Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/15869
Title: Additive Maps and a Criterion for Integrability with Quasi-Compact Endomorphisms
Other Titles: ุฑูˆุงุณู… ุงู„ุฌู…ุน ูˆุงู„ู…ุนูŠุงุฑูŠุฉ ู„ู‚ุงุจู„ูŠุฉ ุงู„ุชูƒุงู…ู„ ู…ุน ุงู„ุฃู†ุฏูˆู…ูˆุฑููŠุฒู…ุงุช ุดุจู‡ ุงู„ู…ุชุฑุงุตุฉ
Authors: Ahmed, Ali Ebead Ali
Supervisor, - Shawgy Hussein Abdalla
Keywords: Mathematics
Compact Endomorphisms
Additive Maps
Criterion for Integrability
Issue Date: 10-Dec-2016
Publisher: Sudan University of Science and Technology
Citation: Ahmed, Ali Ebead Ali . Additive Maps and a Criterion for Integrability with Quasi-Compact Endomorphisms / Ali Ebead Ali Ahmed ; Shawgy Hussein Abdalla .- Khartoum: Sudan University of Science and Technology, college of Science, 2016 .- 72p.:ill. ;28cm .-M.Sc.
Abstract: We show that ฮฆ preserves zero products in both directions if and only if ฮฆ is either an isomorphism or a conjugate isomorphism .We arrive at the same conclusion for an arbitraryunital, complex Banach algebra, by imposing an extra surjectivity condition on the map. Let ๐บ be a reductive group and ๐œƒ an involution on ๐บ, both defined over a p-adicfild. We provide a criterion for ๐บ๐œƒ-integrability of matrix coefficients of representations of ๐บ in terms of their exponents along ๐œƒ-stable parabolic subgroups.Let ๐ต be a semiprime commutative unitalBanach algebra with connected character space ฮฆ๐ต.For each ๐‘ฅ ๐œ– ฮฆ๐ต, let ฯ€๐ต(๐‘ฅ) be the collection of all closed primary ideals contained in the maximal ideal ๐‘€(๐‘ฅ)= ๐‘ฅโˆ’1(0). The purpose is to illustrate how knowledge of the collection ฯ€๐ต(๐‘ฅ) at each๐‘ฅ ๐œ– ฮฆ๐ตcan be used in describing the outer spectrum of a quasi-compact unital endomorphism of ๐ต.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/15869
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Additive Maps and ....pdfTitel193.15 kBAdobe PDFView/Open
Abstract.pdfAbstract610.81 kBAdobe PDFView/Open
Research.pdfResearch1.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.