when
the invariant subspace fails to have what Richter[3] calls the codimension 1 property. Itis not
difficult to see that the set o’(z[J]) is also a compact subset of I, and clearly we have the
inclusion a'(z[J]) < a(z[J]). There are cases when a(z[J]) = D and ¢'(z[J]) = T; for an
example [4].

The weak spectrum 6(z[]]) is as follows: if A is a complex number, we have 1 € C \ a'(z[]])
if and only if

(4 -2)L5(D) +] = LE(D) (3)

The work on spectra associated with invariant subspaces in the Bergman space can be found
in [3,5,6].

Theorem (1.1.1)(Richter):[1]  LetJ be an invariant subspace of L2 (ID), other than the
trivial subspace {0}, if J has the codimension 1 property o'(z[J]) = a(z[]]). If, on the other
hand, J does not have the codimension 1 property, then o(z[/]) = D, and 6'(z[J]) > T.

Lemma (1.1.2):[1] Every invariant subspace of J of the Bergman space L% (ID), other than
{0}, contains a non-identically vanishing function G, ,which extends to a holomorphic
function on the region

{zeC1/z¢o(z[]]D}
and has |G, (2)| = 1 onthe union of arcs T \ o' (z[J]).

Proof:  The assertion is void if o(z[J]) = D, so we may as well assume that J has the
codimension 1 property, by Theorem (1.1.1). then the subspace zJ also has the codimension
1 property [3], so by Theorem (1.1.1) o(z[z]]) = ¢'(z[z]]). We show that

o (z[z]]) = a(z[JD v {0} (4)

It is sufficient to prove this equality with the o (.)’s replaced by o'(.)’s. By definition, if Iis
an invariant subspace, A € C\ a(z[I]) if and only if

(A —2)L4(D) +1 = LE(D)

Clearly, the weak spectrum has the monotonicity property that o'(z[1']) 2 o'(z[I]) if I'is
another invariant subspacewith I’ c I. From this we seethat ¢'(z[z]]) 2 a'(z[]]), and it is
not difficult to see that 0 € o’'(z[z/]) directly from the definition. For these reasons, to verify
(4) we just need to show o'(z[z]]) c o'(z[J])U{0}. To this end, let us take a A € C\
a'(z[J]) \ {0}, and try to showthat A € C \ ¢'(z[z]]). By the definition of the spectrum, we
have that

(A= 2)L5(D) +] = L3(D),
So by multiplying bothsides by z, we have in particular

(1 —2)[4(D) + z] o zL% (D)



There are functions in (1 — z) L% (ID) that do not vanish at 0, for instance the function A — z
itself, so that since zL2 (D) has codimension 1 in L% (D), we must in fact have

(A= 2)L%(D) + 7] = L3, (D).
This showthat 1 € C\ ¢'(z[z]]), as asserted.

We prove the assertion of the Lemma. Let G; € ] © z/ have norm 1 then the kernel
representation formula

G,(A) = (G, (1—12)2)2, 1€D,

generalizes to

G = (G +2],(1=Azlz]1) A +2D) 1212,

where 14 z/ denotes the coset containing the constant function 1 in the quotient space
L% (D) /z], and we see that the expression on the right-hand side is a well-defined
holomorphic function in the variable A on the set

{zecC 1/Z— ¢ a(z[z]])},

which coincides with

{zec: 1/Z— ¢ o(z[/D},

because the additional point 0 in (4) now corresponds to the point at infinity. The functions
G; were studied in [7], for instance, it is clear that G; has modulus > 1 at every boundary
point to which it extends continuously.

Lemma (1.1.3):[1] Let f € L2(ID)be such that on an open disk D(z,,p), centered at
z, € T, with radius p > 0, we have

If(2)| >¢, z€DnND(zyp),

for some constant e > 0. Then the exists a bounded analytic function g on D such that

%< f(2)g(2)| <2, zeDND(zyp),

for some smaller radius p, 0<p<p.

Proof: Considerthe function 1/ f, which is homomorphic, zero-free, and bounded on D N
D(zy,p), we are now in the whole unit disk D. On the region D N D(z,,p), We are now in a
situation where we may apply the standard Nevanlinna theory, to show that the harmonic
function log|e/f| has boundary values in the sense of distribution theory on D N D(z,, p),
and these boundary values form a negative Borel measure u. We may then pick a slightly
smaller radius p”, 0 < p"” < p, and let ¢ be the Poisson extension to the whole disk D
corresponding to the part of the measure u that falls upon the arc T N D(zy,p'"). The
negative measure w is finite on that arc, because we can map D N D(z,, p) conformally onto
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D, and on D, and the mapped measure on T corresponding to 4 must be bounded; the rest is
an exercise in conformal mapping. we now find a bounded holomorphic function g on D

having |g| = ¢ 1 exp(¢ ) on D,and by construction and the Schwarz reflection principle
, fg extends holomorphically across the arc T N D(z,,p"), and has modulus 1 on it. The

function fg clearly meets the assertion, for some small radius p’.
Theorem(1.1.4):[1] Let J be aninvariant subspaceof L% (D). Then o'(z[]]) = Z,. ().
Proof: Richter [3] has shown that

czDND=Z.(J)nD

By Lemma (1.1.2) Z,(J) n T is contained within o (z[J]) n T. this entails that Z,(J) N T c
a'(z[J]) Nn'T, for the following reasons. if J fails to have the codimension 1 property, then
by Theorem (1.1.1) o'(z[J]) © T, which makes the assertion trivial. If, on the other hand, J
dose have the codimension 1 property, then a(z[]]) = o'(z[]]), and all is well.

The rest of the proofis devoted to obtaining the reverse inclusion
Z.(HhNT oo'(z[J]]DNT.

Let f be a function in J, and suppose there exists a point A € T such that for some disk
centered at A with radius R > 0,

DA, R)={z€C:|z— 1| <R},
we have
1/2 <|f(2)| < 2, z€D(A,R)ND,

Such a function f exists in Jif and only if A € T \ Z, (J), by Lemma(1.1.3). we need to show
that A & o'(z[]]); this amounts to proving that
(A= 2)L5(D) +] = L5 (D).

In other words, we need to show that for every g € L% (D) and h € L% (D) can be found such
that

A—2z)h—g €].
Fix three real parameters ry,r,, 3 with 0 <7, <1, <13 <R, and let
D(An)={zeClz-2A<r}, j=123,

Be the disk around A with radius ;. Let x; be an infinitely differentiable compactly
supported function on C with values between 0 and 1, which vanishes off the disk D(4, ;)

and has value 1 onthe smaller disk D(A4,r;). Let the function g, solve the 9-problem

9(2)5%,1 (2)

0q,(2) :m,

z€D; (5)



just put

)= | 9©068)__150), zec )

- ) (A=0@E=Of ()

Note that since the right-hand side of (5) is in L?(ID, dS), and since we are in fact considering
the convolution of that L? (D, dS) function with the d — ker(rz)~* , which locally belongs to
L7 for every q < 2, we see that g,, as defined by (6), belongs to L? (ID,dS) for all p < .
One more thing that is immediate is that g, is holomorphic off the closure of D(4,7,) N D,
and in particular bounded on C\ D(4,13) (q,(2) tends to 0 as |z| — ). We consider the
function

Pi(2) = —g@Dm(2)/f(2) + A= 2)qx(2), z€eD,

which belongs to L?(ID,dS), because f is bounded away from 0 on the support of ;.
Moreover, P, is holomorphic on D, since

0Py(2) = — g(2)0,(2)/f(2) + (A —2)9q;(2) =0, z€D,
Let us assume that we know that f P, belongs to J. We then put

h(D = 972D 4

and note that f is bounded on D(4,R) N D, and g, is bounded on C \ D(4,73) and belongs
to L2 (dS) on D, so that the product f g, clearly is in L?(ID,dS). The function h thus belongs
to L?(D, dS), and since

0h(z) = — g(2)01,(2)/(A—2) + f(2)0q,(2) =0, z€D,

h belongs to L% (D). To check that the function h dose what we set out for it to do, observe
that

+f(2)q,(2), z€D, (7)

(A —2)h(2) —g(2) = —(2)g(2) + (1 — 2)f (2)q2(2) = f(2)P,(2),

so that the assertion is immediate once we know that f P, is in J. The way P, is constructed,
this function is bounded on D \ D(4,73), and L?(dS) on D N D(A, ;). The properties of
function f complement those of P;: f is bounded on D(A,R), and L?(dS) on D \ D(4, R).
Using this information, it is not difficult to show that

f(2)Py(pz) » f(2)P)(2), asl>p—>1;

in the norm of L2 (D). Since the function f(z)P,(pz) belong to J, for all p with 0 < p < 1,
we see that fP, €.

Corollary (1.1.5):[1] Let A be a zero sequence in I for a function in L2 (ID), and consider
the associated invariant subspace

J(A) = {f € L3 (D):f = 0 on A};



counting multiplicities when necessary. Then o (z[7(A4)]) = 4, the closure of 4 in D.

Proof: Invariant subspace of the type 7(A4) always have the codimension 1 property [3],
and consequently a(z[7(A)]) = o'(z[T7(A)]), by Theorem(1.1.1) so, by Theorem (1.1.4) all
we need to do is show that Z,(7(4)) = A. Clearly, Z,(7(4)) 2 4; in [7], there exists a
function G, which vanishes precisely on A4 in D, extends holomorphically acrossthe set T \
A, and has modulus > 1 there.

Section (1.2): Bergman Space Having the Codimension Two Property

Following Kristion Seip [7,8,10],we say that a sequence A = {a;}; is a sampling
sequence for L (D) provided we can find positive constants K, K, such that

]

& [Ir@rdas@ = (1-16") @l <&, [Ir@Pase)
D D

holds for all f € L% (D), the sequence A is said to be an interpolating sequence for L% (D),
provided that to every [ sequence {w;};,there exists a function f € L% (ID) having

(1 — |aj|2)f(aj) = W, for all j.

If £ is a holomorphic function on D, we write Z(f) for the sequence of zero f, counting
multiplicities, provided f does not vanish identically. If f vanishes identically, we write
Z(f) = D. A sequence of points in D is called a Bergman space zero sequence provided it
coincides with Z(f) for some nonidentically vanishing function f € L%(D) . Every
interpolating sequence A for L% (D) is also a Bergman space zero sequence: just take an
interpolant for the sequence w; = 1,w; = 0 forall other j, and multiply this function by z —
a, to get a non identically vanishing function that vanishes on the sequence A. This actually
only shows that A must be a subsequence of a Bergman space zero sequence, but it is well
known, and not too hard to show, that every subsequence of Bergman space zero sequence is
itself a zero sequence [7,8,9]. However, the union of two zero sequence need not be a zero
sequence [9]; in fact, it may be so far away from being a zero sequence as to be a sampling
sequence, as we shall see in Theorem(1.2.1).

Theorem(1.2.1):[4] There exists a sampling sequence for L2 (ID) which is the union of two
disjoint zero sequences.

If 7, and H, are tow Hilbert spaces, it is standard to denote by H; ®H, their direct sum,
that is, the linear space of all pairs (x,,x,), with x; € H; and x, € H,, supplied with the
norm

1
1Cer ) oty @or, = (a3, + N, 112, )2,

which makes H, ®H, a Hilbert space. If H; and H, are closed subspaces ofabigger Hilbert
space H, one can consider their sum H; + H,, and in case H, and H, are orthogonal
subspace, one then replaces the plus sign(+) with a direct plus (@) sign. We shall take the
liberty to write H; @H, provided the closed subspaces H'; and H, have H; N H, = {0},



and the direct sum norm on H;@H,, is equivalent to the restriction of the #-norm to H; +
H,,given that H; N H, = {0}, this last property is equivalent to requiring the sum H; + H,
to be closed in ', by the closed graph theorem.

Proposition (1.2.2):[4] Let Aand B be two disjoint zero sequences whose union is a
sampling sequence. Then 7(4) NnJ(B) = {0}, and the subspace 7(A4) + J(B) is closed in
L% (D), allowing us to write 7(A)®7(B) instead of 7(4) + 7(B).the subspace 7(A)DI(B) is
z-invariant, and it has the codimension 2 property.

Proof: Write C = AU B, with C ={c;};, and let f € 7(4) and g € J(B) be arbitrary.
Clearly, a sampling sequence cannot be a zero sequence, and hence 7(4) N J(B) = {0}. our
next job is to check that the subspace 7(A4) + 7(B) is closed in L% (D). Denote by K, K, the
positive constants associated with the sampling property of the sequence C.

J

& [Ir@rdas@ s Y (1-1oF) [r@I* s &, [If@rdse),
D D

Let f € 7(A) and g € 7(B) be arbitrary. Then for every point c; in the sequence C, we have

F(¢) +a(cpl” = |fcpl” + gl

so that if we use the sampling property of sequence C, we get
2 _ 2 > -1 2)? 2
If +9l% = | If@ +9@Pds@ 2 k7 Y (1-|g]") |f(e) +9(c)]
’ ;

]
2
= k) (1=16l") AFEI +1a(e)l = K KM (IF I + lgliZ).
j
The property we shall focus onis that with e = K; K;1 > 0
If +gll72 Z e(lIf 7 + llgllz2), £ € I(A), g€IB.

It implies the assertion that 7(A4) + J7(B) is a closed subspace of L2, (ID), justifying the change
of notation to 7(A)@J(B). Since the subspaces 7(A) and 7(B) are z-invariant, their(direct)
sum J(A)DI(B) is z-invariant as well. What remains to be done is to demonstrate that the
codimension of z(3(A)®I(B))in f € I(A) and g € I(B) is 2. Note that if f € 7(4) and
g € 7(B), then

z(f+g9) =zf +zg € z1(A)DzI(B).
So that
z(7(A)BI(B)) = zI(A)DzI(B).

The direct sum sign is justified because z7(A) and zJ(B) are closed subspace of 7(4) and
J(B), respectively. The subspaceszJ(A) and zJ(B) have codimension 1 in the spaces 7(A)



and 7(B)[3], respectively and consequently, their direct sum z7(A)@zJ(B) must have
codimension 2 in 7(A)®7(B).

Corollary (1.2.3);[4] There exist a z-invariant subspace of L3 (D) which has the
codimension 2 property. Moreover, this z-invariant subspace canbe of the form | = 7(4) +
J(B), where A and B are tow disjoint Bergman space zero sequences.

Theorem(1.2.4):[4] Let A and B be two disjoint Bergman spaces zero sequences. Then the
smallest z -invariant subspace of L% (D) containing both 7(A4) and 7(B) having the
codimension 1 property is L% (D) itself.

Proof: Let us for convenience denote by J the smallest invariant subspace of L% (D)
containing J(A) and 7(B) with the codimension 1 property; the assertion we wish to prove
is that | = L% (D).

Only one of sequences A and B can contain the point 0, since they are disjoint. Let A =
{a;}7., be the one that does not contain 0. We may then consider the extremal function G,

for the problem

sup{Re f(0):f =0 on 4|/fll2 = 1}

which has the property of vanishing only on the sequence A, among other things, according
to [7]. Let Ay be the finite subsequence Ay = {aj}jyzl, and letG,, be the extremal function
associated with zero sequence Ay. We know from [7] that G, is a rational function whose
poles are located at the reflected points {1 / c‘zj}jyzl ; it vanishes precisely at Ay in the unit

disk D, has |G, (2)| Z 1 on the circle T, has ||Gy,[| , =1, and moreover, it has the
expansive property

IFle < IGayfll . £ € L2(D) (8)

Denote by Z(J) the common zero set in D of the functions in J. Since the sequences A
and B are disjoint, we have Z(J) = ¢. Richter [3] has shown that if a z-invariant subspacel
has the codimension 1 property, then if A € D is any point which does not belong to the
commonzero set Z(I) of I,and f € I has f(4) = 0, the function f(z)/(z — A) also belongs
to . Let us apply this argument repeatedly to the invariant subspace/, and the function G,.
We then obtain as a conclusion that G, / G, also belongs to J, for every positive integer N.
Butas N — ,G, /G4, — 1 pointwise in D, and by (8),with f = G, / G,,,we have

”GA /GAN”LZ = ||GA||L2 =1

Sothat, by [7], G4 / G4, — 1 innormas N — co. Hence the constant function 1 has to belong
to J as well. But the constant function 1 generates, as an invariant subspace, to whole
Bergman space L% (ID), and we arrive at the function J = L2 (D).

Corollary (1.2.5):[4] Let A and B be two disjoint Bergman spaces zero sequences. If one
of the sequences A and B does notaccumulate at every point of the unit circle T, then 7(4) +
J(B) is dense in L2 (D).



Proof: LetJ be the norm closure of sum 7(A) + 7(B), which is an invariant subspace in
L% (D). In [1,3], the concept of the weak spectrum a’(z[]]) associated with an invariant
subspace asintroduced, and by [1], we see that for our particular choice I = J, we have

a'(z[]]) € A nB.

Note that by assumption, the set A N B is a proper closed subset of the unit circle T. But
Richter [1,3] has shown that weak spectra associated with invariant subspace not having the
codimension 1 property must contain the whole unit circle ,and therefore, the invariant

subspace J must necessarily have the codimension 1 property.

The pseudohyperbolic metric on D given by the expression
_ Z—Z|
0z = 7| =¢em.

A sequence (or set) of points A = {A;}; in D, finite or infinite, is said to be uniformly
discrete provided that

inf{g(aj, ak):j *+ k}>0.

Clearly, a uniformly discrete sequence has to consist of distinct points, and for finite
sequence, this is the only restriction.

If A'is a sequence of points in the unit disk D, and ¢ € ID an arbitrary point, let A, denote
the image of A under the conformal automorphism of the unit disk

(—z

> =2 seD
1-2z °~

@ (2) =

Associate with the sequence A, the function n(r, A, ), which counts the number of points
of A, contained with the disk

{ze D:|z| <71}

Moreover, we shall need the definite integral
T
N(r,A;) = f n(r,A;)dt,0 <r < 1.
0

If A(r) now stands for the function

1+7r
A(r):log1 , 0<r<i,

Seip defines his upper density of A as

D*(A) = limsup supw
1>r—-1 (€D A(r)
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and this lower density of A as
N(r A
D~ (4) = liminf inf u
1>r-1 e A(r)

For the special case of the un weighted Bergman space.

Theorem (1.2.6)(Siep):[4] A sequence A of distinct points in D is sampling for L2 (D) if
and only if it can be expressed as a finite union of uniformly discrete sets and it contains a

uniformly discrete subsequence A’ forwhich D~(4") > 1/2.

Theorem (1.2.7)(Siep):[4] A sequence A of distinct points in ID is interpolating for L2 (D)
if and only if it is uniformly discrete and D*(4) < 1/2.

Theorem (1.2.8):[4] Theexists a sampling sequence € for L2 (ID) which is the union of two
disjoint interpolating sequences A and B for L2 (D).

Proof: The upper half plane
U={zeCImz > 0}
is mapped conformally onto the unit disk D by the Moebius mapping
p(2)=(z-0/(z+1), zeC\{-i}

We will construct three sequences A’,B’,and C'in U, and then define A =¢(A"), B =
@(B"), and C = ¢(C"). Fix two real-valued parameters 8,8 > 1, and y,y > 0, with the
property that

2n <ylogpf < 4m.
The sequence C’ will consist of all points in the upper half plane U of the from
¢jx =B (ky + 1),

where j, k range over the integers, and i, as always, is the square root of —1. The subsequence
A" will consist of all points

aj, =B 2ky + 1),
with j, k ranging over the integers, and B will be the sequence of all points
b =B ((2k+ Dy +1i),

again with j, k ranging over the integers, the sequences A and C are very regular, and
Siep[10] has already computed their densities:

D*(C)=D(C) = >1/2,

T
y logp
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and

D*(A)=D"(A4) = <1/2.

T
y logp

The sequence B is also very regular, although it does not fit the class of regular sequences for
which Seip has calculated the densities, and it is in fact possible verify that

D*(B) =D~ (B) = <1/2

VA
ylog B

By Theorem (1.2.6) and (1.2.7) A and B are interpolating sequences, and C is a sampling
sequence.

To carry out a construction of an invariant subspace I of L2 (ID) having the codimension n
property, that is, zI should have codimension n in I, along the lines, we need to find invariant
subspaces 1,15, ..., I,, all having the codimension 1 property,

Ii+-+fullz 2 ellfille + o+ 1fll2) (%)

holds for some ¢ > 0 and forall f, € I,,f, € L,, ..., f;, € I,,. Then the (direct) sum

=1L ®..DI,

has the codimension n property. There are several ways to get such a collection of invariant
subspace; the one outlined here was suggested to me by Boris Korenbllum [11].

Let the sequence C’ bethe regular sequence in the upper half plane U appearing in the proof
of Theorem (1.2.8). only this time the parameters 8,8 > 1, and y,y > 0, must be chosen
such that

4n(n—1)/n<ylogp < 4.

Let B, ..., B;, be subsequences of C’, the sequence B,,(m = 1,...,n) consisting of all the
points

b} = B/ ((nk +m)y + i),

with j, k ranging over the integers. Let A", = C'\B',, form =1,..,nand put 4,, =
@(A’ ), where ¢ is the Moebius mapping
¢(z) =(z—-1)/(z+1), zeC\{-i},

which sends U onto D. Note that by the regular nature of the sets A4,,, it canin fact be shown
that
2(n—D)m

D+(Am) = D_(Am) = nylogﬂ

<1/2,
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so that by Seip’s Theorem (1.2.6) A,, is interpolating for L2 (D), for each m. Since the

sequence C = ¢(C) is sampling, an argument analogous to the one used in the proof of
Proposition (1.2.2) now shows that the invariant subspaces

I, =94,), m=1,..,n,

meet condition (9) for some constant & > 0.
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Chapter 2
Spectra and Index of Invariant Subspaces

We consider M,—invariant subspaces M' € H (D). The fiber dimension of M is defined

to be sup dim{f(1): f € M'}. We show that if M has finite positive fiber dimension m, then
AEBg

the essential Taylor spectrum of M, | M, ¢,(M,| M), equals B4 plus possibly a subset of the
zero set of a nonzero bounded analytic function on B4 and indM, — A|M = (—1)%m for
every 1 € By\o.(M,|M). As a Corollary we show that if T = (Ty,..,T;)is a pure d-
contraction of finite rank, then ¢,(T) N B, is contained in the zero set of a nonzero bounded
analytic function and (=1)%in d(T — 1) = k(T) for all X € B4\o,(T). Here k(T) denotes
Arveson’s curvature invariant. We also show that for d > 1 there are such d-contractions
with a,(T) N B4 # @. These results answer a question of Arveson, [19]. We also show
related results for the Hardy and Bergman spaces of the unit ball and unit poly disc of C%.

Section(2.1): Translation Invariant Spaces

Let [, (—oo,0) be the classical Hilbert space of complex valued functions defined on the
discrete group of integers, and let L, (—oo,0) bethe Hilbert space of complex valued square-
integrable functions defined on the continuous group of real numbers. We use the symbol H,
to denote the subspace of all functions in the discrete space [, (—oo,00) which vanish for
negative values of their argument, and the symbol H, to denote the subspace of all functions
in the continuous space L, (—oo,00) which vanish for negative values of their argument. Let
L be any subspace of H which is invariant with respect to left translation, i.e., A(x) in L

implies that the projection of A(x + 7) on H belongs to L for all positive . Let 7 denote the
restriction of the left unit shift operator to the nonnegative integers or real numbers, i.e.,

(TR)(x) = {ﬁ(x +1) forx 0
0 otherwise

and let o(T) denote the spectrumof T acting on L. o(T) is defined to be the setofall complex
numbers A for which (T — 2)~* does not exist as a bounded linear operator, and the point
spectrum of T, denoted by o,,(T) is taken to be the set of complex numbers A for which (T —

A) is not one-to-one.[2]

Theorem(2.1.1):[12] Every nontrivial closed R spaceis of the form GH, where G(z) is an
analytic function in the interior of the unit disc and |G(z)| < 1 there. For z restricted to the
unit circle, |G(z)| = 1 almost everywhere. The function G(z) is uniquely determined by the
space R, except for multiplication by a complex constant of modulus 1.

Let H denote the Hilbert space of one sided sequences h = {h,,}& with inner product

(h,g) = Z hpgy < o,
n=0

where the asterisk which appears is used to denote complex conjugation.

The Fourier transform of h, denoted by F(h), is taken to be the function

13



h(z) = 2 h,z" = F(h),
n=0

which is holomorphic in the interior of the unit disc and satisfies the inequality
21
1 LI 2
— | |hre®|"do < ||nll? 0<r<1,
21
0

According to well-known properties, the radial limit

h(e®) = lim h(re')

r-1-0

exists almost everywhere and

2T
1 .
117 =5 [ |ace®[ae.
0

2
Let H denote the Fourier transform of the space H equipped with inner product
21

(hg) = [ 1(e)ge0ya0.

0

Under these conditions the Fourier transform is a unitary mapping of H onto H. It is easy to
see that the orthogonal complement H+ of H with respect to the space of square integrable
functions on the unit circle is given by

Ht= z*H*,

and every function in H+ can be analytically continued into the complement of the closed
unit disc.

Let R be any subspace of H which is invariant under right translation, i.e. whenever the
sequence (hy,h4, ...) belongs to R we require that the sequence (0,0, ..., ho,hq,...) With n
initial zeros should also belong to R for all positive n. Let L denote the orthogonal
complement of R with respect to H and let T:L — L be the unit left translation operator
defined by

T(h,) =h,,; n=0.
If we set T = FTF~' an easy computation shows that T is expressed by the equation

h(z) — h(0)
Z

(’fh) (2) =

Since F is unitary, the spectrum of T acting on L may be determined directly from the
spectrum T acting on L.
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Lemma (2.1.2):[12] Let f(z) beanalytic in the interior of the unit disc. Then f(z) belong
to L if and only if it is square integrable on |z| = 1 and the function G(z)z*f*(z) can be
continued as an analytic function throughout the interior of the unit disc.

Proof: Notice that f(z) belongs to L if and only if it is square integrable on the unit circle
and satisfies the condition (G*f,H) = 0. This means that f(z) belongs to L if and only if
there is a function k(z) in H with the property that

G*(2)f (2) = z7k* (2) (1)

when |z| = 1. Taking the complex conjugate of (1), we see that f(z) belongs to L if and only
if the function G (z)z*f*(z) is square integrable on |z| = 1 and can be analytically continued
as a function k in H, i.e.throughout the interior of the unit disc.

Theorem (2.1.3):[12] Let A be any complex number whose modulus is less than 1. Then
A ¢ o(T) if and only if G(1*) # 0.

Proof: We first show that the condition G (1*) # 0 implies that the equation

FODZTO a1 =12 @)

has a unique solution f(z) in L for every [(z) in L. It will then follow from the interior
mapping principle [14] that A € a(T).

Solving (2) formally, we find

_zl(z) — £(0)
f(2) = T2,

which is valid when |z|] = 1. Since we assumed that [(z) belongs to L, it follows from
Lemma (2.1.2) that the function

m(z) = G(2)z*1*(2) (4)

(3)

defined for |z| = 1 can be analytically continued throughout the interior of the unit disc as a
function in H. Taking the complex conjugate of (3), multiplying both sides by z*G (z), and
then substituting (4) into the resulting expression, we finally obtain the relation

m(z) + G(2)f(0)
z— A

G(2)z" f"(2) = ()

which is valid a.e. whenever |z| = 1.

The right hand side of (5) is an analytic function throughout the interior of the unit disc
whose L, norm is bounded on the unit circle if and only if
m(1*)
G(A)

fr(0)=— (6)

15



Using the fact that G (1*) # 0, we may define f*(0) by (6) and substitute this value into the
right hand side of (5) to obtain a function in H. Since the left hand side of (5) agrees with this
function whenever |z| = 1, it follows that the left hand side of (5) can be extended as a
function in H as well. We conclude that 2 # o(T).

Conversely, if G(A*) = 0, we may express G (z) as
z—A"
1-A1z

where |G, (z)| = 1 a.e. |z| = 1. Fromthis factorization it follows that

z" G (2)
- P =14,

G(z) = G, (2),

whenever |z| = 1. Consequently, we deduce from Lemma (2.1.2) that L already contains the
eigenfunction (1 — Az)~". This means that 1 € o,,(T).

Lemma (2.1.4):[12] Let u(2) belong to the space H and let v(z) be analytic in any domain,
D, contained in the complement of the unit disc whose boundary contains the circular arcl’ =
{e1:0, < 6 < 0,}. Assume that no inner point of I' is the limit point of boundary points of
D which do not belong to T. If

lim u(re’) —v(r~te®)=0 for6,<6<80,

r>1-0
and
62
f lu(re®) — v(r_lei9)|2d9 <MforO<r,<r<1
01

then u(x) and v(z) are analytic continuations of each other acrossT.

Proof: Let C(r,) bethe boundary of the circular sector whose vertices are {r, e/}, i1,
and let C(r;) be the boundary of the sector whose vertices are {r; 1e'i}, j—1,2 Where 6; <
<y, <B,andry, <nr, <r, <1. Since u(z) belongs to H, we may assume without loss
of generality that it has a finite radial limit at the points e?’* and e'2.If z is any point inside
C(r,) we may write

_ 1 [u®ds 1 [ v
u(@) = Znic(jé) z—¢ +2nicj;) z—¢&

Now pass to the limit as r, goes to 1. By virtue of the conditions stated in the hypothesis,
we may apply Schwarz’s mequality and the Lebesgue dominated convergence theorem to
obtain the relation
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Y2 . .
_ u(ryet®) —v(r, te'?)
lim

r3=1-0 r,e —z
V1

dé = 0.

This implies that u(z) can be expressed in the form

1 w($)ds

D=0 P ¢
C(r1)

(7)

where C(r;) is the sector whose vertices are {r;e'%i};_,, and {r; *e'i};_, , while

_(u(®)  iflgl=1
w(¢) = {v(g) if |£] > 1.

A similar argument shows that v(z) may also be represented by (7). Thus u(z) and v(z) are
analytic continuations of each other across I

Theorem(2.1.5):[12] Let A be any complex number such that |A| = 1. If there exists a § >
0 suchthat |G(2)| > § in the intersection of some neighborhood of A* with the interior of the

unit disc,then A & o(T).

Proof: Let G(z) and m(z) be analytic continuations of the functions 1/G*(z) and
z*1*(2)/G*(z) defined for |z| =1, into the complement of the closed unit disc. Since
|G(z)| > 6 in the intersection of some neighborhood of A with the unit disc, it follows from
Lemma (2.1.4) that the functions G(z) and #i(z) are analytic continuations of G (z) and
m(z) defined in Theorem (2.1.3) throughout some circular neighborhood of A*.As in the
proof of Theorem (2.1.3), if we set

m(A")
GAY)

F10)=-

and substitute this value into (5), it is evident that the right hand side of (5) is a function in
H. Using our previous reasoning, this means that the left hand side of (5) can also be extended

as a function in H.

Theorem(2.1.6):[12] Let A be any complex number of modulus 1 with the property that
Zlgﬁl inf|G(2)| =0

when |z| = 1.Then A € o(T).

Proof: Let A,, = Abe any sequence of complex numbers having modulus less than 1 for
which lim |G(4;)| = 0. It remains to be shownthat 1 € a(T).
n—->oo

We first consider the identity

1- M'nlz
1-1,z

RGO O)

=1 =121
1-1,z 1—-1,z

(8)
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According to the Theorem(2.1.1) , the second function on the right hand side of (8) belongs
to R; the first function, on the other hand, belongs to L by virtue of Lemma (2.1.2). Call these

two functions ,,(z) and [,, (z) respectively, so that (8) may be written in the form

% = L(2) +1,(2), 9
where [,,(2z) € L and 7;,(z) € R.
Using the factthat |G (z)| = 1 when |z| = 1, we may compute norms to obtain the relation

I1L@I? =1-16(A)I%, (10)
because r;,(z) and [,, (z) are mutually orthogonal.

Applying the operator T — A to both sides of (9) and using the fact that

= 1= 4,l, (11)

H(T A)

we obtain the inequality
I(T— D@ < (2= 2,0 + [GADIIT — Al
< A=2.0+ @+ ADIG(AD]. (12)
Passing to the limit as n — oo, we conclude from (12) that
lim [[(T = DI, (2)] = 0. (13)
But (10) implies
lim [IL, (2] =1, (14)
We therefore deduce from (13) and (14) that T — A cannot have abounded inverse.

Theorem (2.1.7) Paley-Wiener:[12] Every function h in H can be extended as a regular
analytic function into the upper half-plane in such a way that

j h*(s + it)h(s + it)ds < constant

for all positive values of t. Conversely, the restriction to the real axis of any such function
belongs to H [15].

For fixed t, h(s + it) is the Fourier transform of e=*th(x); since h(x) vanishes for
negative values of x, the L,, norm of e **h(x) decreases with increasing t. Hence, by
Parseval’s theorem, we have the following.
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Corollary (2.1.8):[12] If h(o) belongs to H, its L,, norm along the line Imo = ¢, t = 0,
decreases with increasing t.

The orthogonal complement of H with respectto the space of square integrable functions on
the entire real axis is the space of square integrable functions which vanish for x positive.
The Fourier transforms of these functions form the orthogonal complement H+ of H.
Functions in H+ can be continued analytically into the lower half plane. It is easy to check
that H+ is the conjugate of H, i.e.

H=H"

Let R be any right translation invariant subspace of H and let R be its Fourier transform. Such
an R-space can be characterized intrinsically by the property that e*%2R is contained in R for
all positive a.

Lemma (2.1.9):[12] The function
gis) = (s -+ 7!

can be uniformly approximated on every compact subset of the real line by a sequence of
trigonometric polynomials of the form

Ny

a(s) = ) i (me s

k=0

where b, (n) =0 and |t,(s)| < M.

Proof: Define

n
gn(s)=1-2 f e~ (1-iDx gy
0

and observethat the g,,’s converge uniformly to g on the real axis. Replacing the integral by
its Riemann sum, we may write
gn(s) =1- 111_1;1(}0 Ink (S)

where

k
, .
9uc() = 3¢ ) expl=5c (1= )]
j=0

Using the summation formula for a geometric series, it is easy to verify that the g, ’s are
uniformly bounded and converge uniformly to g,,, on every compactsubset of the real line.

Theorem(2.1.10):[12] Every nonempty closed R-space is of the form GH, where G(o) is a
regular analytic function in the upper half plane and |G (¢)| < 1 there. For o restricted to the
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real axis, |G (o)| = 1 almost everywhere. The function G (o) is uniquely determined by the
space R, except for multiplication by a complex constant of modulus 1.

Proof: Let A, be the discrete space of sequences, and let H, be the Fourier transform of H,,.

The mapping U : H; — H defined by

1 o—1 A
WN© = o) = F@ (15)
has an inverse which may be expressed in the form
g~ 22 Lz
(v f)(z)_i(z—l)f(i(z—1)>_f(z) (16)

and satisfies the relation
2T (o)
TG 2082
lf(e®)| do = | |f(s)]| ds.
0 — 00

We therefore conclude that U is an isometry from H; onto H.

Let R be any closed R-space of H. Then e!*R < R for all positive a, and this implies that
multiplication by any trigonometric polynomial with positive exponents maps R into itself.
Let V,: R = R be defined by

(Vuf)(0) = t,(0)f (o).
According to Lemma (2.1.9), the operators V,, converge strongly to the operator V defined by
o—1
o+1i

(Vf)(o) = (

Since R is closed, V(R) c R. If we set U"'VU =V, a computation using (15) and (16)
shows that V is expressed by

)7 (@

(V) (@) = zf (2).
Therefore,
VUL (R)=zUY(R)=U"TV(R) c U 1(R),

and we conclude that U~ maps R spaces onto R, spaces because multiplication by z maps
U~1(R) into itself.

According to Beurling’s Theorem, we may write
U *(R)= G(2)H,.
Applying U to both sides of this identity yields the relation
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o—1
R=G< ,)H
o+1

which proves the theorem.

Lemma (2.1.11):[12] The function f (o) belong to the space L if and only if it is analytic
in the upper half plane, square integrable on the real axis, and the function G(o)f* (o) canbe
continued into the upper half plane as an analytic function in such a way that its L., normis
uniformly bounded on every line parallel to the real axis.

Proof: Notice that f(o) belongs to L if and only if it is square integrable on the real axis,
can be continued into the upper half plane as an analytic function in such a way that its norm
is uniformly bounded onevery line parallel to the real axis, and further satisfies the condition
that (G*f, H) = 0.This implies that (o) belongs to L if and only if there is a function k(o)
in H with the property that

G*(0)f(o) = k*(0) (17)

when o is real. Taking the complex conjugate of (16), we see that f (o) belongs to L if and
only if the function G (o) f* (o) can be analytically continued into the upper half plane as a
function in H, i.e. in such a way that its L,, norm is uniformly bounded on every line parallel
to the real axis.

Corollary (2.1.12):[12] Let A be any complex number in the upper half plane. Denote by
d, the distance of the normalized exponential function

&, (x) = {\/ 2 Im Alei** forx >0
otherwise

from the space L. Then it follows that

dy = 1G(=1)| (18)
Proof: Consider the identity
iV2ImA G*(—1)G(o) . 1—-G*"(—1)G(0)
T 1 v2ImA p—— + ivV2ImA p—— : (19)

The function appearing on the left hand side of (19) is the Fourier transform of v2mé, (x).
According to the Theorem (2.1.1), the first function on the right hand side of (19) belongs to
R. Using Lemma (2.1.9) and the fact that G(o) has modulus equal to 1 along the real axis, it
is easy to verify that the second function on the right belongs to L. Formula (18) may be
derived immediately by computing norms.

Lemma (2.1.13):[12] Let u be any complex number in the upper half plane Im(g) > 0
and let m(o) be an arbitrary function in H. Then the sequence {m(u + 2km)}*, belongs to
lZ (_Oo' OO)

Proof: Using the analyticity of m(o) we may write
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1 T .
m(o) = er m(o + pe'®) do,
0

from which it follows that

X 20)
52 1
m(0)7= Z—f fm(a + pe‘¢)p dpdg
0 0

for some sufficiently small § > 0.

An application of Schwarz’s inequality to this last expression yields
1 6 2w
|m(0)|? < Wj j Im(o + pei¢)|2p dp d¢.
00

Changing from polar to rectangular coordinates and replacing the domain of integration by a
square centered at o, we obtain the relation

t+6 s+6
|m(s + it)|? < f J Im(u + iv)|? du dv (20)
t-6 s-6

Since
jlm(u+iv)|2 du<M < o

forall v > 0, (20) implies that

Imu+é o
1
Z Im(u + 2nm)|? <— f jlm(u+ iv)|? du dv
n=-—o Imp—6 —oo

We thus have

[0¢]

2M
z Im(u + 2km)|? < —
o

k:—OO

which means that the sequence {m(u + 2km)}Z,, belongsto L, (—oo, ).

Theorem (2.1.14):;[12]  Let A be any complex number such that 0 < |A| < 1.Then A €
o(T) if and only if there exists aé > 0 such that

|GR2rn—iln A*)| > &
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foralln = 0,+1,....

Proof: We will first demonstrate that the condition |G(2rn —iln A*)| > & for all n =
0,+ 1, .... implies that the functional equation

fl+1) —2Af () =I(x) (21)

has a unique solutionf (x) in L for every I(x) inL. It will then follow from the interior
mapping principle that A ¢ o (T).

We begin by taking the Fourier transform of both sides of (21) to get
e [f(0) — fi(0)] — Af (o) = U(0) (22)
where f(x) is the Fourier transform of f (x)restricted to the interval (0,l).

Solving,‘) for f (o), we obtain

() = DR 23)

which is yalid for all real o.
Since [ (o) belongs to L, it follows from Lemma(2.1.10) that the function
m(o) = G(o)l*(o) (oreal) (24)

can be analytically continued into the upper half plane as a function in H.Taking complex
conjugates, multiplying both sides of (23) by G (o) and applying (24), we get

m(o) + e G(0)fi*(0)
elo — }*

G(a)f (o) = (25)

for o real.

Both the numerator and the denominator of the right hand side of (25) are analytic functions
in the upper half plane; consequently, the left hand side has an analytic continuation into the
upper half plane if and only if

m'2nr—ilnA")

2nm+ilnd) = — .
hGnmtiind) = = i)

(26)

Since m(o) belongs to H and since the sequence{G (2nm —ilnA*)}*, is bounded away
from zero by &, we may invoke Lemma (2.1.13) to conclude that the right hand side of (26)
belongs to L,(—o0,00).Thus, according to the Riesz-Fisher Theorem, there exists a unique
square integrable function, k(x), whose support is contained in the interval (0,I) having the
property that

23



1
m'(2nr—ilnA") 1 fE mine g (27
AG*Q2nr—iln ) \2r (x)e x )
0
Define
1 1
fl(o-) — _I[E(x)elnlx]eiax dx (28)
VZHO

and observethat f; (o) is the Fourier transform of a square integrable function whose support
is also contained in (0,I). Furthermore, f; (o) agrees with the right hand side of (26) on the
points o = 2nm + iIn A. If we substitute (28) back into (25), we see that the right hand side
of (25) is now an analytic function in the upper half plane whose L,, norm is uniformly
bounded on every line parallel to the real axis. Applying the Paley-Wiener Theorem, this
means that the left hand side of (25) can be analytically continued into the upper half plane
as a function in H - which is exactly what is wanted to prove.

Lemma (2.1.15):[12] Let u(o) belong to H and let v(o) be analytic in any domain,D
contained in the lower half plane whose boundary contains the interval T' = (s;,s,). Assume

that no inner point of I is the limit point of boundary points of D which do not belong to T..
If

lirg}Lu(s +it)—v(s—it) =0 fors, <s<s,,
t—

and
S2
flu(s+it)—v(s—it)|2SM for0 <t <t,,

S1
then u(o) and v (o) are analytic continuations of each other acrossT.

Theorem(2.1.16):[12] Let A beany complex number suchthat|A| = 1. If there exists a § >
0 such that |G(o)| > & in an e-neighborhood of every point g, = 2nm —ilnA* then A ¢
a(T).

Proof: If |G(o)| > & in an e-neighborhood of every point ¢, = 2nm — ilnA*, it follows
from Lemma (2.1.15) that the functions 1/G*(¢*) and [*(¢*)/G*(c*) are analytic
continuations of the functions G (o) and m(o) defined in Theorem (2.1.14) throughout an e-
neighborhood of every point 2nm —ilnA*. By Lemma (2.1.13), we further note that the
sequence {G(2nmt —ilnA*)}”, belongs to L,(—o0,0).

'[hus, as in the proof of Theorem (2.1.13), there exists a unique square integrable function,
k(x), whose supportis contained in the unit interval and which has the property that

1
m*(2nr—ilnA*) 1 fE( Je2mine g
AG (2nm—iln ) ~zr) Y X

0
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If we again set

ln/lx LO'X
f, (o) —\/_f [k(x)e dx

and substitute this value into (25), the resulting expression is still an analytic function whose
L,, norm is uniformly bounded on every line parallel to the real axis. This means that the left
hand side of (25) belongs to H.

Theorem (2.1.17):[12] If A is any complex number of modulus 1 which satisfies the
condition

inf { lim lanG(a)I}—O Imo >0

—oo<n<oo \g-2nmw—iln A*

then A € a(T).

Proof: Suppose the condition stated in the theorem is satisfied. Then there exists a
sequence of integers {n;}7° and a sequence of complex numbers {o;}7" in the upper half plane
with the property that

lim ; — 2n;w+ ilnA* = 0 and 11m|G(a)| = 0.

]—)OO

Consider the normalized exponential function

&(x) = { /ZIm gje”'%* ifx=>0

0 otherwise

and let 7; (x) and Tj(x) be its projections onto the spaces R and L respectively.

We then have

&) = 7,(x) + () (29)
where
7ol =16(a) (30)
by (18) and
[Leoll = J1-Ireolf (1)

by virtue of the orthogonality between 7;(x) and Zj(x). Using the fact that
(T — D& (x) = ("% — 1§ (x)

and applying the operator T — A to both sides of (33), we obtain the inequality

25



lr = D5 < e =]+ @+ 1aD]l @)
<|e i — 2|+ (1 + |2D|G(q))|
By hypothesis, this implies

lim ||(T — DI (x)]| = 0

j—ooo
However, it follows from (34) and (35) that

im G| = 1

j—ooo
We therefore conclude that (T — 1) cannot have a bounded inverse.

Theorem (2.1.18):[12] Let A be any complex number suchthat 0 < |A| < 1. Then A€
a,(T) if and only if

G2mny, —ilnA*) =0
for some integer n,.

Proof: Clearly,f; (x) is an eigenfunction correspondingto the eigenvalue A if and only if

f.Go) = A f () (32)

where [x] denotes the largest integer in x and f(x) is the periodic continuation of an L.,
function whose supportis contained in the interval (0,1). Equation (32) implies that there are

no points in a,,(T) which have modulus = 1 because the associated eigenfunctions would
not be square integrable. Let 0 < |A] < 1, and assume that there is a non-zero eigenfunctions
£,.(x) in the space L. We will showthat G(2nn —iInA*) vanishes for some value of n.

Rewrite (32) in the form
fi() = (D)*f(x) (33)
where
flx) = 247 ()

Since f(x) is square integrable over the unit interval and has period 1, we may represent
It by its Fourier series:

f(x)~ i f;lezmnx

n=-—oo

where
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f, = ff(x)e‘zninxdx.

Observe from (33) that £ (x) vanishes if and only if f(x) also vanishes. Consequently, for
some ny, we have f,, f, # 0. It is well known from classical theory that the closed subspace
spanned by the left translates of f(x) in the L,(0,1) topology contains the exponential
e2™moX This means that, for any e > 0, there exist constants c,,c, ..., ¢, (all distinct from
zero) and positive numbers t4,t,, ..., t; such that

K 2

e2TinoX z c f(x+t,)

n=1

1

|

0

dx < €?.

Define new constants d,, = ¢,,A~t» and notice that

2

oo K
j X @2mingx _ Z dn/lx”nf(x + tn) dx
0 n=1
) K 2 5
S’]‘Mle eZmnox_zlcnf(x+tn) dx < 1— ]2
0 n=

This last inequality implies that the exponential exp [(2min, + In 1) x] belongs to the space
L. Thus, from formula (18), it follows that

G(2mny, —ilnA*) =0
Conversely, if
G2nny,—ilnA*) =0
it follows from the same formula that an eigenfunctions of the form
f1(x) = exp(2mny, +In ) x
is already in L.

Theorem (2.1.19):[12]  The origin belongs to o, (T) if and only if there exists ana > 0
such that |e“'a"G (0)| < 1in the upper half plane.

Proof:  Assume that the origin belongs to o,,(T). Then there exists a nonzero function

[(x) € L whosesupportis contained in the interval (0,1). Let a be the smallest number such
that the support of I(x) is contained in (0,a). According to the well-known Titchmarsh
convolution theorem [16], L contains the space of all square integrable functions whose
supports are contained in (0,a). This can occur if and only if every function in R vanishes
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for x < a. Let R, be the right translation invariant space obtained from a by translating every
function in R a units to the left. From the Theorem(2.1.1) it follows that

e '%9G(o)H =R, C H.

Since multiplication by e”'%9G(0) maps H into H, multiplication by any power of
e ' G(o) also maps H into H. It is clear that the L, norm on the real axis is preserved in
this multiplication, so it follows from the Paley-Wiener theorem that it cannot be increased

on any line parallel to the real axis. This is the case if and only if |e‘ia"G(a)| < 1in the
upper half plane.

Conversely, if |e‘i“"G (a)| < 1 in the upper half plane, it follows that
R = e!%R,.

Taking inverse Fourier transforms, this implies that every function in R vanishes forx < a.
Consequently, L contains all square integrable functions whose supports are contained in
(0,a). This means that the origin must belong to o, (T).

Using the information at hand, we will now constructan L space for which o (T) is the closed
unit disc, but which nevertheless has a void point spectrum.

Tothis end let L be the space whose characteristic function is the convergent infinite product

[00]

G(O’) — 1_[ e—in/a—Znn3

n=1

If a is any real number greater than zero, we then have

. at . — . _ n —
i le” 60l égﬁepra 2 e )| =
n=1

According to Theorem (2.1.19), this implies that {0} & o,,(T); moreover, since G(o) never
vanishes in the upper half plane, we may invoke Theorem (2.1.18) to justify the assertion that

0,(T) = ¢.

let A be any complex number suchthat 0 < |A| < 1and let k; = j* forj = 1,2,.... Then

o C ninA
log|G(2nkj —iln2)| = Z 275 — %) — i A |2
n=1

and, by setting j = n, we obtain the inequality

In|A|
|In A*|%

log|G2mj2 —ilnA*)| <j
A passage to the limit yields the relation
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lim G(2nj3 —ilnA*) =0,

j—oo
from whence it follows that A € a(T) by Theorem (2.1.13).[14].
Section (2.2): Spaces of Analytic Functions of Several Complex Variables

Let d > 1, let Q be a region in C* with 0 € O, and let 7 be a Hilbert space of analytic
functions on Q . We will be particularly interested in the cases where H equals one of the
usual Hardy or Bergman spaces of the ball, B, = {z € C%:|z| < 1}, or the polydisc, D, =
{zeC¥|z;l<1fori=1,...,d}, or where H = H; where H; is the Hilbert space of

analytic functions on B, determined by the reproducing kernel k,(z) = ﬁ where
) :

(z, w) = Xf, z; ;.

Associated with each such space H we have a multiplier algebra M (H) consisting of all
analytic functions ¢ on Q such that ¢f € H for each f € H. It is easy to see that each
multiplier gives rise to a bounded operator M,,: 3 — H, f — ¢f, and the multiplier norm
lllly is defined to be the operator norm of M,,. One always has M(H) € H*(Q), the
algebra of bounded analytic functions on Q, and it is well-known that for the Hardy and

Bergman spaces we have M(#) = H*(Q). It is also known that M(H3) & H* () ([18]).
We will assumethat M(H) € 7, and that foreach i = 1,..., d the i-th coordinate function

z; is a multiplier of 3. We will write M, for the d-tuple (M,_,..., M, ) of commuting
operatorson H.

A subspace M of H is called multiplier invariant if ¢f € M for each f € M and ¢ €
M(H). We will investigate the Fredholm spectrum and Fredholm index of M,|M for
nonzero multiplier invariant subspaces of H.[19].

Assume d = 1. Then the index of an invariant subspace M of H is defined to be the
dimension of M /zM. If we assume that for each 1 € Q that M, — A is a Fredholm operator
on H, then it follows that (M, — A)|M is bounded below for each multiplier invariant
subspace M’ of H'. Thus, (M, — A)|M is a semi-Fredholm operator and the continuity
properties of the Fredholm index imply the following stability of the index of an invariant
subspace: ind M =dimM/zM = —ind M,|M = —ind (M, — )|M = dimM/(z —
MM forall 1 € Q.[4,20,21,22,23].

Let d > 1 again, and let M be an invariant subspace of /. By analogy with the situation in
d = 1 one would like to consider

dimM/((zy — A )M+ -+ (253 — 1) M)
ford = (44,...,14) € Q.

However two problems arise. The first is if we assume that (z; —A,)H + -+ (z4 —
Aqg)H is closed in H it is not clear that the same is true for an arbitrary invariant subspace.
The second is for very simple examples dimM /((z; — A )M + -+ (24 — A5)M) will
depend on the choice of the point A. Indeed, if  is the Hardy or Bergman space of the ball
or poly disc, or % = HZ, and if M = {f € H:f(0) = 0}, then one easily checks that
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dimM /(z,M + -+ z;M) =d while  dimM/((z; = A )M+ -+ (25— 25)M) =1
forall A € B,;\{0}. The second problem in this caseis connected to the fact that all functions
in M are zero at A = 0. It is well-known that one obtains a more stable definition of index if
one uses the Fredholm index of the tuple (M, — 1)|M, where A € B,\o,(M,|M), to define
the index of an invariant subspace. Here we set M, -4 = (M,, — A1, ..., M,, — 241 ) and we
use o, (T) to denote the essential Taylor spectrum of the operator tuple T'; the Fredholm index
of T is defined to be the alternating sum of the Betti numbers of the Koszul complex
associated with T - we shall give the full definitions. It will still turn out that for d > 1 and
for all the spaces H mentioned above there are invariant subspaces M of H such that
o,(M,|M)N B, is nonempty. Thus in general the Fredholmness of (M, — A)|M may
depend on the base point A € Q.

Theorem (2.2.1):[17] LetH be the Hardy or Bergman space of the ball or polydisc of C%,
orlet ¥ = HZ.

If an invariant subspace M of H contains a nonzero multiplier ¢, then
0, (M,|M)N QS Z(p)

and for every 1 € Q\o,(M,| M) the tuple (M, — 1)|M has Fredholm index (—1)2. In fact,
forall 1 € Q\Z(¢p) we have

dimM /((z, = A )M + -+ (24 — A)M) = 1.

Proof: Ford = 1 asimilar argument was given in [3,27]. Recall that if B is a Banach space
of analytic functions on Q , then one says that one can solve Gleason’s problem for B if
whenever g € Band A € Q then there are functions g4,...,g4 € Bsuch that g — g(4) =
Y& (z;—2)g; [29]. We may assume that the multiplier ¢ € M satisfies @(1) = 1. Let
f €M.Then

f=fWe+o(f— ) - (p—-1f.

Now, if we assume that one can solve Gleason’s problem for both the space H and the
multiplier algebra M (H) , then there are functions f,...,f; € H and multipliers
@1, -, Pg € M(H) such that

d
f=FfWo+ ) (2= 2)@fi— oif).

It is clear that for each i the function ¢, f is in the multiplier invariant subspace M, and the
same is true for ¢f;, if one assumes for example that the multipliers are dense in /. Thus
dimM /((z; — A )M + -+ (z4 — 1,)M) = 1 provided all the assumptions are satisfied.
We will show that one can solve Gleason’s problem for the multiplier algebra of HZ . All the
other assumptions are already known to be true for the spaces mentioned in the theorem.

If Dis aseparable complex Hilbert space, then we denote by H;, the space of D-valued
H -functions. It is the set of all analytic functions f:Q — D such that for each x € D the
function £, (1) = (f (1), x)p defines a function in A and such that
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12 = D lfe I < o0
n=1

for some orthonormal basis {e,},-; of D. One shows that the above expression is
independent of the choice of orthonormal basis. In particular, one has for f € H,x € D that
the function fx: A — f(A)xis in Hyand [|fx|| = [|[flllx]lp. If f € Hp,x €D, and A € By,
we have (f(1),x)p = (f, k;x), where we have used k, € H to denote the reproducing kernel
for H at A. There is an obvious identification of the tensor product H ®D with H;,, where
one identifies the elementary tensors f®x with the functions fx. Considering the definition
of the norm in H;, one may also think of 5 as a direct sum of dim D copies of the scalar
valued space .

Each (scalar valued) multiplier ¢ € M (H) defines an operator on H, of the same norm,
and we shall also denote this operator by M,,. We shall say that a subspace M of H7, is scalar

multiplier invariant if M,M < M for each ¢ € M(H).
Let M be ascalar multiplier invariant subspace of H,. ForA € Q we write
M, = clos{f(1): f € M},

and we define the fiber dimension of M’ to be sup dim M. We will be interested in invariant
1€Q
subspaces with finite fiber dimension m. In this case we write Z(M) = {1 € Q:dimM; <

m}. Note that for the scalar case this agrees with the earlier definition of Z(M).

Let A, € Q\Z(M), then if m < oo the set {f(4,):f € Hp} is closed, and there are
fir s frn € M suchthat f; (4o), ..., frn (40) forms an orthonormal basis for M . Then

g = det({£;(D), ;D))

1<i,jsm

IS an analytic function on Q, and it is a standard fact from linear algebra that dimM; = m
whenever g(A) # 0. Thus, the family of vector spaces {M}, },eq\z(r) defines a vector bundle
over Q\Z(M) and Z(M) is the intersection of at most a countably infinite number of zero
sets of analytic functions. In particular Q\Z(M) is connected and it is dense in Q.

Theorem (2.2.2):[17] Let D be a separable Hilbert space and let M be a nonzero scalar
multiplier invariant subspaceof HZ (D) with finite fiber dimension m. Then

0B, € 0,(M,|M) S B, U Z(M)
and forevery 1 € B, \o,(M,| M) the tuple (M, — 2)|M has Fredholm index (—1)%m.
In fact forall 1 € B;\Z (M) we have
dimM/((z, = A )M + -+ (24 — 1)) M) = m.

Proof: If ¥ ¢ M are two invariant subspaces of H3 (D), then the fiber dimension of N is
less than or equal to the fiber dimension of M, so the theorem implies an inequality between
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ind(M, — )|V and ind(M, — A)|M for 1 € B,\(Z(M)U Z(N'). Thus for d =1 our
theorem recaptures a well-known fact [30].

Recall from [18] that a commuting tuple T = (T, ..., T;) of operators on a Hilbert space
K is called a d-contraction if ||Tyx; + -+ Tyxgll? < llx )l + -+ llxgl|* for all
X4,...,Xq € K. This condition is equivalent to Y%, T;T.* < I (see [25]). One then defines the

1

defect operator A= (I -4, Tl-Tl.*)E, the defect space D = clos A;K, and one says that T
has finite rank if D is finite dimensional. Furthermore, associated to each d-contraction is a
completely positive map W: B(¥) - B(X) defined by W(X) = X%, T, XT* [31] . The d-
contraction is called pure if lim W"™(I) = 0 in the strong operator topology. In [18] it is

n—->oo

shown that every pure d -contraction is the compression of (MZ,HC%(D)) to the
orthocomplement of some scalar multiplier invariant subspaceof H3 (D) [31,32] .

The curvature invariant k(T) ofa pure d-contraction of finite rank was defined in [24]. First
we need to define a B(D)-valued function on B, by

k(D) = (1— 1AM — T (I -TA)) ™ Ay,

where T(1) = X%, A;T;. Arveson shows that for o — a.e. z € 0B, the nontangential limit
of k(1) exists in the strong operator topology as A approaches z. Here we have used o to
denote the rotationally invariant probability measure on dB,;. We call this limit k(z) and

define the curvature invariant of T by

k(T) = jtrace k(z)do(z).
0By

It is clear that 0 < k(T) < dimD. [33], it was shown that k(T) is always an integer, in fact
that

d
k(1) = AiErIled dim ﬂ ker(T;" — 1),
i=1

and that for o —a.e. z € B, k(T) = trace k(z) . Furthermore, if we write K, =
N, ker(T; — 4;),and Ey = {A € B,;:dimK,; > k(T) = inf disz}, then it follows from

ZE€EBg
[33] that E; is contained in the zero set of a bounded analytic function. In Theorem (2.2.20)
we will obtain the following new information about the value of k(T) along with some

spectral information of T. We write (T) for the Taylor spectrumand o,,(T*)" for the set of
d-tuples of complex conjugates of eigenvalues correspondingto the common eigenvectors of
T, ., T;.

Theorem (2.2.3):[17] If T is a pure d-contraction with finite rank, then o,(T) N B, € E;
and for A € B,\o.(T),

k(T) = (—1)%nd (T — 2).

32



Furthermore, we have o(T) NB; = 0,(T*)". Thus, if kK(T) =0, then o(T)NB,; =
0,(T*)" = Er.

We note that this theorem implies that if S and T are two pure d-contractions of finite rank
suchthat S; — T; is acompactoperator foreach i = 1,...,d, then k(T) = k(S) even though
T and S may have different rank. We also mention that if each Ti is essentially normal, then
one can show that 0,(T) N B; = @, thus our theorem implies in this case that k(T) =

(—1)%nd(T). However, we will see that there are examples of pure finite rank d-contractions
that are not Fredholm (i.e.0 € ¢,(T)).[19,20,34,35].

Theorem (2.2.4):[17] Let H denote the Hardy or Bergman space ofthe ball or polydisc, let
D be a separable Hilbert space, and let M be an invariant subspace of H;, of finite fiber
dimension m.

If A€eQ and there are bounded functions f,...,f,, € M such that the set
{fi(D), ..., (D)} is linearly independent, then the tuple (M, — 1)|M is Fredholm with index
(=1)%m. In fact, for all such A we have

dimM/((z, — A )M+ -+ + (24 — 1) M) = m.
See [19,37,38].

Lemma (2.2.5):[17] LetT = (Ty,...,T;) and S = (S4,...,S,;) be commuting tuples of
operators on Hilbert spaces H and X respectively and let X: K — H and Y: K — H be
bounded linear operators. If there exists an operator B on A(H) such that for each p =

0,...,d we have B(AP(3)) € AP~ (%) and

0B + Bd, = IQE, — XYQ®E,
and if there exists an operator C on A(X) such that foreachp = 0,...,d we have
C(AP(%)) € AP7(%) and

d5C + Cog = IQE, — YXQE,,.

then for each p =0,...,d the cohomology spaces HP(T) and HP(S) are isomorphic as
vector spaces.

In particular, if T is a Fredholm tuple, then S is a Fredholm tuple and ind7T = indS.

If H is a Hilbert space of analytic functions on Q such that for each i =1,...,d
multiplication by the coordinate functions defines a bounded linear operator on ', then for
each A € Qwe will be interested in the Koszul complex K (M, — 2) for the d-tuple M, — A.
The standard hypothesis on H will be that this complex is exact at every stage except at the
last one, where its cohomology is one dimensional. This can be restated as saying that the
augmented complex

ad d 04— 1)
K(M, —2,€):0 - A°(H) S AL(H) S ... S A(H)DC - 0
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is exact at every stage. Here we have written, for k = 0,...,d — 1,0k = 0, &, and &, is
the evaluation map, 8, (f®e; A...Aeq) = f(A).

Similarly, if 7 is as above, D is a separable Hilbert space, and M < H,, is a scalar
multiplier invariant subspace, then we will be interested in the augmented complex

0 90 4 01 0Od-1 ,4 8
K(M,—)|M,M}):0 > A°(M)> AN (M)—> ... — A (M)->M; -0
where as above, for k = 0,...,d — 1,0, = 0, -2k, aNd 8, is the evaluation map,

85, (f®e; A...ANeg) = f(N),f € M. The purpose of introducing the augmented complex is
that it will allow for a simple statement of the main results. We note that if 2 € Q\Z(M),
then dimM/((z; —A)M + -+ (z4 — A4 )M) equals the fiber dimension of M is
equivalent to saying the augmented Koszul complex is exact at the penultimate stage.

Lemma (2.2.6):[17] If A € Q and M is a scalar multiplier invariant subspace of Hy, of
finite fiber dimension, then dimM/((z; = A )M + -+ (z4 — 1) M) =dimM, if and
only if the augmented Koszul complex K((M, — A)| M, M) is exact at the penultimate
stage.

If the augmented complex K((M,— A)|M,M;) is exact, then A& o,(M,|M) and
lnd((MZ — A)lM) = (_1)dd1m ]V[/l = dlm]\/[/((zl — Al)M + -+ (Zd - Ad)]v[) .

Proof: Let k = dim M, and h,,.., h;, € M such that M, equals the linear span of
hi(A),...,h;(1). It is clear that the cosets of h,,..,h, are linearly independent in
M/((zy = A )M + -+ (z4 — Ag)M. It follows that dimM /((z; — A )M + -+ (z4 —
M) = dimM;, if and only if every f € M is of the form f(z) =YK, a;h;(2) +

4 (z;—2)g:(z) forsomea,,..,a;, € Cand g;,...g; € M. Also note that for f € M we
have f®e;A..Aeq€rand,_, if and only if f(2) =YL, (z;—A)g:(z) for some
91,---9a EM.

Suppose dimM/((z; —A )M + -+ (z4 — Az)M) =dimM;, and let f®e; A ...A
eq € ker §,. Then f(1) = 0 and the hypothesis implies that there are g,,...g4 € M such
that f(z) = X% ,(z; — 2;)g;(2). Hence ker 8, = ran d,_,, i.e. the augmented complex is
exact at this stage.

Conversely, suppose that the augmented complex is exact at this stage, i.e. ker§, =
ran d,_,. Let f € M, then since h,(A4),..., h, (1) is abasis for M}, there are a,,..,a; € C

such that f(1) =X, a;h;(1). Set fi = f — 2K a;h;, then fQe; A..Aeq Ekerd, =
ran d,_,. Hence there are g,,...g, € Msuchthat f;(z) = X% ,(z; — 4,)g:(2), and this
implies f(z) = XL, aihi(2) + EiL1(z; — 2)9:(2).

Lemma (2.2.7):[17] Let T be a d-tuple of commuting operators on a Hilbert space H, let
A = (a;;) bean invertible d x d matrix, and setS = (Sy,...,54),S; = jlzl a;;T;.

Then the Koszul complex for T is isomorphic to the Koszul complex for S. Thus T is a
Fredholm tuple if and only if S is a Fredholm tuple.
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Proof: We have 0; =YL, S®FE; = %%, a;;T;QF; = ¥¢_, T;®D; , where D; =
1 a;;E;, and it is a standard fact that there is an invertible linear map L: A — A such that

each AP is reducing for L and LD; = E;L fori =1,...,d [39]. Thus for each p the space
AP (7€) is reducing for IQLand (IQL)ds = d,;(IQL).

Lemma (2.2.8):[17] LetT bea d-tuple of commuting operators on a Hilbert space ' and
let 1 € B, such that I — (T, 4), is invertible. Then the Koszul complexes of T — A and
@, (T) are isomorphic. Thus T — A is a Fredholm tuple if and only if ¢,(T) is a Fredholm
tuple.

Proof:  We note that A4, is invertible on C%. Hence it is easy to see that an isomorphism
K(T—2) - K(@,(T)) is given by U = (I — (T, A1) *®L;, where L, is the isomorphism
from the proof of Lemma (2.2.7) applied with T — A and the matrix for A4, .

For any d-tuple T of commuting operators on H and for any A € B, the one-dimensional
spectrum of the operator (T, 1) is contained in the disc of radius |A1]| whenever the Taylor
spectrum of T is contained in clos B,. This follows from the spectral mapping property of
the Taylor spectrum [38] since the function f(z) = (T, A) maps B, into the disc of radius
|1].

The spaces H7 , the Hardy, and Bergman spaces of the ball B, are members of a family of
Hilbert spaces of analytic functions. For @ > 0 we let X, be the space of analytic functions

on B, with reproducing kernel k; (z) = ; . Obviously, X; = HZ, and it is also well-
known that K, = H2(B,) is the Hardy space and K ae1 = L4(Bg)is the Bergman space of

the ball [40]. We shall need some spectral information about these three spaces and it will be
convenient to treat all values of @ > 0 simultaneously.

Lemma (2.2.9):[17] Let « > 0, and H =K,. Then for each i =1,..,d the self
commutator M; M, — M, M; is compact(i.e. M, is essentially normal) and PN M; M, =
1+ K for some compactoperator K. Furthermore, a(M,) € clos B,.

Proof: Letj = (j;,j,,---,jq) be a multiindex of nonnegative integers, then |j| = j; +j, +
et ju gl = Jilal gl and for A= (A,4,,..,4) €CLNV = A122 LA | and the
multinomial formula implies that for z,A € B;andn > 0

|
(z, )" = Qz’l

ljl=n
1

Thus if we write k;(z) = e = o An({z,A))™, where a, = 1and forn > 1

a, = Qer-en=D e () =Y a 'J_ll Z/Z |, where the sum is taken over all

n!

multiindices j with entries in the integers. Slnce ky(z) = (k,, k,) it follows that monomials
in ¥, are mutually orthogonal and

j!
”Z ” a|||]|' a(a+1)...(a+|j|—1)'
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Now for 1 <i < d let §; denote the self-commutator of M, , ie. S; =M; M, —M, M;,
and let P, denote the projection of K, onto the subspace of all polynomials of total degree
less than n. We will show that ||S; — P,S;P,|| > 0asn — oco. It is clear that S; is

diagonalized by the monomials so that S;z/ = c; ;z/ for each multiindex j and some c; ; €
R. Hence it will suffice to showthat sup |c; ; | = O asn — oo,

lj|zn

ij

We write e; for the multiindex with a 1 in the i-th spot and 0’s otherwise. Then for any

multiindex j and any 1 <i <d we have M;,z/ =0 if j;=0and M; 2/ = ———

otherwise. Hence if j; = 0 we obtain (S;z/,2/) = fm |27 ||, while for j; > 0 we compute

(I ) e
Sz 7)) = _ j _
. ( T g Ut ey ey
Thus, if n > 1 and |j| = n, then
a+2n 12
|<SZ Z>|_(a+n)(a+n 1)”2]” a+n— ”]”
Hence, for |j| = nwe have |c; ;| = |(S”‘Z”Z]>| < a+121_1 — 0 asn — oo, This implies that S; is

compactand M, is essentially normal.

Similarly, we compute

a .2
<ZM*MZLZ zf>—Z||zzf|| - (142l

This implies that ", M; M, — I is compact.

Finally we showthat o(M,) < clos B, or equivalently that the spectral radius of M, is less
than or equal to 1. We set Y(X) = ?le;iXMzi,X € B(¥,). By the spectral radius

1
formula, [41], we must show that lim sup, . |[Yp"(I)|]z= < 1. It is easy to see that ™ (I) is
diagonalized by the monomials, and one calculates that for any multiindex j

d n-1
o 2 d—a 2
woz= ), | =] ()
l1,.ip=1 k=0

Thus for @ > d we see that || Y™ (I)|| < 1and for 0 < a <d we have that || Y™(D)|| <
e (1+22) 1371

Proposition(2.2.10):[17] Leta > 0,and H = ¥,. Then a(M,) = clos B,,a(M,) = 0B,
and foreach A € B, the augmented Koszul complex for M, — A is exact.
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Proof: We know from Lemma (2.2.9) that
o,(M,) € 0(M,) < clos By.

Next we let 2 = 0, and we proceed as in the proof of [42], we know that M, is a Fredholm
tuple. Hence the operator d,,, has closed range. Observe that H = H, ® H; ® ..., where
., is the space of homogeneous polynomials of degree n. Thus, for each p we get AP(H) =
AP (Hy) Q AP () ® ... . The definition of 0 = d,, implies that for each p and nd,, takes
AP(H,) into APY1(,. ).

Now let 0 < p < dandx € kerd,. Thenx =}, x,, for x,, € AP(H,,), and it is clear
that x,, € ker d,, for each n. We must show that x € ran d,. We already know that ran d,,_,
is closed, so it is enough to show that each x,, € ran d,,_;. This is equivalent to exactness of

the Koszul complex at stage p for the polynomial ring C[z,,...,z4], and that is well known
[43].

Similarly, the exactness of the augmented complex at the last stage is clear, because 1 € H.

Next we claim that K, is automorphism invariant, i.e. for each 4 € B, composition with
@, defines a bounded invertible operator on ¥ ,. Fix 1 € B, and choose a branch of

fw)=(0- I/’llz)‘%(l —u)* that is analytic foru € D. Forz € B; setg(z) = f({(z,1)).
It follows from Lemma (2.2.9) preceding it that 0({z,1)) € ID. Thus it is clear that the
operator f({M,,A)) as defined by the Riesz-Dunford functional calculus equals the
multiplication operator M, , i.e. g is a multiplier of X ,. Notice that the well-known
transformation formula for ball automorphism [29], shows that k. (9;(2))=
g(2)g(w)k,(z) for allz,w € B; . Thus the linear transformation T defined on the
reproducing kernels by Tk, = Koo extends to be a bounded operator of norm ||M£;
Hence T* is also bounded, and it is easy to verify that T* is the operator of composition with

P-

The automorphism invariance of X, implies that the tuples M, and ¢;(M,) are similar,
and the result about the exactness of the augmented complex follows from Lemma (2.2.8).
This implies that ¢ (M,) = clos B, and o,(M,) N B, = @ ;. It also implies that the index of
M,— 2 is (—1)% for each 1€ B,. Thus the continuity property of the index on the
components of the complement of the essential spectrumimplies that o,(M,) = 0B, [37,43].

Let A be a Hilbert space of complex-valued analytic functions on the open, connected and
nonempty set QO € C%. We assume 1 € H. Then M(H) € H . We use k; to denote the
reproducing kernel of 7. For A € Q it is defined by the relation (1) = (f, k;) forevery f €
. In the scalar-valued version of the main theorem we assume that the invariant subspace
M contains a multiplier ¢ (see Theorem (2.2.1)). For the vector-valued versions it will be
convenient to use operator-valued multipliers.

Let D and &€ be two separable Hilbert spaces, and let ¢: B; — B(E,D) be an operator
valued analytic function. For 1 € B, and f € H we define (®f)(A) = ¢p(A)f(A). Then of
IS a D-valued analytic function. If &f € H,, for every f € H. , then ®f is called an
operator-valued multiplier, and the closed graph theorem shows that the associated
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multiplication operator ®: H: — Hy, is bounded. One hypothesis on the invariant subspace
M of Hp in the main theorem will be that there exists a separable Hilbert space E and a
multiplication operator ® € B(H,Hp) such that ran ® € M. We will then see that the
augmented complex K((M,— A)|M,M;) is exact at every 1 € Q\Z (M) with ran ¢p(2) =
M;,. It is known that every scalar multiplier invariant subspace M of H7 (D) is of the form
M = ran® forsome multiplication operator ®[24,25]. Itis easy to constructamultiplication
operator ® with rand < M for a scalar multiplier invariant subspace M of the Hardy or
Bergman space whenever M contains some bounded functions (see the proof of Theorem
(2.2.212)).

We start Lemma 3.1 of [33]. Forthe rest we let M bea scalar multiplier invariant subspace
of H, of finite fiber dimension m, i.e.

m = supdimM; < oo,
1€Q

and we let ® € B(H,Hp) be a multiplication operator with associated operator valued
analytic ~ function ¢:B,; - B(E,D) . We assume that rand € M and that

sup dimran ¢(1) = m.

AEB,y

For1 € Q writt D; =ran® < D. Then since D; € M, we have dimD, = dimM;,
and D, = M, whenever dimD; = m. We fix a 4, € Q with dimD,_ = m. Let{e, };-, be
an orthonormal basis for ker ¢p(1,)* < &€, and {d, }7*, be an orthonormal basis for D,, =
rang (1,) € D. We define the m X m matrix

M) = ((p(De, . di)p)

)
1snks<sm

and the analytic function ¢,
@A) =detM(A).

The choice of A, implies that ¥ (1,) # 0. It is easy to check that all entries of the matrix M
are multipliers of 7, and it follows that ¢ is a multiplier of 3¢ also. Finally, we write Py, for
the orthogonal projection of D onto D;.

Lemma (2.2.11):[17] If f € M is suchthat foreach 1 € Q we have Pp, (f(2)) = 0, then
f=0.

Proof: Let f € M beas in the hypothesis. We will show that ¢(1)f(1) = 0 forall 1 € Q.
Since ¢ # 0 this will imply that f = 0. Let 1 € Q such that ¢@(4) = 0. We must show

f()=o.
Since @(A) # 0, the matrix M (A) has full rank and the set of vectors

P Dey, ..., p(Dey}

is linearly independent in D,. Thus, dimD; = mand f(1) € M; = D; = ran¢p(1). Hence
there must be a, (1),a, (1), ...,a,,(1) € Csuchthat f(1) = Y7, a,(D)pLe,.
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Now the hypothesis on f implies that for each k = 1,2, ..., m we have

m

0= (f,d) = ) @) (p(WDey, dy).

n=1

Thus (a; (), a, (D), ...,an,(A))M(A) = 0. But M(A) has full rank, hence a;() = =
a,,(4) =0, and it follows that f(1) = 0.

Lemma (2.2.12):[17] If x € D, then there is a g, € ran® S M < Hp, such that
Pp, (9(D) = p(Mxforalld e Q, (34)
hg, € M forall heH (35)

Proof: ForieQand1<i,j<mandm=2we letb,;(1) equal (—1)"*/ times the
determinant of the (m — 1) x (m — 1) matrix obtained from M (1) by deleting the j-th row
and the i-th column. If m = 1, we set b, ; (1) = 1. Then each b; ; is a multiplier of 7, and

the matrix M* (1) = (bi, i (/1)) is the adjoint matrix of M (7). It satisfies

1<i,jsm
MY (DM = MM (D) = oDy,
where I,,, denotes the m X m identity matrix.

Now let x € D, and set £, (1) = X%_, b; ; (D) (x,d;),, for 1 € Q. Since M(H) S H, it is

ij=1
clear that f, € H. Thus we may set g, = @f, € rand and we claim that Py, (g,(1)) =
@A) forall 1 € Q.

Since {d,} is an orthonormal basis for D, we have

Poy(9:00) = D (g2(Dydnddn = D (BDL),d)dl

= ) (WD de, dy)d,

n,i,j=1

- Z <x'd'>zbj.i(/1)(¢(/1)ei,dn)dn

n,j=1

= > 0 d)dD8, jdy = B

nj=1

Thus, g, satisfies (34).
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If heH , then hf, =X, hb; (D) (x,d;)., € H. Thus, for each 1€ Q we have
h(D(@f) (D) = h(DPDf (D) = (D (hf)(D), hg, = P(hf,) Erand € M and (35)
follows.

If A€ Q,then D, <D sowe can think of Hp, asa subspace of Hyp. We will write P, for

the orthogonal projection of 3, onto Hy, . It satisfies (P, f)(z) = Pp,(f(2)) for every f €
Hp, and every z € Q. Thus it is clear that P, intertwines every scalar multiplication operator
and Lemma (2.2.11) says that P, jis 1 — 1 when restricted to M.

Lemma (2.2.13):[17] Let H be a Hilbert space of holomorphic functions on Q € €4 with
1 eH, let £and D be separable Hilbert spaces, and let M be a scalar multiplier invariant
subspace of H;, with finite fiber dimension m.

If ® € B(H:,H) is a multiplication operator with associated operator-valued multiplier
¢ such that ran® € M and if A, € Q\Z(M) such that rank¢p(1,) = m, , then there exists

a@ € M(H) with ¢ (4,) = 1and there is a multiplication operator ¥ € B (}[on'}[ﬂ) with
ran¥ € M and such that

P, ,Wf = M,f forevery f € }[@AO,and WP f =M,f forall f € M.

Proof: Wefix 1, € Q\Z(M) suchthat rank¢(4,) = m,, and we note that it is sufficient
to construct a function ¢ and an operator ¥ that satisfy the conclusions of the lemma with
the weaker condition ¢(1,) # 0 instead of ¢(4,) = 1.

We will continue to use the notation that was introduced before Lemma (2.2.11) and in
Lemma (2.2.12). In particular, we already have the function ¢ € M(H) with ¢(4,) # 0. In
order to construct ¥ let g,,9,,...,9m € Hp satisfy conditions (38) and (39) of Lemma
(2.2.12) with x = d,,d,,...,d,,. For A€ Q weset Y1) =YY", g,(D)®d,, and if f €
Ho,, , then

(WHR) = PDFD = ) (FD,dn)gunD).

Equation (39) of Lemma (2.2.12) implies that ¥f € M for each f € Hp,, and a simple

argument with the closed graph theorem shows that W is bounded. Thus W is a multiplication
operator with ran¥’ < M.

If f € Hp,, then fQ) =Xm(f(1),d,)d, . Hence the choice of the g,,’s and condition

(38) of Lemma (2.2.12) imply that P, Wf = ¢f. Finally, if f € M, then the function h =
of —YP, f satisfies h € M and

RO = pDF D) = ) {F ), du)gu (D).
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Hence it follows from condition (38) of Lemma (2.2.12) and the fact that {d,,} forms an
orthonormal basis for D, that P, (h(1)) = 0foreach 1 € Q.

Theorem (2.2.14):[17] Let # be a Hilbert space of holomorphic functions on Q c C¢
with the properties that 1 € H, the coordinate functions z; are multipliers, one can solve
Gleason’s problem in the multiplier algebra of ', and M, — A is a Fredholm tuple with exact
augmented Koszul complex K(M, — A) forall A € Q..

Let D be a separable Hilbert space and let M be a nonzero scalar multiplier invariant
subspace of H, of finite fiber dimension m suchthat there is a Hilbert space € and a bounded
multiplication operator ® € B(H ¢, Hp) with associated operator valued multiplier ¢ such
that ran® € M.

Then forevery A € Q\Z(M) such that rank ¢(1) = m the augmented complex
K((M, — DM, M)
IS exact.
In particular, we have
o,(M,|M)N Q< {Ae Qrank ¢p(1) < m},

and the tuple (M, —)|M is Fredholm with index (—1)%m for every 1 € Q\o,(M,)
whenever {A € Q\Z(M):rank ¢p(1) = m} is nonempty.

Proof: Note that whenever {A € Q\Z(M ):rank ¢p(1) = m} is nonempty, then it must be
connected and dense in €. Hence the statement in the last sentence follows from the exactness
of the augmented complex and Lemma (2.2.6).

Let 2p = (Ao, -, 20,) € Q\Z(M) be such that rank ¢ () = m. We must show that the
augmented Koszul complex K ((MZ — )| M, MAO) is exact.

The definition and finite-dimensionality of M;_imply that &, is onto, and the complex is
exact at the last stage.

The hypothesis implies that D, = M, . Also note that since Ho,, IS isomorphic to a

direct sum of m copies of C the augmented Koszul complex K ((MZ — ) |}[DAO’D/10> IS

isomorphic to a direct sum of m copies of the augmented complex K(M, — A,,C). Hence it
IS exact. Since M and Hop, are M,-invariant subspaces of H;, it follows that the boundary

maps for the Koszul complexes K((M,— 1,)|M) and K((MZ_AO)P{DAO) are the

restrictions to A(#) and A(}[Dao) of the boundary map d,,, _,for the complex K((MZ —
A0)|Hp ). We will write 9 in all cases.
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We will use the multiplier ¢ and the operator ¥ from Lemma (2.2.13). The function 1 — ¢
IS a multiplier that vanishes at 1,. Since we assume that one can solve Gleason’s problem in
the multiplier algebra, there are ¢4, ..., ¢, € M(3) such that

d
1-9(2) = E(Zi - Aoi)fpi(z)-

We define an operator A on A(H,) by A = Z?le(pi ®E; . Then by the anticommutation
relations of the creation operators one can see that

d
9A + Ad = 2 M2, My ®(EE} + E'E;)

ij=1

d
= M1, M, ®Fy = (1 - M,)®E, (36)

i=1
We will now apply Lemma (2.2.5) with T = M,_, |[Mand S =M,_;_ Hop,, We set B =
A |A (}[Dao) and since M is multiplier invariant we can let ¢ = A|A(M). Furthermore, we

take X = Wand Y = P, _[M. Then it follows from Lemma (2.2.13) and equation (40) that the
hypotheses of Lemma (2.2.5) are satisfied. Therefore, the cohomology spaces corresponding

o K (M3, )1 ) and K ((Mz—)lo)

shown that K ((Mz _’10)|}[Dao) IS exact at all but the last stage we also have that

}[D/lo> are isomorphic as vector spaces. Since we have

K ((MZ — o) |M ) Is exact at all but the last stage. This means that we have now shown that

the augmented complex K ((MZ_AO)IM ,MAO) Is exact at all stages except perhaps at the
penultimate stage.

To show exactness at the penultimate stage we must show that rand,_; = ker 4, where
the maps are understood to act on A(M). Since we know that rand,_; < ker g, it suffices
to show that
AN A

= di :
ker ;| m rand;_,

dim

d
It is clear that dimA ()

= dim M, = m, the fiber dimension of M. Lemma (2.2.6) and the

I'/']'O

exactness of the augmented complex K((MZ—AO)|7{DAO,D,10> imply that m =

d d
M, hence by the earlier part of the proofit follows that dim AT

randgq—1 randg—1

dim = m as well.

Corollary (2.2.15):[17] Let  be a Hilbert space of holomorphic functions on Q c C4
with the properties that 1 € H, the coordinate functions z; are multipliers, one can solve
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Gleason’s problem in the multiplier algebra of ', and M, — A is a Fredholm tuple with exact
augmented Koszul complex K(M, — A,C) forall 1 € Q.

Let D be a finite dimensional Hilbert space and let M be a nonzero scalar multiplier
invariant subspace of ', of finite fiber dimension m suchthat there is a Hilbert space € and
a bounded multiplication operator ® € B(H.,H,) with associated operator valued
multiplier ¢ such that ran ® € M.

Let S:= M,|M and T:= P, . M,|M*. Then if 2 €Q\Z(M) and M, =ran¢pp(1), the
tuple T — A is Fredholm with index (—1)¢ (dimD — m) and

5. |
0-K(T—-1)->M; -0

is an exact complex, where &;: A%(ML) » M- is defined by 8,(f®e; A...Aey) =
PMALf(A).

If 1 € QN Z(M), then dimN¢, ker(T; — 4;) > dimD —m . In particular it follows that
Z(M) € 0, (T")".

Proof: LetA € Q . We first note that

51 .
0->K(T—-A)->M;->0

can be identified with the quotient of the complexes K(S — 4, M) and K(M, — A,D) and is
therefore a complex which we will denote by K (T — 4, M;).

Forp= 0,1,...,d let [,:AP(M) - AP(Hp) and l;,1: M; — D be the natural inclusion
maps. Similarly let 7,: AP (Hy) - AP(M*) and 74,,: D — M- be the natural projections.
With these definitions of [and r one can easily check that

l T
0->K(ES—-A4M)>KWM,—1D)>K(T-ALM;)—-0

Is a short exact sequence of Hilbert space complexes. Therefore, by the Fundamental T heorem
of Homological Algebra, [39], , there exists an induced long exact sequence of cohomology
spaces. The argument at the beginning of the proof of Theorem (2.2.14) shows that
K(M,— 1,D) is exact. This means all of the corresponding cohomology spaces of this
complex are {0}.

Now assume that A € Q\Z(M') and M, = rang (1). From Theorem (2.2.14) we know that
K (S — A, M) is exact, hence its corresponding cohomology spaces are {0}. So we have that

foreachp =0,1,...,d,d + 1

ker ap

-0
rand,_,

.0

Is part of a long exact sequence. Therefore, these cohomology spaces are also all equal to {0}.
This means that K(T — A, Mj3") is exact and since Mj" is finite dimensional, it follows that
T — Ais Fredholm and ind(T — 1) = (=1)4(dimD — m).
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Finally, we assume 2 € Q N Z(M). Then dimM; < m, hence dimM;" > dimD — m.
The statement follows, because

M;-={x € D:(f(1),x) =0 Vf € M’}
={x €D:(f, kyx)=0Vf e M}
={x € D:kyx € M}
and this is isomorphic to {k;x € M1} = N, ker(T" — 4;).

Let H = HZ be the Hilbert space of analytic functions on the unit ball of C* defined by

the kernel k,(2) = 1_(12 s If D is a separable Hilbert space, then we will write HZ (D) = H,

for the space of D-valued H7 -functions see [18,24,25,33]. Tn particular, the polynomials are
densein H; and each coordinate function z; is a multiplier. The tuple M, = (M,_,...,M, )
on H; (D)is called the d-shift of multiplicity dim?D. We note that each subspace that is
invariant for M, is in fact a scalar multiplier invariant subspaceof HZ (D) [33].

It was shown in [42] that the augmented Koszul complex for (M,,H3) is exact, and in
Proposition (2.2.10) we have used that argument to show that the same is true for
(M, —A,H}) ) for each A € B,. Arveson showed that for every scalar multiplier invariant
subspace M of H (D) there exists a Hilbert space £ and a bounded multiplier & €

B (Hj (€),H; (D)) suchthat ran ® = M [25].

We show that Gleason’s problem for the multiplier algebra of H7 can be solved one will have
verified all the hypotheses of Theorem (2.2.14) for H = HZ, O = B,, and M any nonzero
M, -invariant subspaceof HZ (D).[30,31,45,46,47].

Theorem (2.2.16):[17] Let £,F and G be complex Hilbert spaces and let S € B,
arbitrary. Suppose that a:S — B(F,G) and B:S - B(E,G) are given operator-valued
functions. Then there is a multiplier  y:B,; —» B(E,F) with associated multiplication
operator ¥ such that

”‘P”B(Hfl(s),Hé(?)) <1 and a(yY(z)=p(z) z€S

if and only if the mapping

Kog:SXxS—B(G), Kyplz,w)= a(Z)“(Cf): <_Zﬁ a(j)ﬁ (@)’

IS positive definite.

Corollary (2.2.17):[17] Let A € B, and ¢ € M(HZ) with ¢p(A) = 0. Then for each i =
1,...,d there exists ; € M(H2) such that

d
¢ (z2) = Z(Zi —A)Y;(2)
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forall z € B, i.e. one can solve Gleason’s problem for M (H?2).

Proof: We will first prove the theorem for the case that A = 0, and we shall assum that
||¢>||M(H§) < 1. We will use Theorem (2.2.16) with a: B, » B(C%,C), a(z)(cy,...,cq) =
Z,Cy, .. ZgCgq,and B:B,; - B(C,C), B(z2) = ¢d(z). Then we have

a(z)a(w)” - B2)Bw)” _(z0)—¢p@)p(w) 1-¢(2)¢(w)

Kap(z,0) = 1—{z,w) 1—{z,w) - 1—(z, w) -1

Since ¢ is a multiplier of norm 1 we know that the kernel

1- (@) ¢(w)

ko (2) = 1 —(z, w)

is positive definite, and since ¢(0) = 0 we have k,(z) = 1. Hence there exists a Hilbert
space 7€ with kernel k,,(z) and an orthonormal basis {k,}U{e;};~; of H suchthat

ko(2) =1+ ) (5 (@).
=1

This implies that K, z(z, w) = k,(z) —1is a positive definite kernel. Thus by Theorem
(2.2.16) there are functions ;(z) suchthat : B, — B(C, C%) defined by

Y1 (2)
or=("")
Ya(2)

is a multiplier in B(Hj,Hj((Cd)) of norm less than or equal to 1 and with ¢(z) =
4 z;; (2). Itis then clear that 1, is a multiplier of norm < 1, in fact for f € HZ we have

sl f 112 < NIFI2.

If 1 € B, is arbitrary we use the ball automorphism ¢; which takes A to 0. We have already
noted that composition with ¢, defines a bounded invertible operator on H3 ; [42]. Thus

since ¢ is a multiplier it follows that ¢ o ;" is a multiplier with (qb <p,11)(0) + ¢p(1) = 0.
Hence from the first part of the proof we obtain multipliers g; such that (qb ° <p;1)(z) =

d—1Zigi(Z)-

Now recall that the ith component of ¢, (z) can be written as

(QDA(Z)) _Z(Z /1) (Z /1)

forsome a;; € C. Therefore,

a
6@ = ) (2()),9:(0: )
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_ ZZ(zj - 1) T ( = 9(92®)

= Z(Zj = 4)1;(2)

j=1
where the functionsi); are multipliers of H .
Theorem (2.2.18):[17] Let D be a separable Hilbert space and let M be a scalar multiplier

invariant subspace of H3(D) with finite fiber dimension m. Then ¢,(M,|M)NB, <

Z(M), and for every 1 € B,\Z(M) the tuple (M, — 2)|M has index (—1)%m and the
augmented complex

K((M, — )| M, M)
IS exact.

Proof:  This follows directly from Theorem (2.2.14) since we have M = ran® for some
multiplication operator & [24,25]. It is thus clear that {A € B :rank¢p(1) < m } = Z(M).

We will take d = 2 and D = C. We claim that we have the isometric and orthogonal
decomposition

HZ = H2(D)®z, [2®72K,

where K is some Hilbert space of analytic functions on B,. One can check this either by
computing the norms of monomials in HZ as in Lemma (2.2.9) or as follows. Note that for
x #1landx +y # 1 we have
1 1 2
= T A 4 :
I-(x+y) 1-x (A-x?2 (A-x)(1-(x+y)

Thus the reproducing the kernel of HZ is of the form

k,(z) = = ki)l (z1) + Zzw_zkil(zﬂ + (2,@0,) %k, (2),

1—(z,w),

where kg, (z;) = — is the Szeg“o kernel and k2, (z,) =

®12, (1-@424)?
on the open unit disc, and k3 is some positive definite kernel on the ball B,. It now follows
from standard results about reproducing kernels that this decomposition of the kernel implies
the decomposition of the space, because it is clear that the orthogonal summands have (0) as
their intersection [48] .

is the Bergman kernel

Let V' be an invariant subspace of the Bergman spacesuch that dimWN & (z — )N is
infinite forevery A € D. Itis well known that such subspaces exist [20,22] . Set

M ={0}®zN® z3K.
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It is clear that M is a closed invariant subspace of HZ and that Z(M) = {(z,,0):]z,| < 1}.
We will now show that for no (2,0) € Z(M) is the tuple (M,, — 4, M, )|M Fredholm. In
fact for A € D we will see that the defect dimension at the last stage of the Koszul complex
for (M,, — A, M,,)|M is infinite. We will accomplish this by showing that whenever f €
N O (z— )N, then the function g defined by g(z,,2z,) = z,f(z,) is orthogonal to
(zy —A)M + z, M. The result will follow, since  © (z — A)V is infinite dimensional.

Since g € z, Vit is clear that g is orthogonal to z, M € z2K . Let h € M. Then
h(zy,z,) = z,f,(z;) + z2k(z,,z,) forsome f; € V" and k € XK, and we see

(g, (21 = DhYyz =22 f1, (21 — Dfidyz +(9,25 (21— Dkdyz ={f, (2. — Dfi)iz = 0.
Theorem (2.2.19):[17] ([19]). LetT = (Ty,...,T;) be a d-contraction on H with defect

operator A, = (I—Y%, T;T*)? and defect space D =A,H . Let M, be the d -shift
associated to the space H3 (D). Then there exists a spherical unitary tuple Z = (Z,,...,Z;)
on a Hilbert space ¥, an (M;@Z*)-invariant subspace M+ of HZ (D)@, and a unitary
operator U: M+ — # such that

U'T,U = Py (M, ®Z;) | M+
forall i =1,...,d. If T is a pure d-contraction then K = {0}.[19].

Theorem (2.2.20):[17] If T is apure d-contraction with finite rank with representation T; =
Py LM, |M* for M € Hi(D),dimD < oo,then 0, (T) N B, = 0,(M,|M)NB,; S Z(M)
and a(T) N B, = ap(T*)".

If 1€ B,\o.(T), then
k(T) = (—=1)%nd (T — 1) (37)

Furthermore, if k(T) # 0, then a(T) N B, = 0, (T*)* = B, and if k(T) = 0, then o(T) N
B, = 0p(T*)* = Z(M).

Proof: Let 1 € B,. As in the proof of Corollary (2.2.15) we use the natural inclusion and
projection maps to obtain a short exact sequence of Koszul complexes

0-K(M,—D)|M)>KM,—2) > K(T—2) - 0.

Thus, as M, — 1 is a Fredholm tuple, it follows from the Fundamental Theorem of
Homological Algebra [40] that T — A is Fredholm if and only if (M, — 1)|M is Fredholm.
ThUS, O-e(T) N ]Bd = O-e(leM) N ]Bd'

From Theorem (2.2.18) we have that for A € B;\Z (M) the augmented Koszul complexes
K(M,— 2,D) and K((M, — 2)|M, M) are exact. So we can apply the results of Corollary
(2.2.15) to obtain that T — A is Fredholm and ind(T — A) = (—1)%(rankT —m). Thus
Equation (37) follows by use [33], which states that for 2 € B,\Z(M),k(T) = rank(T) —
m, where k(T) is the curvature invariant of T. Finally it follows that Equation (41) holds for
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all 1€ B,;\o.(T), since the index of T —A is constant on connected components of
C\o,(T).

Finally, we prove the last part of the Theorem. First we recall from Corollary (2.2.15) that
Z(M) S op(T*) € o(T) NB,. If k(T) # 0and A € B, \Z(M), then by the first part of the
proof M;* # (0). Thus, as in the proof of Corollary (2.2.15) we see that 1 € a,(T*)*. Hence
op(T*)* =a(T) N B,; = B, in this case. If k(T) = (0)and 1 € B,\Z (M), then the first
part of the proof implies that M;- = 0 and K(T — 1) is exact, hence A & o(T). Thus,

o(T) N By = 0,(T*)* = Z(M).

Corollary (2.2.21):[17] Let H denote the Hardy or Bergman space of the ball or polydisc,
or H =%,,a=d,let D bea separable Hilbert space, and let M be an invariant subspace
of H, of finite fiber dimension m.

If A€Q and there are bounded functions f;,...,f, € M such that the set
{(i(D),..., fn(D} is linearly independent, then the tuple (M, — A)|M is Fredholm with

index (—1)%m, and the augmented complex K((M, — 2)|M, M) is exact.[49,50].

Proof: We know from Proposition (2.2.10) all the spaces H satisfy the hypothesis of
Theorem (2.2.14). The multipliers are either H* of the ball or the polydisc and in both cases
it is known that one can solve Gleason’s problem [29].

We let € = C™ and for g = (g4,...,9m) € HeWe set &g =™, f,g;. Itis clear that
IS a multiplication operator. Thus the corollary follows from Theorem (2.2.14).

If H is the Bergman space of a bounded region Q in €%, then it easily follows from a
theorem of Bercovici in [28] that there are invariant subspaces where ) is contained in the
essential spectrum.

In the cased = 1 the existence of invariant subspaceswith high index on the whole disc is
connected with the nonexistence of nontangential limits of the functions in the space [23].
Thus, as far as we know, it is conceivable that for every invariant subspace M ofthe Hardy

spaces on the ball or polydisc of C%,d > 1, (M, — 2)|M is a Fredholm tuple for all 2 in a
large subset of the region. That the situation is more complicated than for H3 can be
illustrated by constructions that are similar to what we have done for HZ.

Indeed, the reproducing kernel for the Hardy space of dBB, is

11
1-(zw)? (A-@2)

+ W, 2,5k, (2)

for some positive definite kernel k on B,. Hence as before H2(9B,) = L%®z, K for some
space K of analytic functions on B,, and one can proceed as above and consider invariant
subspaces of the type M = N@z, K . The new feature is that the set of common zeros of M’
may be empty, and we note that in this case the essential Taylor spectrum of M, |M has a part
in the ball but outside the set of common zeros of functions in M.
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Similarly, for the Hardy space H?(ID,) of the bidisc we consider the map P: f — g, where
g(z) = f(z,2). [26], it is well known that this is a partial isometry of H2(ID,)onto L. It
then follows easily that for every invariant subspace V" of L the space M = P*\ + Ker P
is an invariant subspace of H2(ID,). Furthermore, if dim NV © zV is infinite, then one shows
that every A on the diagonal of D, is contained in the essential Taylor spectrum of M, | M,
even though most of those points will not be in the set of common zeros of M..[51].
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Chapter 3
Similarity and Reducing Manifolds with Nearly Invariant Subspace

We show a new approach and extended a theorem of D, Hitt describing certain subspaces
of H? that miss by one dimension being invariant under the backward shift operator.

Section(3.1): Unitary Equivalence of Volterra Operators

We are concerned with Volterra operators T where Trf(x) = fxl F(x,y)f(y)dy
mapping L,[0,1] into itself (1 < p < o) and study their similarity, reducing manifolds (i.e.,
subspaces S < L,[0,1] suchthat T S < S), and in the case p = 2 their unitary equivalence.
These operators are continuous analogs of nilpotent n by n triangular matrices M = (m;;)
where m;; = 0 for i = j. The starting point of this investigation is provided by the following
two simple theorems about matrices M of maximal index of nilpotency: (i) the complete set
of reducing manifolds of M consists of the subspaces spanned by e, ...,e;, (1 <i <n)
where the e; are a basis relative to which M is triangular; (ii) every such matrix M is unitarily
equivalent to a triangular matrix where m;;,,; > 0 and two such matrices are unitarily
equivalent if and only if they are equal. Their similarity invariants are well known: any two
such matrices are similar. The continuous analog of "maximal index of nilpotency" turns out
to be the following type of condition: F(x,y) = (y — x)m — G(x,y) where G(x,x) # 0.
We deals with similarity properties of our operators and establishes what amounts to
"canonical forms under similarity” of the functions F. We lean on results by Volterra and
Volterra and Peres [54,55]. It should be noted that the result of Lemma (3.1.4) was improved
somewhat by Lilsis[56]; this improvement would correspondingly improve slightly several
of the results based on that Lemma. For the functions F considered the only reducing
manifolds of T are the spaces L,[0,a] forall a € [0,1]. We close that with two examples.

We are dealing with functions of the two variables x and y defined on the triangle 0 =
x =y = 1. Suchfunctions will be denoted by capital letters thus: F (x, y). Unless a statement
IS made to the contrary, these functions will always be of the form F(x,y) =
(y — x)™ 1G(x, y) where the complex valued function G is continuously differentiable;
G(x,x) is real valued and different from 0. The positive integer m is called the order of F
[55]. If F depends only on y — x we generally use lower case letters: F(x,y) = F(y —
x) = f(y — x). We write

1

T,9(x) = f F(x,y)g (0 dy.

X

To the product T, T, of two transformations corresponds a third function F; such that
Ty, Tr, = Tr, Where Fj is given by

y

Fy(x,y) = JFl(x,z)Fz(z,y)dz;

X
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we use the notation Fy F; for F; and F*™ for F*-*F (m factors). If p(z) = YN a,zt, we write
p*(F) =Y a;F***1. Note that if F;(x,y) = fi(y — x)(i = 1,2),f*f, is again a function
ofy — x and

y—Xx

ﬁﬁ@—x%=f/Ny—x—MBWMu=ﬁﬁ@—x)

Lemma(3.1.1):[53] Let F(x,y) be measurable and bounded such that |F(x,y)| = K for
all xand ysuchthat 0 =x=y=1. Let1=p <oo. Then T, is a bounded, generalized
nilpotent linear transformation mapping L,[0,1] into itself and ||T; || < K.

Proof:  Except for generalized nilpotency, the assertions of this Lemma follow from the
inequalities

MJ@NéJW@JV@WWEKfV@wwéKWMEKWM

(the last inequality results from the fact that the basic interval of integration has measure 1).
Generalized nilpotency follows from the inequality

i Ki(y_x)i—l
Fixy)] < (- 1!

Lemma(3.1.2):[53] Letl=p <oo.Letk €L,[0,1],f € L,[0,1]. Then T, is a bounded
linear transformation mapping L,[0,1] into itself suchthat ||k fll, = T fIl,, = llkIlL 1 £l
whence ||T, || = ||k|l;. Hence k** € L, [0,1]for all positive integral i and k; — k in L,[0,1]
implies that T),; — T, uniformly.

Proof:  The assertions of the lemma are implied by the well-known inequality [|k*f1l,, =
Wkl [1f1l,. Thus T} f € L,[0,1] for f € L,[0,1] and

Ty fll, = k£l = Nkl

Two continuous linear transformations T; and T, mapping L,,[0,1] into itself are called
similar if there exists a continuous linear transformation P mapping L,,[0,1] onto itself with
the continuous linear inverse P~! such that T, = PT,P~'. Two continuous linear
transformations mapping L, [0,1] into itself are called unitarily equivalent if there exists a
unitary linear transformation Usuchthat T, = UT, U* = UT,U~*. We will in most instances
be able to restrict the linear transformations P and U implementing similarity and unitary
equivalence to products of linear transformations of the following three kinds: (1)
multiplication by a measurable function h(x): M, f(x) = h(x)f(x); (2) substitution
(change of measure of [0, 1]) using a monotone function r(t) mapping [0, 1] onto itself such
that r(0) = 0 and (1) = 1:S,f(x) = f(r(x)); (3) linear transformations of the type
I + T,, where [ is the identity transformation and T, is generalized nilpotent.
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If F(x,y) = (y — x)™ 'G(x,y) is of orderm and G € C*! we say that F is canonical
with constant c if

G(x,x) =c, G(x,x) =G,(x,x) =0

We use the standard notations L, and L, where 1/p + 1/q = 1;if f € L,[0,1]andg €
L,[0,1] and p # 2, we write (f,g) = folf(x)g(x) dx; if fand g are in L,[0,1], we

write (f,g9) = folf(x)m dx. The set of all functions f € L,[0,1] suchthat f(x) = 0
a.e. forall x > ais called L,[0,1]. The subsetof L,[0,a] consisting of all functions which
are in no L,,[0,a’] for 0 < a’ < awill be called L$[0,a]. The function identically equal to
1 will be denoted by E or simply by 1.

Lemma(3.1.3):[63] IfF(x,y) = (y — x)™ 1G(x,y) is of order m then there exists a
function H(x, y) of order m which is canonical with constant

m

1
1
c = signG(x,x) flG(u,u)Iﬁdu
0

such that T, is similar to T, = P~1T,P. This is achieved by setting P = S, M, where
1

r(t) = fol (G(u’u))a du and where the function h is determined as follows: define

c

Fi(x,y) = (y—x)" "G, (y,x) by Ty, = S, TS, . Then

t

h(t) = exp (%)-[Glx(u,u)du :

0

Lemma(3.1.4):[53] If Fis analytic in x and y in a suitable region and if it is of order m
then there exists (exactly one) function G (x, y) of order 1 and real for y = x analytic in the
same region such that T = T. The same conclusion holds if F(x,y) =f(y—x) =
(y —x)™1f,(y —x) is oforderm and f; € C2. Them'™ rootG(x,y) of f(y— x) isin C?
and is of the form G(y — x).[54].

Theorem (3.1.5):[53] Let F € C? be of order 1. Then Ty is similar to ¢T; where c is
defined on Lemma (3.1.3) (with m = 1). More precisely, cT; = PP TP, P~* where p, 1 is
as in Lemma (3.1.3) so that P, 'T.P, = Ty, where K is canonical with constant ¢ (and of
order1)and P =1 4+ T, and M is determined by the integral equation

K+MK=c(l+1'M) (1)

In fact if the continuous function M(0,y) is prescribed, there exists a continuous solution of
(1) which is unique and for which (5~ + ;—y)M(x, y) exists.
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Proof:  Note first of all that for the function M which we are going to find, P~ will exist
since T, is generalized nilpotent by Lemma(3.1.1). Dividing (1) by c and setting K/c = L,

we are led to consider
y y
L(x,y) + j M(x,w)L(w,y)dw =1+ f M(w,y)dw (2)

This equation is equivalent to the following equation where r = (y —x)/2,s = (y +

x)/2:

M(x,y) =j j M -1, w)Ly,(w,v +1r)dwdv
y 2r
—fM(x,a))Ly(w,y)dw+j M0, w)Ly(w,2r)dw (3)

- j Ly =70 +71)dv + h(2r)

T

where h(t) is arbitrary.
Equation (3) can be derived from (2) under the assumption that M € C*. After showing
this, we show that (2) and (3) are equivalent if we merely assume that (;—x + %) M(x,y)

exists. On differentiating (2) with respectto x and y we obtain

0
&M(x, y) = M,(x,y) + M, (x,y)
y

= _j M, (x, w)Ly(w,y)dw + M(x, x)L,(x,y) — Ly, (x,y)

whence
S v+r

M(x,y) = —f j M,(v —r,w)L,(w,v +1)dodv

r v—r
S

+fM(v—r,v—r)Ly(v—r,v+r)dv—fny(v—r,v+r)dv+h(2r)

T

If we now interchange the order of integration in the double integral, then integrate by parts
in order to eliminate M,., and then once more interchange the order of integration in the

double integral, we obtain (3).
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We shall obtain below the unique solution of (3) (with prescribed M(0,y)) which has the
property that :—SM(x, y) exists. To establish the equivalence of (2) and (3) using only the

assumption that %M(x, y)exists, we proceed as follows. On differentiation of (3) with

respect to s we obtain

y y
d
e M(x,y) +jM(x, w)Ly,(w,y)dw =jM(x, W)Ly, (w,y)dw — L,,(x,y)  (4)

Or A(x,y) = B(x,y).We now from

yy yy
A(¢,m)dndé = B($,n)dnd§ (5)
acoma |

On the left we make the following change of variables: ¢ =0 —pand n = ¢ 4+ p and
obtain after one integration

r y
2 f M(y —2p,y) + f M(y — 2p, w)L,(w,y)dw |dp
0 y—-2p

r 2p+x

—Zf M(x,2p+x)+f M(x, w)L,(w,2p + x)dw |dp

0

or by appropriate changes of variables

y vy
fM(w,y)da)+jfM(v,w)Ly(w,y)dwdv

Y v

—ij(x, a))da)—ij(x, w)L,(w,v)dwdv

X X

Finally, after integrating the last integral by parts, we obtain for the left hand side of (5)

y vy
jM(w,y)daH—jfM(v,w)Ly(a),y)dwdv

X VU

y y y
—jM(x, a))dw—jM(x, w)L(w,y)dw + jM(x, w)dw

54



The right hand side of (5) becomes after an integration by parts of its first integral
[ 7 MG, @)Ly (w,y)dwdv — 1 + L(x,y). On equating these two expressions, we obtain
(2). In orderto obtain (3) from (2) we note first that we can reverse the steps leading from (3)
to (2) until we get (4). To go from (4) to (3) we observe that in (3), M(0,y) = h(y). We
now see that on integrating (4) with respect to s from r to s, we obtain (3).

We now proceed to solve (3), where we replace M(0,w) by h(w), i.e., we actually solve
the following equation:

M(x,y)=j f M —r,w)Ly,,(0w,v+71)dodv
y ) 2r
—fM(x,w)Ly(a),y)dw+j h(w)L,(w,2r)dw (6)

N

— f Lyy(v—r,v+71)dv + h(2r)

T

Any solution of (6) provides one of (3), since if M (x,y) satisfies (6), we see that
M(0,y) = — [ M(0,9)L,(w,y)dw + [} h(w)Ly(w,y)dw + h(¥) sothat for M,
M(0,y) = h(y). We now rewrite (6) thus:

N

(I-T)M(x,y) = f h(w)Ly(w,2r)dw — f Lyy(v—71,v+71)dv+h(2r)

= R(x,y) (7)

where the linear transformation T is defined by

S v+r y
TG(x,y) = f J Gw—r,0)L,,(0,v+7r)dwdv - f G(x,w)Ly(w,y)dw
r v—r X

If %G(x, y) exists, %T”G(x, y) also exists for all positive integral n. Our hypotheses
regarding M(0,y) = h(y) and L(x,y) imply the existence of a positive constant C
independent of x and y suchMax(IR(x,¥)1, |L,, (63|, |Lxy (6, 9|, |Lyy (6, 9|, R, 1) S
C .Then |T™R(x,y)| = M and |§—ST”R(x, y)| < M These inequalities

imply that (7) has the solufion Y>3 T"R(x,y) and that :—SM (x,y) exists and equals

20 ;—ST"R (x,y) since our hypotheses imply that :—SR(x, y) exists.
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The uniqueness of the solution M(x, y) of (2) or (3) is established as follows: Supposethe
two solutions M, and M, have M, as their difference and that M, (0,y) = M,(0,y) so that
M,(0,y) = 0. Then M, satisfies

j My (x, @)L (0, y)de = j Mo (w,y)da )

By making computations similar to those which relate (2) and (3), we seethat M, must satisfy

(I —=T)My(x,y) = hy(21) (9)

The requirement that M,(0,y) = 0 implies that h,(y) = 0 so that (9) implies that
My (x,y) =

Corollary(3.1.6):[53] If Fis analytic in x and y in a suitable region and if it is of order m
then T, is similar to ¢ T where c is the constant of Lemma(3.1.3). The same conclusion
holdsif F(x,y) = f(y — x) = (y — x)™'f,(y — x) isoforderm and f € C?.

Lemma(3.1.7):[53] If T, and T, are continuous linear transformations mapping L, into
itself which are not nilpotent, then similarity of 7, and T, implies that

(T ||n
lim T =1
" \NTH

Proof: This is implied by the inequalities (||PI[|[[P~2 DT < T = [|PINIP LT
if we write T, = pTyp~*. If r = 1 is a real number, let us define TZ as T with F(x,y) =

vy =) /T(r).

Theorem(3.1. 8) [53] If ¢, and €y are real numbers and r; and r, are real numbers such that
r; = 1, thenc,T," is similar to ¢,T,2ifandonly if c; = c, and r; = 7,.

Proof: Supposethat r, > r,. Then

1T ey YT 2 (1)
i w) e ml (772" =0
”(CZTErZ)n”n <| Zl) ”( Tz) ”n (l 2|>

since T7 is generalized nilpotent for r > 1 (see Lemma(3.1.1)). Lemma(3.1.7) implies,
therefore, that n, = r, . Let us assume next that n, = », = r . The equation

1
Lim (M) = (lcll) implies by Lemma(3.1.7) that we must have |c,| = |c,|. Suppose
n\ llicrnln le|

finally that T is similar to —T} = pT¥p~t. Then P commutes with 7. We now proceed to

show that T = lim(TZ" )uniformly for polynomials p; which implies that P commutes also
Pj

with TF contradicting PTYP~1 = —T7. In view of Lemma (3.1.2) it suffices to show that
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t"~1/T(r) is the L,-limit of polynomials of the form XY a;t*"/=* /T'(2rj) where we have
written t for y — x. Let {e; } be asequence of positive real numbers converging to 0. Let

__ (bt for0=t=g
fi®) _{t‘r forg =t =1

be continuous functions (i.e., b;el** = 1). The Stone-Weierstrass theorem implies the

existence of polynomials p;(t?") = Z?’;Oaijtz”' such that |p;(t%" )-f;(®)| = e;.

For0 =t = 1. It is now an easy matter to verify that 2" 1p,(t?") - t™! in L, orthat
rta e (T@rk)/ T() 2™ 1/T(2rk) » t™1/T(r) in L, .

Corollary(3.1.9):[53] If F is as described in Lemma (3.1.4) or Theorem (3.1.5), then T
is similar to a unique operator cTz" where c is as in Lemma (3.1.3) and m is the order of F.

Lemma(3.1.10):[53] T, ,, is the uniform limit of polynomials in Tz™ without constant term
forall m = 1.

Proof: Ifa>0,t'™D,,(t)is the L, limit of polynomials of the form

> atm/ram),

hence D,, ,(t) is the L, limit of polynomials of the form ¥, a;t™*+1=1 /I (m). Lemma (3.1.2)
then implies the truth of the present lemma in the case considered. If a = 0, observe that
D, ,(t) is the L, limit of the functions D, ,(t) as e — 0 and the same conclusion holds.

Lemma(3.1.11):[53]  If f €L$[0,c] then the functions T" f, T#™f, ... and their linear
combinations are dense in L,[0,c] forall c € [0,1].

Proof: Let g € L4[0,c]and consider (T f, g) for = 1,.... By Lemma(3.1.10), Tp,, , is 2
uniform limit of polynomials in 77" without constant term. Thus if we assume that
(Tfif,g) = 0forall i > 0, we have

Iop = (Tp, . f,9) =0 (10)

for all aand hsuchthat 0 = a<c,0<h =c—a. We now apply Fubini's theorem to
h= fo fx D, n(y — x)f(y)g(x)dydx and obtain

c ry—a

=[ | rodg@ayax
a Yy—a—h

where we put g = 0 outside [0, c]. Let

(o}

v
Can =22~ j fgo-aw=[((;) [ swar-g0-a |reay
a—h

a y-a-
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Then 11151(1) cqn = 0 [57]. Since by (10) I, , = 0, we conclude that f:f(y)g(y —a)dy =0
forall a € [0,c]. A theorem of Titchmarsh's [58] implies that then g = 0 a.e.

Lemma(3.1.12):[53] Let n(x,y) = —n(y - x) € L,[0,1] and n = 0 in the interval
[Oi] for some positive integer k. Let m be a positive integer. Then the only reducing
manifolds of T;" + T,,, are the subspaces L, [0,c] of L,,[0,1] forall c € [0,1].

Proof:  We show first that TZ* is a uniform limit of polynomials in Tg" + T,,. without
constant term; note that Lemma (3.1.2) implies that such polynomials are indeed continuous
operators mapping L,[0,1] into itself. It is sufficient by Lemma (3.1.2) to construct
polynomials in the functions corresponding to T7* + T,, which converge in L, to (y —
)™ T(m). Let p(2) = X a;z"*, p*(f) = X4 a,f *** for f(t) = 1°™ +n(t) =

m-—1
? - + n(t) where we write t instead of y — x. Since our hypotheses concerning n imply

that n** = 0, we have the following formulas:

k-2 k-1
p*(f) =n(t) + Z an"tt 4+ Z d;(t)*n™
i=0 i=1

where 7(t) = §V=0 ail*,m(i+1) or

N

n(t) = z a; t™ -1 /(i 4 1) — 1)! (11)
i=0
and
d,(t) = Z a, (" “lL 1)tm(r‘i+1)‘1/(m(r— i+1)—1)! (12)

If p has a subscripts, we write correspondingly r, and d; .

We shall find it necessary in what follows to have expressions for the polynomials d;(t)
which show explicitly their dependence on the polynomial m(t) and its derivatives. This is
done by the following formula

i
4(®) = ) quOrm () (13)
r=0
where the polynomials q,;(t) are independent of = and where superscripts in parentheses

indicate differentiation. Express the binomial coefficient in (12) as (r-ll- 1) =Y _,ciT;
(12) becomes
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i

N a Zi_ c. psgmir—i+1)-1
di(t) = T lS. = Zcisgis(t)
m(r—i+1)—1)!

r=i s=0

arrstm(r—l+1)—1 artm(r—1+1)—1 _

=7 (t) and

where g;s(t) = Irv=i mG-i+1)-1!"

Note that g;,(t) = XN

=1 (m(r—i+1)—1)!

gis(t):( : )(tm(i‘l)“gm_l(t)) so that there exist polynomials g;.,(t)

mtm(i—l)

independent of 7 such that g;(t) = ¥5._, iy, ()T ™+ () and

i S i
d;(t) = Z Cisz gisu(t)n.(mHu) (t) = Z qui(t)n.(mHu) )
s=u u=0 U=0

where q,;(t) = YL, ¢is9:5,(t) is independent of r and (13) is established.

Proposition(3.1.13):[53]  Given a positive real number ¢, a positive integer k,,, — 1 = M,
a polynomial m,(t) of form (11) considered in the interval [0,b]where 0 <b =1, and a
function n € L,[O, b] suchthat n = 0 in the interval [0,a] for someasuchthat0 < a <

b. Then there exists a polynomial 7, (t) of form (11) such that |n§”) (t) — n(()”)| = ¢ for all

t € [0,a] and for v =0,...,M and such that |[x —n||, = & where ||...||; relates to the
interval [a, b].

Proof: Instead of approximating m, and n as described above, we approximate 0 and n —
m, = n, by a polynomial 7 of form (11) such that |=® (t)| = efor all t € [0,a] and v =
0,..,Mand |[r —n|l; = ¢ in L,[a b]. The polynomial 7, = m+ m, will then have the
desired properties. We show first that we can approximate n, in L,[a, b] by a polynomial
p(t) = (t —a)*1p,(¢) sothat p» (@) =0 forv = 0,..., M. This can be done since the

polynomials of the form q((t —a)M*') are uniformly dense in all (complex valued)
continuous functions on [a, b] by the Stone-Weierstrass theorem (by approximating the real
and imaginary parts separately) and hence the polynomials g, ((t — a)™*?1) without constant
term are uniformly dense in all continuous functions on [a, b] vanishing at a. We now
approximate n, in L, [a,b] by a function f continuous on [a,b]. This function f is L, limit
of polynomials g, ((t — a)™*1) without constant term: If

=" e-0
onfa,a + e]land f,(t) = f(t)on[a + e, b] then f(t)is L, limit of f,(t) as e —» 0. But

the continuous function £, (t) vanishes at a and hence can be approximated uniformly by

polynomials q,((t — a)*1) without constant term so that f(t) and hence n, is L, limit of
such polynomials. Given ¢, it is therefore possible to find a polynomial p(t) such that

p®(a) = 0 forv=0,...,M and such that

lp —n,ll; < g/2

on L,[a,b]. Consider now the function g(t) = 0 on [0,a] and p(t) on [a,b]. Clearly
lg —nll; £ &/2 onL;[a,b]and g € C on[0,b]. We now approximate (g,g’, ..., g™) on
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[0, b] uniformly by a polynomial of form (11) and its derivatives: The Stone-Weierstrass
Theorem implies the existence of a polynomial m,(t) = Z{"z'o a;t™ such that |m,(t) —
g™ (t)| < e/2 for all t € [0,b]. We now integrate 7, and g™’ M times from 0 to ¢ and

obtaln m(t) = YV b t™*M and g(t) respectively (observethat g(v) = 0 forall v). Since t
lies in [0,1] we get

7@ () — g" (1) < &/2
forall t € [0,b]and v = 0,..., M.
We shall show that given a positive real number ¢ there exists a polynomial rz(t) of form

(10) such that for the corresponding polynomial p*(f)

(m—1)!

onL,[0,1]. The polynomial 7(t) is obtained as the last of a sequence of k polynomials of
form (11) (7, (®), ..., m, (t) = 7(¢)) whose construction is described below. Subdivide the
interval [0,1]as follows: I; = [’ : J] J; = U=l = 1,..., k). Let the positive integer k,

be chosen so that M =km—1=(k—1)(m+1). We shall replace the inequality
If —gll; =nin L, of the interval I by f=ginlI;nis a positive real number to be
determined later.

p (f) - <e (14)

1

m, () =t™1/(m—1)!

(m,_,(t) in J;_, suchthat |nj(”) © -7 ®|<¢
fort E]j_landv =0,.., M

m; (t) = gm-1
——n—z _1, () n"t inl;
— 1)1 i
(m—1)! -
\ for j=2,..,k

In order to verify (14) we examine pj; (f) — ; in the various intervals I;: observe that

(m-1)!
sincen=0in I, p;(f) = m (t) + Zl o 4;n n*t 4 Z dkl(t)*l in I Thus we obtain

p;z(f)—ﬁ m () — n(t)+n(t)+Zan*‘“+2dm(t)* " ﬁ
m—1 j=2 .
=m0 =1 (O + g (@0 - 1>"+Z dii(t) = dj14(0)) "
—t™ 1 /(m—1)!

in I; where, for j = 1, the term (a, — 1)n and the two sums are absent, and when j = 2, the
first sum is absent; j ranges from 1 to k. We now make the following three estimates: (i) Our
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construction implies that for all t € I, EAGE nj(t)| = kn. (ii) Since if we write 7, (t) =
N a;tmr1-1 __mG+1)-1)
i= 0(m(1+1) pr 4= T _ fll T (O)|
kn,la, — 1| < kn, Iail <k{ fori=2,..,k (since by our choice of M,k—2=M.
Hence if C is a constant such that |n*'|| <C fori=1,., k-1, ||(a0 — 1), +

Y 2am® ‘+1|| < k2Cn. (iii) Before making an estlmate of the sums mvolvmg terms of the
type d;(t)*n*in I;, note that since n = 0 in I, this function uses only those values of d;(t)

which correspondtot € J;_;. Thus in order to estimate the contribution of Z{;; (dki(t) -

d]-_l,i(t))* n* we proceed as follows: By (13)

du(®) - u(t)—Eqntt)(n(ml*”(t) 0 ()

fort € J;_; where the polynomials g, (t) are independent of the polynomials m, and m;_

Again referring to our construction, we see that |n,§r) (t) — (”) (t)| <knforte]j;_; (hence
fort € J_isincei = 1)andforv=m,..,(m+1)(k—1) = < M by our choice of M. Hence,

if maxlqri<t>| Q. ||ziz (dkl(o () n
rit

| (m— 1)||| < (k+k*+h°C+Ek*CQn in L [01] which after choosing 7

properly implies (14)

CQn in I; so that finally

Lemma(3.1.14):[53] If N(x,y) be defined for 0 = x <y = 1 such that T,y is a bounded
linear transformation mapping L,,[0,c] into itself and such that Ty commutes with T for
some positive integral mthen N(x,y) = N(y — x).

Proof: Our hypotheses imply that T, T/ = T;™T, for all positive integral i ;
Lemma(3.1.10) therefore implies that Ty Ty, , =Tp, Ty for all relevant a and h; we

therefore have (%) f NG,z)dz= (1/h) [ yeath N(zy)dz . If we now restrict

ourselves to the approprlate set of measure 2 in the triangle 0 = x <y =1, both sides
converge to N(x,y — a)and N(x + a,y) respectively which proves the assertion of the
lemma.

Theorem(3.1.15):[53] The following operators T have the property that their only reducing
manifolds are the subspaces L,,[0,c] of L,,[0,1] forall ¢ € [0, 1]:

(i) F(x,y) € C* and F is of order 1;

(i)  F(x,y) analytic in x and y in a suitable region and F is of order m where mis a
positive integer;

(i) F(,y)=F@y—x)= @ —x)"1k(y —x) + n(y — x) where F is of order m, k €
C?n € L,[0,1]and n = 0 in a neighborhood of x = y.

Proof: (i) and (ii): Theorem (3.1.5) and Corollary(3.1.6) imply that T, is similar to cT"
which, by Lemma(3.1.12), has as its only reducing manifolds the spaces L,,[0,c],c € [0,1].
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The similarity of T and cT2"* is implemented by a product of linear operators of the form S,
M, , and I + T, (see Theorem(3.1.5) and Corollary(3.1.6)) which map the reducing
subspaces of T and cTZ™ onto each other in a 1 — 1 order preserving manner. (iii): The
Corollary(3.1.6) implies that T, = T(,_,ym-1, + T, is similar to cTf* + T, . Since T,
commutes with T, _,ym-1,, T, commutes with cTz". A simple computation which relates n
and n; shows that the hypotheses concerning n imply that T;, satisfies the hypotheses of
Lemma(3.1.14). We can therefore conclude that n, (x,y) = n,(y — x). The computation
relating n and n, also shows that the remaining hypothesis of part (iii) of the theorem is
satisfied: n, = 0 in a neighborhood of y = x. We now apply Lemma(3.1.12) and conclude
as in the end of the proofof (i) and (ii) that the only reducing manifolds of T are indeed the
spaces L,[0,c],c € [0,1].

Theorem(3.1.16):[53]  Let Ty, and T, be two continuous linear operators of L,[0,1] into

itself whose only reducing manifolds are the spaces L,[0,c], c € [0,1] (e.g., like the

operators described in Theorem(3.1.13)). Then if Ty, is unitarily equivalent to T, = UT, U,

there exists (i) a measurable function h(x) defined on the interval [0,1]such that |h(x) | =
1

1, (ii) a functionr(t); suchthat U = M, U; and F,(x,y) = h(x) (h(y))_1 (s’(x)s’(y))5

F,(s(x),s(y)) Suppose that conversely this equation is satisfied for some functions h and
r satisfying (i) and (ii), then if we set U = M, U}, Tr, = UTr U", i.e., Tr, and T, are unitarily
equivalent.

Proof:  Suppose that T, = UTg, U"; since the operators T, are supposed to have the same
reducing manifolds, there exists a monotone increasing function r such that (0) = 0 and
r(1) = 1 and such that E,,, = UE,U" where E, is the projection on L, [0, t]. We now show
that r is univalent and absolutely continuous: Let us consider (Er(t) f, g) = (UE.U*f,g) =

(Eefi,91) OF

r(t) t

| g = [ fwg e
0 0

If we set f = g =1 we see that (t) = fotfl(x)gl(x)dx: ris absolutely continuous, and if

we set f; = g, = 1 we see that t = for(t) f(x)g(x)dx: r is univalent. A simple calculation
shows that UZE.U, = E,; but E, =UE.U" so that U,U commutes with all E, . A
standard theorem of spectral theory [59] shows that U,.U = M, for a measurable function
k(x) which, since U,.U is unitary, has the property that |k(x)| = 1. Thus U = UM, and if
we set h(x) = k(s(x)) a simple calculation shows that then U = M, U;: as desired. The
equation relating F;(x,y) and F, (x, y) follows.

Theorem(3.1.17):[53] Let T be abounded linear operator mapping L,[0, 1] into itself such
that F(x,y) = (y — x)™ 1G(x,y) where G € C! in aneighborhood of y = x, G (x, x) is real
and different from 0 and further such that the only reducing manifolds of T are the spaces
L,[0,c],c € [0,1] (e.g., like the operators described in Theorem(3.1.15)). Then T is
unitarily equivalent to a unique operator T = UT; U* where
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Filoy) =@ —x)"16(xy)
G,(x,x) =c¢ (creal and different from 0) (15)

Im(Glx(x,x)) =Im (Gly(x, x)) =0

m

1
The constant ¢ in (15) is the same as in Lemma(3.1.3):c = sign G(x, x) (follG(u, u) IEdu)

G(u,u)

1/m
This is achieved by setting U = M,U; where r(t) = fot( ) and where the function
h is determined as follows: F,(x,y) = (y — x)™ ' Gy (x,y) by Tr, = U;T, U* and we write
Go(x,v) = Hy(x,y) + iK,(x,y) forreal Hyand K,. Then

h(x) = exp((—i/c)JKOx(u, u)du).

Section(3.2): Invariant Subspace of the Backward Shift

Let S denote the unilateral shift operator on the Hardy space H? of the unit disk, D, A
subspace M of H? will be called nearly invariant under S* if it is S*-invariant modulo the
one-dimensional subspace of constant functions, that is, if S*h is in M whenever h is and
h(0) = 0. These subspaces arose in the work and were characterized by D. Hitt [61] (who
called them weakly invariant rather than nearly invariant).

To describe Hitt's result we note that, if the subspace M is nearly S*-invariant and nontrivial,
then M cannot be contained in HZ, so that M N HZ has unit codimension in M. There exists
therefore a unique function g in M that is orthogonal to M N HZ , has unit norm, and is
positive at the origin. Hitt's theorem then states that if h is any function in M, the quotient
h/g is in H? and has the same norm as does h; moreover, the subspace M’ consisting of all
such quotients is S*-invariant. Thus, the Toeplitz operator T, , the operator on H? of
multiplication by g, maps the S*-invariant subspace M’ isometrically onto the given nearly
S*-invariant subspace M. From the famous theorem of A. Beurling and subsequent work of
many others, one has a good picture of the structure of the S*-invariant subspaces. Hitt's
theorem thus refocuses that picture so as to provide a picture of the nearly S*-invariant
subspaces. Given a function g of unit norm in H2, what are the S*-invariant subspaces M’
that can arise along with g in Hitt's theorem? [62,63,64].

Nearly S*-invariant subspaces arise, in particular, as the kernels of Toeplitz operators, and
this special case of Hitt's theorem was independently discovered, and established through
different methods, by E. Hayashi [65].

We shall have to deal below with certain unbounded Toeplitz operators. If x is any function
in L2 of the unit circle, then by T, we shall understand the operator on H? that sends the
function h to the function
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LMD 4o (< 1
in other words, T, h is the standard Fourier projection of the L! function xh. The preceding
definition clearly reduces to the usual one when x is bounded. The range of T, is just a certain
space of holomorphic functions in D; it is contained in H” forp < 1. To follow T, by an
analytic Toeplitz operator, with a bounded symbol, say. Such products will arise below, and
the ones of interest turn out to be bounded operators on H?2.

If B is a bounded operator acting in H? then, following L. de Branges, we define M'(B) to
be the space BH? with the Hilbert space structure that makes B into a coisometry of H? onto
M(B). Thus, for example, if the function h in H? is orthogonal to ker B, then the norm of
Bh in M'(B) equals ||h||, the norm of h in H%. The space M'(B) does not determine B, but
a simple argument shows that two such spaces, say M'(B) and M (B, ) are identical as Hilbert
spaces if and only if BB* = B, B; . If B is a contraction operator then H (B), the so-called

complementary space of M'(B), is defined to be M ((1 — BB*)%).

Here is the case B = T,,, where b is a function in the unit ball of H*. The corresponding
spaces M (T,,) and H (T,) will be denoted by M (b) and H (b). The norm in H (b) will be
denoted by || ||,.

The kernel function in H? for the point w of D will be denoted by k,, (k, (2) =
(1 —wz)™1). Asimple argument [62,63] shows that the kernel function in £ (b) for the point
w is the function k% = (1 — b(w)b)k,.

The space H'(b)is invariant under S* and S* acts as a contraction in it [62,63]. The
restriction operator S*|H (b) will be denoted by x,, .

Two special cases. The first is where b is an inner function. Then M (b) is just the S-
invariant subspace H? , and H (b) is its ordinary orthogonal complement, an S*-invariant
subspace. The other is where b is not an extreme point of the unit ball of H™. In that case, as
was proved in [63], the kernel functions k,, belong to # (b) and, as was proved in [64],
actually span ' (b).

Let g be a function of unit norm in H?, and let f be the outer factor of g, normalized (for
definiteness) by the condition £(0) > 0. Let F be the Herglotz integral of |f]?:

A
1 e + 7 a2
_ 6
F(Z)_Efeie—zlf(el )| do (Iz] < 1).
We notethat F(0) = 1 and define the functions b and a by
,_F-1 _2f
“F+1r YTF+1
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Then b(0) = 0 and, as the function F has a positive real part, the function b is in the unit ball
of H®. The function a is an outer function, being the quotient of two outer functions, and
almost everywhere on dD we have

4f2+|F -1 4ReF+|F —1J?

Z+1b|? = =
lal” +1b] IF + 1|2 IF+ 12

=1

Thus a is also in the unit ball of H*, and because 1 — |b|? = |a|?> on dD,we see that
log(1 — |b|?) is integrable, sothat bis not an extreme point of the unite ball of H.

Lemma(3.2.1):[60] Forzandw in D,
(fhw, fl;) = (1= b(@) " (1-bW) )~ kb(2)
Proof: The inner producton the left side equals

10 e

. —d6
2w ) (1 —wet? )(1—ze™ %)

which can be rewritten as

0 4 W e'? + z
s |l g e

in other words, as

F(z) + F(w)
2(1—wz)

an expression that is easily reduced to the right side.

Lemma(3.2.2):[60] The operator T;_,Tr is bounded and is in fact an isometry of H? onto
H (b). Hence, the operator T, _, T is a coisometry of H? onto H'(b); its null space equals
H (v), where v is the inner factor of g.

Corollary(3.2.3):[60] (Ty_,T;)(T1—pT;) = 1—T,T5.

Proof: The adjoint referred to here is the adjoint of T,_,T; as an operator of H? into itself.

1
The equality follows from the identity of the two spaces M (T;_,T;) and M ((1 — T, T}5)2),
as explained. We note here the equality (1 —T,T5)" = T,T;_5, which is valid even when
g 1s unbounded, as a simple argument shows.

Lemma(3.2.4):[60] T,_,T;5"g =S"b
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Proof: Infact, we have seen in the proof of Lemma(3.2.2) that T, _, T maps f to the constant

function 1 (i.e., the function (1 — b(0) )_1k8); hence also T;_, T;g = 1. Thus, because Ty
and S* commute,

T1—ngS*g = Tl—bS*ng = S*T1—ngg + (§' Ty — Tb—15*)Tg9
= (8 Ty-1 — Tb—15*)ng

As S*'T,_; —T,_,S* equals the rank-one operator S*b®1, one easily verifies that
(8*T,—, — Tp—1S™)T5 is the bounded operator S*h®g, and the desired equality follows.

Lemma(3.2.5):[60]  The operator T;_, T intertwines the operator R, with the operator
Xb: Tl—ng_Rg == Xle_ng.

Proof:  Letting v, as before, denote the inner factor of g, we note that T annihilates the
subspace H'(v). So does g®g so that R, coincides with S* in J (v), implying that ' (v) is
R, -invariant. The desired equality thus holds in 7£(v), and it only remains to show that it
holds in M (v). For that it will suffice to show that it holds for the functions vk, with win
D. We have

R,vk, = S*vk,, —(vk,,9)S*g = wvk,, +S*v — f(W)S*g.
As T annihilates S*v we obtain, using Lemma(3.2.4),
Ty TyRyvky, = WTy_, Tyvk,, — fW)Ty_,T3S*g = wTy_, Trk,, — f(W)S*g
=wfWw)(A - bk, — fW)S"g = fFW)S*((1-b)k,)
= STy _,Trky, = X,T1_, Tyvk,;
as desired.
Lemma(3.2.6):[60] Rg — 0 strongly as n — oo,

Proof: We note first that X — 0 strongly as n — oo. In fact, for w in D we have X, k,, =

wk,,, implying that X;'k,, —» 0 as n — oo. Because, as was mentioned, the functions k,,
span H(b), the desired conclusion follows.

We continue to let v denote the inner factor of g. Let h be any function in H?, and fix a
positive number e. There is a positive integer m such that || X}"T; _, Tzh|| < e. Let hy and

h; be the components of R;*h inH (v) and M (v) , respectively. By Lemmas (3.2.1) and
(3.2.5), ||All, = ||X,§”T1_ngh||b < €. Since R, coincides with S* in F (v) we obtain, for
any positive integer n,

IRg"Rll, = IRgholl, + [IRGRall, = IS hollz + [[RG[|1IAsllz <1IS™holl, + €

As §*™ - 0 strongly we conclude that lim max||Rj'|| | < e, and as € is arbitrary.
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Theorem(3.2.7):(Hitt’s theorem)[60] Let M be a nontrivial nearly invariant subspace of
S*, and let g be the function of unit norm in M that is orthogonal to H n HZ and positive at
the origin. Then M =T, M’ , where M’ is an S* -invariant subspace on. which T, acts
isometrically.

Proof.. Let h be any function in M, and let ¢, = (h,g). Then R;h = 5 (h — cog), which
implies that

h=cyg +SRgh,

because h — cog vanishes at the origin. The function SR his thus in M, and as it is also in
H¢ it is orthogonal to g, implying that

IRIIZ = leo Pllgllz + ISRl = leo |2 + [[Rghl
Similarly, forany positive integer n,
Rih = c,g+ SR;*'h
where ¢, = (RZ'h, g) , and

|RgRl, = leal? + [R5 A,

We can thus iterate to obtain
h=(co+c;S+-+c,SMg+ SR} h
for any positive integer n, with
2
IA13 = lcol? + lea|? + - + lenl® + [|RG* A

Departing now from Hitt's line of reasoning, we let n — oo and use Lemma(3.2.6); our
conclusion is that h has the factorization gq where the H? function q(z) = X3 c,,z™ has

the same norm as does h. We have thus shown that M’ = {g: h € M} is a subspace of H?

and that T, maps M’ isometrically onto M. Moreover, with h, c, and q as above, we have
co = q(0), and accordingly,

Ryh =5"(gq) — q(0)S*g = gS*q +q(0)S*g — q(0)S*g = gS'q
showing that M" is S*-invariant.

Theorem(3.2.8):[60]  Let g be a function of unit norm in H2 and let b be as defined. Let
u be an inner function with 1(0) = 0. The following conditions are equivalent:

(i) T, acts isometrically on F (u)
(i) u divides b
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(iii) H (w) is contained isometrically in H(b).

Proof: (ii) — (i). Assume u divides b, and let h be any function in H (u). ThenTzh = 0,
so, by the Corollary (3.2.3)

1T, hll; = 17, To-shll; = ((Ty-sT&) T3y T5) A, )
=((1—T,Tp)h,h) = (h,h) = ||hll3
as desired.

()—(ii). Assume T, acts isometrically on H'(u), and let h be any function in 3 (u). Because
H (uw) is invariant under T we obtain, using Lemma(3.2.2) and its corollary(3.2.3),

ITy_shlly = |15, Tsshll, = |Tos Ty T, Tyl
=I(1 = T, Tp)hll, = [(1 =T, T2 ||,
in other words,
(Ty_pT1-5h, h) ={(1 =T, T5)h, h)
which can be rewritten
2[IT5hl13 = (h, T5h) + (Tph, h)

Since u(0) = 0 the space H (u) contains the constant functions, and since b(0) =0 the
operator T annihilates the constant functions. We can therefore replace h in the last equality

by h + ¢, where c is any constant, obtaining
2||Tshll3 = 2Rec(T5h)(0) + (h,T5h) + (T5h, h)

This cannot possibly be true for all constants ¢ unless (T;h)(0) = 0. But the last equality for
all hin H(u) implies Tzh = 0 for all h in H (uw) (since H(w) is S*-invariant). Thus T
annihilates # (), which implies that u divides b.

(i) — (ii). If u divides b and h is in H(u), then Tzh =0, which implies that (1 —
T,T5)/?) h = h and hence that h is in 2 (b) with

Il = |1 = 7,7 @ 1

= [|Rll,
b

(i) — (i) If H(u) is contained isometrically in H'(b) and h is in H'(u), then h =
(1—"T,T5)*/? h, forsome h, in H?, and

1
sl = IRl = N, = || = 7,75) @)y

2
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1 1
The last equality implies (1 — TbT,;)(E) hy =h, (since (1- TbTE)(E) IS a positive
contraction), which means that h, = hand so (1 —T,T5)h = h, in other words, Tzh = 0.
That means T annihilates . (u) , so that u divides b.

The hypothesis u(0) = 0 in Theorem(3.2.8) was used only for the implication (i) —(ii), and
that implication can fail in its absence. For example, suppose u is the Blaschke factor (z —
w)/(1 — wz), where wis in D and w # 0. Then H (w) is spanned by the kernel function k,,.
One easily checks that ||gk, ||, = Ik, ||, if and only if Re F(w) =1 (where F is as
defined), but that w divides b if and only if F(w) = 1.

In [64] it is shown that, for b as in Theorem(3.2.8), the proper invariant subspaces of the
operator Xj, are the subspaces H (u) N (b). with u an inner function. As the operator T, _, T
(where f is the outer factor of g) implements a unitary equivalence between the operators R,
and Xj,, the proper invariant subspaces of R, are the inverse images under T,_, T of the

subspaces H'(wW)NH (b) . In case u divides b, Theorem(3.2.8) says that H (u) sits
isometrically in H'(b) and so is by itself an invariant subspace of X, . Then, as one would

expect, the inverse image of H'(u) under T;_,T7is just the nearly S*-invariant subspace
T 3 (u) of Hitt. In fact, denoting T,H (u) by M and using the corollary(3.2.3) to
Lemma(3.3.2) plus the inclusion . H(u)ckerT; ) ,we obtain T,_,TrM =
Ty pTFTeTy _sH (W) = (1 = T Tp)H (u) = H (u).We see from this that T;_, T agrees on
M with T, ¢ .

Suppose X is a function in L* , not identically zero, such that the operator Ty has a
nontrivial kernel. Then ker Ty is a nontrivial nearly S*-invariant subspace so, according to
Theorem(3.2.7), it equals T,M’', where g has unit norm in H? and M' is an S*-invariant
subspace, containing the constant functions, on which T, acts isometrically. Since ker Ty
clearly contains the outer factor of each of its members, the function g must be an outer
function. The case M’ = H? is thus excluded by the assumption that X is not identically 0,
implying that M" = # (u) for an inner function u that vanishes at the origin; thus ker Ty =
T, H (u). As noted, the preceding description of the kernel of a Toeplitz operator is due to E.
Hayashi [65], who used different methods (deriving from prediction theory). Hayashi in fact
proved more, namely, he showed that g2 is an exposed point of the unit ball of H* [66]. His
argument could be incorporated without alterations into the present treatment of his result.

Because the function X multiplies a nonzero function in H? into HZ it must be log-
integrable, so it can be written as x,y, where y is unimodular and X, is the outer function
with modulus |X]. Then Ty = T T, and as Ty has a trivial kernel, the kernel of T,, coincides
with that of Ty.. Infact, y = ug/g. This equality from [65,66] can be established as follows.
Because the function g is in ker T,,, the productyg is in HZ so (since g is outer) it can be
written as i, g where u, is an inner function that vanishes at the origin. Thus y = u, g/g.
Suppose h isany function in H (u). Then ghis in ker T, implying that @, gh is in HZ. Since
g is outer it follows that iz, h is in HZ which shows that Ty, annihilates 7' (u) and hence that
u divides u, . Suppose, on the other hand, that h is a bounded function in H (u,). Then
ygh = gu;h, afunction in HZ implying that gh is in ker T,,, that is, in T, H (u), and hence h
IS in H(u). As H(u,)is spanned by its bounded functions (for example, by its kernel
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functions), we can conclude that H (u,) € H (u), so that u, divides u. Therefore u, is a
constant multiple of u, the desired conclusion.

From the results of Hayashi and those one sees that the Toeplitz operator with unimodular
symbol y has a nontrivial kernel if and only if y has the form g /g, where g2 is an exposed
point of the unit ball of H*, and u is an inner function that vanishes at the origin and divides

the function b associated with g in the way specified.
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Chapter 4

Analytic Continuability and Complemented Invariant Subspaces with Linear Graph
Transformations

We show that the invariant subspace of the Bergman space AP of the unit disk, generated
by either an AP-interpolating sequence or a singular inner function with a single point mass
onthe unit circle, is complemented in A”. We investigate the existence of non-trivial common
invariant subspaces of operator algebras of the type A;,; = {4 € B(H):AD S D: AT,f =

T;Af Vf € D}. Forthe Bergman space L we exhibit examples of invariant graph subspaces
of fiber dimension 2 such that A, does not have any nontrivial invariant subspacesthat are
defined by linear relations of the graph transformations for M.

Section(4.1): Bergman Inner Functions

For0 < p < o, the Bergman space L’; consists of those function f analytic in the unit
disk D = {z € C:|z| < 1} for which

dA(Z)
1712, = [[IFPr 22 < o
a ,HIJ A

If p = 1then ||.|l» is anorm making L" a Banach space,and if 0 < p < 1then d(f,g) =
IIf — glli,‘,1 is a metric making L” a nonlocally convex complete metric topological vector

space.

Let {a;, a,, ...} be an L” zero sequence that is, the sequence of zeros, repeated according
to multiplicity, of some nonidentically vanishing L” function and let M be the set of L?
functions that vanish on the sequence {a,} to at least the prescribed multiplicity. We let N
denote the number of times that 0 appears in the sequence {a,}and consider the following
extremal problem:

sup{Re f™(0):f € M, lIfll » < 1} 1)

It is shown in [68;69] that there is a unique extremal function ¢ for this problem, and that
¢ satisfies the following properties:

dA(z)
[Jlo@rum =2 = u) @
D
if u is a bounded harmonic function in D
it f e MthenZ e hand ||IZ|| < fll (3)
@ a ollp = La

in particular (3) says that function ¢ vanishes at each point of the sequence to the sequence
to exactly the prescribed multiplicity; that is, it has no “extra zeros”.
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We take (2) to be the defining property of L” inner function. . There has been much interest
in these function in recent years, starting with [7] in which he estalished, among other facts,

that(3) holds in the case p = 2 see [68,69,70].

If p =2 and the zero sequence {a,} is finite, then an easy argument shows that the
extremal function ¢ is rational function with poles at the points 1/&,,, and hence it continues
analytically across dID. Supposel < 9D is an open arc that dose not meet clos {«,,}. Then it
IS a consequence of theorem of [71,72] that the associated extremal function ¢ extends
analytically across|.

In [68,69] it is shown that, for general p,the extremal function associated to a finite zero
sequence extends analytically across dID. One asked whether it were also true for general p
that the extremal function associated to a zero sequence extends analytically acrossany I c
dD not meeting the closure of the sequence [73,74].

Let {ay, ..., a, } be finite sequence of points in D and denote by ¢ its associated L” inner
function.

Let g denote the Cauchy transform of |@|P X; that is,

lp(w)|P dA(w)
= 4
) = || 4)
w€ED

We will use the following facts about g:
dg = —|@|PXp in the sense of distributions (5)
g is continuous in all of C (6)

1
g(z) = - for |z| =1 (7)
(Here 0 = %(;—x — %%) Is the standard Cauchy-Riemann partial operator). (5) is standard

[76]; (6) follows from the boundedness of ¢, which in turn is a consequence of the analytic
continuability of ¢ across dD [68, 69]; and (7) follows for |z| > 1 from (2) and for |z| = 1
from continuity.

We next cut out of D a set of nonintersecting curves y;, ..., ¥,,, achy; conecting a; to a
point B; € aD (if &; = a; we assume that y; = y,). We denote by Q the resulting simply
connected region. Because, as mentioned previously, ¢ has no “extra zeros”, ¢ dose not

P, - . P
vanish in Q and we can define ¢z in Q. For definiteness choosing it so that ¢z(0) > 0. We
can then define its integral

d(z) = jgog(w)dw for z € QO (8)

Oz

Where o, is some rectifiable path connecting 0 to zin Q.
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We use all the functions just constructed to define

h(z) = g(2) + 3 92 ) 9)

The following properties of h are important for us:

h is analytic in Q (10)
h is continuous in QU (@D\{S;, ..., Br}) (11)
1 —_ P
h(z) = - + ®(z2) p2(z) forz e dD\{B,...,Bn} (12)

the first of these properties is a consequence of Weyl’s lemma [76],(5), and the definition of
®, which implies that 0 (CTD <p§) = d7<p§ = |@|P. The second property is consequence of
(6) and the analytic continuability of ¢ across dD. Finally, (12) follows from (7) and the
continuity of <p§ and @ up to .

We can now state a formula giving an expression for the analytic continuation of ¢. Let
Q= {%_:z € O} and define

Z+h(3)

(1
V4
The continuity of h and ¢ up to dD\{B, ..., B}, together with the fact that |p(z)| = 1 for
z € D [69;70], shows that we can extend (13) continuously to z € dD\{f,, ..., ,}- By (12)

this extension agrees with the original definition of @ there, and so by (10) we see that (13)
gives an analytic continuation of @ to & = QUQ*U(D\{B, ..., B,,}). The nonvanishing of
2

N[ =

D(z) = , Z€EQ (13)

P

N——"

@ near dID now shows that the formula ¢ = (¢')» yields an analytic continuation of ¢ across
each arc of dD\{B,, ..., Bn}-

The estimate

f@l < ——=Ifllp, feLf (14)

(a-1zDhp

is will know and elementary; it follows from the sub harmonicity of |f|P after integration
over {w: |w — z| <1 —|z[}. Suppose now that the curves y; have been chosen suchthat, for
any z € Q, a rectifiable path o, from 0 to z within Q can be chosen along which |dw| <
2d|w]. Then, by (14),

|zl

o(2) = jq)?(w)dw < jllfal)l)lszj 1d_rr

gy, Oy 0

yielding
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|®(2)| < 2log

€ () 15
1—1|z” “ (13)

The estimate

lg(D)| < Z€EQ (16)

6
1—|zl’
Follows from (14) and simple estimates on the defining integral (4) of g obtained by dividing
this integral into the integral over |w — z| < %(1 — |z|) and that over |w — z| > %(1 —|z|).
Finally, we combine (14),(15), and (16) to obtain

8
Ih(z)l_(1 EDEE Z€EN (17)

Lemma(4.1.1):[67] LetU c C be open and let F be a family of functions analytic in U.
suppose there exists a p € Lj,.(U) such that log*|f(2)| < p(z) forany f e Fandz € U.
Then F is a normal family.

Proof: Let K c U be compact,and picka § > 0 suchthat K5 = {z € C: dist(z,K) < 6§} C
U.Then if f € F and z € K, the subharmonicity of log™|f| implies that

10g* £ ()] < —> jf l0g™ ()| dA(w) < — ff p@)A(W)
|

w-zI<§

Thus

|f (2)| <exp[ 52 Up(w)dA(w) forany f € F,z € K

so an application of Montel’s theorem [78,79] proves the lemma.

Theorem(4.1.2):[67]  Suppose {a, }2-, is an L” zero sequence and that I < 9D is an arc
not meeting clos {a, }. Then the associated L” inner function ¢ has an analytic continuation
across .

Proof: If z, € D is not a limit point of {a,,} then ¢ has an analytic continuation to a
neighborhood of z,. Given such a z,,we construct nonintersecting curves y,, in D, eachy,
connecting a,, to point 5, € dID (again, if @; = a; we sety; = y;) in such a way that if Q,
is the simply connected open set D\{y4, ..., ¥, }, then the following properties hold:

the closure of Uy,, dose not contian z, (18)
Q =N, isopen (19)
each z € (2, can be conncted to 0 by a rectifiable path g,in {2,, along which

ldw| < 2d|w] (20)
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we now let ¢, denote the L” extremal function corresponding to the finite set {a;, ..., a,},
and use ¢,, as define functions g, in C and functions &, h,, in ,,. The formula

h 1
@, =D e D)
<pn(1/2)
gives an analytic continuation of @, to (,, = Q,UQ:U(D\{B,, ..., B,.}). Since ¢,,(z) —

@(z) forevery z € D [69;70], our theorem will be proved if we can show that the functions
{®,,} from anormal family of functions analytic in Q = QUQ*U( dD\clos{B,}).[71,72,77].

We will now show that the family {¢,} satisfies the hypothesis of Lemma (4.1.1) in the
open set (. Write (21) in the form

1
D, (2) = lz + h, (i)] gap (E_) . ! , ZEQ" (22)
ez (e

By (3) and (14), |¢= ( )/(pn( )| <|z|/(]z| —1). We combine this estimate with (17) and
use (22) and a little manipulation to derive the estimate

8|z|? 1

lon(2)| < 5, ZEQ (23)
(zl =12, 1\
[ G|
This estimate, together with (15), shows that the function
( 1
| log* (2 log ), |z] <1
p() = ol 24)
| 8|z|? p

1
loe———+ —logt — 1
o8tz =12 218 Tpasmr 1 >

dominates log* |, (z)| for all n. It remains only to show that p € L} .(C), and this is trivial
except for the term log* (1/|¢,,(1/2)|. To handle this we write

jlog | ( dA(z)— jf — log* P )ldA(a))

1<lz|<R —<|w|<1

lwl<1

= #* [[ og* lp@) | 2a(@) — r* [ gl (@)l a4 (@)
D D
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3m
< R45 — R*rmlog|p(0)],

where the first term comes from (14) and an integration; the second term comes from the
inequality log|@(0)| < ffD log|g(w)| dA(w) /m, which follows from the sub harmonicity of

log|e|.

Corollary(4.1.3):[67] Suppose {a, } and {B,} are two L. zero sequences such that
clos{a,} N clos{,} N D = ¢. Then {a,} U {B,} is an L zero sequence.

Proof: Let ¢, and ¢, be the L? inner functions associated with {a,} and {8,},
respectively. Then, by theorem (4.1.1) and an easy compactness argument, ¢, ¢, € L.

In [74], give the following formula for the L” inner function ¢ associated with a finite zero
sequence {a, ..., a,}:

P
=B b — 25
¢(2) = B(2) — W‘ (25)
Here
s = 11!
is the Blaschke productassociated with {a;} (where we adopt the convention 2 = =—1),and
{a;,,...,a }is a listing of the distinct nonzero elements of {ay, ..., a,}. We here give an

alternate proofof this formula based on the ideas. It is easy to see from (9) and (8) that

h(z) = h(2) + (a)) )<pz (2) (26)
where h; is analytic in a neighborhood of «;. It follows from (26) and (13) that, if a; # 0’

(2) = (o) + L2/ 27)

92(1/2) (1 - &;2)

and hence
H;(2)
P _
02 (3)1-2)

02 (2) = ¢' (2) = (28)

: . . p/z : :
Where H; is analytic in a neighborhood of 1/&;. Thus (%) is meromorphic near 1/a; with
at worsta simple pole there. Similar reasoning shows that g IS analytic and nonvanishing in
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: : _ _ p/2
a neighborhood of 0. Since g dose not vanish in closD, we can finally conclude that (g)

is rational with simple poles or removable singularities at those a; that are nonzero (in fact,
it is not difficult to show it must have poles at these point). The formula (25) follows.

It should be mentioned that the method dose proved a little more information than that of

MacGregor and Stessin, namely that ¢P/? possesses a primitive in Q. This is of course
equivalent to the statement that

j <p§(z)dz =0

L;

If I; is any rectifiable simple closed curve enclosing a; and 1/a;,and not enclosing a; or
1 /ak In fact, it can be shown that this condition, together with ||g0|| ;» =1, determines the

coefficients b and a,,.

Suppose {a,,} is an L? zero sequence of distinct points in D and that {w,,} is a sequence of
points in C such that there exists an f € L suchthat f(a,) = w, forall n. Let y be the L2
function of minimal norm accomplishing this interpolation. Then [71] that i continues
analytically across any boundary arc not meeting clos{«,,}. It is natural to ask if this result
holds in L? for p # 2. The following example shows that it dose not, even in the case of two
interpolation points.

Let 0 <r < 1and set

(1-7)?

(1 —1r2z)?

Since 1 and 1/(1 — rz)? are the reproducing kernels for the points 0 and r, we see that 1 is

the minimal L2 interpolating function taking 0to 1 — (1 —r)?andrto1—1/(1 +r)%.The
function 1y has a simple zero at z =1 and no other zeros in clos{D}. Let B(z) = z[(r —

z)/(1 — rz)]. By minimality,

Y(z) =1-

Y + tFyYB||z =0 VF € L2,
dtle=o @

which leads to
5 dA 5
[y BF— =0 VF € I (29)
D

For p > 1 we now argue as in the proof of Theorem (4.2.1) of [80]: if F is a polynomial, then

p 2
= Iyl f [ +yrrm -2 (by 29)
Yr

1[)29
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p—1
2

2
P + YPFB

aal (w524

D

<[

D

p—
D
Lq

p—1

2 2 2
Yr +yYrFB Yr

D
Lq

1
. we see that

2

For any polynomial F. Since the functions of the form yrF (F a polynomial) are clearly

Yr

Dividing by|

2 2 2
yp|| <[P +yrFB

<|

4 4
Lg Lq

2
dense in L?, this shows that ¥ is the LP? minimal interpolating function taking 0 to
a a P g g
2

[1—(1—=7)?]?Pandrto[1—1/(1+71)?]?/P. Of course, yr has a zero of order 2/p at 1
and hence does not extend analytically around 1if p > 1and p # 2.

Section(4.2): Complemented Invariant Subspaces in Bergman Spaces

A closed subspace I of AP is said to be invariant if hf € I forall f € I, where h(z) =z is
the identity function on . It is easy to show that a closed subspaces I of AP is invariant if
and only if hf € [ for all f € I and all polynomials h if and only if hf €1 forall f € I and
al he H™.

For any f € AP, the AP-closure of the set of all polynomial multiples of f is clearly an
invariant subspace of AP, it is called the invariant subspace generated by f and will be

denoted by I}’ . In particular, if ¢ € H*, then I} is well-defined forall 0 < p < co and is the
AP-closure of @AP.

A sequence Z = {a,} of points in D is called an APzero set if there exists a non-zero
function f € AP suchthat f vanishes on Z, counting multiplicity. Every AP zero set Z gives

rise to an invariant subspace 15 consisting of all functions in AP that vanish on Z, counting
multiplicities again. It is known that I = I, where G is the extremal function of I7; [82]
for example.

We will consider a class of special AP zero sets, namely, AP interpolating sequences.
Recall that a sequence Z = {a,,} of distinct points in D is called A? interpolating of if for

every sequence {w,, } of complex numbers satisfying
D lonlP(1 = la,[?)? < oo

There exists a function f € AP such that f(a,) = w, for all n. Such sequence have been
geometrically characterized in [10].
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Recall that I is complemented in AP if there exists another closed subspace X of A? such
that A? = I®X. It is easy to see that a closed subspace I of AP is complemented if and only
if there exists a bounded linear operatorQ from APonto I suchthat Q2 = Q. Such an operator
Q is naturally called a projection of AP onto /. Note that the projection Q, and so the
complemental subspace X, is highly non-unique. When p = 2, every closed subspace I of
APis complemented; and among all the projections of A% onto I,there exists a unique
orthogonal projection.

In the case of Hardy spaces, which we denote by HP?, of the unit disk, every invariant
subspace is complemented, at least when 1 < p < co. In fact, if I is an invariant subspace of
HP, then there exists an inner function ¢ such that I = @HP.It follows from the M. Riesz
theorem [83] that the operator Q defined by

0@ [ 9QIQ)

21l (—z
I¢l=1

Qf(2) =

IS bounded projection from H? onto I, proved that 1 < p < co. Note that the operator Q is
simply the orthogonal projection from H? onto oH?2.

Theorem(4.2.1):[81] Suppose that 0 < p < o and Z is an AP interpolating sequence.
Then the invariant subspace I} is complemented in A”.

Theorem(4.2.2):[81] Suppose that 1 <p <o and 0 < o < oo. Then the invariant
subspace I? generated by the singular inner function

1+z>

S —_ (_
+(2) =exp oI,
IS conlplelnented in AP,

To illustrate the notion of a complemented invariant subspace here, consider the case where
the zero set Z has only one simple zero at a € . It is obvious that the decomposition

f=0-f@)+f(a
induces a direct sum decomposition of AP, namely,
AP =1 DC

Slightly more general is the case when Z consists of a single zero at a € D of multiplicity n.
Then the decomposition

f=0=f)+h
where f;, is the Taylor polynomial of f at a of order n — 1, gives rise to the splitting
AP =1} P,

where B, is the spaceof all polynomial of order n or less. This clearly works for all n and all
p € (0,00).
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If Z is a finite sequence with possible multiplicities, the space 15 has finite codimension in
AP, and it follows from general functional analysis that 15 Is complemented in AP.

Lemma(4.2.3):[81] Supposethat Z consists of distinct points a,, ..., a,,. Then for any a €
D the reproducing kernel IZ at a is of the form

S N
(20 = a2y kzl (1~ za,)”

where A,, ..., A, are constants chosen so that

1
L (1-and)*  (1-a,d)?

form=1,..,n

Proof: The existence of constants A, ..., 4,, follows from the well-known fact that the

matrix
(1 amak)z nxn

IS non-singular.

The function h(z) = K,(z, a) defined above is clearly in A% and vanishes at a4, ..., a,,, and
so belongs to 12. Forany f € IZ, the reproducing property of the Bergman kernel gives

(F.1) =@ =) Af(a) = f(@
k=1
By uniqueness, the function K,(z, a) defined above is indeed the reproducing kernel of IZ at

a.

Lemma(4.2.4):[81] Suppose that Z consists of distinct points a4,...,a,,. Then the
reproducing kernel of 12 is of the form

. Pk (w)
Kz (z,0) = (1 — Za))2 z (1 —za,)?
where
KZ (Zr ak)
Z)=—r—— 1<k<n
Pr Kz, (ak,ax)

and Z, =Z —{a,}for1 <k <n.
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Theorem(4.2.5):[81]  Suppose that 0 <p <oo. If Z is either finite (with possible
multiplicities) or AP interpolating, then the space I;’ is complemented in AP.

Proof: First assume that Z consists of a finite number of distinct points, a;, ..., a,. Let

Q,:A? > % be the orthogonal projection. Then by Lemma(4.2.4) and the reproducing
property of the Bergman kernel, we have

0f (D) = f@ =) [(@)pe(2)
k=1

Since ¢, belongs to AP for1 <k <nand 0 <p < o (by Lemma(4.2.3)), and since each
point-evaluation in D is a bounded linear functional on AP, this formula clearly defines a
bounded linear operator Q,on AP. The functions ¢, satisfy ¢, (a,) =1 and ¢, (a,,) =0
forall k and m with k # m. It follows that Q,f € I forall f € AP and Q,f = f forall f €

17,50 Q; is a projection from AP onto I7.

If Z is finite but has zeros of higher multiplicity, then the formula for K,(z, w) not only
involves the Bergman kernels at the points of Z but also their derivatives. Forexample, if a,

appears N times in Z, where N > 1, then the functions
1 A zN-1

(1—2za,)? (1 —za,)® "~ (1—za)V*
k k k

will show up in the formula for K, (z, w), and accordingly, the values

fla), f (@), -, f NV (ay)

will show up in the formula for Q,f, but it is clear that the resulting operator Q, is still
bounded on all AP.

When Z = {a,} is AP interpolating, all the zeros are simple. Moreover, there exists a
sequence {¢,, } of functions in AP satisfying the following conditions.

(i) ¢,(a,) =1forall n.

(i)  ¢,(a,) =0forall nand k with n # k.

(ilf)  There exists a positive constant M suchthat whenever {w,} is a sequence of complex
numbers satisfying

D lonlP(1 - lay|?)? < o0

then the series

HOEDYINNG

converges in A” and

LI < M) o P(1 = [y 2’
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[85] for the existence of such a sequence {¢,, }.

Now define an operator Q, on AP as follows:

Uf @ =f@) =) faen@, few

Since an AP interpolating sequence is separated in the hyperbolic metric, there existes a
constant M; > 0 suchthat

D)= la, ) < M, [IF@Pda)
D

For all f € AP. This along with property (iii) above shows that Q, is a bounded linear
operator on AP. Also, it is clear from properties (i) and (ii) that Q, maps AP into 15 , and Q,
leaves all functions in 15 fixed. In other words, Q,maps AP onto 15 and acts as the identety
opesoratoron IZ, Q, is abounded projection from AP onto 15.

For any r € (0, 00) the equation

1—1z>
11—z

defines a circle C, internally tangent to the unit circle at the point 1. In fact, the above
equation can easily be transformed to the standard from of a circle,

| 1 |2 1
Z 1471 (1+7)?%
Such circles are called orocycles, [89].

As r runs from 0 to oo, the orocycles C, non-overlappingly fill up the whole disk D. Since
the orocycle C, has Euclidean center at i and Euclidean radius i we can parameterize
the unit disk as follows,

r 1 0
z=2z(r0)= + el’’, 0<r<ow0<0<2nm
1+4r 14+r

This parameterization will be called the oro-coordinates of D.

Lemma(4.2.6):[81] Supposethat g is Lebesgue measurable on D. If g is non-negative or
belongs to L' (ID,dA), then

0 2T B 9
fg(z)dA(z) =%f j g(r,@)%drd@

D

Where g(r,0) = g(z(r, 8)) is the function g in oro-coordinates.

Oro-coordinates are especially suitable for studying the singular inner functions
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1+ Z)
1 _ )
Where ¢ is any positive constant (called the mass of S,). By definition, the orocycles C, are
the level curves of S,. More specifically, we have

S,(z) = exp (—0

|S;(z)| =e™ %", z=2z(r0)

The function 1 — z also plays a special role in oro-coordinates, namely,

]___ew
|1 — z| =|1—+r|’ z=2z(r0),
and
2(1—cosB)
1 —2z|? = S z=12z(r,0).

Lemma(4.2.7):[81]  Supposethat g is Lebesgue integrable on D. If g is non-negative or
belongs L' (D, dA), then

D

| 9@aae =%jdr | 9@n-¢ria)

Lemma(4.2.8):[81] Let f be analytic on the closed unit disk D except at z = 1. Suppose
that |f(z)| < M for all |z| = 1 with z # 1,

lim sup|1 — z|?log|f(2)| < 0

z-1

and

lim sup(1 —x) log|f(x)| <0

x—1"
Then |f(z)| < M forall z € D.
Proof: The fractional liner transformation

_1+Z
w_l—z

maps the unit disk to the right half-plane and the unit circle to the imaginary axis. It also
transforms the function f to function g on the right half-plane.

The assumptions on f translate into the following assumptions on g: |g(w)| < M for all w
on the imaginary axis,

log|g(w)|
I —SE <0
oo P ]2
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where Re w > 0, and

: loglg(x)|
— T <
xl_lHloo sup X2 0

Fix any small e > 0 and consider the function
ge(w) = g(w)e™

on the first quadrant Q of the w-plane, which is between two straight lines making an angle
of r/2 at the origin.

It is easy to see that the assumptions on g imply that |g.(w)| < M forall w on the imaginary
axis,

ge(w) = 0(exp(Slwl?)), weEQ

where § is any positive number, and
lim g.(x) =0
X— 400

In particular, the function g, is also bounded on the positive real axis. Now using the
Phrame’n-Lindelof theorem quoted before this lemma (with a = 2) and mimicking the proof
in [86,87], we obtain |g.(w)| < M for all w € Q.letting € — 0, we concludethat |g(w)| <
M forall w € Q.

Exactly the same argument shows that |g(w)| < M for all w in the fourth quadrant of the w-
plane.

Proposition(4.2.9):[81]  Supposethat 0 <p <o and 0 < ¢ < co. A function f € H?
belongs to S, H? if and only if

limsup(1 — x) log|f(x)| < —20

x-1"

Proof: It is easy to see that
lim (1 — x)log|S,| = —20
x—>1"
If g is an arbitrary function in HP, then [83]
M
9(2)| < ——
(1—[z[?)»
forall z € D, where M is a positive constant, and so

limsup(1 —x)log|f(x)| <0

x-1"

This shows that if f =S, g, where g € HP, then
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lim sup(1 — x) log|f (x)| = lim sup(1 — x) [log|S, (x)| + log|lg|] < —20

x-1~ x-1~

To prove the other direction, we assume that f belong to H? and satisfies the condition

limsup(1 — x) log|f(x)| < —20

x—-1"
Then for each n > 1 the function

(@ [ ni-2
S;(2) [n1—2)+1

gn(z) =

satisfies

lim sup(1 — x)loglg,,(x)| <0

x-1"

1
since |f(2)|(1—|z|?)» is bounded in D and the functions 1—|z|? and |1 —z|? are
comparable on any orocycle, we see that each function g,, is bounded on C,. (recall that S,
has constantmodulus on C,.). Inside C,., we have

|11 —z|?log

1 2
s(,<z)| = o(1 - |21?)

and

1—|zI?

11 —z|*loglf(2)| <

loglf (2)|;

r

which clearly implies that

lim sup|1 — z|? log|g,,(2)| <0

z—1

By Lemma(4.2.8) and the remark following it, each function g,, is bounded inside C,.. Since
|g,,| is dominated by |f| outside C,., we can find a positive constant M,, such that

19:(D| < M,(1 + |f (D))

forall z € D. In particular, each g,, belongs to H?.

Let f, =S,9.. Then |f,(2)| < |f(2)| and f,(z) = f(2) for all z € D. This shows that
If, = fllzp = 0 asn — oo. Since each f,is in S,H? and S, H? is closed in H?, we conclude
that f € S, HP.

A consequence of the above result is that an inner function ¢ is divisible by S if and only
if

lim sup(1 — x)log|lp(x)| < —20

x-1"

In particular, if B is Blaschke product, then
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limsup(1 — x) log|B(x)| =0

x—-1"
Now consider the mapping

_r+1
Z_1+r 1+rw

which maps the unit circle |w| = 1 to the orocycle C,, and the unit disk |w| < 1 onto the
interior of C,.. The invers of the above mapping is given by

a)=(1+r)(z—1:_r)

Using these conformal mappings, and using the well-known theory of Hardy spaces of the
unit disk D, we easily realize HP(C,.) as a closed subspace of LP (C,., dm,.), where dm,. is the
normalized arc-length measure on C,.. In particuler, the following norm estimate for the
Cauchy transform is a consequence of the above change of variables and the classical M.
Riesz theorem [83] for the unit circle.

Lemma(4.2.10):[81] Foreach1 < p < oo the Cauchy transform

1 [f(9d¢
2t )] (—z

Cr

Qf(2) =

is a projection from L? (C,,dm,) onto H?(C,.). Morever, there exists a positive constant M,,,
independent of r, such that

j 0f @)IPdz] < M, j F(2)IP]dz
c, c,

forall f € LP(C,,dm,).

2
Lemma(4.2.11):[81] If f € AP, then the function (1 — z)» f(z) belongs to H?(C,).

Proof: Since |1 — z|? is comparable to 1 — |z|? on C,, it is easy to see that the measure
|1 — z|?dm,(z) is Carleson-type measure for A?; [88].

This shows that the function

z
9(z) = 1 -2)rf(2)
is in LP(C,,dm,). Inside C,,|1 —z|? is dominated by 1 —|z|?> and f(z) grows at a
2

maximum rate of (1 — |z|?) » [85], so the function (1 — z)" f(z) is bounded in C, when
N > 4/p. It follows that g can be represented as a bounded analytic function in C, divided
by a certain power of 1 — z. In particular, g is in H9(C,.) when g is small enough. By [89]
and the conclusion of the previous paragraph, g belongs to Hardy space H? (C,).
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Lemma(4.2.12):[81] Every function f € HP(C,) satisfies

limsup(1 — x) log|f(x)| <0

x-1"

Moreover, a function f € H?(C,) belongs to the closed subspace S,H? (C,.) if and only if

limsup(1 — x) log|f(x)| < —20

x-1"

Proof: This follows from proposition(4.2.9) via the conformal mapping

_r+1
Z_1+r 1+rw

from the unit disk to the interior of C,. Note that the point mass o at z = 1 on C,. transforms
to the point mass o(1+r) at z = 1 on the unit circle. More specifically, if z and w are
related as above, then

Se14r) (@) = ¢S, (2)
where ¢ = e" is a constant.

Proposition(4.2.13):[81]  Supposethat 0 <p < o and f € AP. Then f € I? if and only
if

lim sup(1 — x) log|f(x)| < —20

x-1~

Proof: It is well known [90,85] that the extremal problem

sup{Re f(0):f € I}, lIfl, < 1}

has a unique solution which is given by the formula
2
po

G(z) =1+ pa)_% (1 + E)E S,(2)

This is called the extremal function of I. Furthermore, if f € I, then ”g”p < £,

Now if a function f € AP belongs to I?, then f = Gg, where G is the extremal function
mentioned in the previous paragraph and g € AP. It is well known [85] that every function
g in AP satisfies

M
P<_—— —_ zeD,

where M is a positive constant, so
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lim sup(1 — x)log|lg(x)| <0

x-1~

Since

limsup(1 — x) log|G(x)| = —20

x-1"

we conclude that

limsup(1 — x) log|f(x)| < —20

x-1~

The proof of the other direction is similar to the corresponding part in Proposition (4.2.9),
except here we use the functions

n(1—2) F
n(l—z)+1|°

f (@)
S5 (2)

Corollary(4.2.14):[81] Suppose that 0 <p <o and f € A?. Then the following
conditions are equivalent.

gn(z) =

(i)  f belongsto I?.
(ii)  The function (1 — z)» f(z) belongs to S,H?(C,) forevery r > 0.
(iii)  The function (1 — z)» f(2) belongs to S, H?(C,) for some r > 0.

Lemma(4.2.15):[81] For1l < p < oo we define an operator @, acting on A? as follows.

FOA-0r dg
5, ()@ —2) znt

0, F(2) = (1= 2)55,(2) I
Cr

where r is any positive number such that zlies inside C,.. Then the integra above is
independent of  so long as z lies inside C,..

Theorem(4.2.16):[81] Forany 1 < p < oo the operator @, above is a bounded porjection
from AP onto I?. Furthermor, Q, is the orthogonal projection from A2 onto 7.

Proof:  We first prove that @, is bounded on AP. To this end, fix f € AP and let

_(f©a-0p dg
) 5,@C—2 2

f(2) z€D,

where C,. is any orocycle such that z is inside it. By Lemma(4.2.7), we have

1

[lor@rase =5 [ ear [ifof il
0 Cr
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For any fixed r > 0, the values of £ in the disk enclosed by C, can be computed using the
same circle C,. and the resulting function is simply the cauchy transform of the following
function in L? (C,., |dz|).

Q-0
Q"

By Lemma(4.2.1), there exists a constant M,,, independent of r and f, such that

l€eC,.

2P
- 1— %)
j|f<c)|p|d5|szwpf f((i,i({)op |d¢|

It follows that

(o]

M
f|pr(z)|pdA(z) < 2—;;} e P dr jep6r|f(()|p|1— {1?1d¢| = M, f|f(Z)|pdA(Z),
D D

0 Cr

where Lemma(4.2.7) was used again (for the last equality above). This shows that Q,, is
bounded operator on AP,

Next we show that Q,, maps AP into IP. Fix any r > 0 and consider the function Q,f in the
orocycle C,.. Thus for z inside C, we have

Qpf(2) = (1= 2) PS,(2)f (2),

where

_(fOa-0r &
) $e(O)(¢—2) 2mi

f(2)

Since f belongs to H?(C,.), Lemma (4.2.12) gives us

lim sup(1 — x) 10g|f(x)| <0

x—1"

This then implies that

limsup(1 — x) log|pr(x)| < -—20

x—-1~

By Proposition (4.2.13), we have Q,f € 2.

That @, acts as the identity operator on I? is a consequence of Corollary (4.2.14) and the
reproducing property of the Cauchy transform on H?(C,.).
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Finally, observe that Cauchy transform is orthogonal projection from L?(C,, dm,) onto
H?(C,). Examining the arguments in the first paragraph of this proof, we realize that the
projection Q, has norm 1 on A2, which forces Q,to be an orthogonal projection.

If Q is any projection on a Hilbert space H, then it is an orthogonal projection if and only if
Q] = 1. Itis of coures well known that every orthogonal has norm 1. When Q, whose
associated direct sum decomposition is given by

H =ran(Q) + ker(Q);

is not orthogonal, there must exist unit vectors f € ran(Q) and g € ker(Q) such that
(f,g) > 0. Forany positive € the vector h = f — eg satisfies ||Qh|| = ||f]| and

IF1I1Z = NIl = e(2(f, g) — €).

If we choose € suchthat 0 < € < 2(f, g),then |[Qh]||l > ||h]|, so the norm of Q is greater than
1.

from A% onto I” can be used to calculate the extremal function G of I”. In fact, it is
elementary to see that

_ (W@
NOREGIO)

When calculating Q,(1)(z) we may let r — 0* and obtain

G(z) e D.

_ SO'(Z) ‘S:a ({)(1 - () _ So (Z) '
Q. (1)(2) = mm_ [z d¢ =—"—155(0) = 5,(0)z — 5, (0)]
=75, (2) (1 + %)
It follows that
1 20
6@ = s (14725) @

In general, if K,(z, w) is the reproducing kernel of 7, then

Ky;(z,w) = Q,(K,)(2), K,(2) = (1 —zw)™?
An explicit formula for K, (z, w) is bounded in [91] by a different method.
Section(4.3): Spaces of Analytic Functions

Let d > 1,2 < C% be an open, connected, and nonempty set, and let 7 S Hol(2) be a
reproducing kernel Hilbert space. If ¢ € Hol(£2) such that ¢f € H forall f € H, then ¢ is
called a multiplier and M, f = ¢f defines a bounded linear operator on H'. We use M (H’)

to denote the multiplier algebra of H', M (H) = {M,, € B(H) : ¢ is amultiplier}.
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A sub algebra A € B(H) is called a transitive algebra if it contains the identity operator
and if it has no nontrivial common invariant subspaces. It is a longstanding open question
(due to Kadison), called the transitive algebra problem, to decide whether every transitive
algebra is dense in B(H) in the strong operator topology. If that were the case, then, as is
well-known, it would easily follow that every T € B(H) which is not a scalar multiple of the
identity has a nontrivial hyper invariant subspace [93]. Recall that a subspace M is called
hyperinvariant for an operator A, if it is invariant for every bounded operator that commutes
with A.

Arveson was the first to systematically study the transitive algebra problem. We say that an
operator A (respectively an algebra A) has the transitive algebra property, if every transitive
algebra that contains A(respectively cA) is strongly dense in B(H). Arveson showed that any
maximal abelian self-adjoint subalgebra and the unilateral shift have the transitive algebra

property. [93].

Arveson’s approach requires a detailed knowledge of the invariant subspace structure of the
operator or the algebra that is to be shown to have the transitive algebra property. Thus based
on information about the invariant subspaces of the Dirichlet space Richter was able to use
Arveson’s approach to establish that the Dirichlet shift has the transitive algebra property,
[94]. Then more generally Chong, Guo and Wang, [97], followed a similar strategy to show
among other things that M (H) has the transitive algebra property, whenever H has a
complete Nevanlinna—Pick kernel, i.e. if the reproducing kernel k; (z) for His of the form

fQr)
ka(2) = 1-uy(2)
sesquianalytic.

, Where f is an analytic function and u,(z) is positive definite and

We was motivated by the desire to decide which other multiplier algebras have the transitive
algebra property. Although we did not obtain any specific answers, the investigations lead us
to consider some interesting questions related to the invariant subspace structure of M (H)
see [95].

For its statement we need to define invariant graph subspaces. If N > 1 then
3 Mdenotes the direct sum of N copies of #£, and for an operator 4 € B(H)A™ is the N-
fold ampliation of A, AN H W) — gr W) AW (3 xy) = (Axy,..., Axy).

If A S B(H) is an algebra of bounded operators on 7, then a closed subspace M € H W
is called an invariant graph subspace for A if there is a linear manifold D € H and linear
transformations T,,..., Ty_1:D — Hsuch that

M ={(x,Tyx,..., Ty_1x): x € D} (30)

and such that AM M < M for every A € A. The transformations Ty,...,Ty_, are called
linear graph transformations for A . Note that if a linear manifold D and linear
transformations T,,..., Ty_,:D — Hare given, then (30) defines an invariant graph subspace
for A, if and only if M is closed, AD € D for every A € A, and AT; = T;A on D for each
i =1,...,N—1. Thus the graph transformations for N = 2 correspond to the closed linear
transformations that commute with A. Arveson’s Lemma states that a transitive algebra A
is strongly dense in B(H) if and only if the only linear graph transformations for A are
multiples of the identity operator, [96].
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Theorem(4.3.1):[92] LetH < Hol(£2) be a reproducing kernel Hilbert space. M'(H) has
the transitive algebra property if and only if the following condition is satisfied:

Whenever N > 1 and
M ={(f,Tof,....Ty-1f):f € D} cHW

is an invariant graph subspace of M'(H) such that for each a = (ay,...,ay_1) ECY, a #
(0,...,0) the linear transformation

Is 1-1 and has dense range, then
Ay ={AEB(H) : AD € D:AT,f = T,Af Vf € D}
has nontrivial invariant subspaces.

It is easy to see that for any invariant graph subspace M the collection A, is a strongly
closed algebra, contains M (), and that M is an invariant graph subspacefor A ;. A, IS
the largest algebra that has M as an invariant graph subspace. Itis clear that forany a € C*
the closures of ker L, and ran L, are invariant subspaces for A ,,. We will say that A ,, does
not have any nontrivial invariant subspaces that are determined by linear relations of the graph
transformations, if for each a« € C* we have kerlL,,ranL, € {(0),H} . With this
terminology one easily checks that the condition in Theorem (4.3.1)is equivalent to the two
conditions:

(1) the set {I,T,..., Ty_1} is linearly independent, and
(i) A, does not have any nontrivial invariant subspaces that are determined by linear
relations of the graph transformations.

We note that D = ranL, for a = (1,0,...,0). Thus condition (ii) implies that D is
dense in .

A useful invariant in the study of invariant subspaces M € H " is the fiber dimension of
M. Itis defined as follows. If A € 0, if N > 1, and if M € H ™ is a subspace, then the fiber
of M atAis

My ={(AD,... ;yD): (fi,.... fy) EM}c CV.
The fiber dimension of M is

fdM = supdim M .

AEN

A simple argument using determinants shows that fdM = dim M for all A1 € Q\F,
where E is the zero set of some nontrivial analytic function on 2, [17].

If M € H VN is an invariant graph subspace, then it is easy to see that
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M;-=f{a €eCV:k; L ranL,},

see Lemma (4.3.10). Thus, the condition that ranL,, is dense implies that M has full fiber
dimension at each point, i.e. M; = CN for all A € 2 such that k; = 0. It follows that the
invariant graph subspaces M considered in Theorem (4.3.1) all have fiber dimension N > 1.

We will see that whenever fdM > 1, then A, # B(H), see Proposition (4.3.8). In
particular, we note that any A,, as above that is transitive would be a counterexample to the
transitive algebra problem.

If H has a complete Nevanlinna—Pick kernel then every nonzero invariant graph subspace of
M (H) has fiber dimension one. Thus the condition of the theorem is trivially satisfied,
because there is no invariant graph subspace of M (H) that satisfies the hypothesis of the
condition [97].

This means that it becomes a question of interest to decide for which spaces H one can
construct examples of invariant graph subspaces which satisfy the condition of Theorem
(4.3.1). We will outline a strategy for constructing such invariant graph subspaces (inthe case
N = 2), and we will discuss what other nontrivial invariant subspaces the algebra A,, may

have. We will show that this can be carried out for the Bergman space L2,

Example(4.3.2):[92] Let H < Hol(2) be a reproducing kernel Hilbert space, let ¢,y be
multipliers such that —w Is a multiplier, and let L, V' € H Dbe closed nonzero invariant

subspaces of M (H)suchthat ¥ N L = (0).ThenwithD =N+ Land T(f +g) = of +
Yg the space M = {(h,Th) : h € D} is an invariant graph subspace of M'(H) of fiber
dimension 2.

Examples of invariant subspaces with V" n £ = (0) can be based on zero sets. Recall that
asetE € Nis called a zero set for H if I(E) ={f € H:f(1) =0VA € E}# (0). Then if
A, B € () are zero sets for H such that A U B is not a zero set for 7, one checks that I(A)
and I(B) are invariant subspaceswith I(A) N 1(B) = (0).[9], foraconcrete example ofthis.
ForSCH letZ(S)={AeD: f(1) =0Vf €S} Itturns out that if in Example(4.3.2) 1 €
Z(N) U Z(L), then dimM; < 2.

Theorem(4.3.3):[92] Let H < Hol(D) be such that M(H) = {M,:u € H*} with
equivalence of norms, ran(M, — A1) is closed for all [A] <1, and dimH /zH = 1. Let
@, € H* such that 1/(¢p —y) € H* and let V', £L € H be M (H)-invariant subspaces
such that

) NV nL=(0),

(i) N+ Lisdensein H,

(i) Z(W) =2(L) =09,

(iv)  the inner—outer factorizations of ¢ —A and ¥ — A have no singular inner factor
forany A € C,

(v)  neither ¢ nor y is a constant function,

then M as in Example(4.3.2) satisfies the hypothesis of Theorem(4.3.1).
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Theorem(4.3.4):[92] There are two closed subspaces IV, £ € L2 which are invariant for
M (L%) and such that

i) NnL=(0),
(i) N+ Lisdensein L%, and
(i) Z(V) =2(L) =0,

The Bergman shift has a complicated invariant subspace structure. Thus the above result may
not come as a surprise. For these perceived complications is the existence of invariant

subspaces N € L2 of high index, i.e. with dimNV © zNV > 1, [8,4,22]. The construction is
independent of the high index phenomenon. We will exhibit a space H CHol(ID) with no
invariant subspaces of high index, but still admitting the above type of example
Theorem(4.3.5).

For the Bergman space it is a result of Horowitz that there are zero sets whose union is not
a zero set, [9]. We start with Horowitz’s example and apply a result of Korenblum, which
shows how to “push” zeros to the boundary dID, [99]. Then we show that if this is done often
enough one can end up with the required example.

In the constructed examples the algebras A, have no nontrivial invariant subspaces that
are defined by linear relations of the graph transformations. Can one show that they have
others? We will see that for many choices of ¢ and i one or both of the subspaces V" and £
that were used in the construction of the example turn out to be invariant for A,,.

Theorem(4.3.5):[93] Let H < Hol(2) be such that M(H) = {M,:u € H*} with
equivalence of norms, let ¢,y € H* such that _1/; € H*, and let V,L < H be closed

nonzero invariant subspaces of M (H) such that ¥ N £ = (0). Let M be the invariant
graph subspaceas in Example(4.3.2).

If
p(D)\¢p(D) # &,
then JV'is an invariant subspacefor A ,,.

In particular, A, has a non-trivial invariant subspace.
Similarly, if Y(D)\@(D) # @, then L is invariant for A,,.

This will be Theorem(4.3.18). It raises the question whether the distinguished subspaces
and £ of Example1(4.3.2) are always invariant for A,,, but we will give an example of
carefully chosen zero-based invariant subspaces of the Bergman space and H *-functions ¢
and y that satisfy the hypothesis of Example(4.3.1), but such that neither V' nor L are
invariant for A, (see Example(4.3.24)).

A simple way to construct functions ¢ and i that satisfy the hypothesis of Example(4.3.2)
and Theorem(4.3.3), but do not satisfy the hypothesis of Theorem(4.3.5) is to let ¢ be an
analytic function that takes the unit disc onto an annulus centered at 0 and to take i = 2™ ¢
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for somet € (0,1). In the case that ¢t is rational the following theorem implies that A, has
nontrivial invariant subspaces.

Theorem(4.3.6):[92] Let H < Hol(2) be such that M (H) = {M,:u € H*} with
equivalence of norms, let ¢, ¥ € H* such that —w €EH™, and let V', L € H be closed

nonzero invariant subspaces of M (H)) such that V' N £ = (0). Let M be the invariant
graph subspaceas in Example(4.3.2).

If there is a u € Hol(p(ID) U y(ID)) such that ue @ = u oy, then A,, has a non-trivial
invariant subspace.

Lemma(4.3.7):[92] M (H) has the transitive algebra property, if and only if the following
condition holds:

Whenever M = {(x,T; x,...,Ty_1x) : x €D} Iis an invariant graph subspace for M (H)
such that D is dense in H and at least one of the T;’s is not a multiple of the identity, then
A has nontrivial invariant subspaces.

Proof: Westart by showing that the condition is sufficient for the transitive algebra property
of M (H). Let A be a transitive algebra that contains M (H). We need to show that A is
strongly dense in B(H). By Arveson’s Lemma it suffices to prove that the only linear graph
transformations for A are multiples of the identity operator, [93]. Thus let M =
{(x, Tyx,...,Ty_1x) : x €D} bean invariant graph subspace of A and suppose that there is
ani,1 <i < N —1such that T; is not a multiple of the identity. Then clearly D # (0) and
since A is transitive we must have that D is dense in H. Note that we have M'(H) € A <
Aye. Thus M is an invariant graph subspace for M (H) and hence the hypothesis implies
that A, is not transitive. But since A < A, this would imply that A is not transitive, a
contradiction. Hence all T; have to be multiples of the identity, and hence A is strongly dense
in B(H).

For the converse we suppose that the condition is not satisfied and we will showthat M (H)
then does not have the transitive algebra property. Thus our hypothesis now says that there is
an invariant graph subspace M of M'(H) such that D is dense in ', such that one of the
graph transformations is not a multiple of the identity, and such that A, is transitive. Since
A contains M (H) it will be the required example, if we show that A,,is not strongly
densein B(H). But all the T;’s are linear graph transformations for A, so the result follows
from the easy direction of Arveson’s Lemma.

The most obvious linear graph transformations are multiplications by meromorphic
functions. For f € H we let [f] be the smallest M (H) invariant subspace containing f. Let
f,g €EH,g + 0and

fh
g
then one easily checksthat T = My is a closed linear transformation that commutes with M,

)
for all ¢ € M'(H). Note that D contains {pg:€ M (H)}, thus T will be densely defined
whenever g is cyclic in 7, i.e. whenever [g] = H.[93,94,96,97].

D ={ne gl elfl}
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Proposition(4.3.8):[92] LetN =2 and M = {(f, T.f,....Ty_1f) : f € D} S H ™ be an
invariant graph subspace for M'(H) suchthat D + (0).

(1) Then M has fiber dimension one, if and only if every T; is a multiplication.

(i) If the fiber dimension of M is one, then either every T; is a multiple of the identity
and A, = B(H) or A, has a nontrivial invariant subspace which is defined by a linear
relation of the graph transformations.

(ilf)  If the fiber dimension of M is > 1, then A,; # B(H).

Proof: (i) Suppose foreach i we have T; = M, for some meromorphic function ¢;. Let

fo € D with f, # 0. For A € Q2 suchthat f,(1) # 0 and A being not a pole of any of the ¢,
set

uy = (o), o DD, oy D f (D) € CV.

Then one easily checks that for any f € D we have

FD, (MO, Ty HD) = F(D/ fo(Duy

Hence M, = Cu, and dim M, = 1. This is true for all Ain an open subset of 12, hence the
fiber dimension of M must be one.

Conversely, suppose that M has fiber dimension one, and let f; € D with f, # 0. Fori =
1,...,N—=1 seto; =T;f,/f,- Then ¢, ismeromorphic.

Let S, be the set of zeros of f, and let 1 € D \S,. Set

U = (fo D, (T fo)(A),..., (TN—lﬁ))(A))-

Then 0 # uy € M. Thus the hypothesis implies that dim M, = 1, and for each f € D there
IS c; € Csuch that

(f()l); (Tlf)(}{)' T (TN—lf)(A)) = C/lul'
Hencec; = f(1)/fy(A) and fori =1,...,N — 1 we have

(THD = a(Tife)(D = 9, (D).

Since T;f € H for each i we conclude that for every f € D the function ¢, f extends to be
analytic in 2 and that T; is multiplication by ;.

(i) It follows from (i) that each T; is a multiplication. Let E = {1 € Q:k, = 0}, where k; is
the reproducing kernel for . Since M # (0)it is clear that 2\ E is a nonempty open set. If
one of the T; is nota multiple of the identity, then T; = M, where ¢ is not constant on 2\E.
Let 4, € O\E, then T; — ¢(4,) is not identically equal to 0 and k; L ranT; — @(4,). Thus
the closure of ranT; — ¢ (A,) is a nontrivial invariant subspace of A,,. We would say that
A has a nontrivial invariant subspace that is defined by a linear relation of the graph
transformations.
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(i) If A = B(H), then M is an invariant graph subspace of B(H). It follows that each
linear transformation T; is a multiple of the identity, and this implies that the fiber dimension
of M is one.

Corollary(4.3.9):[92] M (H) has the transitive algebra property if and only if the following
condition holds:

Whenever M is an invariant graph subspace for M (H) of fiber dimension > 1, then A,
has nontrivial invariant subspaces.

We will now restrict the class of the invariant graph subspaces that need to be checked by
excluding the ones where A, has nontrivial invariant subspaces defined by linear relations
of the graph transformations.

Lemma(4.3.10):[92] Let M ={(f,T.f,....Ty_1f) : f €D} S HN be an invariant
graph subspace for M'(H), and let 1 € 2, then

M ={a€C: k; L ranL,}.

Here as before for « € CN we defined L, = oyl + YN '@, T;.

In particular it follows that if ranL,, is dense in 7 for all non zero a € CV, then M; = CY
forall 1 € 2, k; # 0.

Lemma(4.3.11):[92] LetM < 7 ™ be an invariant graph subspace for M'(H). If A,
has no nontrivial invariant subspaces defined by linear relations of the graph transformations,

then there is a subspace KX € CM suchthat M; = K forall 2 € 2 with k; # 0.

Proof:  Suppose that all invariant subspaces of A,, that are defined by linear relations of
the graph transformations are either (0) or 7, and let A,, A, € 2 suchthat k; ,k;, # 0. The
lemma will follow, if we showthat M; =M.

Let a = (ay,aq,...,ay_1) € ]v[f1 then by the previous lemma k;_is orthogonal to ranL .
The closure of ranL, is an invariant subspace of A, that is defined by a linear relation of
the graph transformations, and it does not equal # since k; # 0. Hence the hypothesis
implies ranL, = (0). This implies that L, = 0 whenever a € M;'. This means a € M
and hence M; € M;_ forall 2 € Q. In particular then M, < M, , and in fact by symmetry
we conclude M; =M.

Lemma(4.3.12):[92] Let M ={(f,T,f,....Ty_+f) : f €D} S HW be an invariant
graph subspace for M'(H) such that all invariant subspaces of A, that are defined by linear
relations of the graph transformations are either (0) or .

If M has fiber dimension 1 <k <N, then there are linear graph transformations
S, Sk_1:D — H such that each S; is a linear combination of / and T,..., Ty_; and such
that

N ={(f,5:1f .Sk f): f € Dy H®
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is an invariant graph subspace for M () with Ay = Ay, and LY = a1 + Yk 1a,S; is
1-1 and has dense range for all nonzero «a € Ck.

Proof:  The hypothesis and Lemma (4.3.11) imply that there is a k-dimensional subspace
L < CN such that M, = £ for all 1 € 2 with k; # 0. Write T, = I, then as in the proof of
Lemma (4.3.11) we have YN-'a,T; = Oforall a = (ay,...,ay_;) € L*. Thisimplies that
{I,T,,..., Ty_,}spans a k-dimensional subspace of the linear transformations D — H. Let
{So,--.,Sk_1 Jbe abasis for this space. Since the space contains / we may assume that S, = 1.
It is now easy to check that

N =A{(f,S1fr-Skaf): f € Dy H®

satisfies the conclusion of the lemma. Indeed, it is immediate that V' is a closed invariant
graph subspace of M'(H) and that A, = Ay

Note that A, satisfies that all invariant subspacesof A, that are defined by linear relations
of the graph transformations are either (0) or A, since any linear combination of [ and
Si)...,Sk_1 15 & linear combination of I and Ty,...,Ty_;. Since I,S;,...,S,_; are linearly
independent we conclude that for each non zero a € C*,LY # 0. Thus ker LY = (0) and
ranL) is dense.

Theorem(4.3.13):[92] LetM be an invariant graph subspace for M'(H), and suppose that
there is a non-constant meromorphic function u on 2 and a non-zero linear subspace D, such
that multiplication by u, M,: D, - H commutes with every A € A,,, i.e. whenever A €
A, then AD, € D, and AM,, = M, A on D,.Then A,, has non-trivial invariant subspaces.

Proof: Let A€ 2 suchthat Ais nota pole ofuandk, # 0. Thenk; L (M, —u(A)I)f for
every f € D,, and hence the closure of (M,, — u(A)I)D, is a non-trivial invariant subspace
for A;,. Another way to look at the previous theorem is to note that if M is the closure of
{(f,uf) : f € Dy}, then M is an invariant graph subspace of M'(H) with fiber dimension
1 and Ay S Ay, .- Thus the existence of non-trivial invariant subspaces follows from

Proposition (2.3.8).

Example (4.3.14):[92] [98]. A densely defined closed linear transformation T that is not a
multiplication, but commutes with M (H). Thus by Proposition (4.3.8) the invariant graph
subspace M = {(f,Tf) : f € D} has fiber dimension 2.

This can be modified to apply to more general situations where one has index 2 invariant
subspaces.

Let £,V be index 1 invariant subspaces of the Bergman space L? such that they are at a
positive angle, assume that V' is a zero set based invariant subspace. As was observed by
Hedenmalm [4] the existence of such subspaces follows from [2].

Then LVN =L+ N.Let f € L, f # 0and let
D={h+g:hel® hf €L geN}
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then D contains the polynomials and hence is dense in L. Note that if h + g = 0 with h €

L%, hfe L ge N, then hf = —fge L S I3. Thus fg € NV, because it has the correct
zeros. This implies hf,fg € LN XN, hence hf = fg =0, i.e. h = g = 0. This implies that
T:D - L%, T(h +g) = hf + g is well-defined.

It is closed also: Indeed, if h,, + g,, € D such that h, + g,, = u and h,.f + g,, = v, then
because of the positive angle condition we have g,, = v, € NV and hence h, - u -v, and
h,.f = v —v;. This implies that (u-v,)f =v—v, € L,and henceu = (u-v,) +v; €
Dand Tu = (u—v,)f + v, =v. Thus we have the invariant graph subspace

M={h+g,hf+g)hel’hfeLgeN}

We already observed that T is densely defined, but the range of Twill not be dense since
TD € L+ N which has index 2. Furthermore, for all points A in the common zero set of
N'the space M is only one-dimensional.

Example(4.3.15):[92] Let H € Hol(£2) be a reproducing kernel Hilbert space, let ¢, be
multipliers such that q)i—w IS a multiplier, and let V, L € H be closed nonzero invariant

subspaces of M (H) suchthat N n L = (0).

Thenwith D =N +Land T(f + g) = ¢f + g the space M = {(h,Th) : h € D}is an
invariant graph subspace of M (H) of fiber dimension 2.

Clearly T is well-defined, and M,,;D <€ D and M, T = TM,, for every multiplier u. If f, € L,
gn € NV suchthat £, + g, —» uand ¢f,, + Yg, — v, then (¢ —p)gn —» pu — v. Hence by

the hypothesis on @-1 we have g, - u; = ‘Z)”_:: EN.Thenf, »u, =u-2-"€ £, and
v =@u, +Yu, =T(u; +u,). Thus, T is closed and hence we obtain the invariant s graph
subspace

M={f +gof +yg): fe L,ge N}

We have M, = C? whenever 2 € D \(Z(£) U Z(N)). In this case we have (1,¢(1)) € M,
and (1,9¥ (1)) € M. These vectors are linearly independent since the hypothesis implies that
@A) = P(A) forall A € D. However, it is clear that the dimension of M, < 2 atevery A €
Z(L) U Z(N\V). Thus, in order to have an example satisfying the condition of Theorem (4.3.1)
we will at least need that Z(L) = Z(V') = @. If neither ¢ nory is a constant function, then
ker(T —A) = (0) for all A€ C. Suppose f € L,g € NV such that (T—A)(f +g)=0.
Then (¢ —ADf=—-@W-NDNgeLnN. Thus (p —A)f =—-(p—2A)g =0, hence f =
g=0.Fora = (ay,a;)we have L, = ay,I + o, T, this L, has dense range for all non zero
a € C*,ifand only if L+ N and (¢ — )L + (i — A)Nare dense in H forevery A € C.

Lemma (4.3.16):[92] Let H < Hol(D) be such that M(H) = {M,,:u € H*} with
equivalence of norms, and ran(M, — A) is closed forall |A| < 1,and dimH/zH = 1.

Let X € H bean M (H)-invariant subspacewith Z(X) = @. If there is a Blaschke product
B suchthat BH € X, then X = H..

Proof: Let A€ Dandlet f € K with f(1) = 0. Weclaim that f/(z — 1) € K.[3]
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First suppose that B(1) # 0. As in [3] it follows from the hypothesis on # that Z]_c—l EH.

B-B(1) € H®. thus B-B()
z—A z—A
B(AD)f/(z— 1) € X. Since B(4) # 0 we conclude that ;_z € K.

Hence by hypothesis % € XK. Note that f € K and this implies

If B(1) =0, then let A4,, € D with B(4,,) # 0and 1,, = A. By hypothesis there is a g € X
with g(4) # 0. Then for each n we have h, = f,, — 5 (1,)g € K and h,,(1,,) = 0. By what

we have already shown, it follows that fin

€ K for each n. The hypothesis on H implies

n

that M, — Al is bounded below, then M, — A, will be bounded below with a similar
constant for large n. That can be used to show that h,,/(z — 4,)) = f/(z—A). Thus Zj_r—l €
K.

In particular, if f € 3, then since Bf € K we conclude that % € K for every A1 € D with
B(A) = 0. This easily implies that g—fe:lc , Where B, is the finite Blaschke product

determined by the first n simple factors of B. As n — oo the hypothesis implies that i—f - f
weakly, hence f € K. Thus X = H.

Proposition (4.3.17):[92] Let H < Hol(ID) be such that M (H) = {M,:u € H*} with
equivalence of norms, and ran(M, — A1) is closed for all 1] < 1, and dimH /zH = 1. Let
@, € H* such that 1/(¢ —y) € H* and let V', £L € H be M (H)-invariant subspaces
such that

)  NnL=(0),

(i) N+ Lisdensein H,

(i) ZW)=Z(L)=0,and

(iv)  the inner—outer factorizations of ¢-A and i — A have no singular inner factor for any
A€ C, then (¢ — )L+ (Y —A)N is densein H forevery A € C.

Proof: Let A € Cand write

K=@—-AV)L+ (Y — HN.
We must show that X = H.

Note that if z, € D, then either ¢(z,) # A or Y(z,) # A. In either case the hypothesis (iii)
implies that there is a function f € X suchthat f(z,) # 0, i.e. Z(¥) = @.

It follows from the hypothesis (iv) that there exist Blaschke products B;, B, and bounded
outer functions f;, f, suchthat ¢ — 1 =B, f; andy — 1 =B, f,. Then

K2 (= NL+ (U — YN 2B,6B,5L+N) = B(L+N)

for some Blaschke product B and some bounded outer function f. Since f is outer, there
exists a sequence of polynomials p,, such that p,,f — 1in the weakx-topology of H, hence
M, f — I in the weak operator topology. Thus combining this observation with hypothesis
(i) we obtain X 2 BH. Hence X = # follows from Lemma (4.3.17).
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Now let 7, L, V', @, be as in Proposition (4.3.16), set D = L + N, and let ||f + gl|,, be the
graph normon D,

If+gll3 = 1If +gll* + llof +pgll*.

Then one easily checks that £ and V" are closed subspaces of D which satisfy LNN =0
and L+ V' = D. Thus there is a projection P € B(D) with ranP = £ and ker P = V. Let
Q =1-P.

Theorem (4.3.18):]92] Let H < Hol(f2) be such that M(H) = {M,,:u € H*} with
equivalence of norms, let ¢,y € H* such that ﬁ €EH™, and let IV, L € H be closed

nonzero invariant subspaces of M (H) suchthat M N £ = (0). Let M bethe invariant graph
subspaceas in Example (4.3.2).

If
p(D)\yp(D) # 9,
then JV'is an invariant subspacefor A, .
In particular, A, has a non-trivial invariant subspace.
Similarly, if (D)\@(D) # @, then £ is invariant for A,;.
Proof: Let A € A,,. We will showthat A € B(D) and PAQ = 0.
From the definition of A;, we have AD < D and
IARIZ = IARII? + ITARII? = ||ARII* + |AThI|?
< [IAIZ IR + NITRIZ) = AN 1R
Thus A,PAQ,M,, M, € B(D).Forf € Land g € V' we have
PAQMy(f + g) = PAQ(Yf +yg) = PAYg = PATg = PTAg
= PT(P + Q)AQ(f + g) = PM,PAQ(f + g) + PMy,QAQ(f + g9)
= M,PAQ(f + 9).
Thus PAQM,, = M,PAQ and hence (PAQ)"M, = M,,(PAQ)".
The hypothesis implies that there is a 4, € D such that

dist(fp(/lo),lp(]])))) > 0.

Then by continuity there is an open neighborhood U of A,in D and a § > 0 such that for all
A€Uand all ze D we have [(z) —@(4)| =68, hence My, — @(A)] is invertible. This

implies ker(M,, — (1)) = (0)forall 1 € U.
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Let A € U and let k; be the reproducing kernel for D. We have

(M, — o)) (PAQ) k; = (PAQ) (M, — (D)) ks = 0

This implies that (PAQ)*k; = 0 forall A € U. Since finite linear combinations of k;, A € U
are dense in D we obtain PAQ = 0.

Thus if feNCSD, then f=Qf and Af =(P+ Q)Af = PAQf + QAf = QAf €
N,ie. AN S NN,

Theorem (4.3.19):[92] Let H < Hol() be such that M (H) = {M,:u € H*} with
equivalence of norms, let ¢,y € H® such that Lw € H”, and let IV, L € H be closed

o
nonzero invariant subspaces of M (H) suchthat N N £ = (0). Let M bethe invariant graph
subspaceas in Example (4.3.2).

If there is a u € Hol(e(ID) U y(ID)) such that ue @ = uoy, then A, has a non-trivial
invariant subspace.

Proof: Let v=uo@ =uop, then v e H*(D). We will show that M,:D - H
commutes with A,,. Then the result will follow from Theorem (4.3.13) We will usea special
property of our example, namely that 7D < D.

If 1€ C A& o(D)U (D), then ﬁfe]\f andﬁg e Lforall f € M and g € L. Thus

one easily checksthat (T— ) 1(f+g) = ﬁf + ﬁg and for every A € A, we have

A(T — )™t = (T — 1) *A. 1t follows that r(T)A = Ar(T) for every rational function r
with poles outside of ¢ (ID) U (D). The hypothesis on u implies that there is a sequence of
rational functions r, such that ,, — u uniformly in a neighborhood of ¢ (ID) U (D). Then
1, o @ and r;, o 1 are bounded sequences in H* that converge pointwise to v. Thus for every
feNandg e Lwe have 1, (T)(f+g) =nr, cpf +1,0Pg = v(f + g) weakly. Hence
Ar,(TY(f+g9) - AM,(f + g)and 1, (TA(f + g) = M,A(f + g) weakly for each f €
Nandg € L. Thus M,A = AM,,.

A simple way to satisfy the hypothesis that 1/(¢ — ) is a multiplier is if ¢ =y + cfor
some constant ¢ # 0. Then for appropriate # it is easy to see that the hypotheses of both of
the previous theorems are satisfied, thus A, has non-trivial invariant subspaces. For the u

2TL

in the previous theorem we can take u(z) = e ¢ “. Thus A,, commutes with M,, where
2mi

v(z) = e( c )"’(Z). Actually in this case one can verify directly that «A,, commutes with M,,.
AM,(f + g) = AM,f + AMyg + cAg= AT(f + g)+ cAg
= TAf + TAg + cAg = M,Af + MyAg + cAg = M,A(f + g).

This implies that AM, = M,A onH.
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If ¢(z) = z, then under the hypothesis of Theorem (4.3.18) the relation AM, = M,A implies
A € M(H), hence A, = M(H). Thus it seems worthwhile to point out that it can happen
that Ay = M(H).

Example (4.3.20):[92] Take H =12, ¢(2z) = z*, ¥ = @ + ¢, forc # 0, and choose the
two subspaces £ and V" as above such that they are invariant under (Uf)(z) = f(—2z). For
example, take two zero sets A and B such that the union is not a zero set and such that they
both accumulate only on a small arc nearl. Thenlet A’ = A U (—A)and B’ = B U (—B). It
is well-known that the extremal function for I(A) has an analytic continuation across any arc
I € 0D that does not contain any accumulation points of A [71]. Thus, if f;is the extremal
function for 1(A) and f, is the extremal function. for I(—A), then it follows easily that f, f, €
1(A"). Hence both A'and B’ are zero sets for H and their union is not a zero set. Now set £ =
[(A)and V = I(B").

One verifies easily that in this case U € Ay, thus A, = M (H).

Example (4.3.21):[92] Let @ € Hol(D), t € R\Z, a = e?™ # 1and such that (D) =
{z € Cr<|z| <R}, and Y = ag. For example, ¢ could be the composition of aconformal
map of the disc onto a vertical strip and the exponential function,

(2) = <'l 1-— Z>

@(z) = exp Log1+z.

Then |p(2) —yY(2)| = |1 —allp(z)| > c. Furthermore, we check that for no A € C the
function ¢- A can have a singular inner factor. Since ¢ has an analytic continuation at every
point except +1 or —1, it is clear that the only possible singular inner factors of ¢-A are
determined by point massesat 1 or —1. If ¢- A had asingular inner factorat1, then we would
have @(r) — A1 —» 0 asr — 17. But ¢(r) - Adoes not converge as r — 1~. Similarly we see
that there is no singular inner factor with mass at —1. Thus this provides an example of the
situation of Theorem (4.3.3), and since ¢(ID) = Y (D) Theorem (4.3.18) does not apply.

Theorem (4.3.19) applies only if t = %is rational, u(z) = z™. Thus if t is irrational we
don’tknow of any non-trivial invariant subspacesof A,,.

Example (4.3.22):[92] Can one show that A,, has non-trivial invariant subspaces in the
previous example if t is irrational?

1—z2

Example (4.3.23):[92] Let @ (z) = exp (i log1+zz) , Y(z) = ap(z) and assume that

f(z)eNif and only if f(—z)e N and g(z) € L if and only if g(—z) € L. One can
achieve this as in Example (4.3.20). By combining the approach of Example (4.3.20) with the
construction of one can also achieve this with the added propertythat Z(WV') = Z(L) = @. As
in Example (4.3.20) the operator Uf (z) = f(—z) will bein A,,. Thus, A, # M (H).

Example (4.3.24):]92] We will construct zero set based invariant subspaces V" and £ of L
with ' N £ = (0) and a disc automorphism u such that C,N' = L and C,£ = N and an
H *-function ¢ such that 1/ € H* and C,¢ = —¢. Here C, is the composition operator
with symbol w.
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Then we sety = —¢p = C,@. As above | — Y| = 2|¢| is bounded below, thus with D =
N + L this provides an example satisfying the hypothesis of Example (4.3.2). Furthermore,
one now easily checks that C,D <D and TC, =C,T onD. Thus C, € A,, and hence
N, L & LatAy,.

To get started we recall the definitions of interpolating and sampling sequences of a space
Hof analytic functions on .

Q)
%2,
{1, } is called an interpolating sequence for 7, if Tis a bounded operator from A into and
onto [2, and {4,} is called a sampling sequence for ¢, if there is a constant ¢ > 0 such that

clfll < IITfllz < ClIfll forall f €3t

For a sequence {4, }of distinct points in D we define T:H — [* by Tf = { } . Then
n

Lemma(4.3.25):[92] If I' € D is a sampling sequence for 7€, if D = D, U D_, where D,
and D_ are closed semi-discs, then

I, =rnb,
is not a zero-sequence for 7.

Proof: Supposethat f € H is a hon-zero function with f(1) = 0forall A € I',. Since I
Is a sampling sequence, there must bea ¢ > 0 such that

it Y PO < iz, ST VAL () o e
Aer

AE k12 = \c
L gl L gl

forall polynomials p. Fix 1, € D \D_ with f(4,) # 0. By Runge’s theorem we may choose
a sequence of polynomials p,, suchthat p,, converges to 0 uniformly on D_ and p,,(1,) — 1.
Then the inequality above implies that ||p,,f|| = 0. This contradicts p,, f(1,) = f(4,) # 0.
Thus I, is not a zero set for H..

Now let § ={z€C:—1<Rez<1}and let H* denote the upper half plane of C. The
function f(z) =ie” 2 is a conformal map from S onto H* with £(0) = i. We note that f
takes {z: 0 < Rez < 1} onto the first quadrant and f~': H* — S takes rays emanating from

0 to vertical lines in S. If we further let g(z) = ig be a conformal map of D onto H™, then

h =f1ogis a conformal map from D onto S. The function ¢ = e is bounded and
bounded below as required for Example (4.3.24).

Fora > 1 and b > 0 define the lattice
A(a,b) = {a™(bn + i) : mn€Z}
of points in H*, and consider the corresponding set I'(a,b) = g~1(A(a, b)) in D. [100]

states that I'(a, b) is interpolating for H = L2 if bli" < %and I'(a, b) is sampling for L? if

ga
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7.,'.2
bloga > % . Nowseta =e2 sothat f(z+ im) = af(z) forall z € S, and choose bsuch that
2T 1 2T

b loga? 2 bloga’

27

Then I'(a?,b) is interpolating and I'(a, b)is sampling for L2,

Set A; = {a*™(bn +i): m,n €Z,n =0}, A,={a*""'(bn +i):mn €Z,n =0}
and forj =1,2setI; = g~'(4;). Then I3 and I, are subsets of interpolating sets for L2,

hence they both are zero sets for L%. Furthermore, [ U, = g~ *({a™(bn +i): m,n €
Z,n = 0}) and it follows from the choice of a and b and Lemma (4.3.25) that I; U I, is not
a zero set for L3. Thus, N = I(I}) and £ = I(I,) are nontrivial invariant subspaces with
NnL=(0).

For z € D set u(z) = g~*(ag(z)), then u is a disc automorphism with u(I;) = I, and
u(l,) =1I;. This implies that C,V = L and C,L = N . Furthermore one checks that

h(u(z)) = h(z) + infor all z € D. Thus C,p = —¢ and this concludes the construction
for Example (4.3.12).

Let u be a positive discrete measure on the unit circle T, given by a sequence of points
{Ar)w-1 © T with corresponding masses 0 < w;, < oo suchthat

[00]

u = Zwké‘lk

k=1

We shall refer to {4, }as the a-supportof pu.

When |[ull = X\ w, < oo, u is associated with the singular inner function

1 (e? + z
S, (z) = exp (%j T du(B))

T

and by I, = [S,] we denote the invariant subspace of L% (ID) generated by S,,. For non-finite
measures u we define I, instead by

I, =S :0=sv=plvl[< o}

We say that u is admissible when I, # {0}. Since singly generated invariant subspaces have
index1, it follows from [3] that I, has index one whenever u is admissible. Thus I, is
generated by its extremal function. We note that a routine argument with contractive zero
divisors shows that the extremal function for I, is nonzero in ID. In conclusion, I, is zero free
whenever u is admissible.

Proposition (4.3.26):[92] Suppose f € L2 is zero free. Then

> (0 exists forall 2 € T.

- . _ 2 1
) lim@-r*)logy s

(i)  ForA € Tand w > 0, we have that f €[, if and only if lirq(l -r?) log
4w.

1S
lFGD | —
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Proof: Let D, c ID be the disc of radius %2 that is tangent to T at A and note that £/, is in
the Smirnov class N* of D,. Standard arguments of Nevanlinna theory now give the validity
of (i). A proofof (ii) appears in [81].

Lemma (4.3.27):[92] Let u = X, w, 8, be admissible. If 4 € T\{A,}and w > 0, then
I & 1ys,.

Proof: Supposeonthe contrary that I, < I,s,. Let ¢, and ¢, s, be the respective extremal
functions for I, and I,5,, SO that ¢, € [¢,,s,]. Then ¢u/d,s, € L%, e <1, and

—=—(0) > ¢,,(0).

¢w6/1

We are now going to demonstrate that o

o € I, contradicting the extremality of ¢,,.

To this end we first note that we may write down ¢,,s explicitly using the method for
proving Formula (15) in [69],

2w

1+ 1=
Puws, (2) =——% Sus, (2)
(1 +2w)2

from which we deduce that forall k,
lirri(l — 7‘2)log|q§w5/,1 (r)| = o.

Hence, by Proposition (4.3.26),

¢w6 (r)lk)
lim(1 —r?)log|—2———[=1lim(1 —r?)lo Z w
P [ |~ i cbu( ol = !
Applying Proposition (4.3.26) once more we obtain Ly L.
0)51

Theorem (4.3.28):[92] There exist two positive discrete admissible measures p and v such
that

@i I,nI,={0}and
(i) I, +1I,isdensein L%.

Proof: ~ The non-admissibility of u + vis equivalent to the fact that I, NI, = {0}. It
remains to prove that I, + I, is dense in L7,

Fromthe existence of anon-zero f € I, extending analytically across asubarc of T it follows
that clos(l, +1,) is an index-one invariant subspace of L%, [21]. Hence clos(l, +1,) is
generated by its extremal function ¢, which clearly has no zeros in ID. Denote by ¢, and ¢,
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the respective extremal functions for I, and I, and let f = ¢u/¢ and g = ¢v/¢, recalling
that f, g € L%[70].

We claim that f € I,. To see this note that

1 1
lim(1 —-7r?)log————— =0,lim(1 —r?)log ————
Hm = rlog g or~ (Tl )

by Proposition (4.3.26) and Lemma (4.3.27) So for every k > 1 we have

=>0,vk =1,

0 <lim(1-— rz)log# = —1lim(1— rz)log# <0
ool lg (Al r-1 lp(ra )~
whence
lim(1—-7r%)log——— = 0.
ro1 G
Therefore

lim(1 — r2) log———— = lim(1 — r2)1 LI Z
1m —-7Tr 0og = l1im —-Tr 0gT—7— /= Wy,
ro1 [f Al -1 S Y ‘

proving that f € I, by Proposition (4.3.26). Similarly one shows that g € I,.

Now let {p,,},, and {q,,}, be two sequences of polynomials such that p,¢, + q,¢, — ¢ in
L% as n - oo . By the contractive divisor property of ¢ we obtain that p,f + q,g9 =

Pnbutindy I, + I, is a Cauchy sequence, hence p,,f + q,g — 1. That'is, I, + I, is dense
in L2,

Lemma(4.3.29):[92] 1,, contains a nonzero function that continues analytically across the
openarc/ ={z € C: |z| =1landRez< 0} < T.[101].

Proof: Since the zero set A is contained in {z € D:Rez > 0} it is known that the extremal
function G for the zero-based invariant subspace I(A) continues analytically across J,

[71,101]. Fora € D seth, (z) = =<~ and

lal 1-a@z
a
1-lal Talt?
T 14]al & _,
S(Z(Z) = e |a|

In [99] Korenblum shows that if « € D and if f € L satisfies f(a) = 0, then
£l

An easy calculation shows that if K € Cis a compact set such that K N [1,00) = @, then
there is a ¢ > 0 such that

| =
baf =
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r—z

1—rz 2
- — =i <cl=7)
e “1+ri1-z

forall ze Kandall 0 <r < 1.

Since A is an L%-zero set we have Y, c,(1 — |a]|)? < o [9]. Thus the above estimate shows

that the product
b
P — _«@
(2) | |Sa

a€eA

converges uniformly on each compactsubsetof D U {Rez < 0} with P(z) # 0 forall z with
Re z < 0. Thus the function f = G/P has an analytic continuation across J. Let {P,,} be the
sequence of partial products of P, then by iterating Korenblum’s inequality we have
IG/Pnll < 1IGIl, 50 G/P,, — f weakly L? and it follows that f € I, .

Forafixed / = 1, pickangles 6,,..., 6, such thatj—;,...,:—frare linearly independent over the

rational numbers. Then the a-supports of p4,...,u; are pairwise disjoint, where u; is the
rotation of u, by the angle 8;, 1 <j <. We also introduce some further notation;

J

_ N _

Un,j = E W6 i(3%E+e)) H = E Hn,j
3<M=N € =1

311.
k<7~

letting Fyy denote the a-supportof u". For later reference we note that ||u™]|| ~ JN.

_1-1z[?

Lemma (4.3.30):[92] Let h(z) = P[6,](2) = 11-212

and define for integers K > 27

K-1 27k
Hy(z) = h(e k z), z€eD
k=0
Then Hi(z) = Kh(z¥) and there exists a constant C > 0, independent of K, such that
Hy(re'®) < C whenever 1 —r <8?and || < m/K.[103,104].

Let h:[0,1] — R be defined by h(t) = 217t2(1 -t)%. Fore € (0,2n] and t €[0,¢] set
(t) =1 —ezh(é). Then 0 <7, (t) <1and |r;(t)]and |y’ (t)| are bounded uniformly for
all £ € (0,2m] and ¢ € [0,¢]. Note also that 7,/ (0) =7 () = 0 and 7, (0) =17 (e) =—.

Now let @ # F < T be finite and define the closed path y,: [0,2r] — D as follows: If t €
[0,2m] is such that e'* € F, then set y, (t) = e‘t. Otherwise e‘* € I, where I is some
complementary arc of F with endpoints e‘‘oand e'‘r. Then we sety;(t) = r; (t — ty)e,

where || is the length of I. The curve I is defined as the range of y. It is clear that I, € D
Is a Jordan curve suchthat I N T = F. The properties of the functions r, imply that each I
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is C2-smooth and there is a C > 0 such that ||y’ |l < C for all finite nonempty sets F S T.
Furthermore one checks that the Jordan region bounded by I7is contained in the Jordan region

bounded by I, whenever F, € F,, and that we have the estimate

1d't<z F>2<1 ||<1d't(z F)2 er.  (31)
812 s |z|’ - Z_27r2 15 |z|’ ’ Z=0F

where dist refers to the geodesic distance along T.
Lemma (4.3.31):[92] There are constants ¢, C > 0such that for all finite nonempty sets

F < Twe have ¢ <|p'r(2)| < Cfor all z€ I. Furthermore, if w; denotes harmonic

ldzl
measure at 0 on I, then dwy = |¢’ 4] Z—Zand hence
T

C
%Tjh(z)ldzl < jh(z)dwp(z) Lo fh(Z)leI

for all nonnegative Borel measurable functions h on I.. Here |dz |denotes arc length
measure.[105].

Lemma (4.3.32):[92] There exists a constant D > 0, independent of / such that for every
N = 3 we have log|S,n(2)| = —Djforz € I, N D.

Proof:  For this proof we introduce the set Fy D Fy,
FN={ei(3—n+9f):3SnSN,1 <j<J0<k 53”—1},

and let [y = Iz, be the curve defined by use of the complementary arcs of Fy.

Fix for the moment n and j. Fora point z = re'® € I, N D, let k, be a minimizer of

. . i0 i(—znk+9')
min dist {e'¥, e\ 3" 771/ ),
0<k<3m-1

.(2Tk . .
and let z, = ze“(s_no“”) = ret%_ Note that |6,| <m/3"and 1 — r < 62 by (31). Hence,
by Lemma (4.3.30)

Z p [5 i(ﬂw)] (2) < Hyn(2) < C (32)
n e \3m )

Ikl<%;
Since the domain enclosed by I, contains the domain enclosed by I}, it follows by the

maximum principle for harmonic functions that (32) holds also for z € Iy N ID. Noting now
that

1
log——— = Z %) P[(S. T ] Z);
@] 32nsn Ik I<2 P10 et | (2
<n=sN, T
1<j<J
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with w,, ~ 1/3n.
Example(4.2.33):[92] Proofthat Z§=1 yj is not admissible for sufficiently large J.

Suppose that Z§=1 u; is admissible. We will now argue that J has to be smaller than a certain

universal constant. Fix N > 3 and note first that the admissibility of Z§=1M jimplies  that

there exists an n > 0, independent of N, such that there exists a polynomial p suchthat f =
pS,n satisfies ||f|l;z <1 and [f(0)] =n. In what follows there will be several implied

constants that are all independent of both N and J.

With f = pS v as above and wy denoting harmonic measure on Iy with pole at 0 we write
[10gir@ldon@ = [loglp@dan@ + [logls @l dov  (33)
I'y I'v I'n

Since ||f|l,z < 1we find by (31) and the estimate |f(z)| < (1 — |z|*) 'that

8m?

2
. Z
dist (m, FN)

Letting {I},}be the collection of complementary arcson T to F,, we obtain

If(@)| <

floglf(z)ldw,v(z) < jlog |dz| + log 2

. [z
Iy Iy dist (m, FN>

2T
|dw| +log2 ~ Z|1h| log 2 < 1 +loglFy| S N +log] R (34)
h

2T
< | log——
f Ogdist(w,FN) |1,

I'v

where |I,,| denotes the length of I, and |Fy| < 3" the number of points in Fy. We have

used the fact that the entropy Y., 11,| logﬁ—"lfor a fixed number of intervals is maximized
h

when all intervals are of equal size.

We also note that

[ 1o8lp (1) = 0glp )] = logl 01 + 08151
Iy ur

= log|f(0)| + lluw|l = logn + NJ, (35)

and by Lemma (4.3.32) that

f log|S,n (2)| dwy (2) = —J (36)

I'n

110



Combining (33), (34), (35), and (36), we find
N +log] z logn+ NJ —]
Letting N — oo we conclude that Jmust be smaller than some universal constant 4, | < A.

Theorem (4.3.34):[92] There is a space ' < Hol(ID)such that every invariant graph
subspace M has the property that ind M = fdM, and such that there are index1 invariant
subspaces M and vV of (M, H) suchthat M N V' = (0)and M + IV is dense in .

Proof: It follows from the construction in the proof of Theorem (4.3.28) that the measures
p and v can be chosenin such a way that the union of their a-supportsis disjoint from some
non-empty closed arc I € T (just take I to be a small arc centered at —1and chooseall §; to
be sufficiently small). Let o be the measure defined by do = y,|dz| + dA|D and consider
the space P? (o), the closure of the polynomials in L? (o). Then one verifies that P?(o)is
irreducible and clearly every point of D defines a bounded point evaluation for P2 (o), i.e.
P2 (o) is an analytic P%-space in the sense of [23] and [106]. For such spaces it was shown
that every non-empty M, -invariant subspace has index 1 [23], and in fact, Carlsson

[107]showed that every MEN)-invariant subspace of P2 (u) M satisfies that its index equals its
fiber dimension. In particular, the index of each invariant graph subspace equals its fiber
dimension.
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Chapter 5
Algebraic Properties and Index of Invariant Subspaces with Fiber Dimension

We show that if S is a bounded below operator, then ind M +ind N = ind(M N N) +
ind(M v N). If, in addition, ind M =ind N=1and M NN # {0} then ind(MVN) = 1.
We show that the natural counterpart to this statement in Hilbert spaces of C™*-valued analytic
functions is false and show a correct generalization of the theorem. We obtain new
information on the boundary behavior of functions in such spaces, thereby improving the
result. Other new findings include: a lattice-additive formula and its applications ; a new
concept of “absorbance” which describes a rough containment relation for invariant
subspaces; the existence of a unique, smallest CF subspace containing an arbitrary invariant
subspace and preserving the fiber dimension.

Section(5.1): The Index of Invariant Subspaces of Operators on Banach Spaces

If S'is an operator on a Banach space X, then a closed subspace M of X is called invariant
for S if SM < M. The collection of invariant subspaces of an operator S is denoted by
Lat(S, X). It forms a complete lattice with respect to intersections and closed spans. One of
the important notions in the general theory of operators, suchas bounded below operators, is
the index of an element in Lat(S, X), which is defined as follows. [109].

Definition (5.1.1):[108] Themap
ind: Lat(§,X) - {0} U N U {0}

is defined as indM = dim(M/SM) and indM = 0 if and only if M = {0}. We say that M has
index n if indM = n.

The index function plays an essential role in the study of invariant subspaces of Banach
space. See[3]. We give various algebraic properties of the index function. Amongst others,
we showthat if M, N € Lat(S,X),indM = indN =1and M N N # {0} then ind(M V N) =
1, where M Vv N denotes the closed span of M and N. (Equivalently, M v N is the closure of
M + N). [3].

Theorem(5.1.2):[108] Let R be a commutative ring with identity and let A, A’, B’ be
free unitary R-modules suchthat A" and B’ are free submodules of A. Then

(i) + rank (g7) = ramk (G )+ ramir
ran T ran B =ran B ran (A’+B’)

Proof: Consider the following sequence

0 L aja®A/BYS AJA + B -0

Where f([y]) = (lyl,[y]), g(x],[y]) =[x —y] and [.] denotes the equivalence class in
the appropriate quotient module. We claim that the sequence above is exact.
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To prove the claim we first showthat f and g are well-defined homomorphism. Letting [y] €
N B', we obtain that f([y + x]) = ([y + x],[y + x]) = ([v],[y]). Hence,
f is well defined. Moreover, f is homomorphism, since

fyl+ 2D = (yl + [z, [y] + [z]) = ([y). [yD + (2], [z])
falyD = Clyl,rlyD = r(yl.[yD,r €R.
Similarly, if ([x],[y]) € A/JA'®A/B,and x, € A',x, € B, then g([x+ x,],[y + y.]) =

[((x+x)—W+y)]=[x—y)+ (x; —y,)] =[x —y], Since x; —y; €A’ + B’. Thus,
g i1s well defined. Moreover, g is homomorphism, since

g((IxLIyD + (X' LIy D) = g(x] + [x' ],y + [y D = gx + x' L[y +y'D
=[x+x)-@+y)]=x—-y+x' =y l=[x—yl+[x' —y']
And

g(r([x),[yD) = g([rx],[ryD = [rx —ryl =r[x —y],r € R

It remains to show that kerg = im f. For this let ([x],[y]) € A/A’@®A/B' be such that
g([x],[y]) =0.Then [x —y] = 0,and thus x —y € A'+B’. This implies that x + A’ = y +

B' ie,[x]a = [)’]A, wherefore ([x]i,, [y]a

)e im f, and hence kerg c im f.
Al B!

Conversely, if ([x],[y]) €imf thenx+ A" =y +B"and hence x+A'+B'=y+ A"+
B'. It follows that g([x],[y]) = [x — y] = 0so that imf c kerg.

Since A/(A" + B') is a free module, it is in particular projective, and hence the above exact
sequence splits [110]. Therefore

A@A_ A o A
A" B ANB A +B'

This immediately implies that

k(G7) + rank(g5) = renk (5 7) + renk ()
ran ; ran B’ = ran A NB ran A+ B .

Corollary (5.1.3);]108] If X is a Banach space and S an operator on X, for all M,N €
Lat(S, X)

indM + indN = ind(M N N) +ind(M + N)

In the case when S is a bounded below operator, like the shift operator on Banach spaces of
analytic functions, the following holds.

Lemma (5.1.4):[108] Suppose M, N € Lat(S, X), where S is a bounded below operator on
a Banach space X. Then
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ind(MVN) <ind(M + N) <indM + indN

Proof: Ifeither indM or indN is infinite, then there is nothing to prove. So we may assume
that indM < oo and indN < oo. Thus there are finite-dimensional subspaces M, and N, of M
and N, respectively, such that M = SM + M,;,N = SN + N,, where dim M, = indM and

dim N, = indN. We find that
M+N=SM+M,+SN+N, =S(M+ N)+M, +N,
cCS(MVN)+(M;+N,)SMVN.

Since S is abounded below operator, its range is closed [111], and hence the second to last
expression is the sum of a closed and a finite-dimensional subspace, hence it is closed. Since
M + N is dense in M v N we obtain that the last inclusion in above is actually an equality.
From this it follows that

ind(Mv N) < dim(M; + N,) = ind(M + N) < indM + indN.

Theorem(5.1.5):[108] If X is a Banach spaceand S a bounded below operator on X then,
forall M, N € Lat(S, X),

indM + indN = ind(M N N) + ind(MV N).

Corollary (5.1.6):]108] Supposethat M,,M, € Lat(S, X) are such that indM; = indM, =
1, where S, X are as in the previous theorem. If M; N M, # {0} then ind(M; v M,) = 1.

Section (5.2): Hilbert Spaces of Vector-Valued Analytic Functions

Let D denote the open unit disc in C, let T be its boundary and let m denote the
normalized arc-length measure on T. Moreover let z denote the identity function on DD, i.e.
z({) = (for{ eDand let n € N be fixed. We will consider Hilbert spaces H of C"-
valued analytic functions on ID such that zf € H for all f € H, and the corresponding
operator of multiplication by z will be denoted M, , that is, (M, f )({) = { f ({).

We shall always assume that the spaces H satisfy the following conditions
VA € D the evaluation map f — f(4) is continuous and surjective from H onto C". (1)
If f € H and f(1) =0, then f € Ran(M, — 7). 2

By virtue of the Closed Graph Theorem, (1) implies that M, is a bounded operator. We shall
only consider H'such that

M, <1 (3)
and such that there exists a constant ¢ > 0 with

Z-A
1-21z

| = el 4)
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forall A e Dandall f € . Forexamples and an introduction to suchspaces [106,107]. We
concerned with the index of M, -invariant subspaces and the boundary behavior of the
functions in H.

Let M be a closed M,-invariant subspace of /. The index of M, denoted ind M, is then
defined as

indM = codimRan (M, | M),

where M, |M denotes the restriction of M, to M. Note that indH = n and that M, has
closed range by conditions (1) and (2), so indM = —ind(M,|M) where ind(M,|M)
denotes the Fredholm index of M, |M. The origin of [8], from which it follows that if

lim[|M% £ = 0 (5)
for some element f € H, f # 0, then one can find invariant subspaces M with arbitrary
index. The standard example of a Hilbert space of C-valued analytic functions with the above
property is the Bergman space L , which is easily verified using the dominated convergence
theorem.[106].

Theorem (5.2.1):[112] Let 7 be a Hilbert space of C-valued analytic functions that
satisfies (3) and (4). Then the following are equivalent:

(i) indM = 1 forall invariant subspaces {0} # M c H.
(i)  There is a measurable set X c T with m(2) > 0 such that the quotient /g has non-
tangential limits a.e. on X forany f,g € H with g Z 0.

(i) 3 f € suchthat lim |MEf]|| =+ o.

Note that combined with the theorem of Apostol, Bercovici, Foias, and Pearcy this implies
that, given a Hilbert space H of C-valued analytic functions that satisfies (3) and (4), the
following dichotomy holds: Either

lim ||M¥£|| # 0 forall f € #, f % 0. (6)

k— o0

or
lim |MEF|| = 0 forall f € 3. (7)

We find the appropriate extension of Theorem (5.2.1) to the case when # is a space of C"-
valued analytic functions. For this purpose (i), (ii) and (iii) needs to be modified. The reason
why (i) needs to be changed is that it is very easy to see that for any m < n there always
exists an invariant subspace M’ ¢ H with indM = m. Therefore the natural counterpart to
condition (i) is

(iv)  indM < n forall invariant subspaces M c H.

The problem with (ii) is that f/g is not even defined for C*-valued functions. To overcome
this difficulty we proceed as follows. Fix any element F = (f,,...,f,) € H™, where H"
stands for the direct sum of n copies of . We will think of F as a matrix-valued analytic
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function with columns f,,..., f,,. Assume that F(A) is invertible at some A € D so that the
determinant det(F (-)) becomes a non-zero analytic function, and let Z (F) denote its zero-
set. Instead of the quotient £ /g in (ii) we will consider the C™-valued meromorphic function
C(f,F,) defined by

CCfEN=(FW) " f() (8)
The analogue of condition (ii) is:

(v)  Thereis a measurable set ¥ < Twith m(2) > Osuchthat forall f € H and F € H"
with det(F (+)) # 0,C(f,F,?) has non-tangential limits a.e.on 2.

It is easy to see that (iii) is not equivalent to neither (iv) nor (v). Just take the Hardy space H?
and the Bergman space L% and identify H = H? @ L% with a Hilbert space of C?-valued
analytic functions in the natural way. It can be shown that conditions (1) to (4) holds, and it
IS not hard to see that neither (iv) nor (v) holds although clearly (iii) is satisfied by the constant
function f(-) = (1,0). However, the example 7£ = H? @ L% is ruled out if we replace (iii)
with condition (6), so this would be a natural candidate for (vi).

This has the following consequence for Hilbert spaces of C-valued analytic functions. Note
that condition (2) is equivalent to

codimRan(M, — 1) = 1,V1 € D.

If we instead consider spaces H with codimRan(M, — 1) = n forall 1 € D.and somen €
N, then the same phenomenon as above occurs, i.e. there may be invariant subspaces with

index larger than n, even if lim |ME £| # 0 holds forall £ € 3 with £ # 0. That the results

mentioned above can be applied in this situation is a consequence of the Cowen—Douglas
model. (See [9] or Theorem 1.1 in [6], where it is shown that the adjoint of each operator in
the Cowen—Douglas class B,,(ID) is unitarily equivalent to M, on some Hilbert space of C"-
valued analytic functions.

To find the proper replacement for (iii) we need to use multiplicity theory for a certain
unitary operator associated to M, see [107]. Set

— i k —
M ={f € 7¢: lim || MEf|| = 0}
and let P denote the orthogonal projection on M . It turns out that one can define a new norm
on M+ via the formula

1L = lim |5 £

and that (M',]].1].) is a pre-Hilbert space. Let K denote its completion. The continuous
operator S : K — XK defined by Sf = PM,, f for f € Mt is then easily seen to be isometric,

and hence it has a minimal unitary extension V on some Hilbert space K that include % as a
subspace. V then has a multiplicity function M, which by [107] satisfies M;, <n. Thus M,
can be written as
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M, ()= ) Xoi() 9

where o, € 0,_, C---C o, € T and Xa; denotes the characteristic function of o;. (If
lim ||M%£|| = 0 forall f € 3 we seta; = @ forall i > 0).

k— oo

Theorem (5.2.2):[112] Let 7 be a Hilbert space of C*-valued analytic functions that
satisfies (3) and (4). Then C( f,F,-) has non-tangential limits a.e. on Y, H for any f € H

and any F € H' ™ with det F () # 0.
(vi) m@E@FH)) >0

implies (v). It is also shown in [107], that (vi) implies (iv ). We show that the reverse
implications hold as well, and hence that the behavior of the index of the invariant subspaces
in 7 is determined by (vi). We shall also improve Theorem (5.2.2) by showing that Y.(H) is
optimal.

Corollary (5.2.3):[112] Let H be a Hilbert space of C*-valued analytic functions such
that (3) and (4) hold and m(Z(#)) # 0. If M, and M, are two invariant subspaces
withM; € M, then

ind(M,) < ind(M,)

We now give an example that demonstrates the consequences of Theorem (5.2.4). After
Apostol, Bercovici, Foias, and Pearcy proved that there are subspaces of any given index in

Hilbert spaces of C-valued analytic functions with

lim [[Mf f|| = 0 (10)
for some f € H, f # 0, Hikan Hedenmalm was the first to actually construct a “natural”
invariant subspace of the Bergman space L with index 2 [4]. Since then several people have
constructed various methods to find invariant subspaces with large indices in Hilbert spaces
of C-valued analytic functions that have the property (10). Recall that by Theorem (5.2.1),

(10) is also a necessary property for such subspaces to exist. Below we will constructa Hilbert
space of C%-valued analytic functions such that

lim [ M £ # 0
forall f € H, f # 0, that have invariant subspaceswith any given index in N U {oo}.

We need the “P?(u)-spaces”, where u is a finite positive Borel measure on D and P2 () is
defined as the closure of the polynomials in L (). see [23] and [107]. Here we will simply
state the facts necessary for the example. If du = dA + y, dm, where A denotes area

measure onlD, and o is a (measurable) subset of T, then

(1) Forany f € P2(w), f |pis (a.e. equal to) an analytic function. (When working with
an element f € P%(u), we shall sloppily think of f as a given representative of the
equivalence class, and we shall assume that this is chosensuchthat f |, is analytic.)
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(ii) Theset{f |p: f € P?(w)}is a Hilbert space of analytic functions that satisfies
conditions (1)—(4). We will denote this space by P% () as well.
(iii) Foreachf € P2(uw) and a.e. € € g, f | has the non-tangential limit

f(&)até. Infact, O(P% (1)) = o.

Example (5.2.4):[112] Let g,,0, be subsets of T, du; = dA + x, dmfori =1,2 and
consider the Hilbert space H of C*-valued analytic functions defined in the obvious way as
H = P?(uy) @ P?(uy,). Itis nothard to prove that X(H) = o, N g, in fact,

My = Xo, + Xo,

Hence by Theorem (5.2.3) we have that @(H) = o, N 0,, but this can also be verified by
direct calculations. By Theorem (5.2.4) however, we have that if ¢; N o, = @, then there are

subspaces of H with any given index k € N U {oo}, although clearly

lim ||ME£|| = 0

k— oo

for all non-zero f € .

Fix FEH™ with detF £0. Given f € H let ¢,(f,F,),...,c,(f,F,) denote the
components of the C"*-valued function C( f, F ,-), i.e. the meromorphic functions such that

/C1(frF:-)\

C(f,F,.)zk . / (11)
ealfF).)

These functions are called “the canonical coefficients of f with respectto * and are studied
in detail in [107]. Fori € {1,...,n} let @ bethe largest setwhere all functions in {c;( f,F ,-
): f € H} have non-tangential limits a.e.

Example (5.2.5):[112] Consider the same space H as Example (5.2.4) and recall that the
multiplicity function My, is given by

My = Xo, + Xo,

Let f be an arbitrary element in H and let f;, f, be its components in P?(u,) and P2 (u,)
respectively. With F = (e;,e,) (8), wethenget c;(f,F) = f; so

fori = 1,2. To see this just apply Theorem (5.2.6) to each P%(u;,) separately. Thus we see
that

My = Xo1 + Xo2

so in this particular case there is a stronger connection between M,, and the boundary behavior
of the canonical coefficients. On the other hand, the above conclusion clearly relies on the
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particular choice of F and on the fact that 7 is a direct sum of two subspaces with simpler
structure.

Thus it is natural to ask whether is some stronger link between the multiplicity function M,
and the boundary behavior of the canonical coefficients for certain choices of F. Theorems
(5.2.16) and (5.2.17) below show that the situation in Example (5.2.5) is typical, i.e. the
answer is no in general but yes if the space can be decomposed in a direct sum of cyclic
subspaces.

Given f €  let [ f] denote the closed linear span of the set {M¥ f:k > 0}. For
subspaces A4,...,A4,, € H wewill use the notation

A+ + A, =H

to mean that each f € 7 can be written in a unique way as f = ). f; with f; € 4, . By
standard functional analysis there is a constant C > 0 such that

cIfll < Znﬁ-n < CIIfl

A Hilbert space of C"-valued analytic functions will be called decomposable if there are
fir--or fry € H such that

A+ +[f] =%

These consist mainly in observing that by the Cowen—Douglas model, Theorems (5.2.6)—
(5.2.17) can be applied in a more general setting. We shall show that Theorems (5.2.6)—
(5.2.17) hold under slightly weaker conditions than (1) and (2). We also obtain a result which,
in the casen = 1, implies that if M’ c # is a nontrivial invariant subspace, then

O(H) = O(M).

Thus in order to find @ (H) it suffices to find the corresponding set for any cyclic invariant
subspace.

Theorem (5.2.6):[112] Let H be a Hilbert space of C"-valued analytic functions that
satisfies (3) and (4). Then

YH)= O(K)=A4p(H) a.e.
forany F € H ™ with det(F(-)) # 0.

The proofis structured as follows. We will show each of the inclusions

Ar(H) D2 0H) a.e., (13)
O(H)> X(H)a.e., (14)
Y(H)> Ar (H)a.e. (15)

Once the appropriate definitions have been made, (13) follows without major modifications
from the methods developed by Aleman, Richter and Sundberg in [106]. Therefore we will
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just state the necessary lemmas without proofs. Eq. (14) is simply a restatement of Theorem
(5.2.2) which was proved in [107], so the only part where essentially new ideas are required
is (15). H will denote a Hilbert space of C"-valued analytic functions that satisfies (3) and
(4), f will be an arbitrary function in H and F € H ™ be suchthat det(F) # 0.

By a functional of evaluation on H', we mean a functional e, , of the form

ea(f) = ) afi(d),

where a = (a;) € C* and A € D. For a finite or countable sequence A we will write 1 € A
to denote that A is an entry in the sequence and moreover we will write (h;),c, for a
sequences of numbers h; € C indexed by the sequence A. Let [Z denote the space of such
sequences that are finite in the norm ||(h) 112 = Yaealhy 12

Definition (5.2.7):[112] A finite or countable sequence A = (e;); of functionals of
evaluation on # is called interpolating for ¢ if the operator T, : H — % given by

ei(f))
lle; |l

TA(f)=<

IS surjective.

Note that A = (e;); is interpolating for H if and only if there exists an M > 0 such that

2

NG = |2, b || =, (16)

e;eA i

forall (b,,) € 12, and that for n = 1 this definition coincides with the standard one. Any M
such that (16) holds will be called an interpolating constant for A. For a sequence A as above
we will write A for the setof points in D corresponding to the functionals of evaluation in the
obvious way, and we will use the notation NtlA for the set of non-tangential accumulation
points of A, i.e. the set of points & € T such that there exists a subsequence of A that
converge non-tangentially to ¢ .

Let F € H™suchthat detF(-) # 0 befixed and recall that Z(F) denotes the zero-set ofthe
function detF (-), that k; € 7 denotes the element such that (f,k;) = c;(f,F, 1) and note
that k;, due to (8), is a point evaluation. Finally, given f;,..., fy € H we use the notation

[fi, 0 [l = cl(span{Méf] i>20,1<j< k}) (17)
where cl stands for the closure.

Definition (5.2.8):[112] A finite subsetA c Dis called a V-set if the collection {I;},e4
consists of mutually disjoint intervals. Let E c T be closed. If, in addition, {I;},c4 COVers E,
then we say that A is a VV-set for E.
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From now on, A will always denote a (finite or infinite) sequence of the form (kf) where
17
A; € D\Z(F) and 1 < i; < n. Set

L(A) = kzl; {/1 -1 ’%”}

Lemma (5.2.9);[112] Let0<r<1,L>0andE c E, beclosed. Then there is a finite
sequence A suchthat L(A) > L, Ais aV-setfor Eand A nrD = @.

Lemma (5.2.10):[112] There is a constant K > 0, depending only on o , with the property

that if A = (k;",) is a finite sequence such that A is a V-set and A;, # 4;, whenever j; # j,,
J

then A is also interpolating for A with interpolating constant K.

Lemma (5.2.11):[112] LetA = (k;j_) be a finite sequence suchthat A is a V-set and A, #
]
A;, whenever j; # j,. Moreover let {Qj}be given number; in T. Then there exists an f €

N (f k) i
SpanAsuchthat ||f]| <K,/2/0, |(f, kA’.)| > L(A) and7L > Oforall k' € A.
J Aj ]

]

Lemma (5.2.12):[112] Supposethat [f;,...,f,] = H. Given § > 0 and 4, such that A4, is
a V-set, there exists an L > 0 with the property that whenever A, is such that A, is a VV-set
and L(A,) > L, then [{u, v)| < &||ull|[v]| for all u € SpanA, and v € SpanA,.[106].

Proposition(5.2.13):[112] LetF =(f;,...,f,) € H™ be fixed.
(1) There exists an f € H such that

nt —}lirr% sup|C(f,F,A)| =

fora.e. £ € T\4; (H).

(i)  Assume that F is such that
i ol =H

Then there is a sequence

_ (1Y
A= (k/lj)
(where 1 <i; <n and A; € D\Z(F)), that is interpolating for H and satisfies NtiA =
T\Ar (H) a.e.

Proof: (i) First pick a sequence of closed sets E, c E with U, E, = E a.e. We will
i
inductively choose a sequence of finite sequences A, = (k;’q) (where g > 1, /1;.’ € D and

17
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if € {1,...,n}) and functions f;, € SpanA,, suchthat the properties (i)—(iii) listed below
hold. To each g we associate the numbers

1+ sup{lAl: 1€ 4,}
r. =

; . (18)
M, = sup{||k;||: ki € 4, forp < q} (19)

-1
a, =% and ag = min| 279, 2‘11(\EM(1_1 forg>1 (20)

We also define functions h, (for g = 1), via h, = ZZ=1 a,f, - The induction process will
ensure that (for g > 1), the following conditions hold:

(i) A, isaV-setforE,, L(A,) > aq—q and A, N (r,_,D) = 0,

i sl < K\/g,

(iii)y forall kj € A, we have |(f;,k})| > L(4,)and
(fo. ki)

(hg-1,k3)

Indeed, it is clear that at we can use Lemmas (5.2.9) and (5.2.11) to choose A, and f; such
that the applicable parts of (i)—(iii) hold. Likewise, at the gth step of the induction process,
the existence of a A, satisfying (i) is guaranteed by Lemma (5.2.14) and the existence of an
f, satisfying (ii) and (iii) is guaranteed by Lemma (5.2.16).

>0 (or(f,,kj)>0if(h,_1,k;)=0).

Given A,’s and f,’s satisfying (i)—(iii) the desired function f is given by

f= i Apfp
p=1

That the sum converges is guaranteed by (ii) and the fact a, < 277. Given q € N and ki€
A, we get

O apfy ki) | = [tges + @i kD] = [y kD] 2 24L(Ag) 2 g
p=1

by (i) and (iii). Moreover for p > g we have

-1

. . 2 ;
(apfo 2| < ap ||l ]] < ZpKf;Mp_l liall < 277
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by (ii) and the definition of a,, . Combining these two inequalities we easily obtain |{f, k)| =
q — 1 which implies that

for all 2 € A,. Finally, by the fact that A, is a V-set for E, and that lim 7, = 1 it follows

q—)OO

that forevery ¢ € U,»; E,; there is asequence in U qzl/Tq that converges non-tangentially to
¢,

(i):  Let G = (g;) and H = (h;) denote arbitrary elements of /'™ and define on (™) @
(H™) the function

(guh) o (Gnhi)
I(G,H) = det( : : ) (21)
(G h1) o {Gn hn)
I satisfies 1(G,G) = 0 and
11(G,H)|> <I1(G,G)I(H,H)

To see this one has to showthat I extends to a sesquilinear positive form on the wedge product
AT H . The above inequality is then just a special case of the Cauchy—Schwartz inequality.

Let F = (f;,..., f,) € H ™ be as usual and setK; = (kj,...,k}) € ™ Then forall 1 €
D we have

1= (I(F,K)) = (1 |A|2>2n(1 (&m))

< (1— 1AM () (1= 1AM (K, Ky) (22)

1-1z’1-2z

where F/T stands for the element (1 f} fn

—-Az 1-Az

). Moreover, I(K;,K;) consists ofa sum of

n! terms, each of the form

(—1)s9n() 1_[ (k/{, k;(i))
i=1

where o is a permutation of {1,...,n} and sgn(c) denotes the sign of o . By the Cauchy-
Schwartz inequality we conclude that

n
12
(1= AP, K < mt | [t = 12K
i=1
Combining this with (23), we see that if we can show that
F F )
1-1z2"1— 2z

nt— lim(1 = [21°)"1 ( (23)
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fora.e. £ € T\ 2(H), then it follows that for each such ¢ there exist at least one

i €{1,...,n} with
nt—;\irr%sup(l — |/1|2)||kj||2 =00

Le. Ap(H) c X(H) a.e. asdesired.
To prove (23) we recall a few facts from [106] and [107]. We first assume that
lim [|M £ | # 0

for some element of 7. Recall the space K and its associated objects like V, o; etc. that
were defined, and let E denote the spectral measure for V . Define the measures m; on T by
dm; = x5 dm.

By [107], it follows that E is absolutely continuous and that we can take K = L?(m,) @ -
-+ @ L*(m,) with V being the operator of multiplication by the independent variable.

Moreover, forany f € H let (f ")?:1 denote the element correspondingto f in L?(m,) @- -

@ L?(m,). If we treat the elements of L?(m;) as functions on T that are identically 0 in
\ g; , then we have that

d(EC)F, =
( ()fg>=zflgl

dm
i=1

UELL) denotes the Radon-Nikodym derivative of the measure (E(.)f,g) with

m
respect to m. If lim |ME || = 0 for all elements of #¢, then we simply define f* =0 on T
forall f € Handi =1,...,n. By aslight modification of [106].

where

Lemma (5.2.14):[112] Forany f, g € H we have

. 2 f g _ C i (TN AICEY
nt— lim(1 - 1) (2 7 = Zf ®F®

forae. E e T.

Set
FO - RO
@ . 1O

where fF = ( ]j-)i € L?(m;). By Lemma (5.2.18) the limit in (23) exists for a.e. £ € T and

We (E) =
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/ Zfl ®F® . iﬁf (z)f;(z)\l
j=1
. , o

det| : S :
k FOR® - ) AOI® )
j=1 j=1

= det(W (®)" W (¥)) = |det W (B)I*.

Recall that () = o, and that the support of £ is included in o,,. Therefore if ¢ €
T \ 2 (H) then the last row of W, (¢ ) is identically 0and hence det(Wx(¢)) = 0.

_ T EEPIPAY _ _
ntx—%lm(l I41%) I(l—lz'l—lz)

Theorem (5.2.15):[112] Let H be a Hilbert space of C"-valued analytic functions that
satisfies (3) and (4).

(i) If m(Z(#)) >0 then indM <n for all invariant subspaces M’ c H . In fact,

indM = sup(dim{ f (A): f € M}).
A€D
(i)  Ifm(Z(#)) = 0then given any k € N U {00} the exists an invariant subspace M c

H with indM = k.

Proof: The first partis proved in [107], so we turn immediately to the second part. First, if
0 <k <n then the problem is easily solved. For k = 0 we simply take M = {0} and
otherwise we take f,..., f, € H such that f,(0) = e, and putM = [f},..., fi] (recall
(17)). Itis then easily verified that

Ran M,|M + Span{f,...,fi,} =M

So that ind M’ = k as desired. To see this, let g € M be arbitrary and pick polynomials p]i-

such that
= lim E pl fl
]—)OO

As point evaluations are continuous we infer that there are numbers a,,..., a; such that
lim p] (0) = ai . Therefore ( {-‘=1(p{ —p{(O))fi)_ is a Cauchy sequence and as M, is
J)

]—)OO

bounded below we get

g- Z lﬁ—llmz Pl - pl(O) (ﬁmz:p‘_p‘(o)ﬁ)

Sothatg — Y¥_, a;f; € RanM,| M, as desired.

We now assume that k > n and that m(Z(ﬂ-[ )) = 0. The following argument has been

taken from [21]. If M < # is an M,-invariant subspace, then ML is M} -invariant. We can
decompose the operator M, with respectto H = M @ M as
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Z7 0 p]v[lej\/[J-

PutS = M;|,,+ and observethat S* = P, +(M; )*|,;+ = P2 M,|,,+ and then that

s (A P} 8)(5 P

Thus we get
—n =ind M, = indM,| 5 + 0+ind S* =ind M,| 5 —ind S
If either indM,|M or ind S is finite, and hence
indS —n = indM,| ,, (24)

Holds even for indM,| ; = —o0. As S = M|, this implies that if we can find a subspace
M such that

indM;|,,r =n—k (25)
then we are done.

We will first prove that sucha subspace M can be found under the additional assumption that
there exist f;,..., f;, € H such that

e a1 =3 (26)

By Proposition (5.2.13) we then get that there exists a sequence

_ (1Y
A= (k/lj)
(where 1 <i; <nand A; € D\ Z(F)), that is interpolating for # and satisfies Nt{ A = T
a.e. Moreover, by the proof it follows that we can assume that 4; # A; # 0 whenever j; =

Jo- PUtV = Cl(Span{ k;f.}). Forany f € H we have
]

(M) f) = (), M. f) = 7, () £,

SOV is an M -invariant subspace of H'. We will identify % with the standard space [*(N)
in the obvious way. As N = Ran T, = (Ker T,)* Definition (5.2.11), it is easily verified
that T, |y is a bijection from V" onto [?, and the above calculation implies that

M| 5 T =T;D

where D denotes the operator on I suchthat D(a;) = (A;a;). Now, it is a known fact that
there are D-invariant subspaces £ of 12 such that

indD|L=n—k (27)
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(even when k = o), and hence (25) holds with M = (TA* (L))l and so by (24) we are done
(in the case when (26) holds).

We now outline a proofof how to see that D has the desired invariant subspace. The crucial
fact here is that Ntl A = T a.e. By [114] it follows that there exist elements x,y € [% such
that

i _ 1 if i=0
wx’y)_{o if i>0

Put L= cl(Span{Dix:i > 0}).AsA; # 0 Vi€ Nand A has no accumulation points in
D we see that D|, is bounded below and as x is a cyclic vector we deduce that ind D|L is
either 0 or —1. But it cannot be 0 because this would imply that D|, is invertible, which
contradicts the fact that y is orthogonal to D|, but not to £. Thus ind D|£ = —1 so (27)
holds for k =n + 1. To produce subspaces with ind D|, < —1 one splits the set A into
several subsets and then use the above construction on each. The argument goes as follows.
Foreach 1 € D let I, c T be the open interval centered at A/|A| with m(l;) =1 — |A]|. It
follows from [115] that a discrete relatively closed sequence I' = (y;)2, in D satisfies

Ntll' = T if and only if
Ul”i =T a.e.

i>ig

forall iy € N. By this observation it follows that there are numbers i, i,,... suchthat

m U L, |=1-1/
ij+1 2i>ij
and using these subsets it is easy to find k — n disjoint subsets A; c A with Nt A; = T and
k—-n
j=1

Given a sequence I = (y;) we let D, denote the diagonal operator on 2 given by D(q;) =
(¥,a;), and we shall think of the sets A; and A as sequences ordered so that the sub-indices of
the A;’s are increasing. It is easily seen that D = Dy is unitarily equivalent to

k—n
Do,

j=1

Let £; < I? be D;Ij-invariant subspacessuchthat ind Dz, | ;=1 and note that a short
argument shows that
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k—n k—n

1nd( Ié_}nmj ) - z indDy |, = z A=n—k

. k—n n .
=1 j=1 j=1
J @Lj

j=1
This immediately implies that we can find a subspace £ c 1% suchthat (27) holds, as desired.

It remains to prove that the assumption (26) can be removed. Fix (f,...,f,) = FEH™"
such that det F (0) # 0. If a subspace M with indM = k can be found as a subspace of
[ fi,---, f»], then we are obviously done. The already proved results might however not be
applicable becausethe space| f,..., f, ] may not satisfy conditions (1) and (2). This problem
can be overcome as follows. By the argument in the first part of this proof we have that
ind[fi,...,fn] =n,which by [116] implies that there exists a Hilbert space of C*-valued
analytic functions H 'that does satisfy (1) and (2), and a unitary map U : [ f;,...,f,] = H'
suchthat M,U = UM,. If we denote by K 'and X the spaces corresponding to H'as X and
K correspond to ', then it is clear that we may consider X 'as a subspace of % which implies
that ’can be taken as a subspace of K. Thus

E(H) = {§ € T:My,,, () =n} < (§ € T:My() =} = Z(H)

a.e

We conclude that
m(Z(H")) =0

and hence it follows from what we have already proven that there are M, -invariant subspaces
of ' with index k. As U is unitary and M,U = UM, .

Let H be a Hilbert space of C*-valued analytic functions. Given F € H ™ with det(F(-)) #
0, we set

@15" = @({Ci(le"):f E}[})

i.e. O is the “largest” subset of T where the ith canonical coefficient has non-tangential
limits a.e. forall f € H. Recall that a Hilbert space of C*-valued analytic functions is called
decomposable if there are f;,..., f, € H such that

[Al+- -+l =H (28)

Theorem (5.2.16):[112] Let H be a Hilbert space of C*-valued analytic functions that
satisfies (3) and (4) and assume that # is decomposable, i.e. there are f;,..., f,, suchthat (28)
holds. Put F = (f,..., f,)- Then
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Proof: Fix i € {1,...,n}. Note that any f €[ f; ] is of the form ¢f; where ¢ is a
holomorphic function in ID. Moreover it is easy to see that ¢ = c;(f, F,-) and that given g =
gL+ -+ g, € H with g; € [f; ]we have c;(g,F,") =c;(g; F,.). Let C; denote the set of
functions

{Ci(f;F;-):f € [fl]}

with the norm ||c;(f, F,")|| = |lIf]|. Itis easy to check that ¢; becomes a Hilbert space of C-
valued analytic functions that satisfies (3) and (4). In particular, by Theorem (5.2.19) we
have that

0L =3(¢;) a.e.

soin order to prove theorem (5.2.20) we have to show that

n
MV = ZXZ(C’i) a.e.
i=1

Recall the definition of M, %, S, K and V associated to H, as defined in the introduction.
Analogously, foreachi € {1,...,n} let M; c C; denote the subspace

M; = {f € ;s lim||mE £]| = 0}
and let P,,.denote the orthogonal projection onto M- . Note that M = ¥ | M; and that
due to the dichotomy mentioned after Theorem (5.2.1) we either have M; = {0} or M; = C;.

When M = C; we define a new norm on €; via the formula
£1l. = lim [ M £]]

and denote by X; the completion of the pre-Hilbert space (C;, || ||.). Let S;: K; — k; denote
the isometric operator suchthat S;f = M, f forall f € C;, and let V; be its minimal unitary

extension on the Hiloert space X; When Mt = {0} we define X; = {0} and let both V; and
S; to be equal to the operator that maps 0 to 0.

By [108] it follows that M;, <1 a.e. and thus by the definition of X(C;) we get M, =
Xs(c, a.e. Hence (29) can be reformulated as

n
M, = Z My, a.e. (30)
i=1

Let £; be the closure of P, L[ f; | In K. As M,(M) c M it easily follows that S(L;) c £;.
Let S|, denote the operator S restricted to £;. Moreover let L, c K denote the closure of the
linear spanofthe setsV=* L, ,k = 0,1,..., 0. By standard results about unitary extensions
it follows that V |z iis a minimal unitary extension of |, .
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We shall now deflne a natural unitary map R;: 5; — L;. First, if M- = {0}, then [f;] c M

and thus £; = %; = {0}. In this case we define R;(0) = 0. Otherwise, i.e. when M;* = C,,
we set

Ri(ci(f.F,.)) = Pyrof
forall f € [f;]. Clearly R; maps C; onto adensesubsetof P, .[f;]. Moreover, the calculation
llc.(f, F, ). = Ej{}o”Mé‘f” = lliggollM§Ple|| = |IPyeLfl.

shows that it is isometric. Thus R; extends by continuity to a unitary operator from X; to L,
as desired.

Under this map the operators S; and S|, are unitarily equivalent. If M- = {0} then the
statement is trivial, so we assume that M- = C;. For f € [f;] we then get

Ri(sici(fi F))) = Ri(MZCi(f' F')) = Ri(ci(sz; F;))
= PyriM,f = PoyiM,Py i f = SR(ci(f,F,.))
which easily implies that R; S; = S|, R

Now, minimal unitary extensions are unique up to unitary equivalence and thus we have
shownthat My, = My, a.e. In order to prove (30), it is thus sufficient to show that

n
M, = ZMVlﬁi a.e. (31)
i=1

But (31) does hold if we can show that £, + ---+ £, = X, because due to a theorem by
Putnam [116], similar normal operators are automatically unitarily equivalent.

It thus remains to prove that £, + ---+ £,, = K. By standard results about minimal unitary

extensions, the sets V% K,k € N, are dense in K. It follows that £, + --- + £, is dense in
"K, so we only have to show that for any two subsets I,,1, c {1,...,n} with I, NI, = @ the

two planes ¥;e;, £L; and Yier, I have a positive angle, i.e. that

(x, y)
su 1 X € L,yE L <1
S TR Z iy z

i€l,

By the fact that V is unitary, the definition of £; and that P,,1[f;] is dense in £; we get

(x,y) B (x,y)
PV Iyl Z‘”EZ B T ZL“YEZ

1612 lelz
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f 9.
P g szPM*[ﬁ gE;PM*[ﬁ

(
[(MEF MEgD] :
= 5P iioouMkf Mg EZW'Q E;[ﬁ]
(1901 ,
<SP g e;[ﬁ],g e;[ﬁ-] .

But the last supremum is indeed less than 1 by the assumption that [f;] +:-- + [f,] =

Theorem (5.2.17):[112]  There is a Hilbert space H of C?-valued analytic functions that
satisfies (3) and (4) such that

for all choices of F € 72 with det(F(.)) # 0.

Proof: Let t; denote subset of T which lies in the i-th quadrant of the plane, i = 1,...,4.
We define the measures i, v and w by

du =dA + Xz uz, dm,
av = dA + X7y, dM,
do =dA + x,, dm.
let 7 be the set
((FLFD:f € P2(u),f2 € P2(v),f1 + f2 € P2(w))
endowed with the norm
NSO =1FIZ 2w T IIf> ”1%2(1,) +If' +f? ||p2(w)

Using (i) and (ii) one easily sees that H can be identified with a Hilbert space of C2-valued
analytic functions. We keep the notation from the introduction of the corresponding objects
like M, S, K,V etc.Clearly M+ = H and by the dominated convergence theorem it follows
that

R flf 2dm + f|f |2dm+j|f1+f 2dm

T1UT2 T1 UT3

Let m, denote the measure given by dm, = y, dmand let J:} — L?(m) @ L*(m,) be
given by
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J(FSFD) = Fdteyur, + Foxey + 4 U0y 2 20,)

Clearly, J is isometric with respect to the *-norm on H . Let N denote the operator on
L* (m) @ L*(m,) of multiplication by the independent variable, i.e. the operator such that for
ae. £ € Twehave N(fLf2)(&) = (Ef1(8),éf2(&€)),and let K’ denote the closure of J(H)
in L2(m) @ L*(m,). Obviously JM, = NJ, and this implies that S is unitarily equivalent
with N|K' . Using the Stone—Weierstrass theorem, it is not hard to see thatU,., N *K'is
dense in L*(m) & L*(m,). It follows that N is a minimal unitary extension of N|X'.
Summing up we have proved that

M, = My = xt + X, a.e.
To conclude the theorem, we will show that for any choice of F € H 2 we have
X1 (§) +x2(§) =0
fora.e. £ in some non-trivial subset of T.

Let F=(f1,f?) where f; =(f*,f%) and f, = (,1,f?) . Note that for any g =
(gt,9%) € H and A/€ Z(F), we have that

A
d tF(/l)

@

g\ - d tF(A)

c1(g,F, ) = 9>

and a similar equation holds for c,. First assume that at least 3 of the functions fij are non-
vanishing, say f;! # 0 andf,> # 0. By choosing g> = 0 and g! € P?(u+ w) suchthat 73 N

O(gh) = 15 \O(df:F ) a.e., we deduce that

m(OF(H)N 15 =0
In a similar way we deduce that

m(OF(H)NT, =0
and that

m(@F(H)Nt,)= 0 (32)
for at least one value of k € {2, 3}, which implies that
Xor(§) + Xe2(§) =0

fora.e. £ € 1, where k is such that (32) holds. Thus Xo1t Xoz < My ae.as desired.

Now assume that two of the ]j-"’s are identically zero, say, f;? = 0and f,! = 0. Then

g'@ _ 9D
fry’ '

Cl(gl F;A) =
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By choosing g* = —g? € P?(u+ v) suchthat 7, N ©(g*) = 7,\ O (}%) we deduce that
1

m(0z (H) Nty) =0
Similarly we see that also
m(O2(H)Nt,)=0
and thus we get that
Xo3(€) + X2 () =0
forae. & € 1,.

Let T be a contraction on some Hilbert space X such that T — A is bounded below for each

AED,NE, Ty ={0} and ind T = —n for some n € N. It can be shown that the above
conditions are equivalent to demanding that T* is a contraction which lies in the Cowen—
Douglas class B, (ID). By [117], it then follows that there exists a Hilbert space H of C"-
valued analytic functions that satisfies (1) and (2) and a unitary map U: X — H such that
UT = M,U. [115] Throughout, # and X will be related in this way. Analogously with the
definition of X (H) we may define X (X, T) and obviously we then get

I(H) =Z(X,T)
Moreover, forany x € X and (x,,...,x,) = X € X™ such that
Span{x,,...,x,} + Ran(T—4y) =X (33)
forsome 1, € D, we may define meromorphic functions
c,(,X,X,T,),...,c,(x,X,X,T,),

by the equation
ZCi(x,X,X,T,-)xi € Ran(T — 1) (34)

i=1

That this equation defines unique meromorphic functions follows from the following simple
observations.

(1) The condition (33) is equivalent to
det((Ux)(Ag), ..., (Ux,) (X)) ZE 0.
(i)  The ¢;'s are invariant under unitary transformations, i.e.
c;(x, X, X, T,”) =c;(Ux,UX,H,M,,"),
where UX = (Ux4,...,Ux,) EH™
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(i)  InH, the “new” c;’s defined via (33) coincide with the “old” c;’s that were defined
via (8) and (11), i.e.

c;(Ux, UX,H,M,,)) = c;(Ux,UX,"),
and the “old” c;’s are clearly meromorphic.

Corollary (5.2.18):[112] Let T be a contraction on some Hilbert space X such that T* €
B, (D). Assume that there exists a ¢ > 0 such that

|7 =01 =2r) x| = cllxl

forall Ae Dand all x € X. Then
O, T)=2(XT)
and moreover

(i) if m(Z(X,T)) = 0then given any k € N U {oo} the exists a T -invariant subspace
M c X with ind T|,; = —k;
(i) ifm(Z(X,T))> 0then ind T, = —nforall T-invarian subspaces M < X.

The evaluation map f — f(A) from H onto C™ is continuous forall 2 € D and it is
surjective for some 1, € D. (35)

ind(M, —A) = —nforallA € D (36)

Corollary (5.2.19):[112] Let X and T be such that Corollary (5.2.22) applies assume that
M is a T-invariant subspace, then

E(M,T|p) Dae 2(X,T).

Proof: By [115] we may assume that X is a Hilbert space of C"-valued analytic functions
and that T = M, . We may also assume that m(Z (X, M,)) > 0, because otherwise there is
nothing to prove. Set k = ind M. By Theorem (5.2.20) we get that k < n and that we may
take F=(f;,...,f,) EX"suchthatdetF(.) #0and f;,..., fy € M. Itis not hard to see
that

Ci(f! (fli . -;fk);M; MZIJVD') = Ci(f' F,H, Mzr')
forl <i<kand f € M. Thus
@(M' le]v[) Da.e. O(X, Mz)
so the result follows by Corollary (5.2.18).

Corollary (5.2.20):[112] Let X and T be such that Corollary (5.2.22) applies assume that
M is a T -invariant subspacesuchthat indT|,; = —n. Then

OM,Tly) = O(X,T)a.e.
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Corollary (5.2.25):[112] Let X and T be such that Corollary (5.2.22) applies assume that
m(Z(X, T)) # 0
If M, and M, are two T-invariant subspaces with M; € M, then
ind(T|;,) = ind(T|y,).
Section (5.3): Invariant Subspaces and Fiber Dimension

Fora given linear space M consisting of analytic, CV-valued functions (N € N) over a
domain 2 < C, the fiber dimension of M is defined by

fd(M) = sup dim M (1) (37)

AEN

where the fiber space M’ (1) at A is given by
MAD={A):fem}cc

A point A in 2 is called a maximal point, or an m-point for short, for M if dimM (1) =
fd(M), and is called a degenerate point if dimM (1) < fd(M). It is not hard to see that the
collection of degenerate points forms a discrete subsetin 2 whose Lebesgue area measure is
0. The set of m-points and degenerate points of M will be denoted by mp (M) and Z,, (M),
respectively. The fiber dimension has proved to be a fruitful tool to several problems in
operator theory. To the notorious transitive algebra problem [119], to the cellular
indecomposable property [120], to multi-variable Fredholm index [17], to Samuel
multiplicity [121,122], to general structure of invariant subspaces [123].

We fix (2 to be an open, connected, and bounded subset in the complex plane C. Moreover,
for convenience, we assume 0 € 2. We also fix n, N € N. We denote by A, () the
collection of analytic operators which are defined to be the adjoints of operators in the
Cowen-Douglas class B, (2*) [124], where 2" = {Z: z € 2}. By well known constructions
in operator theory [125,126], any T € A, (2) can be represented as the coordinate
multiplication operator M, ona Hilbert space H satisfying the following:

(1) H consists of CV-valued analytic functions over the domain £2;

(ii)  The evaluation functional at A: f € H — f(A) € CV is a continuous map from H to
CN foreach A € £2;

(i) If feH, then so is zf, where z is the coordinate function; moreover, the
multiplication operator M, — A is bounded below for each 1 € 2;

(iv)  H satisfies the condition cod(H) = fd(H),where cod(H) = dim(H © zH).

Definition (5.3.1):[118] Let M be a linear space of CY-valued analytic functions over 2
invariant under multiplication by z. We say that M has the division property at A € (2, if for
any f € M vanishing at 4, there isa g € M suchthat f = (z—A)g.
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Definition (5.3.2):[118]  Foran analytic operator T € B(K) acting on a Hilbert space K,
we say that U: K — H is a CF representation of T if U is a unitary module map from K onto
a Hilbert space H satisfying the above (i)—(iv). Here, by a module map we mean that the
unitary operator U satisfies UT = M,U.

Definition (5.3.3):[118] For an invariant subspace M < Kof an analytic operator T €
B(K), the fiber dimension of M in K, denoted by fd (M), is defined by

fd(M) = fd(U(M))
for some CF representation U of T.

Lemma (5.3.4);[118] Let M be an M, invariant subspace of a Hilbert space H satisfying
(i)—(iv). The following are equivalent.

(1) M has the division property at one m-point.
(i) M has the division property at all m-points.
(iii) cod(M) =dim(M © TM) = fd(M).

Proof: For an m-point A € 0, let E; be the evaluation functional from H to CV restricted to
M. By the definition above, M has division property at A iff ker E; = (z — 1)M. Observe
that (z — )M S kerE,, kerE; = (z — )M iff dim(M/kerE;) = dim(M /(z — 1) M).
On the other hand, dim(M/kerE;) = dimM(A) while dim(M/(z — A)M) does not
depend on 4, from which the lemma follows immediately.

Lemma (5.3.5):[118] Given two Hilbert spaces H,, H, of vector-valued analytic functions
satisfying the above (i)—(ii) and an operator ¢:H, —» H, satisfying ®M, = M,® , if
H,satisfies (iv), then for any invariant subspace M € H,,

fd(M) = fd(@(M)).
Soif @ is invertible and H, also satisfies (iv), fd(M) = fd(P(M)).

Proof: Since degenerate points of a fixed subspace are contained in a subset of zero
Lebesgue area measure, we can choose a common m-point A for M’,® (M) and H,, and we

define a map ¢(1): M (1) - (¢(M))(2) by
(D) = (2(N)W),

for f € M. If we can show that this map is well-defined, then it is automatically linear and
surjective, hence fd(M) = fd(®(M)) follows immediately.

In fact, if f(1) = g(4) for f, g in H,, then since H,satisfies (iv), there exists h € H, such
that f — g = (z — A)h (see Lemma (5.3.4)) hence

(@(f =)D = (2((z = HR)) D) = ((z— HP(h)) () = 0

This verifies that @(A) is well-defined and we are done.
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Definition (5.3.6):[118] Let M be an invariant subspace of an analytic operator T. M is
called CF if its codimension cod(M) = dim(M © TM) is equal to its fiber dimension, i.e.,
cod(M) = fd(M).

For convenience we say that M = {0} is CF.

The CF property is clearly a generalization of the codimension-one property which holds for
an invariant subspace M’ € H? (D) of the Hardy space over the unit disc: cod(M) = 1. The
first systematic investigation of the codimension-one property is Richter’s thesis [3].
Examples of CF subspaces can be found in [112,119,121,17,94]. All invariant subspaces of
Nevanlinna—Pick spaces [17] are CF.

Definition (5.3.7):[118] Let T be a Fredholm operator on a Hilbert space K and M < K be
an invariant subspace of T. We define the fiber dimension of M at the origin by

dim(P, M
fd' (M) = Jim %

where P, is the orthogonal projection from K onto K © T*K.
Lemma (5.3.8):[118] The above limit exists and is an integer.

Proof: Foranyk >1,let E, = T* 1K © T*K. Then it is sufficient to show that the limit
lim dim(Pg, (M))
exists and is an integer. Here Pg, is the orthogonal projection from K onto E.

We first claim that {dim E}, }, = 1is a decreasing sequence, since the following natural map
T, induced by T

T
TK=1K/TKK -5 TRK/TFH1K

is well defined and is surjective. In particular, it follows that llim dim E,, exists and is a finite
integer. Next we apply the following elementary factto E, = T* 1K © T*K.

Fact(5.3.9):[118] For any (closed, finite dimensional) vector space E in a Hilbert space L,
and another closed subspace M < L, we have dimE = dim(P;(M)) + dim(M* N E).

Now with E = E, and M = M, we have dim E; = dim(Pg, (M)) +dim(M+* N Ey),

Note that M+ n E, is just the collection of those vectors in T*~1K which are orthogonal to
both M and T* K. In terms of quotient, it is naturally isomorphic as vector spaces to

; Tk +M
KT OTkRK+ M

Their dimensions form a decreasing sequence because the natural maps 7, induced by T
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TF-1K+M 1, TEK+M
—
TKK + M TK1K + M

are well defined and are surjective. In particular, it follows that l}im dim(F),) exists and is a
finite integer. Now our desired limit follows from

dim(Pg, (M)) = lim E, — lim dim Fy
where both limits on the right side exist.[127,128,129].

Definition (5.3.10):[118] Let T bea Fredholm operator on a Hilbert space K and M € K
be an invariant subspace of T. Define

fd" (M) = x (M)

Now we will show that the two definitions fd'(M), fd"'(M) agree with the original one via
CF representation in the case of analytic operators. We shall use Serre’s theorem [130] that

the Euler characteristic y(M,) is equal to the Samuel multiplicity e(M,)with respect to the
maximal ideal m = my in O,.

Theorem (5.2.11):[118] Let T be an analytic operator in B(K) and M be any invariant
subspace of T, then fd(M) = fd'(m) = fd''(M).

Theorem (5.3.12):[118] Let T be a Fredholm operator in B(K) and M be any invariant
subspace, then

fd"(M) + e(M+) = e(K).

Recall that for any bounded operator A € B(K) on a Hilbert space K such that dim(K/
AK) < oo, the Samuel multiplicity of A is defined to be

dim(K /A
e(4) = lim im( k/ K)

)

which always exists and is an integer[131]. In the sequel, we sometimes write e(K) instead
of e(A) when a particular operator acting on K is specified. Here we assume that the natural
operator acting on M is the compression of TontoM .

Proof: LetS = P,.1Tl|,,1 bethe compressionof T onto M*. Then we have the Samuel
multiplicities

dim(M L /SkML
e(ML) = |im T/ )
k—> oo k
and
dim(K/T*K
e(K) = llim im( k/ )
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We first show that for any Fredholm operator T € B(L) acting on a Hilbert space L, and for
any invariant subspace M’ € L, we have

fdl(M) + e(M1) = e(L) (38)
This follows by considering several exact sequences. We start by
0O->M->L->Mt-0.

Let I be the maximal ideal of the polynomial ring C[z] at the origin, and regard M, L and
M+ as Hilbert modules with the natural module action, then

M L M

- - -0
I*M I¥KL TkMmt

IS exact.

Complete it to get

I“"L L Mt

0= M+ =k ™ Teprs

0

k
Now observe that dim (M +7.-) = dim(P, g i, M) = dim(P, g, M) (which, divided

by k, converges to fd' (M)), combined with the definition of the Samuel multiplicity, we can
complete the proof of (38).

Now we show that for any analytic operator T € B(K) and for any invariant subspace M <
K, we have

fd(M) = fd (M) (39)

Now we come to the main step in the proofand we show that for any Fredholm operator T €
B(L) acting on a Hilbert space L, and for any invariant subspace M < L, we have

fA' (M) + e(M L) = e(L) (40)
Consider the quotient module Q corresponding to the submodule M in L, that is,

Ly 0,(L)
M, 0p(M)

+(z—-T)0y(L)

By the additively of Samuel multiplicity for Noetherian modules over the ring O, [132],
which is a classical result in commutative algebra?

e(ﬁo) +e(Q) = e(Zo)

By the identification of the Hilbert polynomials of a Hilbert module and its sheaf model in
[133], we have e(L,) = e(L). So it suffices to show that e(Q) = e(M ™). For this we will
show that there exist natural, surjective module homomorphism’s i, j such that
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L Y i Q j Mt
e 7 ﬁ
I¥L mkQ 1ML

Then by[133]again, the natural module homomorphism

L Ly _ 0,(1)
- = =
I*L  mFL,  zF0,(L)

+(z—=T)0,(L)

given by sending h € H to the class represented by the constant function f(z) = h is always
an isomorphism. So it induces a natural surjective homomorphism

L Oy (L)
ﬁ-l_M_)szO(L)-I_OO(M)-l_(Z_T)OO(L) (41)
Since
QL %W o )+ 2 =T)0y (L) (42)

m*Q T zk 0o (L)
so we obtain the first natural homomorphism i.
Next we consider another natural isomorphism established in [133]

ML 0p(mh)
ML~ (z=5)0, (ML)

+ zkO, (M),
where S = P,,.T|,,+. Since each element x = O, (L) can be uniquely decomposedasy + z
fory € 0,(M) and z € O, (M), we have

ML 0,(0)
feart = oM+ =0 D

+ 280, (ML) + 0, (M) (43)

MJ_
“ 1o ,
mkQ IkmL

By comparing (42) and (43) we conclude that there exists a natural map from
by taking the quotient homomorphism, hence surjective, since

(z— 5)00 (Ml) + OO(M) 2 (z - T)Oo (L).

1

. . , . L M
So we have the existence of a natural homomorphism j o i:-—+ M — -~ Because such

a natural homomorphism must be the identity, we can conclude that e(Q) = e(M ) by the
definition of e(-).

Definition (5.3.13):[118] Let T be an analytic operator in B(K). An isometric module map
U from K to H is called a CF embedding of T if H is a Hilbert space of vector-valued analytic
functions satisfying (i)—(iv).

Again, by a module map we mean that U intertwines Ton K and M, on H by UT = M, U.

Definition (5.3.14):[118] For an analytic operator T € B(K), its fiber dimension range
fr(T) is defined to be the following subset of positive integers
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fr(T) = {fd(U(K)): U is a CF embedding of T}.

By [126], we see that cod(K) = dim(K © TK) € fr(T). On the other hand, since
fd(U(K)) < cod(U(K)) = cod(K), we know that fr(T) € {1,2,...,dim(K © TK)}.

Hence a natural question is when a subset of N is the fiber dimension range of an analytic
operator.

Conjecture(5.3.15):[118] There exists an analytic operator T € B(K) such that 1 # fr(T).

Conjecture(5.3.16): Let S ={T|\: T € A, and M is invariant forT}and &' ={T €
A, forn =1,2,...},then © # &',

Theorem (5.3.17):[118] For an analytic operator T € B(K), we have 1 € fr(T) if and only
if there exists a Hilbert space H of scalar-valued analytic functions, satisfying (i)—(iv), and an
invariant subspace M’ € H suchthat T is unitarily equivalent to M, |,,.

The collection of analytic operators S = {T: 1 € fr(T)} is unitarily equivalent to the
collection &' = {S|,,}, where S € B(H) and S € A, (2) for some 2 around the origin, and
M < H is an invariant subspace. We mention that similar result holds analogously when the
assumption 1 € fr(T) is replaced by k € fr(T).

Proof :  One direction is trivial. For the other direction, we assume 1 € fr(T). That is,
fd(U(K)) =1 for some U: K — H,, where H, is a Hilbert space of vector-valued analytic
functions over a domain 2. By Lemma (5.3.33), we can find another CF subspaceH, € H,
containing U (K) with dim(H, © zH,) = fd(H,) = 1.

It remains to realize H, as a Hilbert space H of scalar-valued analytic functions. To this end,
fix a nonzero element h € H,, then since fd(H,) = 1, an element g € H, other than h can
be written as g = g'h for a scalar-valued analytic function g’ over any domain 2’ that does
not meet the zeros of h. Now we cantake H ={g': g = g'h € H,}as a function space over
' equipped with the obvious Hilbert space structure via that on H, and let M = {g": g =
g'h e UK)}

Conjecture(5.3.18):[118] A subset A € N is equal to the fiber dimension range of an
analytic operator if and only if A is a continuous block.

Here by a continuous block Awe mean that if k < t, and k, t € A, then any integer between
k and t is also in A. An illustrative example is T = M, |,, for an invariant subspace M €
L% (D) of the Bergman space with codimension three, dim(M & zM) = 3. Then we clearly
have 1,3 € fr(T). Conjecture (5.3.18) says that we should have 2 € fr(T) also.

Lemma (5.3.19):;[118] Let T € B(K) be any bounded operator and let 1 € p.(T) be any
point in its Fredholm domain. Then there is a positive number € > 0 such that
dim(K/(T —pw)K) =e(T; A) for any 0 < |u —A| <€ and where e(T; 1) denotes the
Samuel multiplicity of Tat A.

Theorem (5.3.20):[118] For an invariant subspace M of an analytic operator, the additivity
formula of Samuel multiplicity holds for M if and only if M is CF.
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Proof: By fixing a CF representation, we may regard M as an invariant subspace of M, on
a Hilbert space H satisfying (i)—(iv) over a domain (2.

If M is CF, then M has the division property at any m-point A by Lemma (5.3.4), which
implies that if (z —A)f € M, then f € M. So ker(S;; — 4) = {0} for such a 1. Hence,

0, (Spc) N 2 € Zyy (M)

by the definition of m-points. Moreover, observe that Z,, (M) is a discrete subsetof 0. It
follows that

ker(S;; — 1) = {0} (44)
foralmost all 1 € .

On the other hand, by the above lemma from [131], for each of T = R,,,S;,, and M,, and
K =M, M+ and H, respectively,

e(T) = dim(K /(T — w)K) (45)

for almost all A € 2. To see this, we can first conclude, by a direct application of
Lemma(5.3.19),the claim (45) for almostall A in a small neighborhood. Then Lemma(5.3.19)
also implies that the Samuel multiplicity e(T;A) is locally constant in any connected
component of the Fredholm domain. Since we assume that (2 is connected, we can show claim
(45) for almost all A in any neighborhood in 2. That is, we have (45) for almost all A € 0.

Foralmost all A € 2, both (44) and (45) hold. In particular, we can find at least one point for
these two equalities to be true. Let us fix sucha 4, € 0.

Next we consider the short exact sequence
O>-M->-H->MLt-0
and the associated exact sequence forany 4 € C

M H mt
- -
Ry—IM  @-DH  (S—A)Mmt

0-ker(S)r — 1) —» - 0 (46)

which can be obtained by considering the so-called snake lemma [132].

Now choose A = 4, in (46) and count the dimensions of all terms, we obtain the Samuel
additivity formula.

If M is not CF, then still by Lemma(5.3.4), it is not divisible atany m-point A. So there exists
a nonzero vector f € H such that (z—A)f € M but f € M, which implies that P, .f €
ker(S,, — A). We conclude that ker(S;, — A1) is non-zero almost everywhere. Pickany A, €
0 suchthat (1) ker(S, — 4,) is non-zero, and (38) (45) holds forall R;;, S, and M,. Now
we count dimensions in (46) again, it follows that

e(Ry) +e(Sy) — e(M,) = dimker(Sy, —4o) =1
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So the Samuel additively formula fails.

Corollary(5.3.21):[118] Let M be an invariant subspace of an analytic operator. Then the
inter-section o, (S») N 2 either contains the whole domain (2 or is contained in a discrete

subset. In the former case, M is not CF; in the latter, M is CF.

Proof: By the proofof the above theorem, ker(S,, — 1) = 0if and only if M has division
property at A. If M is CF, then M has division property at all A except for a discrete subset,
which implies ker(S;; — 4) = 0 for all A except for a discrete subset. If M is not CF, then
M does not has division property at A when A is an m-point. On the other hand, by
considering the Fredholm index, M does not have division property at any degenerate point,
so ker(S,, — A1) # 0 forevery A.

We contains three results (Theorem (5.3.23), Theorem (5.3.32) and Theorem (5.3.30)) related
to the formula [120]

fA(M,) + fd(M,) = fd(M, v M) + fd(M, N M,). (47)

Lemma (5.3.22):[118] Let M, and M, be two linear subspacesin a linear space of vector-
valued analytic functions, then

fd(M;y) + fd(M,) = fd(M, v M) + fd(M; N M,). (48)
Proof: Let A € 2 beacommon m-point of M}, M,, M; N M,, and M; V M,. Set
E=M,A)nM,(A), E'=M,nM,)A), E,=M;Q)OSE, i=1,2
Then dimM; (1) = dimE; + dimE, i = 1,2. hence
fd(M;,) + fd(M;,) = dimE; + dimE, + 2dimE

> dimE; + dimE, + dimE + dim E’

= fd(M, v M,) + fd(M, N M),
where the inequality follows from the fact that E’ < E and the last equality follows from

(M, vV IM,) (D) = M (D) VM, (A).

Theorem (5.3.23):[118] Let H(k)be a functional Hilbert space over the domain (2,
determined by a complete Nevanlinna—Pick reproducing kernel k. Supposethat M, and M,
are two invariant subspacesof H(k) ® C¥,N € N. Then

fd(M,) + fd(M;,) = fd(M; v M,) + fd(M, N M,). (49)

Now a natural question one may ask is the corresponding problem for codimension. Along
this direction Chailos [108] proved

cod(M;) + cod(M;,) = cod(M; VM) + cod(M; N M,). (50)

under quite general conditions.
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Lemma (5.3.24):[118] Given a family of linear subspaces {J\/Ey}yer in a linear space of
vector-valued analytic functions H satisfying (i)—(iv), there exists a finite subset S,of I' such

that
i \/ 2, | = \/ e,

YESy YEr

Proof: Let M' =V, M, and let £ denote the space of all finite linear combinations of
functions in M,y € I'. Then £ = M, and for each 1 € 22,

L) =LA =M (51)
Assume that fd(M) = d and let 1, be an m-point of M. Moreover, let

d' = supdim \/My (A0),

YES

where the supremum is taken over all finite subsets S of I'. Note that d’is always achieved.
Soassume that it is achieved at some finite subset S = S, of I'.

If d’ < d, then there exists a vector v € M'(4,), which is not in (Vyes My)(lo). Then by
(54), v € (V,es M, ) (4,) for another finite subset S; < I'. In this case,

dim \/ M, |(Ao) > d',

YESov 51

contradicting the definition of d'.

Lemma (5.3.25):[118] For a family of CF subspaces {My}yer of an analytic operator, if
the span of any finite sub-family is CF, then the span of the whole family V., M, is CF.

Proof: Let M =V, M,. Now fix a CF representation. By Lemma (5.3.23), we can find a
finite subsetS, of I" such that

fd(M") = fd(M), (52)
where M'" =V, 5, M. This implies that
mp(M") S mp(M) (53)
Through similar arguments, the inclusion (53) can be strengthened as the following
Claim(5.3.26):[118] If Vis a subspace between M ' and M, then
mp(M") € mp(N) € mp(M) (54)
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Let £ denote the space of all finite linear combinations of functions in M, y € I'". Then L=
M. Let 1 € 2 bean m-point of M’ then A is also an m-point of M by (53).

Supposethat (z — A)h € L for some h, it suffices to show that h € M. From the definition
of £, there exists a finite subsetS; of I' suchthat (z — A)h € M =V, 5, M,,. Clearly,

(z—ADheM'vM" = \/ M,
YESHVS,

By assumption, we know that M’ v M " is CF.So M’ v M " is divisible at A since A is also
an m-point of M''v M" by the above claim. This implies that

heM'vM"'c M
as desired.

Lemma (5.3.27):[118] Let M be an invariant subspace of a Hilbert space H satisfying (i)—
(iv) and A € 2 be any m-point of M. Then the following are equivalent.

(i) M is CF. )
(i)  There is an invariant linear manifold £ € M with £L = M, suchthatif (z—A)h € L
forsome h € H,then h € M.

Claim(5.3.28):[118] There exists a sequence {h,,} in M such that (z — A)h,, » (z — A)h.
Since L is dense, we take a sequence {f;,}in £ with f, = (z — A)h.

Subclaim(5.3.29):[118] There exists a sequence {k,}in £ suchthat k,(1) = 0and k, —
fn = 0.

Proof: Supposefd(M) (= fd(£)) = s, wetake g,,..., g In Lsuchthat {g, (1),...,9:,(1)}

form a base of M'(1). Then for any fixed n, there exists {c,;};_, such that f, (1) =
3 _1Cnigi(4). Note that f,,(4) — 0 by the choice of {f,,}, we have c,; > 0asn — oo for

every 1 <i <s.Finally, setk, = f, — X5_; c.u9g:(4), then {k,} satisfies all requirements.

Theorem(5.3.30):[118] Let M, M, betwo CF subspacesofan analytic operator. if
then the span M; v M, is CF.

Proof: Assume fd(M; N M,) = n. Let 1 € 2 be a common m-point of M, M,,M; N
M,, M, VIM,,and H with respectto a fixed CF representation of T.

Under our assumption on fiber dimensions, it is easy to see, by checking the proof of Lemma
(5.3.18), that M; (H) N M, (A) = (M, N M,)(A), which enables us to choose f;,...,f,, €
M, n M,, such that

E' =span{fi(1), ..., f,(D)}.

For further discussion, we take {f’, ..., fil._, € M;, i = 1,2}, such that
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E; = span{fi (D, ..., i _n(D}.

Then

M;(2) = span{fi (D), .., fit _n (D, i ), e, o (D)}
when n; = fd(M;)and fi',..., fu.—n, fi, .-, f @re linearly independent in M,
i =1,2 Let

ki =P (), s Kiyn = Pi(flin ), i = PR, o U = PR,
where P; is the projection from M;; onto ((z- A)Mi)l. Then
i) = A, s ko) = DU D = £, o, (D) = /(D)
Hence
ki), o ko (D), B, ., (D)
are linearly independent, and so are
ST S LR 1
Moreover, they form the base for M; © (z — A)M since M; is CF.
Claim(5.3.31):[118] M + M, has the division property at A.
Indeed, if (z— A)h € M, + M,, then we write
(z—MDh=g,+ g,,9; EM;,i =1,2.
Then there exist constants ci,..., ¢, _,, d},...,d;, and h; € M; such that
g; = ciki + -+ cpnkp _p +di + -+ dpl + (2 = Dhy, i = 1,2
Obviously, g, (1) + g, (A1) = 0. Meanwhile,
K, kD), =12, HAD)=BQ,.., 10D =12

are linearly independent, so

¢t=0,u.Chn=0di+di=0,..,d;+d;=0
By the construction of 1¢, 15, ..., I}, i = 1,2, there exist functions v, v}, ..., vi € M; such that

U+@-Dvi=f=0F+0-Dv}, j=12,.,n

Therefore,
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lji =fi—-(z-Dv}, i=12; j=12,..,n
Hence
(z—Dh=g,+ g,
=di(li =11+ +dp(ly — 7)) + (2= D(hy + hy)
=dizz-NVWwE—-vH)+-+diz-2DW:—v)+ (z—2)(h  +hy)

which implies that h=di(vf —v{))+ -+d;(v>—v)+h,+h,eM;+ M, , as
desired.

Theorem (5.3.32):[118] Fora given analytic operator, if any two of its invariant subspaces
M, M, satisfy

fd(M,) + fd(M,) = fd(M; v M) + fd(M; N M,). (56)
then any two of its invariant subspaces JV;, V, also satisfy
cod(NV;) + cod(N;) = cod(NV; VN,) + cod(V; NJV,). (57)

Proof: We will indeed prove that every invariant subspaceis CF. We first observe that it is
not hard to show that every invariant subspace generated by one element is CF and we leave
out the proof here. Then, equipped with Theorem (5.3.30) whose proofis given a little later,
we can use an easy induction argument to show that any finitely generated subspaceis CF.
Again, the details are skipped. Next, Lemma (5.3.25) means that every invariant subspaceis
CF, hence (56) implies (57).

Definition (5.3.33):[118] Let M, M, be two invariant subspaces of an analytic operator.
We say that M, is absorbed by M, denoted by M, < M, if

cod(M, v M) = fd(M,). (58)
Note that in case M, < M, M, VM, is necessarily CF since
fd(M;) = cod(M; vV M,) = fd(M; v M,) = fd(My).
So
cod(M, v M) = fd(M, v M) = fd(M). (59)

Lemma (5.3.34):[118] Let M,, M, be two CF subspaces of an analytic operatorand A € 2
be a common m-point of M, < M; and M, vV M, with respect to a fixed CF representation.
The following are equivalent.

(i) M, < M.

(i) M, (1) € M, (A, and for any v € M,,, there are sequences {g,il}:lo=1 in M;; such that
gt =v,i=12and ||g} — g2|]| > 0asn - oo.
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Proof: (i) =(ii). If M, < M, then fd(M; v M, ) = fd(M;) hence M, (1) € M, (1). Now
for any v € M, (1), we can find f; € M;,i = 1,2,such that f;(1) = v. Since M; VM, is
CF, f, — f, = (z— A)h for some h € M; v.M, by the division property. Now take h!, €
M;,i=1,2, suchthat h — h2 — h. Then it is easy to check that g%, = f; — (z — A)hl,i =
1,2, satisfy the requirement of (ii).

(i) =(i). Since M, (A1) € M, (1), one has fd(M; v M,) = fd(M,). So it remains to show
that M, v M, is CF.

Suppose that
(z—MVDh=fi —f, e M; + M,

for some h€ H and f; € M;,i =1,2. We need only to show that h € M; v M,. Now
i) = £,(1) = v € M, (), choose g& as in condition (i) with g’ (1) = v, then

(z=Dh =L —gn) — (p —g2) + (gn — 92)-
By the CF property of M, and M, we have
fi —gi = (z— 2)h!, forsome K, € M;,i=1,2.
Hence
(z—=Dh=(z - Dhy— (z—Dhi + (gz — g2)- (60)

Note that M, — A is bounded below and g} — g2 — 0, asn — oo. Multiplying Zi—)l to both
sides of Eq.(60), one has that hl —h% - h soh € M, V M.

Lemma (5.3.35):[118] Let M, XV, L be CF subspaces of an analytic operator such that
fd(M) =fd(NM)and M € V. If M < L, then V' < L.

Theorem (5.3.36):[118] Given a family of CF invariant subspaces {My}yer and another

CF sub-space V' of an analytic operator, if each M, is absorbed by V', then so is the span
Vyer M.

In particular, if in a family of CF subspaces {My} , there exists M, such that every M,
Yer Y
other than M, is absorbed by M, , then V, - M, is also CF.

Proof: Wefirst treat the case that I'is finite, then the general case.

STEP I: I' is a finite set. Without loss of generality, assumethat I' = {1, 2, ..., n}(n € N). We
shall show by induction that M; v---vM; < N, i =1,...,n. Note that the casei =1is
trivial.

Now assume that M, V---v M;_, is absorbed by V', which implies that
M—l == N VMl V"'V Mi—l
is CF with
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cod(NV;_,) = fd(V;_,) = fd(V)
By the definition of absorbance, it is easy to check that V' < V;_;. Then by (59) we have
fd(v v M;) = fd(V)

since M; < V,i =1, ...,n. Next by lemma (5.3.35), if V' is absorbed by %V;_;, then so is
N VM;. Thatis, N VM; < N;_,, which implies that

cod(W VM, Vv M;) = fd(V;_;) = fd(V).
Hence M, v---v M; < IV by definition.
STEPII: I' is a general index set. Let
N, =M, VN, yer

Then each IV, is CF since M, < N. The conclusion of STEP | implies that the span of any
finite sub-family {Ny}yer is CF. So the whole span V¢, 2V, is also CF by Lemma (5.3.27).

By lemma (5.3.25), we can take a finite subset S, of I' such that

| \/ »% | =t \/ (61)

YE€So YEr

By STEP I, we can check that

as desired.[3].

Theorem (5.3.37):[118] Let M bean invariant subspace of ananalytic operator on a Hilbert
space H, then:

(1) There exists a unique, smallest invariant CF subspace E (M) containing M ;
(i)  E(M) preserves the fiber dimension of M,

fd(E(M)) = fd(M);
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(i)  The interior approximate spectrum is preserved in the following sense:

0up(Sie) N2 = 04,(Spe) N 27,
where S, is the compression of T to M+ and 2* is the conjugate set for £2. Here 2 is the
underlying domain for the analytic operator.

Corollary (5.3.38):[118] For any analytic operator T, the collection of CF invariant
subspaces for T forms a complete lattice with respectto intersection and enveloping.

Claim (5.3.39):[118] The intersection of any family of CF invariant subspaces is still CF.

Lemma (5.3.40):[118] Forany family of CF subspaces;,i € F,let I = Nz I;. If there
exists one common m-point for I and all 1;, then I is CF.

Lemma (5.3.41):[118] Forany family of CF subspaces{/;};cz, letl = N;cx I;. If fd(l;) =
fd(I) forany i € F, then I is CF.

Lemma (5.3.42):[118] For any invariant subspace M of an analytic operator there is an
invariant CF subspace M’ containing M with fd(M") = fd(M).

Proof: We will use an iteration algorithm to construct the CF subspace M’ with desired
properties. To this end, it suffices, without loss of generality, to regard M as an invariant
subspace ofa Hilbert space H satisfying (i)—(iv) via a fixed CF representation.

Take an arbitrary m-point A, € 2 of M. Let
M, ={f e H:(z—2A)f € M}

Then it is easy to check that M is closed, hence is an invariant subspace containing M. Note
that if M is CF, then M; = M by Lemma (5.3.4), and we can stop our algorithm. Moreover,
It is easy to check, by definition of M, that for any point A other than A,,

M) = M, (D).

Therefore fd(M;) = fd(M), and by basic properties of fiber dimension that A, is actually a
common m-point for M and M; (hence M (1,) = M, (4,). as well).

Inductively, we can construct an increasing sequence of invariant subspaces by letting
M, ={f €H:(z— Ao)f € M},_+}
then we clearly have
MCM,SM,S - CM,..
Each M, is a closed invariant subspace, with two further properties

(1) fd(M;,) = fd(M).
(i) A, is an m-point for M.

If M, is CF for some n, we set M'' = M and stop the algorithm. Otherwise, we set
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Vo

Here V denotes the closed span. In the latter case, a moment thought shows that fd(M") =
fd(M) and since M € M'’, 4, is a common m-point of M and M.

Next we show that M " is CF in order to finish the proof of Lemma (5.3.42). Observe that M’
admits a dense linear manifold £ consisting of finite linear combinations of functions in M,,.
By Lemma (5.3.27), it suffices to show that whenever (z —A,)h € L,h e M'. In fact,
suppose that (z — Ay)h € L for some h € H, then there exists an n, such that (z — 1,)h €
M, hence h € M, ., S M bythe construction of M, ,,,s0 M"is CF.

Claim (5.3.43):[118] Forany invariant subspace V',
0ap(S7)NQ" = {1 € Q:dimN (1) < fd(H)}".

Given Claim (5.3.43), we distinguish two cases. If fd(M) = fd(E(M)) < fd(H), it follows
by Claim (5.3.43) that 6, (S3e) N 27 = 04y (Serey) N2* = 0% If fA(M) = fd(E(M)) =
fd(H) , then by Claim (5.3.43), 0,,(Sy) NR*"=Z,,(M)" and aap(S;i(M)) nN* =
Zag(E(M))". So it suffices to show that Zu, (M) = Zu, (E(M)) and this reduces to
Zag (M) € Zy, (E(M)) since the other direction is trivial. However, we have shown in the
proof of Lemma (5.3.41) that for any A in 2, M''(1) = M'(4), where M " is a CF subspace
containing M hence Z,(M)=Zza(M') . But M'2E(M) hence Z;,(M")C
Zyq (E(M)).

For the other direction, one considers the natural short exact sequence of Hilbert modules
0->-N->H->N*t-0.

Let I, bethe maximal ideal of the polynomial ring A = C[z] at A. Applying the tensor product
factor- ® 4 A/I;, which is right half-exact, one has the following exact sequence

N iy H NJ'
S -
LN  LH LNt

- 0. (62)

Now the assumption that dim V' (1) = fd(H) forces i, to be surjective, hence IN]; = {0}.
A

Therefore, S, — A is surjective, which implies that 1 ¢ Oap(Sa)-

Definition (5.3.44):[118] Suppose that {M};, is a family of invariant subspaces of an
analytic operator, then the subspace

(M) = [ |24y,
Y

where the intersection is taken over all CF subspaces M, suchthat V;; M; < M,,, is called
the CF-envelope of {M;} ;.
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That E({M;};c;) is always CF follows from Claim (5.3.39) in the proof of Theorem
(5.3.37).[12].

Corollary (5.3.45):[118] Under the hypothesis of Theorem (5.3.37),

() 1M is CF,then o ,(Sy) N 2" = a(Sip) N 0%;
(i)  If M is not CF, then (2)* S a(S;).

Proof : () We have to show the inclusion a(S;,) N 2" S 0,4,(S;,) N2*. The case

fd(M) < fd(H) follows directly from Claim (5.3.43). For the case fd(M") = fd(H), assume
that A € 2*\0,,(S;.), then inclusion amounts to that ran(S;, — 4) is dense in M+ as can be

easily seen. While the density of ran(S;, — 4) in M 1 reduces to that M has the division
property at A, which is also a consequence of Claim (5.3.43) in the proof of Theorem(5.3.37).
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Chapter 6
Volterra Invariant Subspaces

We show that the result can be applied to derive complete characterizations of such
subspaces in a large class of Banach spaces of analytic functions in the unit disc containing
the usual Bergman and Dirichlet spaces. Each invariant subspace of parabolic non-
automorphism composition operator always consists of the closed span of a set of eigen
functions. As a consequence, such composition operators have no non-trivial reducing
subspaces. We also include a characterization of the closed ideals of the Banach algebra
W12[0,00). Although such a characterization is known, the proof we provide here is
somehow different. Inspired by Sarason’s results, we find the lattice of closed invariant
subspaces of the shift plus complex Volterra operator acting on the Hardy space.

Section(6.1): Volterra Invariant Subspaces of H?

The Volterra integral operator

V. f(2) = f FOdt

is well-defined for functions £ in the Hardy space H* and for all |a| < 1. It maps H! into the
disc algebra and its spectrumon every Hardy space HP (p = 1) consists of a single point 1 =
0.The resolvent of I/, can be expressed as

A-v)= z Aty %0,
n=0

where the series converges in the operator norm. A closed subspace M of HP is I/, -invariant
if V,M c M. The lattice of all V/,-invariant subspaces of HP was described by [135] in the
case when p =2 and a = 0. Donoghue’s method is pure operator theory, and hardly
adaptable to other values of p and especially if |a| = 1.

Theorem (6.1.1):[134] (i) A proper subspace M of HP (p > 1) is V,-invariant, where
la| < 1 if and only if there exists a positive integer N such that

M = bY HP

Where b, (z) = ——;

1-az

(i) A proper subspace Mof HP(p > 1) is V -invariant, where |a| = 1 if and only if there
exists a t > 0 such that

M = SLHP

where S, (z) = exp i—z
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Corollary (6.1.2):[134] The lattice of V, -invariant subspaces of H?(p > 1)is linearly
ordered by inclusion.

The description of the invariant subspaces for the operator V: L2(0,1) — L?(0,1),

Vi) = f F@)dt,

Is essentially the problem posed by [136] and first solved by [137] who showed that all V-
invariant subspaces of L?(0,1) have the form

Mt - X(t,l)Lz (0,1), O <t< 1,

and thus form a linearly ordered lattice. The result has been extended to a larger class of
integral operators by [53], [138] found a different approach to the problem by identifying a
resolvent of the Volterra operator with the restriction of the backward shift to one of its
invariant subspaces.

The method we use for proving Theorem (6.1.1) bears strong resemblance to the classical
methods going back to Wiener, Carleman, et al. in the study of invariant subspaces and also
to Sarason’s ideas mentioned above, even if in the case considered here, we encounter a
different situation.To be more specific, our approach is based on a combination of duality

between HP and H9, =+ 2 = 1, and some harmonic analysis based on Borel transforms of

p q
complex conjugates of HP-functions on the unit circle T = dID, where D denotes the unit
disc. Given h € HP its Borel transform is the entire function defined by

h(Q) = f e, h dm,
T

where e, (z) = e*?and dm = lzd—;'is the normalized Lebesgue measure on T. The space of

entire functions which are Borel transforms of elements of H? is denoted by V,. Now if we
start with V-invariant subspace M’ c HPthen it is not hard to verify that the Borel transforms

of the complex conjugates of the functions in M+ c Hq,i+ % = 1 form a closed subspace

of V,that is invariant under a rank-one perturbation of a backward shift depending on the
point a € D. Both objects involved here, the space V,and the rank-one perturbations of the
backward shift acting onit are not well understood. However, all invariant subspaces of these
rank-one perturbations of backward shifts share a slightly more general property called nearly
invariance. A closed subspace NofV, is called nearly invariant if for every f € V" and every

A € C which is a zero of f, but not a common zero of V', we have (Z+/1) € V. Nearly

invariance plays a crucial role in a number of important problems related to invariant
subspaces for various operators, like for example, the shift onthe Hardy space over a multiply
connected domain [62,61], or the differentiation operatoron C* [139]. The main result about
nearly invariant subspaces of V, is proved and essentially asserts that a nearly invariant

subspace where multiplication by the independent variable is densely defined must be
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invariant for differentiation onV, and thus it is the Borel transform of the complex conjugate
of a space of the form (6H?)*, where 6 is an inner function.

We apply this result in order to show a similar structure theorem for V,-invariant subspaces
In every Banach space X which consists of analytic functions in D and has the following
natural properties

(1) Point evaluations are continuous functionals on X,

(i)  Multiplication by the independent variable is bounded from above and below on X,
(ili)  Xis invariant for composition with analytic selfmaps ¢: D — Dof the form ¢(z) =
cz+d, c,d € C, and the norm of such a composition operator is dominated by a negative
power of 1 — |p(0)],

(iv)  There exists a nonnegative integer m such that the Banach algebra of analytic
functions in D whose mth derivative belongs to the disc algebra (with the usual C™(D)-
norm) is continuously contained and dense in X.

When applied to concrete cases, this result yields an extension of Theorem (6.1.1) to H.
The first part of this result holds true in all spaces H?,0 < p < oo and is proved with a similar
method. We obtain a complete characterization of all V, -invariant subspaces in the standard
weighted Bergman spaces as well as in most standard weighted Dirichlet spaces.

We shall focus on Borel transforms of complex conjugates of HP-functions on the unit
circle. Given h € HP with p > 1, its Borel transform A is the entire function given by

h(2) = f e, h dm.

T

We shall denote by V, the space of entire functions obtained this way endowed with the
induced norm

|7], = in,, h € HP.
14

Clearly, V, is a Hilbert spaceand if f € V, with f(2) = X,,50 f,,Zz™ then

I£112 =2|fn|2(n!)2 <o,

This space of functions has been considered by [140] in connection with infinite differential
equations. In [140] it is observed that the norm in V, actually is a weighted L2-normand this
is due to the fact that (n!)? are the moments of a measure on [0,0). There is a lot of
information available about sequences of the form ((n!)¢), [141].

Proposition (6.1.3) :[134] If f € V, then

IFIIZ, = 2 j f | () [2e22 44 () dA(w) = j ()20 () dAGw),
C

c C
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Where

oo

lul?
v = [ F e
[ t

0

Proof: The first equality follows by a direct calculation with Parseval’s formula. To see the
second, note that for w # 0

1

lw|? |]C(u)|26—|u|2/|w|2 dA(uw)
C

j If (zw) 277" dA(2) =
C

and integrate this identity on C against the measure e~ "!* dA(w). Then the result follows by
Fubini’s theorem.

We shall denote throughout by ¢ the identity function on C, that is, {(z) = z.

Proposition (6.1.4):[134] (i) The spaces V,,,p > 1 consist of functions of exponential type
at most one. Moreover, if f € V, then

If (D] =o(e)
when || = oo.

(i) If f €V, with f = h,h € HP then fT€V,and f' = BRh whereBdenotes the backward

shift on HP. Consequently, the differentiation operator Df = f is a bounded linear operator
onv,.
p

(iii)y Fora € D and A € C denote by R, ; the integral operator defined on Hq,% +$ = 1by

Z

Ry 29(2) = f e*=9 g()dt.

a

If f €V, with f = h, h € HP and f(A) = 0forsome A € Cthen ((’%Devp with

f
=R’ h.
( - a,A
(iv) Anentire function f satisfies {f € V,if and only if f = h with h' € HP.

Proof: (i). By Holder’s inequality we have for % +§ =1

o) -

fez h dm

<Ilall,llelly < e |2 -
Vp
T
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To see the second part, note that the estimate is obvious when f = h where his a polynomial.

Then if f = he V, is arbitrary we can apply the first estimate to f — g, where g is a
polynomial to obtain

llmsupe A ra| < ”h g”

Al >0

and the result follows from the fact that polynomials are densein H?.

(i) is immediate since
0= [ 26@RGAmE = [ & @FRG) dn().
T T

(iif). Note that

e, — e(a—/l)ae/1
Ra,)tea = 7 — 1
Since h annihilates e, we obtain that
R ) ! o] f(@)
Ra,/lh(a) = j Rge.(2)(z) dm(z) = mf e, (2)h(z) dm(z) = p—
T T

(iv). If {f € V, we have by (iii) that f = e Vyandif {f =g 7 then for any a € D we have

f=Raod
We shall show that (R;,,g) € HP whenever a € D and g € HP. Since

¢
(i)

(R og) D —ngao

and

1-2z 1 1 1
o ( )

—la +/T_2 1-2z 1-1a

i j(1 Wy

we obtain

=2t T TR =8y

(Ra og) (A)——fglogl_la +g(l)_ 9(0)

T

e (R 0 g) € HP whenever a € D and g € HP. The converse follows directly from the
equality
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= h.
The exponential type in Proposition (5.1.4) (i) cannot be improved since all of these spaces
contain the exponential functions e, || < 1, as the simple identity below shows

e = [ e

T

ST dm(z).

The main objects under investigation are the nearly invariant subspaces of V,,p > 1. Recall

that, by definition, a closed subspace V' of V, is nearly invariant if whenever f € NV and

A € C is azero of f, but not a common zero of V', we have L_euw.

¢-2

Lemma (6.1.5):[134] Forevery p>1and 0<e¢ < there exists a positive constant
C, c > 0 suchthat whenever f €V, and 4 € Cwith f (/1) =0

”_ 1f1lv,

< Cpe — (1)
1+ |A]2p° ¢

Proof: Assumethat A + 0 and let z; = I%I By Proposition (6.1.4) (iii) we have that if f = h

with h € H? and A € C with (1) = 0then

S _&
{_/'l RZAA

h,

so that, the result will follow once we prove the appropriate estimate for the operator norms
||R,.4]|- To this end, we integrate along the line segment from zto z, to obtain for every

q —_
g € H9, where q —

R;,29(2) = (2, —2) f e tUA=22) g (7 + t(z; — 2))dt.

Note also that R,, g belongs to the disc algebra, hence, it will suffice to work with the
boundary values of these functions. It is useful to recall that if |z| = 1 then

|z —2,|? = 2Re(1 — Z;2)
which implies that
1—|z+t(zy —2)|? =t(1—t)|z—z|>.

Now use the standard estimate

lg(z+t(zy—2)| <20(1— |z + t(z, - 2)|*) allgll,
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2 1 1 2
=2at a(1—t) alz—z] llgll,

in order to obtain for |z| = 1

1
2

2 A 1
R,,29(2)| < llgllg241z— 2] QJt 1(1—1t) 9exp[—t|2|Re(1 — Z32)]dt.

0

Forl<r<gqr = i we apply Hélder’s inequality to the above integral

1
1 1
j t a(1—t) 49 exp[—t|A|Re(1 —Z;2)]dt
0
1 1
1 T 1 r!
2 1

< j(t(l — t))_adt j exp[—r'tIAlRe(1 —Z32)]dt | < Cy,lz—2z]| [Al",

0 0
where the constant C, . > 0 depends only on g and r. This leads to the estimate

1 2 2

2
IR,,09(2)| < 24C, AT |z = 23" a7 |Igll,.

Forr' > 2p,ie.when 1 <r < %we have

2 2
which shows that ({ —z,)" @ ' € H%. Moreover, we have ' — 2p when r — ;—ql and the

result follows.

Theorem (6.1.6):[134] Let V' bea nearly invariant subspaceofV,,p > 1 without common
zeros.

() IffeN and {f € V,then f' € V.

(i) If the set of functions f € NV with {f € 1V, is dense in V" then IV is invariant for the
differentiation operator on V, and there exists an inner function 6 such that V" is the Borel
transform of (6 H4)*, where q = ppj.

Proof: (i) We start with the following identity which is valid for all functions of finite
exponential type, and actually is a reformulation of Hadamard’s factorization theorem. If f
Is a nonzero entire function of exponential type then
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F)=f@ (a +§+NZZO T A)) @

A#0

where a € C,m € N U {0}. Moreover, the series

z
f(2) 3)
f;:O Az—21)

A#0

converges uniformly oncompactsubsets of C. Consider a function f € V" such that {f € V,,.
Then by Lemma (6.1.5) we have that

(A(;]: A))H -0l

when |e| — oo and f (1) = 0, hence, by standard results about functions of exponential type,
we can conclude that the series in (3) converges in V,and the result follows. Under the
assumption in (ii), V" is differentiation-invariant and by Proposition (6.1.4) (i) V' is the
Borel transform of a backward shift invariant subspace. Then by Beurling’s theorem, V' has
the form in the statement.[142].

Proposition (6.1.7):[134] (i) For A € C\{0} the resolvent operator (1 —V,)"1:H? — HP
satisfies forevery b € D

zZ

A=V f(2) = [(A = Vo) fl(be =2/ + %e% f e () de

b
=[(1- Va)—l](b)e(z—b)//l +¥_ f(/l—b)e(zx_lb) +/1i2e%f e_% f(t)dt.
b

(i) If M is a closed subspace of H” which is invariant for V, then M is invariant for
(1 —=V,)~* forall 1 € C\{0}.
(i) Every exponential function e, is a cyclic vector for V.

Proof: (i) is a direct computation and will be omitted. To see (ii) note that since V, is
1
quasinilpotent we have that ||V.*|[» - 0 when n — oo which implies that for A € C\{0}

A-V) = z An-1pn,
n=0

where the series converges in the operator norm. Since M is invariant for V* the result
follows.

(ii). From (i) we see that for A € C\{0} with Aa #+ 1 and all b € D we have
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Yo _ et |[0=1) e, () — oD

A—V) te, —
( W) Aa—1 3 Aa —1

By (ii) the left hand side belongs to the V,-invariant subspace generated by e,and cannot
vanish identically because I/, has no eigen values. Then the V,-invariant subspace generated

by e, contains e, forall 2 € C\{0} with Aa # 1 and the result follows.
Lemma (6.1.8):] 134] A nonzero function f € HP belongs to S.HP if and only if

lim sup(1 —r) log|f (ra)| < —2t.

r-1-

Proof: We recall first a well-known fact about Poisson integrals of finite measures on the
unit circle. If wis a harmonic function in D of the form

u(z) = j P, du, z €D,
T

1—1z|?

where Pz(e"f) = - IS the Poisson kernel and u is a finite measure on T then [143] for

|eit—z]

every a € T we have
lim (1 —ru(ra) = 2u({a}d). (4)
r->1—

Our second observation is that if B is a Blaschke productthen

limsup(1 — r) log|B(ra)| =0

r-1-

forall a € T. This is adirect consequence of the Phragmen—Lindelof principle. Indeed, if we
assume the contrary:

limsup(1 —r)log|B(ra)| = -2t <0

r-1—

then the Phragmen—Lindel6f principle immediately implies that BS_" is bounded on D,
which gives a contradiction.

Now if f € HP is not identically zero, we use the canonical factorizations of such functions
to write

log|f| = log|B| + u,

where B is a Blaschke productand u is the Poisson integral of a finite measure on the unit
circle and the result follows by the above considerations.

YV

2 denotes the Blaschke factor with

Proposition (6.1.9):[134] (i) If a € D and b,(z) = —
a zero at a then for every positive integer Nthe subspace bl H is invariant for V/,.
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(i) If la] = 1and S,(2) = expg is the atomic singular inner function with singularity at
a, then for every t > 0 the subspace S{H? is invariant for V.

Proof: Part (i) is obvious, while (ii) follows by Lemma (6.1.8). Indeed, according to this
result we only need to show that

lim sup(1 — r) log|V, f(ra)| < —2t

r-1-

whenever f € HP is not identically zero and

lim sup(1 —r) log|f (ra)| < —2¢,

r-1—

and this is immediate.[135].

Theorem (6.1.10):[ 134] Let M be a nontrivial invariant subspaceofV,on H?,p > 1.
(i) If a € D then there exists a positive integer N suchthat M = b HP.
(ii) If |al = 1 then there exists t > 0 suchthat M = SEHP.

Proof: Note first that for every V,-invariant subspace M, the Borel transform N of ML is

1 1 - . . . .
a closed subspace of V,, —+-= 1 which is nearly invariant and has no common zeros in
p q

-1
C. Indeed, by Proposition(6.1.7) (ii), M is invariant for (i — Va) ,a # 0, hence, M1 is

invariant for the adjoints of these operators. Then if f € NV with f = hh € M2, and for
every a € C\{0} with f(a) =0 we can apply Proposition (6.1.4) (iii) to conclude that

{%a € V. By continuity we see that this property holds for « = 0 as well, and the claim
follows.

Given a subspace M as in the statement, let M, be the V -invariant subspace defined by
M, = WM

Clearly, M, is V -invariant and if g € M then V, g € M. Moreover, M- is the closure of
VMt in H?. The Borel transform 2V of the complex conjugate spaceJ\/[—1l is a nearly
invariant subspace of V, without common zeros in C and, in addition, since V; M+ is dense
in M;- we can apply Proposition(6.1.4) (iii) and (iv) to conclude that the set of functions f €
N; with {f € V, is dense in JV;. Thus by Theorem (6.1.6) (ii) we have that M; = 6HP for
some inner function 6 € H™. Let A4 be the union of the zero set of 6 and the supportof the
singular measure corresponding to its singular inner factor. For every g € M, and every
integer n > 1 the function 1*g belongs to the disc algebra and hence, its extension to D

must vanish at all points of the set A,. Since

z

j(z —w)™ 1t gw)dw,

a

Vang(z) = (Tl — 1)'
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we conclude that for every b € Ay, every f € Mand every integer n > 1 we have

1

b
o=jkb—uomﬂg@mdwz(b—awj}w*gar+ua—bndt

0

Clearly, if a # b this implies that g = 0 by the Weierstrass approximation theorem and
hence, M = {0}. Consequently, we have b = a and if a € D then 6 € bY for some positive
integer N, while if a € T,0 = St forsomet > 0.

If a € D consider the set of analytic functions g in D with a zero of order N + 1 at a and
withg’ € H?.Sinceg =V,g' and g’ € 6HP = M, we obtain that g € M, i.e. M contains
all functions g from above. Consequentl,

pN*t1H? € M < bY HP

and at least one of these inclusions must hold with equality. Similarly, if a € T we can
consider the set of analytic functions of the form h = St (1 — {)*g where g’ € HP. Each
such function h satisfies h = V,h' and h' € SEHP = M; which implies that h € M. We
conclude that M = SEHP .

We are going to show that our main result actually implies a similar structure theorem for
V,-invariant subspaces in a large class of Banach spaces of analytic functions in the unit disc.
To be more precise, let us consider Banach spaces (X, ||-]|) which consist of analytic
functions in D such that:

(1) Foreach A € D the point evaluation
f-r), fex
IS continuous on X.

(i) The operator M defined by M, f = {f is bounded on X and M, — Al is bounded
below onX forall 2 € D, where I denotes the identity operator on X.

(iii)  Forevery analytic function ¢:ID —» D of the form ¢(z) = cz + d, the composition
operator C, defined on X by

Cof=fo0
Is bounded on X and there exist positive constants K,y such that
Ic, |l < K1 = lo)1)" (5)
for all such maps ¢.

(iv) _ If A, denotes the disc algebra and A,, is the Banach algebra of analytic functions in
C™ (D) which are analytic on D, then there exists a nonnegative integer m such that A,,, is
continuously contained and dense in X.
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The Banach algebras A,,,, m = 0, the Hardy spaces HP,1 < p < oo, all standard weighted
Bergman and Dirichlet spaces, the little Bloch space, the analytic VMO and the Besov spaces
satisfy these assumptions.

It follows easily that for every A € D the backward shift L, f = f;’:;’w is a bounded linear

operator on X. Indeed, by (iv) this operator is densely defined on 4,,,, and by (i) and (ii) it
satisfies an inequality of the form

L Fl< GIFNL f € A,

with respect to the norm in X. Then L, has a bounded extension to X and the claim follows
by another application of (i).

Forevery A € D and every positive integer N, the subspace X; yof all functions in X with a
zero of order N at A can be written in the form

N
Xn=C-D"X=(M;-2) X=(M;, — 1A, (6)
whenever (iv) holds for the nonnegative integer m.
Proposition(6.1.11):[ 134] Suppose that the space X satisfies (i)—(iv). Then:

(1) If y > y(X) there exists K > 0 suchthat foreach 1 € D

lfDI=K@A-1ADYIfN,  feX.
(i) If y(X) <1, the Volterra operators V, |a| < 1, are well-defined and bounded on X.
Moreover, V, X c A, N X.

Proof: (i) If ¢,,(2) =tA+ (1—1t)zt € (0,1),A1 € D, then by (i) and (iii) we have for all
feX,Aebhand t € (0,1)

D] = [Cp, , f(O)] < Ko|Cp,, Il < KoK, (1= 1D IIFI,

where the constants K, K, > 0 are independent of A and f. To see (i) write

V,f(2) = ff(a +t(z— a))(z —a)dt = (Mg — a) j Cy,, f(2)dt,

where ¥, ,(z) = a +t(z—a). SinceW, ,(0) = (1 —t)afora+0and y(X) <y <1, we
have by (iii)

1

1
f”Cq,t‘a”dt < Kf t™ dt < oo (7)
0

0

Moreover, if f € A, then V,f € A,,, and if we choosem such that (iv) holds, then by the
above estimates we obtain the following inequality which involves the norm on X

IVaf 1l < KIIfIL f€An
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where K is independent of f. This implies the first part of the assertion. The second part is
also a direct consequence of the estimate (7).

Theorem (6.1.12):[134] Let X be a Banach space of analytic functions which satisfies (i)—
(iv) and assume that the operators V,, |a| < 1 are well-defined and bounded on X with V,X c
Ay NX.

(1) A proper subspace M of X is V-invariant, where |a| < 1 if and only if there exists a
positive integer N such that

M= ((-a)X.
(i) If the proper subspace M of X is V,-invariant, where |a| = 1, and m is any non
negative integer such that (iv) holds, then one and only one of the following alternatives must

occur. Either there exists t > 0 such that forevery 0 <r < %
StH®*N A, c M cSIH"NX,

where S,(z) = exp g or there exists 1 < k < m + 1 such that

MnA, = Ak ().

Proof: Consider first the space V,M c A, N X, let p > 1 be fixed but arbitrary, and apply
Theorem (6.1.10) to conclude that the closure of V,M in H? equals bY H? for some N > 0,
if |a] <1, and SLHP for some t > 0, if |a| = 1. Let m be a nonnegative integer such that
(iv) holds. If (f,) is a sequence in M such that (V,f,) converges to g € H? then (V/"*2f,)
converges to V"*1g in A,,, hence by (iv), it converges also in X. Thus M contains
V.mt M, where M, is the closure of V,M in HP. This gives

pitm+lig M
If |a|l <1,
SEtH*NA,, c M
If |a] =1,t > 0and
VLD < M

if lal] =1andt =0. If |a] < 1we know that the functions in M have a common zero of
order N at a. From the equality above and (6) we have ({ —a)"*™X c M. If f, € M is

such that fo(’V +1)(a) # 0 then every function f € ({ —a)VX can be written in the form

m+1

f=) cVifo+g
n=0

with scalars ¢, and g € (¢ — a)M*™*+1 which proves (i).

A similar argument shows that if |a|=1and t =0 then the second alternative in (ii)

occurs. Indeed, it is easy to verify that the closure of V**1H? in A, equals A™*1(a). If k <
m + 1 is the order of the common zero of the functions in M N A,, at a then by (iv) kK must
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be positive. If k = m + 1 the statement follows from above. If k < m + 1 we choose again
fo EMN Amwithﬁ)("“)(a) # 0 and write an arbitrary function in A%, (a) in the form

m-k
f=) cVifi+g
n=0

with scalars ¢, and g € A™*!(a) € M and the result follows.
It remains to prove that if |a| = 1 and t > 0 then
M c W
Recall from the beginning of the proofthat for every p > 1, the closure of V,M in H? equals

SEHP . Thus it suffices to prove that any function f €X with V,f € SEHP can be

approximated in X by functions in SEH™ n X for every r < —2—

2+2p

Tothis end, we consider for 0 < € < 1 the functions ¢.:D — D with
0. (z) =ea+ (1—¢€)z
A simple computation yields for |z| =1
1-1p(2)|?> = e(1— €)|z— al®. (8)
Composition with ¢, has the following properties.
(1) If h is analytic in D and satisfies for some a > 0 the growth restriction
|h(2)|=0((1—1zD"%), lz| -1~

then by (8) we have that (¢ —a)?*ho ¢, € H®. Consequently, h o ¢, € HS forall { < Zl—a

(i)  The composition operators C,,_on X satisfy ||C,_|| < K, (1 — €)Y for every y >
y(X) and also, if f € A,, then

limC, f=f,

e—0

in A,,,. Then by (iv) we have that C,,. converges strongly to the identity on X.

Now if f € Xwith V,f € SEH? write V,f = SEF with F € HP. Then

F=si(F - 2—ta) F)

hence, for0 <e< 1

te _L

e (., 2t
foge=er=s, E(F og06_(l—e)Z(Z—a)ZFo(pe)'
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Since F € H? we have F o ¢_({ —a)™2 € H* forall s < z:T' Moreover,

1
F'@l=0(-12")777), -1,
hence, by property (i) we obtain F’ o ¢, € HS forall s < 2;’?. Then f o ¢, € HS forall s <

p _ ..
P the claim follows by property (ii).

Corollary (6.1.13):[134] The proper V,-invariant subspaces of H? are precisely those of the
formbYH,N € N, if |a| < 1,and StH,t >0, if |a| = 1.

For 0 < p < 1 the operator V, is bounded on HP if and only if |a| < 1. The invariant sub
spaces of these operators can be determined with the same methods.

Corollary (6.1.14):[134] For|a| < 1and 0 < p < 1the proper V,-invariant subspaces of
HPare preciselythose of the form b)Y H?,N € N.

Proof: |If |a|] < 1and Mis a proper V,-invariant subspace of HP,0 < p < 1, then there
existsa positive integer k such that VXM < H*. By Corollary (6.1.13) the closure of V.M
in H' has the form b H* which implies that M contains b*HP. The rest of the proof is
identical to the argument used in the proof of Theorem (6.1.12).

Corollary (6.1.15):[134] The proper V,-invariant subspaces of A,,, are precisely those of the
form b¥YA,,,N €N, if |a| <1, and SEH®NA,,,t >0, or A& (a),1<k<m+1 if
la| = 1.[144].

a+?2

Corollary (6.1.16):[134] Let p =1 and a > —1 be such that > <1.If la] <1 the
proper V,-invariant subspaces of L”“are precisely those of the form bY L>“,N € N. If |a| =

a~a

1the V, -invariant subspaces of L7 coincide with the M -invariant subspaces of L”“
generated by S’ for somet > 0.

We note also that for‘%r2 > 1 the operators V, |a| = 1 are unbounded on L”“. Moreover,

the M -invariant subspaces generated by S;,t > 0, are always strictly contained in >
[104] .

We consider the standard weighted Dirichlet spaces D%, a > —1, which consist ofanalytic
functions in Dwhose derivative belongs to L?*. The norm on D, ,is defined by

Iflp, , = IF O +I1If 5

It is well known [104] that DP* = LP** when ever & > p — 1. Here we shall only consider
the casewhenp >1and a >p — 1.

The verification of the assumptions (i), (i) and (iv) (with m =1 ) for DP* is again
straightforward. To see (iii) let : D —» D with ¢(z) = cz + d and write

ICof I = [F(O)|" + 1172 09I}, < | (0(O)]” +1If "2 I}
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where the last inequality follows from the fact that |¢’(z)| = |c| < 1. Clearly, the norm of
the point evaluation at ¢(0) satisfies an estimate of the type required in (iii) and then the
claim follows from the considerations made for the weighted Bergman spaces L””.

Proposition (6.1.17):[134] Letp > 1, let -1 <a <p—1 and set f = ———

p-1
(1) Every continuous linear functional [ on DP'* can be represented uniquely in the form

() = lim [ feAg N,
T

where g, € L%’ ,%+$ = 1. The linear map I - g, from the dual of DP< into L”” is
continuous and bijective. Moreover, DP* is reflexive.

(i) DP* is continuously contained in H?.

(i) If B is an inner function and f € DP* satisfies ge HP, then f/6 belongs to D?* and
there is a constant K > 0 independent of f such that

s

Proof: (i) Using Parseval’s formula we can write for f, g analytic on D% and 0 <r <1

< Kl|fllppa.

pP“

f frz)g(rz)dm(z) = f ({f) (rz)g(rz)dA(2).
T D

The linear map f — ({f)’ from DP* into L”* is continuous and invertible, so that, all we
need to show is that the dual of L”* can be identified with L%* via the pairing

(h,g) = lim f h(r2)g G2 dA(2).
D

To prove reflexivity, we have to showthat via the above pairing the dual of L%* is L”*“. These
are particular cases of the results obtained in [145]. Part (i) follows directly from (i) since

H q,i +% = 1 is continuously contained in L‘gﬁ . (iii) assertsthat DP* has the so-called (F)-
property [146]. If 8 is inner then the operator M, of multiplication by 6 is a bounded linear
operator on L% Since DP# is reflexive, its adjoint M is bounded on DP. If ge HP and
g € H4 then

lim f f(rz)Myg(rz)dm(z) = f (g) (2)g(2)dm(2).
T

T

From the fact that H9 is dense in L‘Z;B we obtain that My f = g and the result follows.
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As a direct application of part (i) we obtain that the Volterra operatorsV,, |a| < 1 are
bounded on DP* and satisfy V,DP* c A, N DP%, Indeed, by the Fejer—Riesz inequality we
have that

[Vof O < KllIfllze < K'llf ll ppa

for some constant K’ > 0 and all f € DP'*. The inequality
f (V) (@DIP(1 = |2))* dA(z) = f F@IPA—1zD)*dA) < K" IIfIPpa

follows also by standard estimates [9], but can also be obtained by a direct application of
Minkowski’s inequality.

Lemma (6.1.18):[134] Letp > 1 and @ > —1 suchthat a7+1 < 1.Thenfort > 0and |a|] =
1,SEH* N A is densein SEHP n DP#,

Proof: Let f € SLHP n DP*, By Proposition(6.1.17) (iii) we can approximate fS,* € DP*
in DP* by a sequence (f,,) of functions in A,. Then it is a simple matter to show that

(a—0)?%SLf, » (a—Q)?*f in DP*. Thus (a— {)*f belongs to the closure of SEH* N H,
when ever f € SEHP n DP*, Tofinish the proofit suffices to show that for such f we have

lim (a—{)?

r-17(a — 1{)?

S =1 %)

in the norm of DP?%, Since fS;* € DP* it follows that

1FST NP e > j @ + s ) " (= 12D da)

)2
and this implies that

f 12— al"P|f @I - |2)* dA() < oo.
D

But from this inequality and the dominated convergence theorem we obtain that

2\’ p
f (E=95r) @] -t asca - f @I~ Iz dA).

Then (9) follows by a standard argument and the proofis complete.

Lemma (6.1.19):[134] For p > 1and |a| = 1 the closure of A3 (a) in DP* equals DP“

a+?2 a+2

f—>1and DP%(a) if —>1

Proof: Since polynomials are dense in DP* it follows easily that the set of polynomials
which vanish at a is dense in DP*(a). Thus it suffices to show that 1,{ — a belong to the
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closure of A%2(a) in DP* when ‘%2 > 1, and that { — a belongs to the closure of AZ%(a) in

a+2

DP* when - < 1. Forr > 1 consider the functions

[@D)=GZ-a)(z-ra)™!, g @=Z-a)(z-ra)™, zeD

Clearly, f. € A2(a),f.(z) > z—a when r - 1%,and |f’(z)| < 3 forall z € D. Using the
dominated convergence theorem it is a standard matter to show that f. - { —a in DP“ for
all p>1and all « > —1. The functions g, satisfy g, € A%(a),g,(z) » 1when r - 1~
forall z € D and

-1 (r—1)2

A + 2 , € D.

By standard estimates [104] it follows that || g, || pp.« Stay bounded when r — 1. Since DP*
Is reflexive, we conclude that g, — 1 weakly in DP%,

a+1

Corollary (6.1.20):[134] Letp > 1 and a > —1 suchthat — < 1. If |a| < 1 the proper

V,-invariant subspaces of D?“ are precisely those of the form bNDp“ N eN. If |a| =1and

“pi > 1 then every V, -invariant subspace of D?% has the form S{H? n DP“ for some t >

0.If |a| =1and “—+2 then a V-invariant subspaceof DP* is either equal to DP*(a), or it

has the form S{HP n DP“ forsomet > 0.

Corollary (6.1.21):]168] If f; €V, then
2l = j f PEE (ool daGz,) da )
- | Z|ﬁ(z<n+2>>| v(zus) A4 (s
c J

Where
1 b |Zn+2| +(1 —e)* d(]. _ E)

0

Proof: The first equality follows by a direct calculation with Parseval’s formula. To see the
second, note that for z¢,, 1) # 0

| D1 Gz o0 dacan)
c J

|Z(n+2)|

|Z( )| jElﬁ (Z(n+2))| (|Z(n+1)| >dA(Z( +2))
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2
and integrate this identity on C against the measure e~z dA(z(n+1)). Then the result
follows by Fubini’s theorem.

Corollary (6.1.22):[168] (i) The spaces V(;+¢),€ > 0 consistof functions of exponential
type at most one. Moreover, if f; € V(; ) then

;22 = D] = o(el* 1))
when [12 — 1| — oo.

(i) If f; € Vso With f; =h,h; € H* then f' € V.o and f;' = Bh, where B

denotes the backward shift on H*€). Consequently, the differentiation operator D fi=f

is a bounded linear operator on V4.

(i) For (a>—1)€e D and (42 — 1) € C denote by R,2_; 22_1) the integral operator
1+€

defined on H(T),e >0 by

ZR(a -1 12—1).9](271) = f 2 8(12_1)(211—(1 6))g (1 _ E)d(l _ E)

az-1 j

If fj € V4o With f; = i?,hj e H1+ and ]3(/12 —1) =0 forsome (12 —1) € C then
fj
@-22+1)

€ V4o With

fi

( 2241 = Rgaz—l,lz—l)hj'

(iv) An entire function f; satisfies {f; € Vi, .o ifand only if f; = h, with k' € HO+®,

Proof: (i). By Holder’s inequality we have for € > 0

DZEEEE) f ety dm| < D Il ool
<Y i,

To see the second part, note that the estimate is obvious when f; = i?] where h; is a

polynomial. Then if f; = }?} € V +¢) is arbitrary we can apply the first estimate to f; — g,
where g; is a polynomial to obtain

lim supe 77|22 - 1)| < znh g,”

|AZ—1|_>00 ] V(1+e)

and the result follows from the fact that polynomials are dense in H@+€.
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(i) is immediate since

Zﬁ"(/lz -1) = jz: Zn e2-1)(Zy)h, (z,) dm(z,)
j T J

B jze(lz—ﬂ(zn)BhJ(zn) dm(zy).
T J

(ii). Note that fora # 4

el?_1) — e((az—/lz)(az—l))
a“—1

_ e(12-1)
R(a?-1,22-1)€(a%-1) = 7 -

Since h; annihilates e(;2_;) we obtain that

2 R€a2—1,/‘12—1)hj(“2 - = jz R(az—l,/lz—l)e(az—1)(Zn)hj (zn) dm(z,)
J T J

1 - fla? -1
2 — 12 f z e(az-1) (2l (2,) dm(z,) = = gz(oi 22 )-
T J

(iv). If {f; € V(14 We have by (i) that f; = (%) € Viu+e and if {f; = 'g_v] then for any
(a? — 1) € D we have

E' = Réaz—l,o)gl

We shall show that (R{._, ,,9,) € H*® whenever (a>—1) €D and g; € H1*9,
Since

\ ' ¢
R > i /12—1 = 'Ra2—10 Zd
( (a —1,0)91) ( ) !Zgj (a2 -1, )(1 o 1)() m
And
Ra2_1,0) (— 5 (z,) = f (1—e)d1-e) 2
(1-@-1)) 2 (1-F-D-0o)
1 | 1- (2 -1)z,
@-1? “1-F-D@-1)
N 1 ( 1 ~ 1 )
2Z-1)2\1-RB -1z, 1-Z-1D(a%-1)
we obtain
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* o 1 1-22-1D@®-1)
Z(R(az—l,o)gj) W=D =m e 1)2JZgj e @ —1)¢

] T J

ng(/lz—l)_ ngj(o)

T 2-12 @#E-1)(1--1D(@-1))

ie (Riz2_y0)9;) €H whenever (a>—1)€D and g; € H1*9 . The converse
follows directly from the equality

P

h], = ( i_l]

The exponential type in Corollary (6.1.22) (i) cannot be improved since all of these spaces
contain the exponential functions e,z_),a < /2, as the simple identity below shows

e((a2—1)(,12—1))

1
= f e(az_l)(zn) 1— (AZ — 1)Z_ dm(zn).
T

The main objects under investigation are the nearly invariant subspaces of V(; ,.),€ > 0.
Recall that, by definition, a closed subspace V' of V(. is nearly invariant if whenever
fj

€

f; € NV and (1> —1)€e Cis azero of f;, but not a common zero of V', we have Ta2eD

N.
Corollary (6.1.23):[168] Foreverye > 0and 0 < 2¢e(1 + €) < 1 there exists a positive

constant C(; 1) > 0 (depending only on (1 + €) and €) such that whenever f; € V .)
and (2> —1) € C with f;(2* —=1) =0,

) 5l
z m < C(1+e,6) (1—26(1—6))'
j V(1+e) 1+ 22 —1]% 20+te

: 2 @z-1)
Proof: Assumethat 1 # +1 and let z,(1° — 1) = TERTL By Corollary (6.1.22) (iii) we

have that if f; = h, with h, € H2* and (A2 — 1) € C with £;(A2 — 1) = 0 then

/i ;
2.7 w1 LRl
- .

J

so that, the result will follow once we prove the appropriate estimate for the operator

norms”R( . To this end, we integrate along the line segment from z, to

(Zn)(az_l),a.z—l)
1+€

(zn) (a2-1) to obtain for every g; € H(T), where € > 0

R i(z
Z ((zn)uz_l),(az-l))g’ ()

J
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1
— ((Zn)(lz—l) _ Zn) f e—(l—e)(|12_1|—(12_1)zn)z g, ((1 — 6)(Zn)&2_1) + EZn) d(l
o). 0 J

Then we found that R((Z a2 ),12—1)91' belongs to the disc algebra, hence, it will suffice to
n’/(32-1)

work with the boundary values of these functions. It is useful to recall that if |z,| = 1 then
2 P
|Zn - (Zn)()lz—l)| = 2R€(1 - (Zn)(lz —1)Zn)
which implies that
2 2
1- |(1 - E)(Zn)(/lz—l) + Ean =€(1- €)|Zn - (Zn)(/lz—l)| .

Now use the standard estimate

z |9j ((1 —€)(@Z)az-n t+ EZn)|

J

(1+e) ((1 — €)(Zp)(2-1) t €2y 1+6 Z“g]” 1+

E

2€

2(1+€)(E(1—6)) (1+e |Z _(Zn)(12—1)| 1+6 z”g]“ 1+6

in order to obtain for |z,| = 1

Z |R((Zn)(lz_l),)lzq)gj(zn)
J

2€ 1-€
< E ||gj||(—1+e)2(1+6)|zn_(Zn)uz—1)|(“6)
. €
]

J (e(1 - e))‘(ﬁ) exp|(e — 1)|22 — 1|Re(1 — (z) 12— Zn) |d(1 — €).
0

For0 < e(r — 1) < 1 we apply Holder’s inequality to the above integral

j(e(l — 6))_(ﬁ) exp[(e — 1)|22 = 1|Re(1 = (z) a2 —1)Zn) |d(1 — €)

1

< <j((1 — e)(e))_(%)d(l — E))

0
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. (=)
fexp [(%) (1—€)|22 —1|Re(1 - mzn)] d(1—¢)

2(1-7) 1—
< C(mrﬂzn - (Zn)(12—1)|< T >|/12 -1,
te

where the constant C(l_+e ") > 0 depends only on i: and r. This leads to the estimate

R (z
Z ((Zn)(/lz_l),(/lz—l)>g] )

J

r1-e)+2(1+e)(1-1)

< 2(1+66) (1+e )|/1 — 1|( |Z (Zn)(12—1)|( r(1+e) )ZHQJH(%)

€

2@+Q

Forl<r< we have

2(1+e)—r(1+2e)>0

- (r(1—6)+2(1+6)(1—r)) (1__}_6)
which shows that ({ — (z,)a2-1)) r(i+e) e H e
2(1+e)
1+2€

. Moreover, we have r —
and the result follows.

Corollary (6.1.24):[168] Let V' be a nearly invariant subspaceof V;,.),e > 0 without
COmMMOnN Zeros.

() If f; e NV and {f; € V(14 then f € N.
(ii) If the setof functions f; € V" with {f; € V(4 4) is dense in V" then V" is invariant for
the differentiation operator on V() and there exists an inner function 6 such that

1+e\\ 1
IV is the Borel transform of (9 H (T)) . where € > 0.

Proof: (i) We start with the following identity which is valid for all functions of finite
exponential type, and actually is a reformulation of Hadamard’s factorization theorem. If f;
IS a nonzero entirefunction of exponential type then

Z;;-'(zro - Zﬁ-(zn) k(az “DA+ ) e 1)(;’:_12 - 1))

"7 =0
A=+l

where (a? — 1) € C,m € N U {0}. Moreover, the series
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Zn z
fi(z,)
£ D=0 A -1D(z,—22+1) j j
A#t1

Converges uniformly on compactsubsets of C. Consider a function f; € V" suchthat {f; €
V16 - Then by Corollary (6.1.23) we have that

{f; ol S
H((AZ—l)(Z—AZH))H_O<M H )>

when |e| - oo and jj-(Az — 1) =0, hence, by standard results about functions of
exponential type, we can conclude that the series in (3) converges in V() and the result
follows. Under the assumption in (i), MV is differentiation-invariant and by Corollary
(6.1.22) (i) IV is the Borel transform of a backward shift invariant subspace. Then by
Beurling’s theorem, V' has the form in the statement.

Corollary (6.1.25):[168] (i) For (A* — 1) € C\{0} the resolvent operator

((/12 —1)— V(az_l)) : H+O - g+ satisfies forevery (a2 —1+¢€) € D
-1
(8 =D = Vi) | D fi@)
J

= ((/12 -1)— Vigz - 1) ZE a -1+ E)e(zn_/{lz _11+6)

1 (my [
_|_/12_1e()12—1) f -(775 Zf(l—e) d(1—¢€)
_ [((/12 N V(az—l))_l] a1+ E)e(zn—‘;_‘lue) (ZAZE_(Zl))
Y f@ -1t (gt
2 -1
) [ LY g o
+(AZ—1)26/1 Z_d[_ee ] Z}j(l €)d(1—e).

(ii) If M is aclosed subspaceof H*€ which is invariant for Viaz -1 then M is invariant
for (22 —1) - Vaz_l)_l forall (12 — 1) € C\{0}.

(i) Every exponential function e,z_;) is a cyclic vector for V2 _,).
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Proof: (i) is a direct computation and will be omitted. To see (ii) note that since V(,2_;) is

1
quasinilpotent we have that ||V((an2)—1) "> 0 when n - o which implies that for

(A2 — 1) € C\{0}

_1 ©
((/12 —1) = Va2 _1)) = 2(,12 — 1)—(n+1)V(anz)_1),
n=0

)

.21 the result

where the series converges in the operator norm. Since M is invariant for V
follows.

(iii). From (i) we see that for (A2 — 1) € C\{0} with (A* —1)(a?—1)#1landalla € D
we have

(az — 1)e(a2 -1)

-1
((/12 -- V(az—l)) €a?-1) ~

A(a*—1)—a?
= e(ﬁ)e_( A2-1 ) |:[((AZ _ 1) _ V(az_l))_l eaz—l] (aZ —1+ E)
(a? — Deyz_(a®> —1+¢€)
a A(a?—-1) — a?

By (ii) the left hand side belongs to the V(,2_,)-invariant subspace generated by e(,2_;) and
cannot vanish identically because V(,2_;) has no eigenvalues. Then the V(,2_,)-invariant
subspace generated by e(,z_;) contains e(1) for all (A2 —1) € C\{0} with (1% —

1)(a? — 1) # 1 and the result follows.

A2-1

Corollary (6.1.26):[168] A nonzero function f; € H+€ belongs to S((;z‘fi)H(“E) if
and only if

lir§1 sup(1 — 1) log|fj(r(a® — 1))| < —2(1—e).
r-1—
J
Proof: We recall first a well-known fact about Poisson integrals of finite measures on the
unit circle. If wis a harmonic function in D of the form

u(z,) = j P, du, z, €D,
T

1-|z,|?

|ei(1_6)_zn|2

Where P, (e'®~9) = is the Poissonkernel and y is a finite measure on T then

(see [144]) for every (a® — 1) € T we have

lim (1 -rju(r(e® - 1)) = 2u({a® - 1}).
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Our second observation is that if B is a Blaschke productthen
1iI{1 sup(1 —7r)log|B(r(a®? —1))| =0
r—-1—

for all (a®—1) € T. This is a direct consequence of the Phragmen—Lindeléf principle.
Indeed, if we assume the contrary:«

lir{1_ sup(1—7r)log|B(r(a®* —1))|=-21<0
T—

then the Phragmen-Lindel6f principle immediately implies that BS_z_,,is bounded on D,
which gives a contradiction.

Now if f; € H4*€ is not identically zero, we use the canonical factorizations of such
functions to write

Zlog|]§-| = log|B| + u,
J

where B is a Blaschke productand u is the Poisson integral of a finite measure on the unit
circle and the result follows by the above considerations.
Corollary (6.1.27):[168] Supposethat the space X satisfies (i)—(iv). Then:
(i) Ify > y(X) there exists K > 0 such that for each (1* — 1) e D
D@ =vlska-12 =107 Y5l fex

] ]
(i) If y(X) <1, the Volterra operators V,z_;),a <2, are well-defined and
bounded on X. Moreover, Vi,2_pHX € 4, N X.

Proof: (i) If o(_ep2_(z) =1 —€)(B* —1)+€z,,0<e <1,(#* —1) € D, then by
(i) and (iii) we have forallf; € X,(#*—-1)eD and0<e <1
ansn

ZIE((l—e)W—l)I ZM O] = Kol|Co o

< Ky (1— (1 — ) — 1) VZIIE

where the constants K, K, > 0 are independent of (1> — 1) and f;. To see (ii) write

Voo, Z;;.(zn) =JZ/3.(zn(1—e) —e(1—a®) (7, — a? + Dd(1— &)
j) ]

0

=(M;—a*+1) j Coy oo ij-(zn) d(1—e),
0 J
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where W¢,_, ,2_1)(2,) = z,(1 —€) — (1 — a?). Since ¥ _.2_1)(0) = e(a®*—1) for
a+ t+1and y(X) <y <1, we have by (iii)

1
j ” Cq’(i—e,az—l)
0

Moreover, if f; € A,,then V(az_l)(z i ]j-) € A,, and if we choose msuchthat (iv) holds, then
by the above estimates we obtain the following inequality which involves the norm on X

SWanfl <k YUl f€an
J j

d(l—e)SKj(l—e)‘Vd(l—e)<00.

where K is independent of f;. This implies the first part of the assertion. The second part is
also a direct consequence of the estimate (9).

Corollary (6.1.28):[168] Let X be a Banach space of analytic functions which satisfies
()—(iv) and assume that the operators V(,2_,),a < /2 are well-defined and bounded on X
with Vizz_pnX c 4, N X.

(i) A proper subspace M of Xis V(,2_,)-invariant, where a < +/2 if and only if there
exists a positive integer N such that
M=((—-a*+1)VX.
(i) If the proper subspace M of Xis V(,z_;)-invariant, where |a? — 1| = 1, and m is
any non negative integer such that (iv) holds, then one and only one of the
following alternatives must occur.Either there exists e < 1 suchthat forevery 0 <

1
r< -
2

(1-6) ;yoo (1-¢)
Spz_pH"NAncM S, ) H NX,

Zp+a®—

where S2_1)(z,) = exp( ™ ) or there exists 1 < k < m + 1 such that

MnA, =A (a?-1).

Proof: Consider first the space V(,2_) M < A, N X, let € > 0 be fixed but arbitrary, and
apply Theorem (6.1.10) to conclude that the closure of V(,z2_yM in H (1+6€) equals
(@-1+€)._,,HI* for someN >0, if a < V2, and S((;Z‘fi)H(l‘f) for somee < 1,
if |a> — 1| = 1. Let m be a nonnegative integer such that (iv) holds.If (jj) IS a sequence

in M such that (V(az_l)(jj-) ) converges to g; € H+ then ( m2(F) )converges to
V(("ZHB g;j in A,,, hence by (iv), it converges also in X. Thus M contains V(("z”i))]\/[(“e),

where M, , ) is the closure of V,2_ )M in HO+€_ This gives

(a?—1+ E)EI;';_Y'BLl)Am cM
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If a <2,

(1-€) oo
Sz  H”NA, cM

24

If |[a?—1|=1,e <1 and

V((m+1)H(1—e) C M

a’-1)
If [a2—1|=1and e = 1. If a <2 we know that the functions in M have a common
zero of order N at a? — 1. From the equality above and (6) we have (¢ — a? + 1)V*™X c
M. If (jj-)o € M is such that (jj-);NH) (a® —1) # 0 then every function f; € (( — a® +
1)N X can be written in the form

m+1

ij = Z Va2 (i) + 9
j

n=0
with scalars ¢, and g; € (¢ — a? + 1) *+™+V which proves (i).

A similar argument shows that if |a? — 1] = 1and € = 1 then the second alternative in (ii)
occurs .Indeed, it is easy to verify that the closure of V(Z?J_“SH(“E) in A, equals

Amt1(g? —1). If k < m + 1is the order of the common zero of the functions in M N 4,,
at a then by (iv) k must be positive. If k = m + 1 the statement follows from above. If k <

i . (k+1) .
m+1 we choose again (fj) €M N A, with (fj)ok+1 (a*> —1)# 0 and write an
arbitrary function in A% (a? — 1) in the form

m-—k

ZE' = Z Va2 (i), + 9
j

n=0
with scalars c,, and g; € A,(T’l'“’l)(a2 — 1) € M and the result follows.

It remains to provethat if |a? — 1] =1 and € < 1then

(1-¢)
M cC S(az_l)Hr NnX.

Recall from the beginning of the proof that for every € > 0, the closure of Vi,z2_;yM in
H+© equals S((;{ fi)H (+€) Thus it suffices to prove that any function f; € X with
Ve (f) € S((;;fi)H (1+€) can be approximated in X by functions in S((;z‘fi)HT N X for

1+€
442¢

every r <
Tothis end, we consider for 0 < € < 1 the functions ¢.: D — D with

P (z,) = €(a®> = 1) + (1 — €)z,.
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A simple computation yields for |z,| = 1
1—|pe(z)? =e(1—€)lz, —a® + 1|2
Composition with ¢, has the following properties.

(1) If h; is analytic in D and satisfies for some o < %1 the growth restriction

Zlhj(zn)| =0((1- |z, D1~ ), zpl > 17

then by (8) We have that ( — a2 + 1)@ “Dhjo @, € H®. Consequently, h;o ¢, € H®
forall s < @

_1)

(i)  The composition operators C,,_ on X satisfy ||C, || < K,(1—e€) for
every y > y(X) and also, if f; € A, then

h_{% CocJi =1

in A,. Then by (iv) we have that C,,_converges strongly to the identity on X.Now if f; €
Xwith Vigz ) (5, £5) €S89 HO+ write Vege (3, 1) = S5, (3,F) with F, €

H*€. Then
2(1—¢)
(1-¢) ’
zf} S(a2 1) (FJ _(<_a2 +1)F}>

hence, for0 <e < 1

2
- = 1 ’
P R N R e oy IR
j j
Since F; € H4+€) we have F; o ¢ ({ — a? + 1)72 € HS forall s < ;—Z Moreover,

Z|F;<zn>| =o(a- mmﬁﬁ), 20 =17,

hence, by property (|) we obtain F;" o ¢, € H* for all s

1+€

o @, € H’ for all

s < the claim follows by property (ii) and the proofis complete

Corollary (6.1.29):[168] Lete>0,let0 <a<+e+1 .

()  Every continuous linear functional [ on p+ea®~1 ¢an pe represented uniquely
in the form
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Z]j = rllgl-j ij (rzn)(g])l(rzn) dm(z,),
J T J

where (g,) € L% ™, € > 0. The linear map L > (g;) from the dual of D{t+ea*~D

1—0.'2)
€

-1)

 (1ve
Into L (a2

is continuous and bijective. Moreover, D +€@*~1) js reflexive.
(i) DA+ea® =1 js continuously contained in H+€.

(ii)) If 6 is an inner function and f; € DU*&%* -1 satisfies %E H@+9 | then ];—’

belongs to  D+€°~1) and there is a constant K > 0 independent of f; suchthat

f.
3 <KZ||fJ||DW L
J

)
Proof: (i) Using Parseval’s formula we can write for f;, g; analytic on p+ea®=1) gng
0<r<l1

(D1+ea —1

| Y 5 emgGaydn) = [ (5 ¢2)g,0m dac.
T J D Jj

The linear map f; — (¢f;)’ from DA+ee®Vinto 154" i continuous and invertible,

(1+e1 o )

(a?-1)

so that, all we need to show is that the dual of L%;f'f) can be identified with L

via the pairing
Z(hj: g}) = rll_)l’{l_ j z hj (T'Zn)g] (T'Zn) dA(Zn)
J D J

L_Z

To prove reflexivity, we have to show that via the above pairing the dual of L 2 ' ) )
1+€

L((ZJ;E;") ~[146]. Part (i) follows directly from (i) since H (5 ),e > 0 is continuously

Lte 1 —a?
contained in L( ) (iii) asserts that D*€@*~1) has the so-called (F)-property (see
[147]). The proof foIIows with the method in [147]. If 8 is inner then the operator M, of

IS

1+61 -a 1 aZ
multiplication by @ is a bounded linear operator on L(( PN ) Since D( T) is

1+€
reflexive, its adjoint M is bounded on D@ +e@* 1) |f f’ e H 9 and g, € 1) then

lim j Z f} (an)MOg] (T'Zn) dm(zn) = j z (%) (Zn)g] (Zn) dm(zn)'
J T J

r-1—
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1+€1-a“ a?
e 6

(

(1+E

From the fact that H is dense in L

follows.

we obtain that M, = f;/0 and the result

As a direct application of part (ii) we obtain that the Volterra operators V(,z2_;y,a <

V2 are bounded on D@ +€:@* =1 and satisfy V(,2_,)D+ee*~D) < A; n DA+ea* -1 Indeed,
by the Fejer—Riesz inequality we have that

> s (FO) < KD M llawo < K D N5 pvea-s
J J

J

for some constantK’ > 0 and all f; € D*¢* =) The inequality
/ (1+€) ( 2_1)
jz |(V(a2—1)13-) (Zn)| (1 - |z,D"" " dA(z,)
D J

(1+e€) (1+€)
= f D@ 12D dAz) < K I e
D Jj j

follows also by standard estimates (see [105]), but can also be obtained by a direct
application of Minkowski’s inequality.

Corollary (6.1.30):[168] Lete > 0and a > Osuch that « <+/e. Then fore < 1 and

(1-€) 7700 . . (1-e) 2_
la? —1| =1, S H® N4, is densein S(1; € H1+ n pUtea-D)

Proof:  Let f 65(1‘6))H(1+6) nDO+ea*~1 By Corollary (6.1.29) (i) we can

(a®-1

approximate jj-S((Z; ) € plrea®-1 jp ptea® =1 py 5 sequence (( ]j-)n) of functions in

A,. Then it is a simple matter to show that (a2 — 1 — {)255© (fj)n - (a* = 1-0)%f;

(@?-1)
in pA+ea®=1 Thys (¢ — 1 — {)?f; belongs to the closure of S((;;fi)Hw N H, whenever

fi€ S((l2 Ei HO+€ n pU+ea® -1 Tofinish the proofit suffices to show that for such f; we

have
. a —1—5)2
rlg?—z (a?—-1- r()2 sz

in the norm of D +€.2*-1_Since ij(E'l) e D+ea®-1 it follows that

(a?-1)
(1+e)
(e— 1)
Z ||E5(a —1) p(1+ea?-1)

[

and this implies that

— (1+e)
(z 2—(1a2 ?1)2]3' () (1— 12, dA(z,)

fi'(z,) +
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(1+€)
| Dl = a2+ 11720797 (A= ) dAG) < o0
J

But from this inequality and the dominated convergence theorem we obtain that

JH{I[Z( e

(1+e)

(1 — |z, Y dA(z,)

(@2 —1=10) ]3-) (zn)

= [ D15 @l =12« dac.
D

Then (9) follows by a standard argument and the proofis complete.

Corollary (6.1.31):[168] Fore >0 and |a? — 1] =1 the closure of A2(a?—1) in
p+ea®-1) equals pitea®-1 i o > \/E and D(1+e,a2—1)(a2 1) if a?> \/E

Proof: Since polynomials are dense in D@*€a*~1D it follows easily that the set of
polynomials which vanish atais densein D@+&«*~D (g2 — 1). Thus it suffices to show that
1, — a® + 1 belong to the closure of A%(a? — 1) in DA+€«*~D \when g2 > +/e, and that

7 —a? + 1 belongs to the closure of 42(a? — 1) in D@*%* =D when a? < €. Forr > 1
consider the functions

(£) (z2) = (2, — a* + 1)?(z, — r(a® - 1)),
(9;) (z) = (zy — >+ D(z, —(a® = 1)) \,z, €D

Clearly, (f;) €A4i(a®*—1),(f;) (2,) >z, —a® + 1 when r > 1%, and|(]j-)r(zn)| <3
for all z, € D. Using the dominated convergence theorem it is a standard matter to show
that (f;) — ¢ —a?+1in DU~V for all € >0 and all @ > 0. The functions (g;)

satisfy (gj)r € A2(a® — 1),(gj)r(zn) — 1 whenr - 1~ forall z,, € D and

r—1 2(r —1)?
(9, ol = =@ —DF "oy v - P

z, € D.

rll p(1+ea?-1) stay bounded when r —

1*. Since D +e" ) is reflexive, we concludethat (g;) — 1 weakly in D@*+<*~% and
the proof is complete.

Section (6.2): Parabolic Self-maps in the Hardy Space

The problem of giving a precise description of the lattice of invariant subspaces of
abounded linear operator on Hilbert space is one of the most interesting and difficult in
operator theory. Very few operators admit a useful description of the lattice of invariant
subspaces. Understanding the lattice of a particular operator can solve the invariant subspace
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problem. This was done by, [148,149]. They consider the composition operator C,, acting on
the Hardy space, where ¢ is an automorphism of the disk fixing +1. They show that if every
invariant subspace of C,, of infinite dimension has a non-trivial invariant subspace, then the
general conjecture is true.

Beurling’s Theorem provides a complete description of the invariant subspaces ofthe shift
operator acting on 72 the lattice of the invariant subspace shift operator acting on the
Bergman space is not completely understood, [150,70,104].

We will describe the invariant subspaces of the composition operators C,, acting on the

Hardy space H % where ¢ is a parabolic on-automorphism that takes ID into itself, which
has the formula

2—a)z+a
—az+2+a

0, (2) = , Where Ra>0 (10)
Since ¢,(D) is contained in D, Littlewoods Subordination Principle implies, the
composition operator (C,_f) = f(¢,(2)) acts bounded on #? [144].

If T is an operator on Hilbert space H and x is a vector in JH, then the smallest invariant
subspace of T that contains x is the closure of the linear span of the orbit of x under T. If the

minimal subspaceis 3, then x is called a cyclic vector. We describeall cyclic vector for C, .

The family of all composition operators induced by parabolic non-automorphism have
common dynamics, since they have common cyclic vector, Corollary (6.2.2). Each orbit of
any vector under all composition operators induced by parabolic non-automorphism has a
common closure. See[144,151].

If Ra > 0, the spectrum a(C,,_ ) is the spiral
O'(Cq,a) ={0}u{e %:t € [0,0)}.

Indeed, C,,_has a well-known family of inner functions as its eigenfunctions,
_at z+1
Cp e = e e, where e (z) = exp (t m) foreach t > 0. (11)

All invariant subspaces we consider will be closed. Let Lat Tdenote the lattice of invariant
subspaces ofthe bounded linear operator Tand let IF[0, co)denote the set of closed subsets of
[0,20). As usual, the closed span of the empty set is the trivial subspace consisting of just the
zero vector.

Corollary(6.2.1):[147] Composition operators induced by parabolic non automorphism that
take the unit disk into itself have the same lattice of invariant subspaces and the same cyclic
vectors.

Recall that a subspace that is invariant for an operator as well as for its adjoint is called a
reducing subspace.
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Theorem(6.2.2):[147] The map W is an isometric isomorphism from L2 (T) onto W2(R).
In addition, W(zH2) = W,"?[0,0) and W(zH?2) = W,"*(—oo,0].

Proof: Foreach f in L*(T), we have

2n
1+e'
(q;f)(t)__f f(ele)exp< ¢ >d9, teR
0
The change of variables x = ‘((11:’:5)) yields

(0.0)

== [ £

— 00

x—1i\ e itx
) dx, teR (12)

x+i/1+ x2

Therefore, ¥ = FMT, where Fdenotes the Fourier transform,

1 g(y) _ 1 X —1
(Mg)) = i and (100 = f T FE)

The obvious change of variables shows that T is an isometric isomorphism from L?(T) onto
L?(R). In addition, the properties of the Fourier transform along Plancherel’s Theorem show

that FM is an isometric isomorphism from L?(R) onto W12(R), which proves the first
statement of the proposition.

Now, let f be in zH 2, that is, f(z) = zg(z) with g in 2. Using (10), we obtain

[00]

@pO=— [ o

— 00

x —i\ e itx
) dx, foreacht € R.

x4+ i) (x+1i)?

Since the map

1 h(x — l)
ﬁ
Valx+i) \x+i
is an isometric isomorphism from 2 onto 7 % (IT), [153], and multiplication by (w + i)™?

is bounded on F 2(IT), we find that Wf is the Fourier transform of a function of H 2(II).
Thus, the Paley-Wiener Theorem, [152], shows that W £, which is continuous, must vanish on

(—o0,0] and, therefore, W(zH?2) c W,"*[0,00). Similarly, Y(zH %) c W,"*(—x,0]. The
fact that W(zH %) = W,"*[0,00), and W(ZH 2) = W,"*[~0,0) follows immediately from
the orthogonal decomp03|t|on W12(R) = W2 (— m,O]@[e_ltl]@VI/Ol’z[O,oo), which in
turns follows, being W an isometric isomorphism, from the orthogonal decomposition
[2(T) = ZH 2@®[1]®zH?2 and the fact that ¥, = e~ 't! | where [f] denotes the one-
dimensional linear space spanned by the vector f.

Corollary(6.2.3):[147] The operator ® defines an isomorphism from 72 onto W20, »).
Indeed, |Pf I3, = IIfll52 — |f(0)[?/2.
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Proof: Uponapplying Theorem (6.2.4), ® and ¥ coincide on zH 2 and, therefore, @ defines
an isometric isomorphism from zH 2 on to W,"?[0,00) . Since el is orthogonal to
W01'2[0, ©], S0 IS € *¥[g ). Thus  W1H2[0,00) = [e‘tX[O,oo)] D Vl/01'2[0, o) = (®1) P
D (zH?) = ®(H?), which proves that @ is an isomorphism.The formula for the norm is
trivial.

Proposition(6.2.4):[147] Let ¢,, with Ra = 0, be as in (10). Then the adjoint of C,,  acting
on 3 is similar under @ to the multiplication operator M,,, where ¥ (t) = e~%, acting on
W20, ).

Proof: Using the eigenvalues equation (11), for each f € 72, we have
(q’%f)(t) =(Co, frecdsz = {f, Cp er)yz = e~ %(f, e)g2 = e (Df) (D),
foreacht > 0. Thus M, = ®C; o~

Proposition(6.2.5):[147] The operator M,,, where ¥ (t) = e~ and Ra > 0, acting on
W12[0,00) is cyclic with cyclic vector .

Proof: Let k,(z) = (1—az)™1, where a = % be the reproducing kernel at @ € D in

the Hardy space H 2. Since ®k, = 1, by Proposition (6.2.4), it is enough to show ks cyclic
for C; . Suppose that f i H 2 is orthogonal to the orbit of k, under Cg,- Then, for each
n = 0, we have

0= <C<;Zkal flacz = <kar C$Qf>f]-[2 = (kg C(pna [z = <kouf ° (pna)}[z = f(gona(&))-
Since {¢,, (@)} is not a Blaschke sequence, the function f and the result follows.

An interesting consequence of Corollary(6.2.3) is a summability theorem for the Laguerre
polynomials. Set u,(z) =z". Then i, (t) = (Pu,)(t) = LS{l)(Zt)e‘t)([O,oo), where
L(n‘l)(t) Is the Laguerre polynomial of degree n and of index—1. Indeed, since i, =

(z", e,(z))42 Is the n-th coefficient of the Taylor series of e,(z), by definition of the
Laguerre polynomials see [155], we have

[00]

e, (z) = e texp (— 12iZZ> = Z e‘tL(n_l)(Zt)z”. (13)

n=0

Therefore, the following follows immediately.

Corollary(6.2.6):[147] Let{a,},»o be a sequence of complex numbers. Then the series
f) =3, anL(n_l)(Zt)e‘t)([O,oo) converges in W12[0,0) if and only if {a,} is in the

sequence space £2. Indeed, ||f||i2 =— '“‘2)'2 + 1{a,,}is1 13- [156].

Corollary(6.2.7):[147] Each f in W'2[0, ) satisfies [|fll < V2Ilfll,», and V2 is the
best imbedding constant.
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Proof: By Corollary (6.2.6), we can write f(t) = Y anqu_l)(Zt)e‘t, where {a,} is in
£2.The Cauchy-Schwarz inequality and Corollary (6.2.8), foreach t > 0, yields

1

<Iflh (Ze-zt +y (150 @0) e)

n=1

[ee]

Z a, L0 20)e

n=0

f@Ol =

Since |le; |2 = 1, using (13), one easily checks that the quantity into the brackets above

equals to 1+ e 2t <2 and, therefore, ||fll., < V2Ifll;,. The fact that v2 is the best
imbedding constantis straight forward.

Proposition (6.2.8):[147] The space W2[0,00) with the pointwise multiplication is a
Banach algebra without identity.

An element a in a Banach algebra A is called cyclic, if it is cyclic for the bounded
multiplication operator M, that assigns to each b in A the element ab.

Proposition (6.2.9):[147] let A be a Banach algebra. Then the invariant subspaces of
multiplication by a cyclic element are the closed ideal of A.

Proof: First, since A has a cyclic element, it is commutative. Let a be a cyclic element of
A and let £ bean invariant subspaceof M,,. Clearly,

M, ={beA:bxe Lforall x € L}

IS a closed subalgebra of A. Since L is an invariant subspace of M, we find that a € M,
and, therefore, M, contains the subalgebra generated by a and, being M, closed and a
cyclic, it follows that M, = A. Hence, L is a left ideal and thus, being A commutative, an
ideal of A. Onthe other hand, each ideal of A is invariant with respectto M,.

Theorem(6.2.10):[147]  The closed ideals of W?*2[0,o0) are
Jr = {f € W12[0,0): f vanishes on F}, where F € [F[0,0).

Theorem (6.2.11):[147] Let ¢ be a parabolic non-automorphism that takes the unit disk
into itself. Then

Lat C, = {span{e;:t € F}:F € F[0,)}.

Proof: By Proposition (6.2.5), the symbol ¥ is a cyclic element of the Banach algebra
W12[0,). Thus, from Proposition (6.2.9) and Theorem (6.2.10) it follows that

Lat My, = {{f € W'2[0,): f vanishes on F}, where F € F[0, 00)},
Since M, = ®C; P, we have

LatCy = {{f € H%:(f,e,)5;2 = O for each t € F},where F € F[0,)}.
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Since Lat C,, consists of the orthogonal complements of LatCg, the statement of Theorem
(6.2.11) follows immediately.

Theorem (6.2.12):[147] Let ¢ bea parabolic non-automorphism that takes the unit disk into
itself. Then C,, has no non-trivial reducing subspace.

Proof: LetF bein [F[0,0) suchthat N, =Span{e,:t € F} is non-trivial. We must show
that its orthogonal complement N is notinvariant under C,,. We need the following formula,

which is easily checked
(e, e) = e~lt=sl  foreach t,s > 0. (14)

First assume that 0 is notin F. Set t, = minF. Since f, = 1— e ‘oe, is orthogonal to e,
foreach t > t,, we find that t, isin Nz . If Nz is invariant under C,, then f, — C,f; is in
Ng. But fi —Cpf;, = efo(1—e™%0)is also in Ny, which means that f, — C,f;, = 0.
Hence, f,, = 1, a contradiction.

Assume now that 0 is in F. Let M, denote the multiplication by e,. We have
M, (Np) = e;Spanfe;, : t € F} =Span{e;,;:t € F} = Ny . (15)

Clearly, M, is a Hilbert spaceisometry preserving inner products. Therefore,
M., (Ng) = M, (Np)* (16)

Proceeding by contradiction, assume that Nz is also invariant under Cy- Then
M., (C,(NH)) € M., (NF).

Since, for f in 32 we have C,(M,,f)= C,(e;f) =e %¢,C,f = e *M, (C,f), from the
above display, it follows that C,, (Me1 (NFL)) is included in M, (Nz). Therefore, from (15)

and (16), we immediately see that C,(Ni%r) S Nisr, which is a contradiction because 0 is
notin 1+ F.

Proposition (6.2.13):[147]  The spectrum of the Banach algebra W20, ) is
Q(W2[0,00)) = {5,:t = 0},

Furthermore, the mapping that to each t assigns &, is a homeomorphism from [0, o) onto
Q(W*2[0,)).

Proof: Clearly, for each ¢t > 0, the functional &, is a character on W12[0, o) that is, &,is in
0= Q(WL2 [0, oo)). To prove that each character on W2[0, ) is one of the 6,’s, we begin

by considering the Banach algebra C[0,1], with point wise multiplication endowed with the
norm ||f]l = max{||flle, |lf'll}- Consider also its Banach sub algebra A, = {f €
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C1[0,1]: (1) = 0}. Then, it is easy to check that (Tf)(x) = f(lj—x) defines a bounded
operator from A, in to W2[0,0) which is also an algebra homomorphism. Now, if x is a
character of W12[0,00), then it is easy to see that the functional 7z on ¢1[0,1] defined by

#f)=x (T(f - f(l))) + f(1) is also a character. Since the characters of C*[0,1] are the
point evaluations f — f(s), with 0 <s <1, [159], there is 0 < s < 1 such that #Z(f) =
f(s) foreach fin C[0,1]. if s = 1, it follows immediately that »(Tf) = 0 foreach f in A,.
Hence s vanishes on the range of T, which is dense because it contains C°[0,0), therefore,

x is the zero functional. If s # 1, then sett = (1‘%5) > 0 and observe that »(Tf) = (Tf)(t)
for each f € A,. Hence » and &, coincide on a dense set, which implies that » = &,. Thus

we have shown that Q = {5,:t = 0}.

Next, since each f in W12[0,00)is continuous, so is the mapping t — &, from [0, 0) onto
Q. Since 18 1l1, < [IP~lIlellsz = [[@~ ]|, we find that Q is norm bounded on the dual
space. Since the weak topology of a separable Hilbert spaceis metrizable on bounded sets, it
follows that €2 is metrizable. Thus, to prove that t — §,is a homeomorphism, it suffices to
show that t,, - t, whenever &, — &, . Suppose that this is not the case, then there is € > 0

suchthat |t,, — t,| > € foreach positive integer n. Considerthe W*-2[0, c0)-function defined
fort = 0 by

£(6) = {e—lto—sl, if |to—s|<e;

0, otherwise

Since 6, (f) =0 and &, (f) = €, we find that §, cannot converge to &, . Therefore, the
mapping t — &, IS a homeomorphism.

Lemma (6.2.14):[147] LetA be a semisimple regular commutative Banach algebra. Then
the closed of A are

I = {ﬂ ker® : F is closed in Q(A)

NEF

If and only if for each x € A there exists a sequence {x,,} tending to x in A and x,, vanishes
on a neighborhood U,, of h(x) with compact complement.

Proposition (6.2.15):[147] The Banach algebra W2[0, o0)is semisimple and regular and
the mapping F —»N,¢r Ker §, is one-to-one from F[0, ) onto the set of closed ideals of
Wl2[0,00).

Proof: Since the characters 6,’s separate points, the Banach algebra W?*2[0,) is
semisimple. To prove that W12(o0,0] is also regular, we have to show that for each closed F
in  and each maximal regular ideal M & F there exist f in W2[0,00)suchthat f = 0 on F
and f(M) # 0. By Proposition(6.2.13) F < [0,00) and each point t, € [0,00)\F there
exists f in W12[0,0) such that f vanishes on F and f(t,) # 0, which is obvious.

190



Section (6.3): Shift Plus Complex Volterra Operator

Let D be the unit disk of the complex plane and H(ID) be the space of holomorphic
functions onthe unit disk. We say that a holomorphic function f(z) = Y.;°_,a,,z™ on the unit
disk belongs to the Hardy space % (D), if its sequence of power series coefficients is square-
summable:

H2(D) = {f € H(D): Z la, |2 < oo}.

We define a norm on 7 2(DD) by

1y = ) laul?. (17)
n=0

It is well known that  2(ID) is a Hilbert space with the inner product

[00]

f) Pz = Z anby,

n=0
for f(z) = Xy—o anz™and g(x) = X7_o bpz™
The operator defined on 2 (D)
M, f)(z) = zf(z) for fEH?*(D) and z€e D

Is called the shift operator. The lattice of the shift operator acting on the Hardy space is
completely described by Beurling’s Theorem [2], and it is one of the most celebrated and
widely used results. Let L?(0,1) bethe space of square integrable functions on (0,1). Sarason
[138] characterized all closed invariant subspaces of the Volterra operator

V() = ff(y)dy for feL12(01) and 0 <x <y < 1.
0
Aleman and Korenblum studied the complex Volterra operator in H 2(ID) defined by

V@) = f Fw)aw,

then they characterized the lattice of closed invariant subspaces of V in [134]. While doing
so they used the Beurling’s Theorem. Sarason [163] studied the lattice of closed invariant
subspaces of multiplication by x plus Volterra operator, M, + V acting on L?(0,1). Montes-
Rodriguez, Ponce-Escudero and Shkarin [147] and Cowen, Gunatillake and Ko [164] used
the idea of Sarason to study the invariant subspaces of certain classes of composition
operators on Hardy spaces.
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Following Sarason’s work we are interested in characterizing the lattice of closed nvariant
subspaces of the shift plus complex Volterra operator on the Hardy space. Denote by T the
operator

(TH(2) =zf(2) + jf(w)dw, for f € H?(D)and z € D. (18)

Since the shift operator is an isometry and the complex Volterra operator is a contraction, T
is clearly bounded operator on the Hardy space. To show the main result we use the space
§2% (D) defined by

$*(D) = {f € H(D):Df € H*(D)},

where D = — is the differential operator. It is clear that if Df is in % (D), then f belongs
to H 2(D). The norm of $2(D) is defined by
||f||§2(D) = ||Df||§[2(D) + ||f||gzL[2(]D))- (19)

Corresponding inner productis given by

{(f,9)s2w) = Df,DG)yr2py +{f 9 ae2 (-
We work describe the lattice of closed invariant subspaces of Tacting on H 2(ID).[165,166].
Proposition (6.3.1):[162] The following statements are true:

() S%2(D)cH”
(i)  $2?(ID) is Banach algebra.
(iii)  Polynomials are dense in $2(ID).

Proof: (i) Let f € §?2(D), then Df € H ?(ID) and hence

D 2
|Df(2)] S”f”—}[(m, forall z € D.

J1-—|z[?

Now«

1

If(2) — f(0)| = szf(tZ)dt SJ|ZDf(tZ)|dt < “Df”}[z(]])))j
0

0

|z|
Tt

|z|

< [IDfl3r2m) Of\/(1 —ezD(1 + tIzI)dt

Since 1 + t|z| = 1, we have <1

+tlzl
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If(2) —f(0)| < ||Df||}f2(m>)fﬁdt < 2|IDf ll3r2(m) (20)

This clearly shows that f belongs to H*, and hence §2(D) c H®.

(i) Toshow §%(D) is a Banach space under the above norm, suppose {g,,} is Cauchy in
§2(ID) norm. Then, clearly {g,,} and {D g,,} are Cauchy on H 2 (ID) norm. Since H'2(ID) is a
Banach space, {g,,} converges to a holomorphic function g € #2(D) and {Dg,,} converges
to the function Dg € H%(ID). Therefore g € $2(ID), and hence $%(ID) is a Banach space
under the given norm.

Pointwise multiplication on $2(ID) form an algebra. For this, suppose that f and g are in
S§%2(D).

1fallszmy = IDU D52y + 1f 9502 )
= ||ng+ng||32L[2(D) + ”fg”gzL[Z(D)
= ||9Df||32LfZ(ID)) + leng”f]-[z(lD))”ngllﬂ-fz(ID))
+”ng”;£2(11)>) + ||fg||§{2(D)- (21)
Using (20), we see that for any f € §%(DD)
1fllo < 2IDf N2y + IF (O] < 2IIDf llyr2qmy + 21 f 2y = 211 122 (m)-
Hence using (21)
1fgll5zmy = NglaNDgllz 2y + 211 f leo NglleoIDF N30z 1D G 52 )
HIFNZ DG @y + NgNE NS
< 4l1gll 22 1f 132 ) + 8llg 52y 1 f 52y + 411G 52 11 152 )

< 16]If 1132 g ll32 (-

(iii)  We want to show polynomials are dense in (D). Given f € S*(D), let f;(2) =
f(qz) be its dilation and Df,(z) = qDf(qz) = q(Df),(z) be derivative of dilation where
0 < g < 1. Each function f, is analytic in a larger disk, so itcan be approximated uniformly
on Dby a sequence of holomorphic polynomials F;', and hence Df, can be approximated
uniformly on D by holomorphic polynomials DF;*. So it will be enough to prove that f can

be approximated in $2(D) by its dilation. That is to say ||f — j;||52(D) - 0asq — 1. This
2 2 . .-
means that [|f — f; ||, .2y + IPf =Dy, ;2(py = 0 @ g~ 1. So finally it is enough to

prove that ||f —ﬁ,||;[2®) ~>0and |[Df =Df|,2(, — 08 q — 1. Forthis, let us assume
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f2) = i anz"

n=0

Since f € H?(ID), for all e > 0, we can choose a natural number N large enough such that

[0¢]

€
2
<~
> lal? <3

n=N+1
Now choose g, € (0,1) suchthat
N
(1= Y lay? <=,
n=0
Then, since
o) 2 o0
IF = Filliey = [ D anz" @ =ad| =D laat= a1,
n=0 n=0

it follows that for all ¢ > g,

IF =l = Z|an(1 I + Z ja,(1 — g2

n=N+1

<(- N)Zmnlz Z an? <5 +2=e

n=N+1

This shows that ||f — f, ||2

iy 0 as g — 1. On the other hand, we have

ol
Z z na,q"z"!
n=
00

IDf(2) — Dfy (2)| =

n=1

z na, (1 —q™)z"1|.

n=1

Similarly, we can show that ||Df — D, ||* - 0 as q approaches to 1.
Definition (6.3.3):[162] Define

S¢ (D) = {f € $*(D):(0) = 0}.

Corollary (6.3.4):[162] $Z(D) c §2(D) is a Banach algebra with the norm defined for
S§?(D) and §2(D) = [1] P 8§ (D), and hence
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§¢ (D) = span{z™n € N}.
Proof: Forany f and g in $§2(D) c §%(ID), we immediately see that
Ifgllszm) < If lszamllgllsz )-
Also, we have f(0) = 0and g(0) = 0 so (fg)(0) = 0 and hence fg belongs to § (D).

To show §¢ (D) is a closed subalgebra of $%(ID), assume g,, € S§Z(D). That means there
exists a sequence S, € §§(D),n € N such that g,, converges to gin $2(ID) norm.This
implies g,, converges to g in 7%(D) norm. Since g,(0) =0 for all n, it follows that

g(0)=0.

Theorem (6.3.5):[162] Let V be the Volterra operator on H 2(D). Then the following
statements are true:

(i) Range of V = §Z (D).

(ii) Vs abounded isomorphism from # 2(ID) onto ¢ (D), and its inverse is D.

(iii)  The operator T acting on 7€ %(ID) is similar under V to the multiplication operator M,
acting on S8z (D).

Proof:

(i) Let g be in the range of V, then there exists f € H 2(ID) such that
9@ = N@ = [ fodw
0

then Dg = f € H?(D) and g(0) = 0. Hence g € S2(ID). Conversely, suppose that g
belongs to §3 (D), then

(VDg)(2) = j D)W dw = g(2) - g(0) = g(2).

Therefore g belongs to the range of V.

(i) First we want to show V is a bounded operator on # 2(ID). Let us assume f is in the
Hardy space.

IVOlls2@) = IV POllsezay + [PV 520y = W llsez) + 1 sz = 20 llye2 o)

Hence the map V from H2 (D) onto $3(ID) is bounded. Clearly V is linear. Now to show V
IS one-one, assume that f; and £, belong the Hardy space, and also assume that

jﬁ(W)dW = jfz (w)dw, forall z € D.
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Differentiating both sides we see that f; = f,and hence V is one-one. From part (i) we have
VDg = g and clearly DVf = f. This shows that V is abounded bijective linear operator

from 7 2(D) onto §3(D) and V-1 = D.

(iii)  Suppose f belongs to H2(ID) and also suppose Vf = g, for some g € §%(DD).
Therefore we have f(z) = (V"1g)(2) = (Dg)(2).

(Tf)(2) = zf (2) + Vf)(2) = z(Dg)(2) + g(z) = D(zg(2)).
Now applying V on the bothside, we see that
(VTf)(2) = VD(zg(2)) = 29(2) = z(Vf)(2).

S0, VT = M,V and VTV~ = M,. Thatis to say V transforms the operator Tinto the operator
multiplication by zon §2 (D).

We can summarize the theorem by the following commutative diagram

V

H2(D) > S5 (D)
T < M,V M,
H (D) - >S5 (D)

Definition(6.3.6):[162] Anelement a in Banach algebra A is called cyclic if the subalgebra
generated by a is dense in A.

Proposition(6.3.7):[162]  Let A be a Banach algebra. Then the invariant subspaces of
multiplication by a cyclic element are exactly the closed ideals of A.[147].

Lemma(6.3.8):[162] Jis a closed ideal of SZ(ID)if and only if J is an ideal of $%(DD)
contained in §Z (D).

Proof: Using of Corollary (6.3.4), we see that for any h € §2(ID) there exists h, € §2(ID)
suchthat h = ¢+ h,.

SupposeJ is a closed ideal of $2(ID), then forany h € $2(D)and j € J,
hj=(c+h)j=c;+hjE].

Since norm on both spaces are the same, J is a closed ideal of $%(ID). On the other hand, if ]
is an ideal of $2(ID) contained in $2 (D), then it is clear that J is a closed ideal of $2 (D).

Definition(6.3.9):[162] Let K be a closed subset of the unit circle dID. For and inner
functionG we say G is associated with K if
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(i) if a,,a,,...are the zeros of G (z)in the opendisk, then all the limit points of{a, }belong
to K,
(i)  the measure determining the singular part of G is supported on K.

Theorem (6.3.10):[162] Suppose K is a is closed subset of 0D and let G be an inner
function associated with K. Let Is2(p) (G; K) be the set of all f € §%(ID)which are divisible

by G and which vanish on K. Then Is2 ) (G; K)is a closed ideal of $2(ID). Moreover, every
closed ideal of $2(ID). is obtained in this manner.[165].

Corollary (6.3.11):[162] SupposeK is a is closed subset of dD and let G be an inner
function associated with K. Let 5z (G; K) bethe setofall f € S5 (D)which are divisible

by G and which vanish on K. Then Is2 () (G; K) is aclosed ideal of §Z(ID). Moreover, every
closed ideal of S$3(ID) is obtained in this manner.

Theorem(6.3.12):[162] Let T be an operator

TH@) = 2f(2) + j Fw)dw.

defined on # 2(ID). Then the lattice of closed invariant subspaces is
LatT = {S € H2(D):S = {Df: f € I;35(G; K}
for G, Kdefined in Definition (6.3.9).
Proof: From Corollary (6.3.4),
S5 (D) = span{z™n € N},

soz is a cyclic element of the Banach algebra $Z(ID). Thus from the Proposition (6.3.7),
closed invariant subspaces of M,on §Z (D) are exactly the closed ideals of §Z(ID). Using
Corollary (6.3.11), the lattice of closed invariant subspace of M, acting on §2 (ID) is given by

Lat M, = {I2() (G; K): G, K defined in Definition(6.3.9)}.
Since VTV~!, we see that V1 (1502 (D)(G;K)) is a closed invariant subspace of T. From

Theorem (6.3.5), we know that V='(f) = Df. So,S = {Df: f € I;25;)(G,K)} is a closed
invariant subspaceof T. Hence,

Lat M, = {5 c H*(D):S ={Df:f € I'sz o) (G; K)}}

for G,K defined in Definition (6.3.9).
Corollary (6.3.13):[168] The following statements are true:

i) S*(D)cH™.
(ii)  S§%() is Banach algebra.
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(iii) Polynomials are dense in $2 (D).
Proof:

(i) Let f. € §2(D), then Df. € H?(ID) and hence

D
Z|Dfr(z—€)|SZ 1D/ Nl @ , forall (z—€) € D.
- - J1—1]z—¢€|?

Now«

DIrG--£Ol= ) |[G-nf (- )
T r o

|z — €]

SZOf|(z—e)Dﬂ(t(z—e))|dt lelDfrll}[Z(D) Of\/l— o7 dt

|z — €l
sZquuz(mof«l_lt(z_e)l)(1+tlz_el)dt

. 1
—€|l> — <
Since 1+ t|z—€| =1, we have ——= 1.

ZIfr(Z—E) fr<o>|<2nnfrnﬂ - f \/(1—|t(z—6)|) at <2 Y 1D et o

This clearly shows that f. belongs to H*, and hence §%(DD) c H*.

(i) To show §%(D) is a Banach space under the above norm, suppose the double

sequence {(g,),}& is Cauchy in $2(ID) norm. Then, clearly {(g,),.} and{D(g,),,}
are Cauchy on H 2(ID) norm. Since H (D) is a Banach space, {(g,-),,} converges to
a holomorphic function g, € H?(D) and {D(g,),} converges to the function
Dg, € H?*(D). Therefore g, € §2(ID), and hence $%(ID) is a Banach space under
the given norm. Pointwise multiplication on $2(ID) form an algebra. For this,
supposethat f. and g, are in $%(D) .

> a2 = 3 IDG 0y + 3 16 e
T r T
= legrnfr FEDG I + anrgruifzm)

ZMgerrllﬂzm) + ZanerruW(m||fngr||g{2(D) ' lefngrll}[z(D)
+ Zuﬁgrn%zm
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Using (i), we see that forany f,. € $2(ID)

DMl <2 ID Sl + D 1AO] <2 IDf ey +2 ) Mfi ez oy

r
=2 ) 1lfila.
r

Hence

D gl
r
< D g2 IDL ey + 2 D Wfello g lelIDf lyc o9 DGl

r r
M IDG e +2 ) g 12
T T
2 2 2 2
<4 ) 19,212 +8 ) 119, o 1 e o
r r
2 2 2 2
44 g, o 122y < 16 ) 122 g 2 -
r Tr

(iii) We want to show polynomials are dense in $2(D). Given f. € $2(D), let
fa-o(z—¢€) = fr((l —e)(z—- e)) be its dilation and D(f.)q_o(z—€) =
(1—-e)Df,(1—€e)(z—€)) = (1 —e)(Df,) - (z — €) be derivative of dilation
where 0 < € < 1. Each function (f,.);_e) is analytic in a larger disk, so it can be
approximated uniformly on D by a sequence of holomorphic polynomials Pjj _,, and
hence D (f,);—¢ canbeapproximated uniformly on D by holomorphic polynomials
DP[;_y. Soit will be enough to prove that . can be approximated in § 2(D) byits

dilation. That is to say ||f; — (ﬂ)(l—e)“gz(]m) —»0 as e— 0. This means that

”f;‘ - (ﬁ")(l—e)”;z(m) + ”Dﬁ‘ - D(ﬁ*)(l—e)”;zm) —0ase—0. S0 fma"y it is

2
enough to prove that || — (f)a-o [,z = 0 and [Df; = D) a-o |2 = O
as € — 0. Forthis, let us assume

f(z—¢€)= z al(z—e)™

Since f. € H%(ID), for all e > 0, we can choose a natural number N large enough such that

€
ri|2
< -,
2 Z lanl® <5

r n=N+1

Now choose (1 — €), € (0,1) suchthat
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1- (1—e)’:>22i|am2 <3

r n=0

Then, since

2= Fa-olem =
ZZmn(l—(l—e)“)lz

r n=0

it follows that forall (1 —€) = (1 —€),

Enfr - (ﬁr‘)(l—e)”j{z(D) = zila;(l —(1-eM|*+ z i la”(1= (1= e)")|?

0 2

Z @z — "1 = (1=

r n=0 r n=N+1
N
€ €
S(l—(l—e)”)22|a§|2+z Z |a;|235+§=e.
r n=0 r n=N+1

This shows that ||f; — (ﬁ")(l—e)”j_[z(m) — 0 as € — 0. On the other hand, we have

Y [Dfi (2 = © = D(fi)aoey(z — €]

= Z i nal(z—e)" 1 — i nal(1—e)"(z—e)™*?!
= z i na'(1—(1—-e)")(z—e)" 1.

Similarly, we can showthat ||Df, — D(f;) - ||2 — 0 as e approaches to 0.

Corollary (6.3.14):[168] S§¢ (D) c §2(D) is a Banach algebra with the norm defined
for §2(D) and $2(D) = [1] B §3 (D), and hence

S§2(D) =span{(z — €)™ n € N}.

Proof: Forany f. and g, in $§Z(D) c §%(D), we immediately see that
D g e < D Ifllsolg s m.
r T

Also, we have £.(0) =0 and g,(0) =0 so (f.g,)(0) = 0 and hence f,.g, belongs to
Sz (D).
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To show §¢ (D) is a closed subalgebra of §2 (D), assume (g,), € S¢ (D). That means
there exists a double sequence (g,),, € $§(D),n € N suchthat (g,.),,converges to g, in
§2%(ID) norm.This implies (g,),, converges to g, in H #(ID) norm. Since (g,-),,(0) = 0 for
all n, it follows that g,.(0) = 0.

Corollary (6.3.15):[168] Let V be the Volterra operator on 7 2(ID). Then the following
statements are true:

(i)  Range of V = §Z (D).

(i) PV is a bounded isomorphism from 7 %(ID) onto & (ID), and its inverse is D.

(iii)  The operator T acting on H #(ID) is similar under V to the multiplication operator
M,_. acting on S5 (D).

Proof:

(i) Let g, be in the range of V, then there exists f. € 72 (D) such that

D gz-=) WpE-e= TZﬁ(www

then Dg, = f. € H?(D) and g,(0) = 0. Hence g, € §Z(ID). Conversely, suppose that g,
belongs to §3(ID), then

Z—€

> gdG-= [ Y Dadwrdw = (9.G:- ) - 6.©) = ) g.z - )

Therefore g, belongs to the range of V.

(i)  First we want to show V is a bounded operator on % (ID). Let us assume £. is in
the Hardy space.

lev(ﬁ)llgzm) = ZIIV(}?)IIW(D) + Z||D(V(ﬁ)) ;29

T r
< D Willseza + ) M llazor =2 ) Il
r r r

Hence the map V from H 2 (D) onto $3(ID) is bounded. Clearly V is linear. Now to show
V is one-one, assume that (f.), and (f.), belong to the Hardy space, and also assume that

Z—€

j Z(ﬁ)l(w) dw = TGE(ﬁ)Z(W)dW, forall (z—¢€) € D.

Differentiating both sides we see that (f.); = (f.), and hence V is one-one. From part (i)
we have VDg, = g, and clearly DVf,. = f,.. This shows that V is abounded bijective linear

operator from 7 ?(ID) onto $4(D) and V™! = D.
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(iii)  Suppose f. belongs to #2(ID) and also suppose Vf. = g, , for some g, €
§2 (D). Therefore we have

D k==Y Wg)z-e) = ) (Dg)z—e).

DARG-=G-) flz-+ ) VG-

== ) DgE-+) gz-)=D( (=) g.z-9) |

Now applying V on both sides, we see that

D OTGE-=VD|G-e) g.z=) |=(z-)) gz
= (z-6) ) VI -e).
S0, VT = M(,_,V and VTV~ = M,_,. That is to say V transforms the operator T into

the operator multiplication by (z — €) on §2 (D).
Corollary (6.3.16):[168] Let T be an operator

DINE-=G-) fz-© +Zf€z}?(W)dW-

r

defined on H 2(ID). Then the lattice of closed invariant subspaces is
LatT = {5 c H?(D):S = {Df: f € Iz ) (G; K)}}
for G, Kdefined in Definition (6.3.9).
Proof: From Corollary (6.3.14),
§¢(D) = span{(z—€)™:n € N},

so (z —€) is a cyclic element of the Banach algebra §§ (D). Thus from the Proposition
(6.3.7), closed invariant subspaces of M(,_,) on §§(ID) are exactly the closed ideals of
§¢ (D). Using Corollary (6.3.11), the lattice of closed invariant subspace of M,_,) acting

on $Z(D) is given by

Lat M,_¢) = {I52(p) (G; K): G, K defined in Definition (6.3.9)}.
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Since VTV~! = M(,_,), we see that V1 (1 szm) (G K )) Is a closed invariant subspace of
T. FromCorollary (6.3.15), we know that V™' (f;) = Df,.S0,S = {Df;: f; € L5z () (G, K)}
IS a closed invariant subspace of T. Hence,

S c H2(D):S = {Df: f, € Iz (G; K)}}

LatT = _ _ .
{ for G,K defined in Definition (6.3.9)
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List of Symbols

Symbol Page
L%: Bergman space 1
H?: Hardy space 1
S} Direct orthogonal difference 3
12 Hilbert space 3
ker: kernel 3)
L1: Dual Lebesgue space 5
LP: Lebesgue space 5
12 the sequence space of Hilbert 6
®: orthogonal sum 6
sup: supremum 8
Re: Real 8
inf: infimium 10
Im: Imaginary 11
dim: Dimension 13
ind: Index 13
H™: Essential Hardy space 29
clos: closure 31
det: determinant 31
®: tensor product 33
Lt: Lebesgue space on the real line 64
AP: Bergman space 71
H: Dual of Hardy space 87
Hol: Holomorphic 90
dist: distance 101
£ the essential Hilbert space of sequences 104
Lat: Lattice 112
cl: closure 120
fd: fibre dimension 135
fr: fibre dimension range 141
H1: Hardy space 153
VMO: vanishing mean oscillation 164
DP4: Divichlet space 167
L%, Dual of Lorentz space 168
wt: Sobolev space 186
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