Chapter 1

Additive Maps on Standard Operator Algebras Preserving
InvertibilitiesorZero Divisors

Let A and B be standard operator algebras on infinite dimensional complex Banach
spaces Xand , respectively , and let @ be an additive surjection from A onto B . We
prove that if @ is unital and preserves any one of (left, right ) invertibility, (left, right )
zero divisors (left, right ) topological divisors of zero , quasi — affinity , injectivity ,
surjectivity ,range density , lower —bounded ness and left (right ) maximal ideals in both
directions, then it has one of the following forms : isomorphism , conjugate isomorphism
, anti- isomorphism .

Assume (P) is a property, we say that a map preserves property (P) if, for every T in the
domain of @, T possesses (P) = ®(T) possesses (P);® preserves (P) in both directions
iIf T possesses (P) = ®(T) possesses (P). Over the past decades, there hasbeen a
considerable interest in the study of linear maps on operator algebras that preserve
certain properties of operators. Many results having been obtained by now reveal the
relation between linear structure and the algebraic structure of operator algebras, and
help us to understand the operator algebras better. :
Some have been devoted to characterizing linear maps on operator algebras preserving
some properties concerning the invertibility, kernel and range of operators. Let Xand Y
be two complex Banach spaces, and B(X,Y)(B(X)if X = Y) be the Banach space of all
bounded linear operators from Xinto Y.Sour our proved that a unital linear bijective map
preserving invertibility fromB(X)onto B(Y)is either an isomorphism or an anti-
isomorphism. Aupetit

showed that every unital linear surjection preserving invertibility in both directions
between von Neumann algebras is a Jordan isomorphism. We improved the
above result of Aupetit by omitting the assumption “in both directions”, and proved that
every unital linear surjection preserving invertibility between von Neumann algebras is a
Jordan homomorphism. It was shown in that every surjective unital linear map on
B(X)preserving injectivity of operators in both directions isan automorphism and every
surjective unital linear map on B(H) preserving surjectivity of operators in both
directions is an automorphism, where His a complex Hilbert space. We discussed the
linear surjective maps compressing various parts of the spectrum containing the
boundary of the spectrum on C*-algebras Aof real rank zero and showed that such linear
maps are Jordan homomorphisms. If A is a standard operator sub algebra of B(X), we
also obtained the descriptions of unital linear surjective maps preserving the left
invertibility, the right invertibility,the lower-bounded ness or the surjectivity of operators
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on A, the last result particularly generalizes the result concerning the surjectivity
preservers mentioned above by omitting “in both directions” and considering the maps
on general standard operator algebras on Banach spaces. Recall that a standard operator
algebra on a Banach space Xis a closed subalgebra in B(X)which contains the identity
land the ideal of all finite rank operators. We show that every unital linear surjection
from B(X)onto B(Y)which preserves the quasi-affinity of operators iseither an
iIsomorphism or an anti-isomorphism, and every unital linear surjection from B(X)onto
B(Y)which preserves the range density of operators is in fact an isomorphism.

Another interesting problem is to characterize the linear maps which preserve
zero products. Semrl showed that every unital surjective linear map on B(X)which
preserves zero products in both directions is an automorphism. It was proved that every
surjective linear map between standard operator algebras on Banach space is an
isomorphism multiplied by a scalar if it preserves zero products in both directions.
Similar results were obtained for bounded unital linear maps onnest algebras with
atomic nests.A more general (and more difficult) situation would be to consider an
algebra only as a ring, and to assume the maps being additive only. In this direction, only
a few results concerning the preserver problem have been obtained .Hou and Gaoshowed
that every surjective additive map on B(H)preserving zero products in both directions is
an automorphism or a conjugate automorphism multiplied by a scalar. The purpose is to
discuss the additive maps between standard operator algebras on complex Banach spaces
which preserve various properties in both directions concerning the invertibility, kernel
and range of operators, zero divisors, by one method for all.

We first fix some notations. We always assume that X and Y are infinite dimensional
complex Banach spaces. For x € X and f € X*, rank one operator y = (y, f), IS
denoted by ® f , here, (y, f) denotes the value of f at y. As usual, C and N stand for
complex plane and the set of natural numbers, respectively. Let M be a linear subspace of
X, the dimension of M is denoted by dim M.

ForT € B(X),o(T ),0,(T ), mng(T ) and ker(T ) denote the spectrum, point
spectrum,range and kernel of T, respectively. rank(T) denotes the rank of T which is the
dimension of rng(T). A map ¢: X — Y is called conjugate linear if it is additive
andg (Ax) = Ag(x) holds for all scalars A € C and vectors x € X; more generally, @is
called z-quasi-linear if it is additive and @ (1x) = t(4)¢@(x) holds for all scalarsA € C
and vectors x € X, where 7 is a ring automorphism of C.

Let A be a Banach algebra. Recall that an element T € A is called a left (resp.,right)
zero divisor if there exists a non zero element S € A such that TS = 0 (resp.,ST =
0). A zero divisor is an element of A which is both a left and a right zero divisor. We



call T a left (resp., right) topological divisor of zero if there exists asequence {S,,},=1 C
A satisfying ||S,|| = 1 such that TS,, - 0(resp., S,,T — 0).A topological divisor of
zero is an element which is both a left and a right topological divisor of zero. We denote
by s, 7, 87, 24, 24,24, TZ24 72 and TZ the subsets of all non
invertible elements, left non invertible elements, right non invertible elements, zero
divisors, left zero divisors, right zero divisors, topological divisors of zero, left
topological divisors of zero and right topological divisors of zero, respectively, in A. An
element in A is called semi-invertible if it is either left invertible or right invertible. The
notions of semi-zero divisor, semi-topological divisors of zero and semi-maximal ideals
may be defined similarly.

Assume that A is a standard operator algebra on a complex Banach space X.
Let O and ®# be any one of the subsets

sS4, A, SA 24, 2, 28, 724720, 724,87AnSsA L2700 21 and T2 U
TZ2. We say that % is the dual of O, denoted by (Q#), if, replacing A by B(H)
with H an infinite dimensional complex Hilbert space, we have T € QB(H) & T* €
OB (H)holds true for every operator T € B(H). It is clear, by the above definition, that
@AD" = (N =04 () =84, (EZH) =24 and (27 V2 = 2V ZH,
etc.For T € A,o*(T) stands for the spectrum of T relative to A. Let F,(X) denotethe
set of all operators in B(X) with rank not greater than n and CI + F,(X) = {al +
F|a e CandF € F,(X)}. The following lemma is useful in the sequel. It characterizes
the rank one operators in terms of the subsets listed above and the operators in CI +
F,(X).

Lemma (1.1)[1]:-

Let A be a standard operator algebra on a complex Banach space X and Q denote any
one of the subsets s, s, s, 24, 24, 24, 724,724, 724,72 U
7Z4,87 n8H and 271 U Z2 of A. Then, for an operator A € A, the following
conditions are equivalent.
(a) Ahas rank one.
(b) Forevery T € A and everyscalarc # 1,ifT + Aand T + cA € Q# , then

T € Q%
(b’) Forevery T € CI + F, and everyscalarc # 1,ifT + AandT + cA € Q#,
then T € Q<.

(c)ForeveryT € A,ifT + AandT + 24 Q%then T € Q+.
(c’)ForeveryTECI+ F,,ifT + Aand T+ 24 € Q#*, thenT € Q%



Proof:-

(b) = (b)) = (c)and(b) = (c) = (c') are obvious. For the sake of simplicity, we
omit the superscript “A” of A in the proof of this lemma.
(a) = (b). Write A = x ® f. Assume, on the contrary, that there exists an
elementT € A, anon zeroscalarc # 1suchthatT + AandT + cA € Q butT ¢ Q,
we will deduce a contradiction.

If Q= 87, then T is left invertible and there is an element S € A such that
ST = 1. Since I + SA and I + cSAare in S, {—1,—c™1} € 0/ (S4) = o(SA),
this contradicts the fact that the spectrum of any rank one operator can not includestwo
non zero points.

The cases Q =387, or §# are dealt with similarly, and then, it is clear that
(a) = (b) holds true for S$7*nsSH.
If @ =727 uTZA, then T & Q implies T is a bijection and hence invertible as an
operator with the inverse T-1 which may not belong to A. However, T"'4A € A is a
rank one operator, and the above argument is also valid for this case.If Q = TZ*, then T
is lower bounded and hence, is injective and has closed range. T + AandT +cA € Q =
727 imply that there exist unit vector sequences{x,} and {u,} such that ||(T +
A)x,ll = 0 and ||(T + cA)u,|| = 0 asn - oo. Since, as bounded subsets in C, both
{{x,, f)} and {(u,, f) } have convergent subsequences, without loss of generality, we
may assume that{x,, f) - a and (u,,f) - b asn — oo. It follows that T x,, » —ax
and Tu,, » —chx as n — . Obviously, both a and bare non zero because T ¢ 77Z;*.
Therefore one sees that x € rng(T). Pick u e X sothat Tu = x,thenTU+u® f) =
T+x® feTZ impliesthat I +u & f is not invertible. Similarly, I + cu ® f is
not invertible. Thus the spectrum of rank one operator u @ fcontains two distinguished
nonzero points, a contradiction.

It is easy to verify from the case Q = TZ;* that (a) = (b) is still true for cases
that) = 72 orTZ =72 nTZ4.
Let Q = Z7*. Then T is injective and, as ¢ # 1, there exist linearly independent vectors
u and v such that T u = —(u, f)xand Tv = —c(v, f)x. However, the injectivity of T
implies that u and v are linearly dependent, a contradiction. The cases Q = Z'orTZ =
Z7t n Zcan be treated analogously.

By now the only case remained is Q = 274 U ZZ, and it is obvious, by applying what
have been proved above, that we need only to consider the case that T + A € Z;\Z#
and T + cA € Z7N\Z7, while T ¢ 272U ZA. It follows from T+ A € Z/\Z? that



there exists a vector u such that Tu = x. Since T(I + cu ® f) = TcA € Z2\2, (I +
cu ® f) & Z;* and hence is invertible. However, this implies T + cA ¢ 2, a

contradiction.

(c) = (a).Let ® = Z*. Assume that rankA > 1, we will prove that condition (c) is
not satisfied. Firstly assume that there exists a functional f € X* such that
fLA*f,(A"?f are linearly independent. Take vectors x,,x;,x, € X such that
x;, (A" f = 6;; (the Kronecker symbol) for i,j = 0,1,2. Let

T =x, ® GlIAIf — A f) +x @ GlANA™f — 2(A)*f) + x, ® GlAllIf — A*f)
= 3llAll1.

ThenT € CI +F,(X),(T*+ A")f =0and (T* + 2A")A*f = 0.ThusT + Aand T +
2A € ZA. Furthermore,(4 — 3||A|ID[(A = 3|A||1D (T + 3||A|lD) + ]+ A € 27 and
since (A4 — 3||A||D)~X(T + 3||A||D) is of rank-2, we see that(4 — 3||A||) (T +

311411 + 1 € 2% This implies that T + A € Z/2. Similarly,T + 24 € Z;*.Note
that,Z* = 2 n 2. Sowe get T + A and T + 24 are in Z*. However, it is easily
checked that T is invertible in A and hence, can not be inZ .

Next assume that for any g € X*, the functionals g, A*g , (A*)?g are linearly dependent.
Then, A* and consequently A, is an algebraic operator of degree not greater than two .
That is, there exists a polynomial p(t) of degree notgreater than two such that p(A) = 0.
If the degree of p(t)is 1,then A = al for somescalar a # 0. Pickavectory € Y so
thaty,g = aandletT = y @ g — 2al. ThenT isinvertible, but T + Aand T +

2A € Z<. So, from now on, we always assumethat A is not a scalar multiple of the
identity and the degree of p(t) is 2. In this casethere exist scalars a and fsuch that

p(t) = (t — a)(t — B).

Case (i). @ # Oand 8 # a. If § = 0, then, sincerank A = 2,dim ker(A — al) 2; if

B # 0, then A is invertible and, at least one of the subspacesker(4 — al) and ker(A —
B1) has dimension greater than 1 since X is of infinite dimension. So, without loss of
generality, we may assume that dim ker (A — al) 2. Thus, there exist closed sub spaces
V,,V, and V5 of X with dim V, = 1 such that X has the space decomposition X =1V, +
V, + V5 and A has the corresponded matrix representation

a 0 0
A= (O al, 0 )
0 0 P

wherel, and I; are the identities on V, and V5, respectively. Let



—a 0 0
T = ( 0 —0(]2 0 ).
0 0 —BI;

thenT € CI + F;(X) is invertible but both T+ A and T + 2A are zero divisors
of A.

Case (il). a = # 0. Since rankA > 1, there exist linearly independent functional
fi,f> € X*suchthat A*f; = af; and A*f; = f; + af,. Take vectors x; € X (i =1,2)
such that (x;,fj) = 6;;(i,j = 1,2). If a#+1, let T=(x;—x,) @ fy + (a®x; +
x)® f, — (a + 1)I. Then T € CI+ F,(X) and T is invertible since o*(T) =
{—-a — 1,—a + ia}. Because (T*+ A")f, = 0and (T* + 2A4™) X (f1 — af,) =0, we
have T + A and T + 24 € Z7*. Note that both A — (a + 1)Iand 24 — (a + 1)I are
invertible, this implies that we also have T + Aand T + 24 € Z;* and hence T + Aand
T+2A€eZ fa=1let T=(x;—2x) Qfi+ (—x; +x,) ® f, — 31, then
T €Cl+F,(X) and o(T) = {-3,—2 + V2LIt is easy to check that (T* + A*)(f, —
f2) = 0 and(T* + 24")f, =0,sowe have T + Aand T + 24 € Z2. Since 31 — A
and 31 — 2A are invertible, similar to the above argument, we also have that T + Aand
T + 2A € Z7*. Thus both T + Aand T + 2A are zero divisors while T is not. If a =
=1, let T =(—x; —2x,) Q@ fi + (—x1 —x5) ® f, + 31, then T € CI + F,(X) and
o(T) = {32 +V2}. As (T* + A)(f, + f,) = 0 and (T* + 24")f, = 0, thus T + A and
T + 2A are zero divisor, but T is not.

Case (iii). « = B = 0. Since rank A > 1, there exist functional, g € X* such that
f,A*f,g,A"g are linearly independent. Letf, = f,f, = A*f,f; = gand f, = A*g.Take
vectors x; € X (i = 1,2,3,4) such that (x;, f;) = 6;;(i,j = 1,2,3,4). Pt T=x, ®
fi+2x, ® f3 —V2I. It is easily checked that T € CI + F,(X)is invertible and(T* +
A (A g +/2g) = 0 as well as(T* + 24%)(V2A*f + f) = 0. The invertibility of 4 —
V21 and 24 —+/2I also imply that there exist nonzero vectors u and v such that

(T + Au=0and (T+24A)v=0. Thus we get T + Aand T + 24 € Z¥. This
finishes the proof of (¢") = (a) for the case that

O=z4

Since every choice of has Z# as a subset and since every element in s
not invertible in A, we see from the arguments for the case Q = Z# above that
(c") = (a) also holds true for every choice of Q<*, which completes the proof.

Lemma (1.2)[1]:-

Let A be a standard operator algebra on a complex Banach space Xand A,B € A. If A +
R € Q = B+ R € Q, forevery operator R € CI + F,(X),
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then A = B. Here Q and Q; denote any one of the subsets S#, 7%, sA4, 24, 274,
ZA8, 724728, 722,720 TZ28, 87 0 SA and Z71 U Z7of A, respectively.

Proof:-

LetQ and Q,be any one of the 12 subsets in the lemma, respectively. We
first note that 2 € QN Q,. For any nonzero vector x € X, denote Ax = y. Fix a
scalar A such that |A] > max{||A||,||B||} and y # Ax. Let M = {f € X*|(x, f) = 1}.If
f €M, then 1€0,(A—(y—1Ax)® f). Since || > [|All, one sees that A
also belongs t0 0,(4A— (y — ) Qf). ThusA—1—(y—-x)Q f e ZH cq.
It follows from the hypothesis that B—A1—(y—4Ax) ® f € Q; and consequently,
A€o B—(y — Ax) ® f). Now |A| > ||B]| implies A€ o,(B—(y Ax)  f).
So there exists a nonzero vector uy such that (B — (y — Ax) @ f)ur = Aus. Note
that ur = (us, Y (B—=AD)"'(y—Ax). Let u=(B-1)"'(y—1x), then (B—(y—
Ax) @ fHu = Au holds for every f € M. If x and u are linearly independent, then
there exists some f € M such that (u,f) =0, which leads to (B—A)u= 0 and
u = 0. This contradiction shows that(B — (y — Ax) ® f)x = Ax and hence,Bx =
y.From the arbitrariness of x it follows that B = A.

The following theorem is the basic result in this paper. It says that if a unital
additive map from a standard operator algebra onto another one preserves any one ofthe
mentioned twelve subsets, then it has one of the following forms: isomorphism,
conjugate isomorphism, anti-isomorphism and conjugate anti-isomorphism.

Theorem (1.3)[1]:-

Let A and B be standard operator algebras on complex Banach spaces Xand Y,
respectively, and let ®: A — B be a unital surjective additive map. Let Q® be any one of
the subsets S#, §7%, SA, 24, 24, 28, TZATZH, 724,85 nSsA, 27U
ZAand TZAUTZA of R with R = A or BIf &(T) € QB o T € Q#, then either
there exists an invertible bounded linear orconjugate linear operator A: X — Y such
that ®(T) = AT A~ for all T € A, orthere exists an invertible bounded linear or
conjugate linear operator A : X* — Ysuch that ®(T) = AT*A~! for all T € A. The last
case can not occur if any one of X and Y is not reflexive, or if A contains a element S
such that S € QA butS* ¢ A*,where A, = {T* | T € A}.

Proof:-

Assumethat ®(T) € B © T € A.

Claim 1.®is injective

We first assert that, if S €A such that T + S€EQ*=>T € QA for every T €
A, then S = 0. This is an immediate consequence of Lemma (1.2). Now, the injectivity
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of ® follows from this assertion. Indeed, if ®(S) = 0,then T + S € Q# = ®(T) €
OB =>Teq?forall T € Aandhence S = 0.

Claim 2.0 preserves rank-one operators in both directions.

Let T e Awith rankT = 1. For arbitrary F € Cl + F,(X) c B there exists
S € A such that ®(S) = F. If both F + ®(T) and F + 2®(T) are in Q, then both S
+ Tand S + 2T are in A. By Lemma (1.1)((a) = (c)), we get S € Q# and hence F €
0B, So, by Lemma (1.1)((c") = (a)) again, we have rank ®(T) = 1. Because
®~1(QB) = A, preserves rank-one operators in both directions.

Since & is additive, we see that the restriction of ® to F(X) is a bijection between
F(X) and F(Y) and preserves rank-oneness in both directions. It follows that there
exists a ring automorphism t : C — C and either

(1) there exist t-quasi-linear bijective maps A: X - Y and C: X* — Y*such

that x® f)=4x Q Cf for all x €EX and f exr, or
(if) there exist t-quasi-linear bijective maps A: X* - Y and C: X - Y™* such
that (x @ f) = Af Q@ Cx for all x €eX and f € X"
Note that the assumption that ®(I) = I has not been used by far. Claim 3. If case (i)
occurs, then ®(x ® ) = A(x ® f)A~1 for all x € Xand f € X*; if case (ii) occurs, then
PxQf)=AxQ f)*A 1 forall x € X and f € X*. Assume that case (i) occurs, we
first show that (Ax, Cf) = t({x,f)) forallx e X and f € X*. If(x, f) = 1, then | —x ®
f€ZMc O and hence,] — Ax ® Cf € OF as @ is unital, which yields (Ax, Cf) = 1.
If  (x,f)=a=+ 0, thent(a) HAx, Cf) =(A(a " x),Cf)=(a"1x,f)=1, so
(Ax,Cf) =1(a). Now assume that (x,f)=0, if (Ax,Cf)=p #0, then
| — AT Y(BHx) @ Cf € OB ,but this implies I — 7} Hx ® f € Q7 and (x,f) =
7-1(B) # 0, a contradiction. Thus, for any rank-1 operator x @ f € Aand y € Y, we
have

P(x ® fy = (Ax @ Cf)y = (y,Cf)Ax = (AAT'Y, Cf)Ax = t({A7'y, fHAx
=Ax® fH(ATy) =Ax ® fHA™y.
Therefore, d(x @ ) = A(x ® f)A™L.
If case (ii) occurs, then, similarly, we have (Af,Cx) = t({x, f)) forallx € X
and f € X*, and consequently, the corresponding part of the claim is true.
Claim 4. t(1) = Aforall 2 € Cort(1) = Aforall A € C.
Since a nonzero continuous ring homomorphism of C must be either the identity or the
complex conjugation , we need only to prove that 7 is
continuous. Assume, on the contrary, that = is not continuous, then tis not bounded on
any neighborhood of 0.



Assume the case (i) occurs. Take a linear functional g, € Y*with |[|g,|| < 1,and then,
pick a unit vector u; €X so that (u,,C'g,)# 0. Since 7is unbounded
on{A{uy, C g, ): 12| < 271}, 7(A4(uy, C71g,)) > 1 for some A;with |A;] <271, Let
x; = Ayuy. Then ||x]] < 27tand |7({x4,C " 1g,))| > 1. Take g, € Y* with||g,]| <1
such that C"1g, € {x;}*. Itis clear that C~1g,and C~1g,are linearly independent. Thus
we can take a unit vector u, € X such that (u,,C"1g,) # 0 while{u,,C"1g;) = 0. By
the unboundedness of T on the set {A{u,, C~1g,):|A| < 272}, there exists A, such that
|T(A,{uy, C 1g,)| >2. Let x, = A,uy. Then ||x,|| < 272%and |t({u,, C1g )| > 2.
Suppose that x;,x,,...,x, and g4, g,,..., g, are takenso that 0 < ||x;|]| <27 0 <
lgill < 1,(u;, C"1g,) = 0wheneveri # k, andt({(u;,C g, V)| > i,i,k = 1,2,...,n.
Take gn4+1 SO that Clg,.q € {x;,%5,....,x,}" and ||gp41ll < 1.ThenC g, ¢
v{C1g,,.., C"1g,}, the linear spanof {C gy, k = 1,...,n}. Pick u,,; with
lune1ll = 1 suchthat(u, 1, C 1g,+1) # 0 while (u,,,,C71g;)=0if i = 1,2,...,n.
Since 7 is unbounded on {A(u,.1,C 1 gne1): [A] < 27D} we get a A,,; with
il < 27D such  that  [t({Ups, C gne )| >n+1, where  x,,, =
An+1Un+1-ConNtinuing this process, we get two sequences {x,,},=1 and {g,}n=; Which
satisfy the conditions
@) ||x, 1l < 27™and||g, || < 1 for every n;
(b) (x,,, C"1g,) = 0 whenever n # k;
©) [t((xn, €1 gn)|l > m.
Note that x = )5, x,, IS a vector in X, so Ax € Y. However, foranyn € N, we
Have

lAx|l = [{(Ax, gu)| = |t({x, C gD > n,
a contradiction. This shows that T must be continuous.
Claim 5. Ais a bounded linear or conjugate linear bijection.
This follows immediately from the fact (Ax, Cf) = 7({x, f)) in case (i) (or,(Af,Cx) =
T({x, f)) in case (ii)) and the Claim 4 as well as the Closed Graph Theorem.
Claim 6. ®(T) = ATA orall T € A if case (i) occurs, or ®(T) = AT*A YHorall T €
A if case (ii) occurs.
Suppose that the case (i) happens. Let W(T)=A"1®(T)A for every TE€
A.ThenW: A - A is a unital linear bijective map, ¥(Q#) = Q< and, by Claim
W(x ® f) =x @ f for every rank-1 operator x ® f € A. Thus, for every T € A and
LeECYM+A1+xQ@feqfifandonlyifT + 2 + x ® f € Q#. It follows from
Lemma (1.2) that we have W(T) = T and there fore, ®(T) = AT A™L.
If the case (ii) occurs, similar to the proof of the case (i), we have thatboth A: X * - Y
and C: X — Y™ are invertible. Let J: Y - Y™ and K: X — X be then atural
embeddings. Then, from (Af,Cx) = t({x,f)) with 7(1) = 1 or (1) = 1 and the



equation (Wx, f) = (x, W*f) for conjugate linear operator W, we haveC *JA = Iy- and
A'C=K.SoJ(Y)=Y"and K(X) = X**. It follows that Xand Y are reflexive.
Let W(T = A*(T)*(A*)~L. Since X and Y are reflexive, ¥: A — A is a unitallinear
bijective map, and it is clear that T € Q# if and only if W(T) € (Q%*)’, where(Q#)’ is
the dual of Q#. By Claim 3, ¥(x ® f) = x ® f for every rank-1 element x @ f € A.
Thus we have T+ R € Q% © W(T) + R € ()’ for everyR € CI + F,. It follows
from Lemma (1.2) that W(T) = T and hence ,®(T) = AT*A™1.
If there exists an element S € A such that S € Q*but S* & Q#, where A, = {T*| T €
A}, then ® cannot take the form & () = A(-)*A~ since ®(S) = AS* x A~1 ¢ QB. The
proof is finished.
We remark that any form of isomorphism, conjugate isomorphism, anti-isomorphism and
conjugate anti-automorphism that & takes in Theorem (1.3) may occur for every choice
of Q®. This can be seen by assuming that both X and Y are reflexive but not separable,
and by taking A = CI + K (X), where K (X) is the ideal of compact operators or the
norm closure of the ideal of finite-rank operators. We also remark that if ®is linear in
Theorem (1.3), then ®is either an isomorphism or ananti-isomorphism.
Recall that an operator T € B(X) is said to be quasi-affine if it is both injective and has a
dense range; T is said to be lower-bounded if there exists a positive number ¢ > 0 such
that ||T x|| = c|lx]|| holds for all x € X. Now we apply Theorem (1.3) to answer some
preserver problems for additive maps on standard operator algebras in the following
results. We point out that some of these preserver problems were not answered even for
linear maps.
Theorem (1.4)[1]:-
Let A and B be standard operator algebras on complex Banach spaces Xand Y,
respectively, and let ®: A — B be a unital surjective additive map. Then the following
are equivalent.
(a)Ppreserves the invertibility of elements in both directions.
(b)dpreserves the semi-invertibility of elements in both directions.
(c)Ppreserves zero divisors in both directions.
(d)dpreserves semi-zero divisors in both directions.
(e)dpreserves topological divisors of zero in both directions.
(f)dpreserves semi-topological divisors of zero in both directions.
(g)Dpreserves the quasi-affinity of operators in both directions.
(h)® preserves maximal semi-ideals in both directions.
(i)  Either there exists an invertible bounded linear or conjugate linear operator
A: X - Y suchthat ®(T) = AT A~ forall T € A, or there exists an invertible
bounded linear or conjugate linear operator A : X * = Y such that ®(T) =
AT*A1 forall T € A; the last case occurs only if X and Y are reflexive.
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Proof:-

It is obvious that (i) implies each one of the conditions (a)—(h).

(a) > (i),...,(f) = (i) are immediate from Theorem (1.3) by taking Q¥ the subsets
SR, SEnSE 2ZR, ZRUuZRT7ZRand TZF UTZR of R, respectively, with R =
A or B. As to (g) = (i), we note that T € A is quasi-affine as an operator in B(X) if
and only if T is neither a left zero divisor nor a right zero divisor of A since F(X) c A,
thus we have (d) & (g). (h) = (i) follows from (a) = (i) because an element is
neither in any maximal left ideals nor in any maximal right ideals if and only if it is
invertible.

Theorem (1.5)[1]:-

Let A and B be standard operator algebras on complex Banach spaces Xand Y,
respectively, and let ®: A — B be a unital surjective additive map. Then any one of the
following conditions (a)- (1) implies that (n) holds true.Moreover, if A contains a left
invertible element which is not invertible, then the statements (a)- (m) are equivalent.
(a)® preserves the left invertibility of elements in both directions.

(b)® preserves the right invertibility of elements in both directions.

(c)® preserves left zero divisors in both directions.

(d)d preserves right zero divisors in both directions.

(e)® preserves left topological divisors of zero in both directions.

(f)d preserves right topological divisors of zero in both directions.

(g)d preserves the injectivity of operators in both directions.

(h)®d preserves the range density of operators in both directions.

()@ preserves the lower-boundedness of operators in both directions.

(j)® preserves the surjectivity of operators in both directions.

(k)@ preserves maximal left ideals in both directions.

(D)@ preserves maximal right ideals in both directions.

(m) There exists an invertible bounded linear or conjugate linear operator A: X — Y
such that ®(T) = AT A~ ! forevery T € A.

(n) Either there exists an invertible bounded linear or conjugate linear operator A : X —
Y such that ®(T) = AT A~ holds for every T € A, or there exists an invertible
bounded linear or conjugate linear operator A : X* — Y such that ®(T) = AT*A™?!
holds for every T € A. The last case occurs only if X and Y are reflexive.

Proof:-

(a) = (n),...,(f) = (m)follow directly from Theorem (1.3). It is obvious that (a) &
(k) since an element fails to have a left inverse if and only if it is included in a maximal
left ideal. Similarly, (b) & (1). Since A and B are standard operator algebras, one
checks easily that (c¢) © (g),(d) © (h),(e) © (i) and (f) © (j). Hence any one

of (a)- (1) will imply (n).
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Moreover, if A contains a left invertible element S which is not invertible, witha left
inverse R, then S is also a right zero divisor, right topological divisor of zero but S* is
not; R is right invertible, left zero divisor, left topological divisor of zero but R* is not.
These ensure that ® can not take the form ®(T) = AT*A~! for every T € A. Therefore,

each of the conditions (a)- (1) is equivalent to (m), completing the proof.

Corollary (1.6)[1]:-

Let &: B(H) — B(K) be a unital surjective additive map, where H and K are infinite
dimensional complex Hilbert spaces. Then the following statements are equivalent.

(a)® preserves the left invertibility of elements in both directions.

(b)d preserves the right invertibility of elements in both directions.

(c)® preserves the injectivity of operators in both directions.

(d)® preserves the range density of operators in both directions.

(e)® preserves the lower-boundedness of operators in both directions.

(f)® preserves the surjectivity of operators in both directions.

(g) There exists an invertible bounded linear or conjugate linear operator A: H — K such
that ®(T) = AT A~ forevery T € B(H).

Proof:-

(b) = (c). We use a method similar to that used . By Theorem (1.3), we have to verify
that ® can only take the form ®(-) = A(-)A~1.To see this, assume, on the contrary, that
® has the form ®(T ) = AT*A™! for everyT € B(X). Then, both X and Yare reflexive.
There exists aseparable subspace W of Y and a linear projection P from Y onto W such
that ||P|| = 1. Since W is a separable Banach space, according to

Ovsepian P elczynski’ sresulton the existence of total bounded biorthogonal systems in
separable Banach spaces, there is a vector sequence {y,}c W and a functional
sequence{g,} € W* = rng(P*) such that (a)g,,(¥,) = Omn form,n = 1,2,...; (b) the
linearspan of {y,} is dense in W in the norm topology; (c) if y € W and g,(y) =0
forall n € N, then y = 0; (d) sup, ||y, llllgnll = M < oo.

LetS =>7-12""y, ® g, + I — P. We claim that S is a bounded injective operator
with dense range but not invertible on Y. Indeed, the boundedness of S follows from the
condition (d) and ||P|| = 1, while the range density of S follows from thefact that
{Vnlmeq € rng(S). Because) -1 27"y, ® g, is compact, S is not invertible. From the
surjectivity of @, we can find an operator T € B(X) such that ®(T) = S. Itis clear that
T has dense range. For any non zero functional f € X*,let g =T"f (¥ 0). It is easily
seen that 0 € 0,(T* — g ® x) for arbitrary x € Xsatisfying (x, ) = 1. This implies
that the range of ®(T) — Ag @ h is not dense for arbitrary h € Y*satisfying (Af, h) =
1. Hence for every h € Y*satisfying (Af, h) = 1, there is anonzero functional w € Y*
such that S*w = (w, Ag)h. Asw # 0 we have S*w # 0and consequently, the range of S*
contains span{h € Y*| (Af, h) = 1for some f € X*}. But,
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span{h € Y*|{Af,h) =1 for some f € X"} =Y" because A: X * — Yis invertible,
which contradicts to the noninvertibility of S. So the second case cannot occur.
The proof of (a) = (¢) is similar.We have the following theorem .
Theorem (1.7)[1]:-
Let A and B be standard operator algebras on complex Banach spaces X and Y,
respectively, and let ®: A — B be a surjective additive map. Then @ preserves zero
products in both directions if and only if there exist a scalar cand an invertible bounded
linear or conjugate linear operator A : X — Y such that®(T) = cATA ! forevery T €
A.
Proof:-
We need only to prove the necessity. Assume that & preserves zero products in both
directions. It is clear that ® preserves left as well as right zero divisors in both directions.
By the notice before the Claim 3 in the proof of Theorem (1.3), one sees that @ is
injective and preserves rank-oneness in both directions, and hence there exist T -quasi-
linear bijections A and C such that either the case (i) or the case (ii) listed there occurs.
We claim that the case (ii) cannot happen. Assume, on the contrary, that the case (ii)
occurs, then for every rank one operator x @ f € A we have d(x Q f) = Af &
Cx.Picku € X and f € X" sothat (u, f) = 0. Since A and C are surjective, there exist
x € X and h € X* such that (Ah, Cx) # 0. However,(x @ f)(u ® h) = 0 implies 0 =
Px @ f)P(u @ h) =(Ah,Cx) Af @ Cu # 0, a contradiction. Thus, only the case
(i) occurs, that is, ®(x ® f) = Ax @ Cf holds for every rank one operator x @
f € A. Next we show that ®(I) = cI for some nonzero scalar c. Forany x Q f € A, if
(x,f) = a # 0,since

I-ax@Nx®N=xRHU-a'xRf) =0,
and® is zero-product preserving, we have
(@) — ()" Ax ® C(Ax Q@ Cf) = ((Ax ® CN))((@() — (@) " Ax ® Cf)) =
O,this yieldsthat ®(I)(Ax @ Cf) = (Ax Q Cf)P();if({x, f) = 0, pick a vector
u € X sothat (u, f) # 0, then by what has just been proved we have ®(I)((Ax +
Au) @ Cf) = ((Ax + Au) Q Cf )P )and d(NH(AuQ Cf) = (Au ®
Cf) ®(1I), these still imply &(I)(Ax ® Cf) = (Ax Q Cf ) ®(1). Since both A and C
are surjective, we see that @ (1) commutes with every rank one operator and hence must
be a multiple of the identity, that is, ®(I) = cI for some scalar c. By the injectivity of
®,c # 0. Now, ¢! @ is a unital surjective additive map preserving left zero divisor in
both directions, then applying Theorem (1.5), one completes the proof immediately.
Theorem (1.8) [5].
A finite dimensional Hopf algebra H is a symmetric Frobenius algebra if and only if H is
unimodular and its antipode S satisfies S,is an inner automorphism of H.
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Chapter 2

Additive Maps onto Matrix Mpaces Compressing the Spectrum

We prove that given a unital C*- algebra A and an additive and surjective map T :
A — M,such that the spectrum of T(x) is a subset of the spectrum of x for each x €
A, then T is either an algebra morphism, or an algebra anti-morphism .
Let Abe a (complex) unitalBanach algebra, and denote its unit by 1. By a(a)we shall
denote the spectrum of the element a € Aand p(a)will be its spectral radius. A well-
known result in the theory of Banach algebras, the Gleason—Kahane—Zelazko theorem,
states that if f: A — Cis C-linear (that is, additive and homogeneous with respect to
complex scalars) and f(a) € o(a)for every a € A, then fis multiplicative. Kowalski
and Slodkowski generalized their result, by proving that if f:A — Cwith f(0) =
Osatisfies

f)—fy) ealx—y)(x,y €A), (1)

thenfis automatically C-linear, and therefore also multiplicative. (That fis R-linear and
the fact that f(ia) = if (a)for all a € Acome automatically from the inclusions (1),
which combine spectrum-preserving properties and additivity properties on the
functional f.) In particular, if f:cA — C is additive and f(x) € o(x)for every x € A,
then fis a character of A.
The natural extension of the Gleason—Kahane—Zelazko theorem for the case when the
range Coffis replaced by M, the algebra of n X nmatrices over C, was obtained by
Aupetit .
Theorem (2.1) [2]:-

If T: A - M, is a surjectiveC-linear map such that
o(T(x)) € o(x)(x € A), 2)
then either
T(xy) =TT(Y)(x,y €A) or T(xy) =TT,y €A). (3)

We state that if T: A — M,is linear, unital and onto, sending invertible elements from
Ainto invertible elements of M, then Tis of the form (3). If (2)holds, then x €
Ainvertible implies 0 € o(x), thus by (2)we have 0 ¢ o(T(x)), which means that the
matrix T (x)is invertible. By Lemma(2.6) we also have that T'sends the unit element of
Ainto the unit element of M;,. Thus, under the hypothesis of Theorem(2.1) we have that
Tis unital and invertibility-preserving. Under the hypothesis of Theorem(2.1) , the map

14



Tis either an algebra morphism, or an algebra anti-morphism. We study the same type of
problem as the one considered by Theorem(2.1), assuming only additivity instead of
linearity over the complex field C. Our first result states that if Ais supposed to be a C*-
algebra,then we arrive at the same conclusion by assuming only additivity onT.

Theorem (2.2)[2]:-

Let Abe a unitalC*-algebra and suppose T: A — M, is a surjective additive map such
that (2) holds. Then Tis of the form (3).

As a corollary, we obtain the following generalization for the case of additive maps
defined on C*-algebras which compress the spectrum.

Theorem (2.3)[2]:-

Let Abe a unitalC*-algebra, and let Bbe a complex, unitalBanach algebra having a
separating family of irreducible finite-dimensional representations. Suppose T: A — Bis
additive and onto such that (2)holds. Then Tis a Jordan morphism, that is

T(x?) = T(x)?(x € A).

For the general case of an arbitrary Banach algebra A, we shall impose an extra
surjectivity assumption on the map T'in order to obtain the same type of result.

Theorem (2.4)[2]:-

Let Abe a unitalBanach algebra and suppose T: A — M, is a surjective additive map
such that (2)holds. Suppose also that there exist x, ..., x,2 € Asuch that

{T(xy) + T(ix,) /i, ..., T(x,2) + T(ix,2)/i} € M, (4)
are linearly independent over C. Then Tis of the form (2.3).

We do not know whetherthe assumption that the matrices in (4)span,,over the complex
field may be removed from the statement of Theorem(2.4). We believe that this
hypothesis can be eliminated, being a consequence of the fact that T'is surjective and that
(2)holds, but we have not been able to prove it. An important part of the proof of
Theorem(2.4) can be carried out without the surjectivity hypothesis given by (4)being
assumed, using only the surjectivity of the map T. Throughout this part, Awill denote an
arbitrary unitalBanach algebra. The first result shows that, as in the C-linear case , under
the hypothesis of Theorem(2.2)we have that the continuity of the map Tis automatic.

Theorem (2.5) [2]:- Let The an additive map from Aonto M, such that
p(T(@) < p(a)(a € A). 5)

15



Then Tis continuous, and therefore also R-linear.
Proof:-

Since Tis supposed to beadditive, it is sufficient to prove the continuity at 0 € A.
Suppose that a;, — 0in Aand let us prove first that (T (ay)), S Myis bounded. Using
the surjectivity of T, it is sufficient to prove that given any x € Athen
(tr(T(a,)T(x))), € Cis bounded, where tr(-)denotes the usual trace onM,,. By (5), for
each kwe have that

(T (@ + 1)) = (p(T(ax +x)))” < (P +))? < llag + xI12 < (laell + 1xI)?,
which implies
|er (T(@i)? + 26 (T(@)TG) + tr(T (D) | < nlllaeli? + 2la izl + 1xI).

Since a; — 0and p(T'(a)) < p(ay) < |lax||for each k, this gives p(T(a;)) — Oand
therefore tr(T(a,)?) — 0. Thus

2 lim sup |tr(T(@)TCO)| < nllxl? + 1er(T(0)Y?),

and therefore (tr(T (a; )T (x))),is bounded, as desired.

Since M, is finite dimensional, without loss of generality we may suppose that T'(a;) —
w € M, and let us prove that w = 0. We shall use the fact that the spectral radius on a
general Banach algebra is upper semicontinuous and the fact that on M, the spectral
radius is continuous .Given any a € Aand m € N, by (5)we have p(T(may, + a)) <
p(ma; + a). Using that Tis additive, this gives p(mT(a;) + T(a)) < p(ma; + a).
Therefore

Ilirrolo sup p(mT(a;) + T(a)) < ’lgrglo sup p(may, + a).
Since the spectral radius is continuous on M, that T'(a;) — win M, gives
Ill_}l’{.lo sup p(mT(ak) + T(a)) = Ill_)rg) p(mT(ak) + T(a)) = p(mw + T(a)).
Since the spectral radius is upper semi continuous on A, that a, — 0 in A gives
;Lr?o sup (may + a) < p(a).

Hence given any a € Awe have that p(mw + T(a)) < p(a)forallm € N. Since Tis
supposed to besurjective, we deduce that given any b € M, we can find M}, = Osuch
that
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p(mw + b) < Mp(m € N). (6)

Taking b = 0in (6)we get p(w) = 0. If w € M, were not zero, we may write it as

[0 1 O0.. 0]
|0 0 =*.. 0|
w=y 1t ot iy
6 0 ~o0 +|
For some invertibley € M,,. For
b=y} ¥ Oyem,

we have that 12 — mdivides the characteristic polynomial of mw + b. Hence p(mw +
b) > ~/mforallm € N, contradicting (6).

The following lemma and Theorem(2.5)show that an additive surjective map T: A —
M, satisfying (2)is automatically unital.

Lemma (2.6) [2]:-

Let T: A — M, be additive and onto such that (2)holds. Then T(11) = Al,forevery A €
C, wherel,is the unit matrix of M.

Proof:-

By Theorem(2.5)we have that Tis continuous, and therefore also R-linear. Since Tis
onto, by the open mapping theorem for surjectiveR-linear maps we find N > Osuch that
y € M, implies the existence of x € Asuch that T(x) = yand ||x|| < N||y||. Let 1 €
Cand denote u = T (A1) € M,,. Then given any y € M,,, we have

a(/Un—(u+y)) =A—-—oc(u+y) =)1—J(T(/11+x)) CAl—0(11+x)
=A- (/1 + J(x)) = —o(x),

Wherex € Awas such that T(x) = yand ||x]|| < N||y||. Thus

p(A, — (w+y)) < p(x) < llxll < Nliyll,

That is

p((AL, —u) —y) < Nliyll, (v € My).
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The Zemanek characterization of the radical implies that AI,, — ubelongs to the radical of
M,. Thatis, u = AL, since M, is semisimple.

Suppose now that T:A — M,is a surjective additive map such that (2)holds. By
Theorem(2.5), we have that Tis R-linear. Following an idea , given any r € Rwe have

o (eirT(e‘iTx)) ce"o(e™x) = o(x)
For every x € A. From the R-linearity of Twe also have

eirT(e‘irx) = (cosr +isinr)(cosr.T(x) —sinr.T(ir))
= T(x)(cos?r +isinr.cosr) — T(ix)(cosr.sinr + i sin’r)
= T(x) + T(ix)/2 + %" (T(x) — T(ix) /i) /2.

Thus
o(R(x) +&S(x)) So(x)(x€A; E€C,[E[=1), (7)
where we have denoted

T(x)+T(ix)/i
2

R(x) = (x €A)

And

T(x)—T(ix)/i
2

S(x) = (x € A).

Since Tis R-linear, one can easily check that R and Sare both R-linear transformations
from Ainto M,,. More than that, R(ix) = iR(x)for every x € A, and therefore Ris C-
linear. Also, S(ix) = —iS(x)for every x € A, and therefore Sis conjugate-linear. Thus

T(x)=R(x)+Sx)(xeA),

whereRis C-linear and Sis C-linear. Observe also that by Lemma (2.6) we have R(1) =
I,and S(2.1) = 0 € M,,.
The inclusions (7)imply the following spectral inequalities for the maps RandsS.

Theorem (2.7) [2]:-

Suppose T: A — M, is a surjective additive map such that (2)holds. Then R(e%) €
M, is invertible for each a € A, and

p (S(xea)(R(ea))_l) < p(x)(a,x € A). (8)
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Proof:-

Consider x € A with p (x) < 1and an arbitrary a € A. Let £ € Cwith |§| = 1. Then
for each r € Rwe have that (£ — x)e™® € Ais invertible, and (2)gives

a(T((€ — x)e™)) < €\{0}. Then
o(éR(e™)) — T(xe™) + £S(e™) < C{0},
And therefore
o(R(e™)) — ET(xe™) + £25(e™)
c C\{0}, (aeA,plx)<1,]& =1,r €R). 9)
This leads us to consider the family of analytic multi valued functions (K, ),efo,1j9iven
by
K,(1) = J(R(em) — AT (xe™) + /IZS(em))(A € C).

Since by Theorem(2.5)we have that T, Rand Sare continuous and since the spectrum
function is continuous on matrices, for each A € Cwe have that the function r —» K,.(A)is
continuous with respect to r. We apply now the multivalued form of Rouché’s Theorem
given to see that

(KNG | (K @N\Ko() € | ik (©: € 0,11, 161 =13,

(By Dwe have denoted the open unit disk in C.) Now (9)implies that 0 & K,.(&)for r €
[0, 1]and || = 1, and therefore (K;(D)\K,(D)) € C\{0}. That R(1) = I,and S(1) =
0imply Ky(1) =o(l,, — AT(x)). But a(T(x)) € o(x) S D, and therefore K,(1) S
C\{O}for all A € D. That K,(D)\K,(D)does not contain 0 € Cimplies then K;(D) <
C\{0}, and therefore

o(R(e™) — AT (xe®) + 22S(e®)) € C\{0} (@€ A,p(x) <1 |A<1). (10)

Taking A = 0in (10), we see that R(e%)is an invertible matrix. Denoting s =
T(xe*)(R(e*)) e My,and p =S(e*)(R(e%))t e M,,, we infer from (10)that
det(u?l, —us +p) # Ofor |u| > 1. Let us observe now that u — det(u?l, —us +
p)is just the characteristic polynomial of

0 I
[—p ;] € Man

And therefore
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p([—S(ea)(})?(ea)_l T(xea)lg(ea)—lb <1 (ae A, plx)<1).

For x — nxwith |n| = 1we get

P ([—S(ea)(})?(ea)‘1 1(7)1] T [8 R(xea)??(e“)‘l] +1n [8 S(xea)?q(ea)ﬂ ) <1,
And therefore

g ("[—S(e“)?e(e“)-l 1l reenren ][0 senreen]) <1

for all |n| = 1. Using Vesentini’s theorem and the maximum principle for subharmonic
functions we infer that

p([g S(xea)z(ea)—l]) <1

Therefore p(S(xe®)R(e%)™ 1) < 1for all a € Aand for all x ewith p(x) < 1. Using the
fact that Sis conjugate-homogeneous, we obtain (8).

Let us remark that, under the hypothesis of Theorem(2.7), we have detS(x) = Ofor
everyx € A. Indeed, taking x =1in (8)we see that p(S(e*)(R(e%))™1) < 1for
everya € A. There fore p(S(e**)(R(e?*))™!) < 1for every a € Aand 1 € C. This

implies that the analytic function 1 — det S(e*®)det(R(e?*))~tis bounded on C.
Classical Liouville’s theorem implies that it is therefore constant. Since S(1) = 0, then

detS(e?*) = 0 for 2 =0, and therefore detS(eA*)det (R(e"la))_1 = Ofor every 1 €

C. Thus detS(e?*) =0on C, and in particular detS(e%) = 0. Now if x € Ais
arbitrary, the holomorphic functional calculus shows that 1 + x € Ais an exponential
for [€] > p(x). Then det(S(x)) = det(S(¢é1 + x)) = 0, where {was chosen such that
€1 > p(x).

Let us observe that until now in this part, the only surjectivity assumption that was used
in the proofs is the one we have on the map T. By Theorem(2.5)we have that Ris
continuous, and by Lemma(2.6)we have thatRis unital. By Theorem(2.7), the map
Rsends exponentials from Ainto invertible matrices. Then the proof shows that given
any complex polynomial p, we have

tr(R(p()y)) = tr(p(RGNHR(Y))  (x,y €A)
In particular, tr(R(xy)) =tr(R(X)R(y))for every xand y, and
tr(((R(x)*= R(x*)R(Y)) =0(x, y € A) . (11)

20



If we further suppose (4)to be true, then Ris also surjective and (11)implies that R(x)? =
R(x*)for every x € A. Thus Ris a Jordan morphism and therefore, since M, is prime, of
the form (3). We shall use this property in the proofs of both Theorem(2.2)and
Theorem(2.4).

Theorem (2.2) [2]:-

Let «Abe a unitalC*-algebra and suppose T: A — M,,is a surjective additive map such
that (2)holds. Then Tis of the form (3).

As a corollary, we obtain the following generalization for the case of additive maps
defined on C*-algebras which compress the spectrum.

Proof:-

By Theorem(2.7), we have that (8)holds. Let a € Abe a self-adjoint element. Then for
every r € Rwe have that e € Ais a unitary element. In particular, [[e™¢|| =
p(e) = 1. For an arbitrary y € Aand 1 = a + i € C, where a, € R, by taking
x = ye — 2ifa € Ain (8)we see that

P <S(yeza) (R(ela))_1> =p (S(ye—Ziﬁae(a+iﬁ)a) (R(e(aﬂ'ﬁ)a))_l) < p(ye~2ifa)
< |lye=?%e|| < liyllfle=>%2|| = liyll.
The continuity of Sand R, together with the facts that Sis conjugate-linear and Ris C-

linear imply that A — S(yeza)(R(e’la))‘lis analytic from Cinto M,,. Then Liouville’s

Spectral Theorem implies that A — S(yeza)(R(e’la))‘lis constant on C. In particular,
for every Awe have

7 (s0e™) (R)) ) = o (SoD(RD) ™) = o(50),

the last equality being true since by Lemma (2.6) we have that R(1) isthen X n
identity matrix. Thus

a((S() +AS(ya) + A2(ya*) /2 + - ) (I, — AR(a) + ++))

=a(S()1 € 0). (12)
Taking y = 1in(12), since by Lemma (2.6) we have that S(1) isthen X n zero
matrix we obtain that

p((AS(a) + 22S(a®)/2 + ), —AR(@) + ) =0 (A€ 0).

Dividing the last equality by A # 0 and letting A — 0 we see that p (S (a)) = 0. This
holds for any arbitraryself-adjoint element a € A; if x € A is now arbitrary, with x =
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a + ib where a,b € A are self-adjoint elements,then p(S(a + rb)) = 0 foreveryr €
R, the element a + rb € A being self-adjoint. Thus p(S (a) + rS (b)) = Ofor every
r € R, and for the analytic function A — S (a) + AS (b) this implies that p (S(a) +
AS (b)) = Ofor every A € C. Taking A = —i we infer that p(S(x)) = 0, equality which
holds for every x € A. Now ify,z € A are arbitrary elements, we have p(S(y) +
AS(2)) = p(S(y + Az)) = 0 forevery A € C. In particulartr ((S(y) + A5(z))2) = 0 for
every A € C, and therefore

tr(S(»)S(z)) =0 (y,z € A). (13)

Equation (12) implies that given any y € A and any self-adjoint elementa € A we
have

tr((S(y) + AS(ya) + A2(ya?)/2 + - )(I, — AR(a) + -++)) = tr(S(y)) (A € O).

Computing the coefficient of A, we see that tr(S(ya)) = tr(S(y)R(a)). That
p(S(ya)) = 0gives tr(S(ya)) = 0,and therefore tr(S(y)R(a)) = 0. By (13) we
also have tr(S(y)S(a)) = 0.Now if x = a + ib is arbitrary, wherea, b € A are self-
adjoint elements, then

tr(SO)T(x)) = tr(SGIR(x)) + tr(S()S(x))
= tr(S(y)R(a) + itr(SO)R () — itr(S(y)S(b)) = 0.
Thus tr(S(y)T(x)) = 0 for every x,y € A. The surjectivity of T implies that S is
identically zero. ThusT = R. In particular R is surjective, and then (11) implies that R is
a Jordan morphism and therefore ofthe form (3). Thus, the same is true for T = Rtoo.
As a corollary, we obtain the characterization of additive, surjective, spectrum

compressing maps into Banach algebras having a separating family of irreducible finite-
dimensional representations.

Theorem (2.3) [2]:-

Let Abe a unitalC*-algebra, and let Bbe a complex, unitalBanach algebra having a
separating family of irreducible finite-dimensional representations. Suppose T: A — Bis
additive and onto such that (2)holds. Then Tis a Jordan morphism, that is

T(x%?) =T(x)%(x € A).

For the general case of an arbitrary Banach algebra A, we shall impose an extra
surjectivity assumption on the map T'in order to obtain the same type of result.

Proof:-
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Let 7 be a finite-dimensional irreducible representation of B. Using the Jacobsondensity
theorem, we have that m: B — M, is surjective, for some n > 1. Define T,; : A —
M, byputting T,, = m o T. Then T, is additive and onto, and

U(Tn(x)) =0 (n(T(x))) Co(x)(x €A).
We use then Theorem (2.2) to see that T, is a Jordan morphism. Thus
m(T(x?) —T(x*)) =0 (x € A),

and using now the fact that B has a separating family of irreducible finite-dimensional
representations weconclude that T(x?2) = T(x?) forall x € A.

Theorem (2.4) [2]:-

Let Abe a unitalBanach algebra and suppose T: A — M, is a surjective additive map
such that (2)holds. Suppose also that there exist x4, ..., x,2 € Asuch that

{T(x)) + T(ix1)/i, ..., T(x,2) + T(ix,2)/i} & M, 4)
are linearly independent over C. Then Tis of the form (3).

We do not know whetherthe assumption that the matrices in (4)span,,over the complex
field may be removed from the statement of Theorem(2.4). We believe that this
hypothesis can be eliminated, being a consequence of the fact that T'is surjective and that
(2)holds, but we have not been able to prove it. An important part of the proof of
Theorem(2.4)can be carried out without the surjectivity hypothesis given by (4)being
assumed, using only the surjectivity of the map T. Throughout this part, Awill denote an
arbitrary unitalBanach algebra. The first result shows that, as in the C-linear case , under
the hypothesis of Theorem(2.2) we have that the continuity of the map Tis automatic.

Proof:-

We have seen that for R(x) = (T(x + T(ix)/i)/2and S(x) = (T(x) — T(ix)/i)/2, the
map R: A — M,is C-linear, while S: A — M, is conjugate-linear. Also, the hypothesis
(4) implies that R is also onto,and therefore the final remark in previous part implies that
R is either an algebra morphism, or an algebraanti-morphism. Let us suppose, for
example, that R is a morphism.

Consider an arbitrary y € A with p(y) <1 and an arbitrary & € Cwith || = 1. The
holomorphicfunctional calculus shows that {1 —y € A is an exponential, and then (8)

implies that p(S(x(¢1 — y))(R(E1 —y))™Y) < p (x) for all x. That is, p((ES(x) —
SOy, — ER(y)™) < p(x). Since R is an algebra morphism,thenp(R(y)) <
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p(y) < 1, and we then have (I, —éR(y)) ' =1,+ éER(Y) + E2R(Y)?> +--- . The
sub harmonic function

e p(uSx) = S(xy) Uy + uR(Y) + u2R()? + )

is well-defined on a neighborhood of the closed unit disk and is bounded by p(x) for
|u| = 1. Using themaximum principle we see that, for p(y) < 1and x € A we have

p((uS(x) = S(xy)) Un + uR(X) + PR)* ++)) < pC(Iul < 1) (14)

Foru = 0in (14) we get p(S(xy)) < p(x) for p(y) < 1, and using once more the
conjugate-homogeneity ofS we infer that

p(S(xy)) < p()p)(x,y € A), (15)

Taking the trace of the analytic function in the left hand side of the inequality from (14)
and computing the coefficients of u and 2, the Cauchy inequalities imply the existence
of ¢, > 0and c, > 0such that

[er(S(x) —tr(S(xy)R)| < c1p(x)(x € A, p(y) < 1) (16)
And
[tr(SCIRY) — tr(S(xY)R(H| < cp(x) (x € A, p(¥) < 1). (17)

Taking y =1 in (15) we get [tr(S(x))| < np(x), and then from (16) we infer the
existence of c¢; > 0 suchthat |tr(S(xy)R(¥))| < c3p(x) for all x,y € A, with p(y) <
1. Since S is conjugate-homogeneous and R ishomogeneous, this gives

tr(SCey)RW)I < csp()p (1) (x,y € A). (18)
Using the homogeneity of S and R in (17), we have
tr (SCORWP()? — tr(SCyIRMA < c3p(x)p()*(x,y € A). (19)

(For arbitrary x,y € Aand e > 0, applying (17) to x and y/(p(y) + &) we see that

[tr (SR () + ) — tr(S(xY)RW)A)I < c2p() (p () + €)3, (x,y € A).

and thenwe let e —» 0.) If R(y)? = 0, then (19) gives [tr(S(X)R(Y))| <
c,p(x)p(y) forall x € A. IfR(y)? = R(y), then using (18) in (19) we obtain that for all
x € A we have

[tr (SCORW)P )| < c3p()p(¥)* + c2p(x)p(y)>.
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Thus, there exist c,, cs = 0 such that for y € A if we have either R(y)? = Oor
R (y)? = R(y), then

|tr(SCOROI < p(x)(e4 + c5p(x)) (x € A). (20)

Let now x,u € A be arbitrary and y € A such that either R(y)? = 0, or R(y)? =
R(y). Since R is amorphism, for each invertible element w € A we have that R(y)? = 0
implies (R(w™lyw))? = R(w™1y?w) = Rw™ HR(y)?R(w) = 0, and analogously
R(y)? = R(y) implies R(w~1yw)? = R(w~1yw). By (20), the entire function

A — tr(S(x)R(e Mye’))

Is then bounded on C, and therefore, by classical Liouville’s theorem, is constant. The
coefficient of Afor its Taylor series is therefore zero, and using one more the fact that R is

a morphism we infer thattr (S(x)RW)R(y)) — tr(S(x)R(¥)R(w)) = 0. Thus

tr ((SGOR@) — RWS(X))R()) = 0,

for all y € A such that either R(y)? = 0, or R(y)? = R(y). Since R is surjective, by
taking y such thatR(y) has 1 on the (j, k) entry and zeroes everywhere else, we obtain
that S(x)R(u) — R(u)S(x) = Oforall x,u € A. We use once more the surjectivity of R
to infer that S(A) < CI,. Since detS(x) is always

zero (see the remark following the proof of Theorem (2.7)), we obtain that S itself is
identically zero. ThereforeT = R, and the theorem is proved.

Corollary (2.8) [6].

Let A be a semi-simple commutative Banach algebras with the unite A and B
acommutative Banach algebra with the unite B, respectively. Suppose that T is a
multiplicative map from A onto B and preserves the spectrum. Then B is semi-simple
and T is an isomorphism from A onto B, in particular, there exists a homeomorphism @
from Mgonto Msuch that the equation

(TF)(y) = f_O(y)_(y EMa)

holds for every f €A..
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Chapter 3

ACriterion for Integrability of Matrix Coefficients with Respect
to Asymmetric Space

The group case reduces to Casselman’s square-integrability criterion. As a consequence
we assert that certain families of symmetric spaces are strongly tempered in the sense of
Sakellaridis and Venkatesh. For some other families our result implies that matrix

coefficients of all irreducible, discrete series representations are G- integrable.
Section (3.1) Preliminaries on the Symmetric Subgroup:-

Let Fbe a p —adic field. LetGbe the group of F —points of a reductive F —group, 6
aninvolution on Gand H = G%the subgroup of -fixed points. In this work we providea
criterion for H-integrability of matrix coefficients of admissible representations of Gin
terms of their exponents along 6 —stable parabolic subgroups of G. In the group
case(G = HXH,0(x,y) = (y,x)) our result reduces to Casselman’s square-
integrability criterion.

For a smooth representation wofG, let Hom H(m, C) be the space of H —invariant linear
forms on m. As apparent, for example, from the general treatment , this space plays an
essential role in the harmonic analysis of the space G/H. See also for the study of
H —invariant linear forms on induced representations in the context of a p —adic
symmetric space and in the more general setting of a spherical variety.

Furthermore, the understanding of H —invariant linear forms in the local setting has
applications to the study of period integrals of automorphic forms. A conjecture of
Ichino-lkeda treats a different setting in which the pair (G, H) is of the Gross-Prasad
type. Itclaims, roughly speaking, that under appropriate assumptions, the Hermitian form
on an irreducible, tempered, automorphic representation of G associated to the absolute
value squared of the H —period integral factorizes as a product of local H —integrals of
the associated matrix coefficients. The conjectural frame work suggests a generalization
of this phenomenon, which will include the symmetric case. (For an explicit factorization
of a somewhat different nature .)

Integrability of matrix coefficients provides an explicit construction of the local
components of period integrals of automorphic forms. Factorizable period integrals, in
turn , are intimately related with special values of L-functions and with Langlands
functoriality conjectures.

The above global conjectures suggest to study the following purely local questions. Let
Agbe the maximal split torus in the centre of Gand Afthe connected component of its
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intersection withH. Let mbe a smooth representation ofGand ¥a smooth linear form in its

contragredients.

(i) Is the linear form

5, m(v) :=f P(m(h)v)dh
H/A¢

well defined on by an absolutely convergent integral? (When this is the case

{5y EHOMH (m, C).)

(if)Is it non-zero?

The answer we provide for the first question is a relative analogue of Casselman’s

criterion.

We recall that, essentially, that criterion says that an admissible representation mof Gis

square-integrable if and only if all its exponents are positive. The two main ingredients in

its proof are:

(@) The Cartan decomposition of G, which allows to test convergence of a G-integral by
convergence of a series summed over a positive cone in the lattice associated with a
maximal split torus in G.

(b) Casselman’s pairing, which is a tool to study the asymptotics of matrix coefficients in
a positive enough cone in terms of its Jacquet modules along parabolic subgroups and
eventually, in terms of the exponents of the representation.

Similarly, testing H —integrability, can be put in terms of convergence of a series

summed over a positive cone in a maximal split torus inH. In order to apply the

asymptotics of matrix coefficients of representations of G one has to relate positivity of

the cone in H to positivity of relevant cones inG. We achieve this by further studying a

root system, introduced by Helminck-Wang, associated to a symmetric space G/H. It is a

root system containing that of Hthat we refer to as the descendent root system.

A key ingredient in our proof is the relation, obtained in Corollary (3.1.8), between the

twonotions of positivity.

In what follows. Let P; be a minimal 8 —stable parabolicsubgroup of Gand P, a minimal

parabolic subgroup of Gcontained in P;. There exists a maximal split torus A, of Gin

P, that is 8 —stable. Letay; = X*(4,) Q7 R where X*(4,) is the lattice of F —characters

ofA,. Then facts as an involution on a; and gives rise to a decomposition

ag = (a5)g @ (ag)g

where (ag)ais the +1 —eigenspace of 6.

LetPbe a parabolic subgroup ofGcontaining P, (a standard parabolic subgroup) witha

standard Levi decomposition P = M x Uand let A,be the maximal split torus in the

centre ofM. Then a, admits a decomposition

ag = ay®(ag')’
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where ay, = X*(A4y) @z R. Assume that P(and therefore alsoM)is@ —stable. Then
6 —acts ona,,as an involution and decomposes it into the =+1 —eigenspaces

ay = (ay)g®(ay)y -
Let
A (AM); fay — ((/'lM)4J9r

be the projection to the first component with respect to the decomposition
ag = (a5)gD(a5)sD(ag)” -

Let A}, be the connected component of AY, .Then(a},)} =~ X(4},) ®; Rand in
particular(ag)s = X(4$) ®z R.

Let ¢ be the root system ofGwith respect to A, and let A be the set of simple
rootsdetermined by P,. Let A¢/# (M)be the set of non-zero restrictions to Aj,of the
elements of A. We say that A € aj is M —relatively positive if (1,)5is a linear
combination of the elements of A%/H (M) with positive coefficients.

There are two other root systems relevant to our main result. The root system Y of
Hwith respect to A} and the descendent root systemY.¢/ which is the set of roots of AF
in Lie(G). Let WHand WS¢/ Hbe the associated Weyl groups. By definition, 3. < ¢
and this induces the imbedding W# < WE&/H_ In Corollary (3.1.8) we define a particular
set of representatives [ WS/H /wH]for the coset space W¢/H /W H,

Let pS € a; be the usual half sum of positive roots in Y.¢(summed with
multiplicities).Note that similarly, p € (aj)4and that WS/7H acts on (ag)}.Our main
result takes the following form.

Theorem (3.1.1)[3]:-

Let m be an admissible representation of G. The matrix coefficient of wisH —
integrable if and only if for every 6 — stable, standard parabolic subgroup P = M x
UofG, any exponentyofralongPand any w € [ WE/H /WH]we have thatp§ —
2wpll + Re(x)is M — relatively positive.

For the definition of exponents of admissible representations see latter. For thedefinition
of Re(x) € a,,for acharacter yof Aysee (1).

Following Sakellaridis-Venkatesh, we say that G /His strongly tempered (resp. strongly
discrete) if matrix coefficients of irreducible, tempered (resp. discrete series)
representations of Gare all H-integrable.

Pairs of the Gross-Prasad type are strongly tempered in the special orthogonal case andin
the unitary case. As a consequence of the general criterion obtained in this work, we
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provide examples of symmetric spaces that are strongly tempered or at least strongly
discrete. We recapitulate the results here.
Corollary(3.1.2) [3] :-
Let E/F be a quadratic extension and /] € GL,,(F) a symmetric matrix.
In the following cases G/H is strongly tempered:

G H
GL,(E) 0,(F)
U p/r(F) 0;(F)
Span (F) U],E/F(F)
GL, (F) GL,(F) X GL,(F)

HereO, is the orthogonal group associated tojandU; f ,rthe unitary group associated to

Jand E/F.
In the following casesG /His strongly discrete:

G H
G'(E) G'(F)
GLZn(F) GLn(E)
GL,,(F) GL,(F) X GL,,(F)
GL2p41 (F) GLy, (F) X GLp1q (F)

HereG' is any reductive group defined overF.

For real symmetric spaces it is shown that weak positivity of pS — 2pfisequivalent
toL?(G/H) being tempered. It will be interesting to study the relation between
temperedness of L?(G/H) and the above properties, strongly tempered/discrete, in the
p —adic case.

When Gis split overF, Sakellaridis and Venkatesh show that ifG /Hisstrongly tempered
then all H —invariant linear forms of an irreducible, square- integrablerepresentation rof
Gemerge as H —integrals of matrix coefficients, i.e.,

Homy (1, ©) = {€54: ¥ € ft}.

We apply this result in end latter to some examples of symmetric spaces that are strongly
tempered by our criterion. This expands on some similar recently obtained results. Pairs
of Gross-Prasad type are strongly tempered and of multiplicity one. For those cases, the
non-vanishing of H —integrals of matrix coefficients was obtained. For irreducible
cuspidal representations it is shown for all symmetric spaces that all H —invariant linear
forms emerge as H —integrals of matrix coefficients.
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We recall in end of this section some basic facts about symmetric spaces. In particular
we recall the definition of the descendent root system associated to a symmetric space
G /Hby Helminck and Wang and prove some relations with the root systems of Gand of
Hthat are relevant to the rest of this work. We prove the main result, a criterion for
H —integrability of matrix coefficients. We provide examples of strongly
tempered/discrete symmetric spaces based on our main result. We apply results of
Sakellaridis and Venkatesh to provide examples where H —invariant linear forms emerge
as integrals of matrix coefficients.

Let Fbe ap —adic field. In general, if X is an algebraic variety defined over
F(anF —Variety) we write X = X(F) for its F —points.
Let G be an algebraic F —group and A; the maximal F —split torus in the centre of G.We
denote byX*(G) the group of F-rational characters of G. Let a; = X*(G) ®7 R andlet
a; = Homg(ag, R) be its dual vector space with the natural pairing (.,.) = (.,.)¢-
Wehave a; = a,..
To A ® a € a;we associate the character g g = [A(g)|%ofG. This extends to a bijection
from ato the group of positive continuous characters ofG. We denote by Re(y) € a;the
pre-image of a positive charactery: G —» Rsy. If y: G — c* is any continuous
homomorphism then we set

Re(x) = Re(|x]). (1)
Let X,(G) be the set of one parameter subgroups of G(i.e., F —homomorphisms G,,, —
G).For an F —torusT, X,(T) is a free abelian group of finite rank. The natural pairing
ofX, (T) with X*(G) allows us to identify a;with X,(T) ®; R
Let 5;be the modulus function of G*.
From now on assume that G is a connected reductive group. Let A;be the
maximalF —split torus in the centre ofG.
Let Po = M, x U, be a minimal parabolic F —subgroup of G with Levi component
Mand unipotent radical U,. Set Ay = Ay, ay = ay,and ay = ay .Then A4, is a
maximalF —split torus inG.
A parabolic F —subgroup P of G is called semi-standard if it contains 4,, and standardif
it contains P, If P is semi-standard, it admits a unique Levi subgroup M containing4,.
We will say that M is a semi-standard Levi subgroup ofG. When we write thatP = M x
U is a semi-standard parabolic F —subgroup ofG, we will mean that M is the unique
semi-standard Levi subgroup of P and U is the unipotent radical ofP,

a, = ay, Q all.

More generally, if @ = L x V is another semi-standard F —parabolic subgroup of G
containingP then a, is a subspace of a,,and there is a canonical decomposition

a,, — a; ®all\‘,[

30



Similar decompositions apply to the dual spaces. For A € a; we denote by A,its
projection to a;, and by A%, its projection to (ak,)*.

Let T be anF —split torus inG. If 0 #V € Lie(G) and 0+ a € X*(T) are such
thatAd(t)v = a(t)v,t € T then we say that ais a root of Gwith respect to Tandvis a
root vector with roota. Let R(T, G) be the set of all roots of Gwith respect toT.

Lety =% R(4,, G) Itisasubset of X*(4,) that spans (a$)*and forms a root
system. Let 70 = Y¢>0 = R(A4,, P,)be the set of positive roots and A=A%the basis of
simple roots with respect to P,. Let W %denote the Weyl group of }.¢ .For a standard
parabolic subgroup P = M x U of G let AM=A N XM be the set of simple roots of M
with respect to M N P,. Furthermore, let

Ay={al,, @ eaAM}\{0}.

For A € X,(G) we associate a parabolic F —subgroup P(1) = Pg(A). It is defined as the
set of points x € G so that the map a » A(a)xA(a)~1: G,, —» Gextends to anF —rational
map G, — G. (Here we view the multiplicative group G,,as a subvariety of the additive
group G,.) It naturally comes with a Levi decompositionP(1) = M(A) x U(A) where
the Levi componentM(A) is the centralizer of the image of Aand the unipotent radical
consists of the elements xwhere the above extended map sends 0 to the identity in G. The
group P(—A) is the parabolic subgroup of G opposite to P(A) so that P(1) N P(—4) =
M(A). Every parabolic F —subgroup of G is of the form P(4) for some € X, (G) .
Furthermore, every semi-standard parabolic F —subgroup of G is of the form P(A1) where
A € X, (4p).(In fact, semi-standard parabolic F —subgroups of G are in bijection with
facets of aywith respect to root hyperplanes associated to); .)

For a subset I CAlet 4; € X,(A,)be such that (a,A;) = 0. for all « € Iand (@, 1;) >
0for all @ € A/I.ThenP; = P(4,) is a standard parabolicF —subgroup of G. In fact,
P,is independent of a choice of A,as above and I — Pyis an order preserving bijection
between subsets of Aand standard parabolic F —subgroups ofG. We denote by P, =

M, x U, the associated Levi decomposition and let A; = Ayy,. Then Ayis the connected
component of N ¢ kera < Agand AM!. Note that Py = P, and P, = G.
Let T be anF —split torus. For a subsetS < X™*(T)let
ay”% = {x € ar:(a,x) > 0,a € S}
a3*°be its closure and
X, (T)52° = X, (T)Na3>°.
Also let

C(T,S) = {2 a,a:a, € Ryga €S
aeSsS

and let C(T, S) be its closure.
Fix auniformizer of Fonce and for all. Then, X, (T) can be embedded in Thy
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x ~ x(w). We denote the image of this embedding by C;. Then T /C;is compact.
LetC.>*°be the image of X, (T)¥>Cin Cy..

Let P = M x U be a standard parabolic F —subgroup of G. For € > 0 let

Cair’(©) = f{a € Cuy:la(@)]r < €,a EAy}.

Note that if e < 1 thenC ) (e) € Cfn’}l’zo,
Let

C3°(e) = Cay ™"
and fix a maximal compact subgroup K = K¢ of G‘adapt'edA,’ in the terminology. By
our choice ofKthere exists a finite set F,, in M, such that

G = U U KfcK.
0eCE® fEF
Fix a Haar measure on Gand let vol(X) denote the measure of a subset Xof G.
Lemma (3.1.3) [3]:-
There exists a basisJof neighbourhoods of the identity in G consisting of open normal
subgroups ofK'such that
vol(KofcKy) = 65 (fc) vol(ky) for all Ky € T
Let 6be an involution on G defined overFand
H=6’={g€G:6(g) = g}

We further denote by 6the differential of its action onG. It is an involution on Lie(G)and

Lie (H) = Lie (G)? (2)
Let H°be the connected component of the identity inH. It is a connected reductive
F —group and H°is of finite index in H.
For a & —stable F —torus T in G let T* (resp. T~) be the maximal subtorus of T (resp.
{teT:0(t) =t }).Then T =TT~ In particular, an element of X*(T)is determined
byits restrictions to T and T~
Note that @induces an involution on the setX,(G) that we further denote by 6, its
fixedpoints are precisely the elements of X, (H).
Lemma (3.1.4) [3]:-
The collection of parabolicF —subgroups ofHis the set of groups of the formP N
H°wherePis af —stable parabolicF —subgroup ofG.
Proof:-
A parabolic F —subgroup of H®is of the form Pyo(A1), where 1 € X,(H®) € X,(G).It
follows by definition that Pyo(1) = Pg(4) N H°.Note further that (1) = Aandtherefore
0(Pg(1)) = Pg(6(1)) = Pg(A),1.e.,Pg(4) is a8 —stable parabolic F-subgroup ofG.
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Conversely, suppose that P is a 8 —stable parabolic F —subgroup of G. There exists a
maximal 8 —stable torus A of G contained inside P. Now, there exists A € X,(A*)such
that P = Pg(4).SinceA™ < H®, the F —subgroup P N H° = Pyzo(4) of H®is parabolic.
Fix a minimal parabolic F —subgroup PH of H°. Let P, be minimal amongst
the® —stable parabolic F —subgroupsPof G such that P n H® = PH. It follows from
Lemma (3.1.4) that P4 is in fact a minimal 6 —stable parabolic F —subgroup of G.
We may choose the minimal parabolic F —subgroup Pyof G to be contained in P;. We
may and do further choose A, to be 6 —stable. Thus facts on X,(A,), X*(A,), ag
and ay.
Note that if @ € Y.¢ has root vector v € Lie(G) then
Ad(0(a))0(v) = 8(Ad(a)v) = a(a)8(v), a € Ay,
i.e., 8(v) is a root vector for 8(a) and therefore facts on Y.¢ and maps the root space of
ato that of 6 ().
If P = M x U is a semi-standard 6 —stable parabolic F —subgroup of GthenU and Mare
6 —stable by the uniqueness of the semi-standard Levi decomposition. Thus, AM is also
6 —stable.
Agis amaximal F —split torus of H and the standard Levidecomposition P, = M; x U,
is such that M, is the centralizer of A in G.
Since facts as an involution on a, it decomposes it into a direct sum of the
+1 —eigenspaces which we denote by (ao)g. Similarly.
a; = (ag)f ®(ap); -
The inclusion X, (A}) € X, (A,) induces the identification
X.(A9) ®z R = (ag)s.
It is straightforward that the pairing (.,.)sis finvariant and therefore (ag)gis the dualof
(ao);—r.Thus,(.,.)Grestricted to (ay)g X (ag)gis the natural pairing (.,.)ydefined with
respect to Aj.
Let P = M x U be a standard, 8 —stable parabolic F —subgroup of G. Then facts asan
involution on ayand we obtain a decomposition ay = (am)y & (am)gto the
=+1 —eigenspaces . A similar decomposition holds for the dual space and (aM)gis the

dual of (ay)7 . We have (ay)j = asyand similarly for the dual space. We denote by
A5 theprojection of A € ayto (az)s -

Every 6 —stable, semi-standard parabolic F —subgroup of G is of the form Pg (1) for
some A € X, (A{).In particular, there exists A; € X, (A}) such that P; = Pg(4,).
Let}# = R(A$,H)be the root system of H,YH>° = R(A},PH) the subset of
positiveroots and Athe basis of simple roots with respect to PflandWW *the Weyl group
of 321,
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Let Y.6/H = R(A}, G)be the set of roots of A§in Lie(G). Clearly 32 < Y¢/# It follows
that, unlessempty, Y¢/His a root system with Weyl groupW¢/# =
N; (A$) /G (A)(Recall that G; (AS) = M,). In particular, WH c WE/H Furthermore, if
»6/His empty then H/Atis compact. This case will be of little interest to us and we
assume in what follows that H/A¢is isotropic. We call.¢/H the descendent root system.
Since the root space decomposition of Lie(G) with respect to A, automatically provides a
decomposition of Lie(G) into A} -eigenspaces we have

G/H G
> ={ahyiae ) MO 3)
Lemma (3.1.5) [3]:-

Let « € Y.¢ be such that alas € Y& Thena € Y.¢>0 if and only if |y € X770,
Proof:-

Recall that 1, € X, (A}) is such that P, = P;(1,) and P! = Pyo(4,). Thus,

alpr € X700f and only if (als+,A1)y > 0. Our embedding of X*(A%) in (ag)§®
identifies a|yswith 2(a + 6(a)). Since 8(4,) = A;it follows that

(@, A1) = Gla+0(@), )6 = (@las )y -

Since U; € U, it follows immediately that if a|,+ € %%>° then a € X>° Conversely,
if a€X®Chen (a,A)s=0. If (a¢,A1;); =0then a € R(M;,A,).But since A}
contained in the centre of M, this contradicts the fact that a|,+ Ois non-trivial. It follows
that (@, ;)¢ > 0 and therefore that a|,+ € X">°.

0(x)|ax = x[prandf(x)|a; = —x|a; forall x = X*(A,) (4)
It follows that

x+0(x) =0ifand only if X|Ag =0 (5)
Let

AC [0 = —1] ={a €a%;0(a) = —a}b{a EAC:a|pr = 0}.
LetX, be the subgroup of X*(A}) generated by A¢ [ = —1]. Also set

AC[O = —1]=A%/A% [0 = —1]

Lemma (3.1.6) [3]:-
For every a €A’ [0 # —1]there exist § €A® [8 = —1]and x € X, such that
O(a) = f + x.
Proof:-
It follows from the definitions that X, is 6 —stable. Thus, the action of on X*(A,)
induces an action (that we still denote by 8) as an involution on I" := X*(Ay) /X, .
Let @« €AY [0 = —1]. If 8(a) = athen B = a,x = 0 and we are done. Assumethat
f6(a) # a.Letv € Lie(G) be aroot vector for a. Then 8(v) is a root vector for6(a) and
by our assumption vand 6(v) are linearly independent. It follows from (4) thatv +
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0(v) € Lie(G)? = Lie(H) is a root vector for the root a|Ag e Y., By Lemma
(3.1.5)al,: € YH>0and 6(a) € Y60

Let x — x be the projection of X*(A,) to T and let A¢ [0 # —1] = {ay, ..., a;}. Clearly,
{@,, ..., @ Jare Z —linearly independent in T. Since 8(«;) € X.¢>° forall i, it follows
that there exists M = (n;;) € M.(Z), a matrix of non-negative integers, such that

t
0(a,) = 2 n;; a;.

j=1

Since @is an involution we get that M? = [Lis the identity matrix. It is now
straightforward thatMis a permutation matrix. The lemma follows

A= {a|ps : @ €AC [0 = —1]} = {al,s : @ €A°T\{0} € X*(A])
Proposition (3.1.7) [3]:-
The seta%/His a basis of simple roots for the descendentroot system:¢/7 .
Proof:-
Let f = alys € Y6/H with ar € Y€ (see (3)). Then either cor —ais a
Linear combination with positive integer coefficients of elements of A. Restricting to A}
we getthat, respectively, for —fis a linear combination with positive integer coefficients
of elements of AS/H To prove the proposition we therefore only need to show that
A%/His linearly independent. Set A¢/H={p,, ..., B;}and fix ay, ...,a; € A [6 # —1] s0O
that B; = a;las, i=1,..,t. Let a; €EAS [0 # —1] be given by Lemma (3.1.6) so

thatd (a;) — a; € X,. After rearrangement we may assume that there exist k,0 < k <
tsuch that a; = a;if and only if i < k. Note that {a;:i = 1,...,t} U {a;:k <i < t}isa
subset of exactly 2t — k elements in A¢ [8 = —1].
Suppose that x;, B4, ..., ;8 = 0, x4, ..., x; € Rand lety = x; a4, ..., x;a;. Then
Ylaz = Oand by (5) y + 6(y) = 0. Therefore

t

K
Z 2x;a; + z x;(a; + a;) € X,.
i=1

i=k+1

From the linear independence of A¢it follows that x; = 0 for all i.The proposition
follows.

Note that our identifications give an action of the Weyl group W ¢/#on the vector
space (ag)gand on its dual (ag)y -

Corollary (3.1.8) [3]:-

We have

(8)A < C(AF,a5/H);

(b) [(ao);]AG/H,zo c [(ao)g]AH'Zoand henceX* (A_(l)_)AG/H,zo

AH,ZO .

C X.(Ap)*
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(c) The set
[WOHWH] = {w € W/H: w1 [(a0)§1*7"2° € [(a0)§]14"*%)
forms a complete set of representatives forW /" /WHand
X A5 = Uyye pyorm pymw XL (A5)220,
(d)For everyw € [WS/H/WH], w(ZH=0) c C(AF,a5/H).
Proof:-
Since 7 < Y6/H it follows from (c) and Lemma (3.1.5) that every element of 320 js
a restriction to Agof an element ofy%=°. In particular, if § = a|,+ €A"with a €
¥620 < C(A4,,A%)then writing aas a positive linear combination of elements of A and
restricting to A§ shows that g € C(4§,a%/"). This shows part (a).
Part (b) is straightforward from part (a).
Recall that 7 < Y¢/H are root systems in (ag)3. Ford € (aj)§Let
Hy = {x € (ap)g: {4 x) = 0}.
We have the Weyl chamber decomposition in the dual space

(aO);\(UaEZH Ha,) = L[ w [(ao);]AH'ZO

wewH
with respect to the root system Y. The union is of connected components. By

Proposition (3.1.7) we similarly have a decomposition
(aO);\(UanG/H Hy) = Hyewernw [(ao);]G/H'ZO
with respect to the root system Y.¢/# .
Since Ueyn Hy < Ugexern Hysany connected component of (ao);’\(UaezH H,)is
contained in a connected component of (ao);’\(Uaeza/H H,). In particular, taking
closures we have
[(a )+]AH,ZO — U W—l [(a )+]AG/H,20
0J6 we [WC/H jwH) 0J6
And part (c) follows.
Finally, for allw € [ WS/H/WH], @ € ¥H20 and 1 € [(ag)5]2%"#%we have
(w(a), 1) = (a,w™ (1)) =0
Note, that [(ao)g]AG/H'ZOand C(A$,a%/H)are both closed convex cones in Euclidean

spaces, in the sense that they are closed under linear combinations with positive
coefficients. Hence, by duality of convex cones, we have

C(A5,85M) = {x € (a))§ ¢ (@,2) 2 0,YA € [(a0)5]*""=}
The corollary follows.
Lemma (3.1.9) [3]:-
(@)The dual lattices X* = X*(AS/ Af)andX, = X.(A)/X.(AE)are ofrank|a¢/H]|
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(b)There exists a set{y,: a €A/} c X,(A})such that(a,y,) > 0 and (@, yp)
=0forall a#p in A®/H
(c)For such a set{y,: a
EAG/H}, letY be the subgroup of X.generatedby the images of they,’s
andY>%be the subset of Y givenby images of elementsof the form

N Vg WithZs,
aeaG/H
ThenY isof finite index inX,and there exists acomplete set of representatives
E forX,/Yso that we have the disjoint union
X*(A-(i)-)AG/H’zo /X*(A-Ié) — L[e + YZO

e€eE
Proof:-

By definition we have

Ngepornker B S Nyep6 ker a
Hence, since Agis the connected component of N . .ckera, we also have that Agis the
connected component of Mg, c/n ker B.

It follows that A%/Hembeds into X.and its image is a basis of the Q —vector space
X* Q7 Q.In particular part (a) follows. For each element of the dual basis (of
X* @, Q.) there is a positive integer that multiplies it into X,. Choosing representatives
mod X,( A¢) we obtain a set{ya:a EAG/H}} as in (b). As its image in X.,is a basis of
X* @4 Q it follows that Yis of finite index in X,.

Let Ebe a complete set of representatives for X, /Y and let ¢, = (a, y,) > 0,a €A/,
Fore’€ E'let m,', € Z be minimal such that (a,e’) + m," ,c, >0 and lete = e’ +

Ygeat/n My Yo Then E = {e: e’ € E'}is still a complete set of representatives for
X./Y. Note that
(a,e) ={(a,e)+m, cu =0

HenceE < X, (AY)A“"2%nd («, ) = min (a,x) forall a eaé/H,

xex, (A2 200 (e 4y)
It follows that

X.(AHA"20N (e + V) = e + Y20
And part (3) follows. _
Let P :AC [0 # —1] »A%/H be the surjective map defined by restriction to A.
Lemma (3.1.10) [3]:-
Let I €AC .ThenP,is 6 —stable if and only if there exists ] €A%/Hsuch
thatl =A% [8 = —1] U P71(J). In particula, P; = P,crg-_1y
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Proof:-
Assume that P;is 6 —stable. Recall that we may take 4; € X, (A$) € (ag)gso that P, =
P;(A;). By definition A% [6 = —1] € (ag)gand therefore, (a,y;); =0 for all a €
A% [6 = —1]. As argued in the proof of Lemma (3.1.6), for a A® [0 = —1] we have
(a, v1)e = (P(@),y;)y . It follows that
I ={a€er®(ay)s=0}=a%[6 =-1]JUP7'()),
WhereJ = {a €a/H (B,2,)y = 0}
Conversely, let ] €A%/Hand [ =A% [0 = —1]UP~1()). It follows from Proposition
(3.1.7) and Lemma (3.1.9)(1) that there exists u € X, (A{) such that (8, u)y = 0 if
B € Jand (B, )y > 0 if B €a%/H\ J. Arguing as above we get that
I ={a €A’ (a,p); = 0}.
Therefore P, = P;(w). As in Lemma (3.1.4) it follows that P,is 6 —stable.For a
standard, 6 —stable parabolic F —subgroup P = M x U of G let
ASTH (M) = {Blaz: B €A/HI\(0} = {aps: @ €ACF\(0}.
LetJ €AG/Hand I =A% [ = —1]UP~1()) be such that P = P,.
Lemma (3.1.11) [3]:-
Restriction to Aj,defines a bijection between A%/H\ Jand A%/H (M). Furthermore
,AG/H (MD)is linearly independent.
Proof:-
Recall that
I =AY= {a €aC:aly, = 0}
Therefore
ASH (M) = (Blag: B €47\ ]I \{0}.

Let AG/H\ | = {B,, ..., B:}. To conclude the lemma it is enough to show that for
X1, .., X € Rwe have, if x; 8, ..., x.f.is trivial on Af;then x; = 0 foralli = 1,..,¢t.

If B eab/H\Jthen g= alpsfor  some  a €AY [0 # —1]\I. Assume that

i=1XiBilat =0.Let a; €AS [0 # —1]\Ibe such that a;,+=p; and let y=

L a;a; . Theny| At =0 and therefore by a standard argument that we already applied
we have (y + 6(¥))|a, = 0.
Therefore, y + 6(y) is a linear combination of elements of I = AM . On the other hand,
let a’; €A [0 # —1] be given by Lemma (3.1.6) so that 8(a;) -a’; € x,. Since
a;, 0(a;) and a';coincide on Af , it follows that a;is not trivial on Ayand therefore a’; €
AS\I. Since A% [# = —1] < I every element of X0 is a linear combination of elements
of 1. It follows that ¥f_, x;(a; + a;")is in the span of I. Arguing as in the proof of

Proposition (3.1.7), by the linear independence of ACit follows that x; = 0 for all iand
the lemma follows.
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We call C (A+ ,AG/H (M)) the cone of relatively positive elements in (ag)g. Recall that
a; = (ay) " ®(ap)§®(ar)s-

Definition (3.1.12) [3]:-

An elementl € ayis called M —relatively positive(resp. weakly positive) if its

projection (Ay)gto(ay)qis inC (A+ N (M))

(resp.C_'(A+ ,AG/H (M))).

Corollary (3.1.13) [3]:-
With the above notation we have

AT (M) = {ala,: a €ay N0}
Thus, anyA € C(Ay,A)isM —relatively positive and anyA € C(Ay;,Ay)isM —
relatively weakly positive.
Proof:-
It follows from Lemma (3.1.11) that every element of A%/# (M) is of the form BlA;\fdfor

some B €AC/H \ . Let a €ACDbe such that a|pr = B. Then a ¢ I,and therefore a|,, #
0 ie., y:=als, EAyiS such that ylAf\;{ =ﬂ|Aﬁ.Conversely, if B €Ayls such that
Blaz # 0 then 8 = al,, for some a €A% [0 # —1]. Thus, y: = a|,y eA%/His such that
:8|A"1\',[ = ylAﬁand therefore ﬁlAKA €AC/H (M). The rest of the corollary is now
straightforward.

Section (3.2) H- integrability and non — vanishing:-

We apply Lemma (3.1.3) to H°with respect to the minimal parabolic Subgroup P and
the maximal F —split torus AY. Write P§' = M& =< Ul where M{is the centralizer in

H°of A$ and therefore M¥ € MY, Let

Hz0 _ ~aH>0

Choose a finite subset F§' of M¥ in such a way that
H® = U L[ KH fek™
ferg! ceclt=°
Holds. We further insure that Ff is such that Lemma (3.1.3) holds for H°with I"as a
basisof open normal subgroups of K.
For a subset Xof C ,+let [X] be its image under the projection to C 5+/C 5+ .

Let C*( AE\G)be the space of functions ¢: G —» C such that ¢p(ag) = ¢(9),g € G,a €
A¢and there exists an open subgroup K, of Gsuch that ¢is bi—K, —invariant.
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Proposition (3.2.1) [3]:-
Let ¢ € C*( AE\G). Then the following conditions are equivalent:
(a) |p(R)|dh < oo;

A{\H

(b) 2 573 (5)|(hyshy)| < ooforallhy, hy € H.
se[CéJ'zO] 0

SinceC ,+is cocompact in Ag, condition (1) holds if and only if . \qub(h)ldh < o, Let
Ag

D be a (finite) set of representatives for H/Hand letK, € I IH be such that ¢(d.)
w=[ ] L] e e
deD feff! cecéi'zo

and therefore

ch+ |¢(h)|dh<zz z 2 Loelfsezxo"p(dh)'dh:

deD feFrfl e;,e,€E se[CH 20
Z Z Z z |p(desfsez)|vol(Koe, fse,Ko).
deD feFll e1,e,€E se[C H>0
Note further that
vol(Kye; fse,K,) = vol(e;KyfsKye,) = vol(KofsK,) = 6;0;}(fs) vol(K,)

Where the identities follow respectively by the normality of K, in K#, the invariance
ofthe Haar measure on Hand Lemma (3.1.3) Thus,

fCAE\qub(h)ldh <V01(Ko)z Z 5PH(f) z z ;0}}(5)|¢(31592)|_

deD fefrl! e1,62€E se[c
Since the sums over d, f, e;, e, are finite clearly (2) implies (1). Similarly, if

X == U E[CH>O]KOSKO
Then

woltky) Y Ieush)l= [ lgmldhs [ lp@ldn
se[ci=0] C  +\N1X hy C +\H
and therefore (1) implies (2).

Let (7, V) be an admissible, smooth (complex valued) representation of G.For a parabolic

subgroupP = M x Uof G, let (1, (1), 7, (V)) denote the normalized
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Jacquet module of with respect toP. It is an admissible representation of M. We say that
a character yof Ayis an exponent of walong P, if it is an Ay -eigenvalue on 7,(V), i.e.,
there exists 0 # v € r,(V) such that r,(m)(a)v = x(a)v,a € Ay. See for a more
detailed discussion of this definition. If ris of finite length then so is 7, (7). In this case,
the exponents are the restrictions toA,of the central characters of the irreducible
components in a decomposition series for 7, ().
Letep (m)denote the set of all exponents of along P.
Let mbe an admissible representation of Gand let 7zbe its contragredient. For v € mand
¥ € ftthe function

Cop(9) =0(m(gIv), gEG
Is called a matrix coefficient of .LetM (mr)be the space of all matrix coefficients of .
Casselman developed a tool to study the a symptotics of matrix coefficients of min terms
of matrix coefficients of Jacquet modules of . We recall the results relevant to us.
LetP = M x Ube a standard parabolic subgroup of Gand let P —be the opposite
parabolic. Casselman defined anM —invariant pairing on 7,(m) X 7,_(m)that identifies
r,—(m)as the contragredient of r,(m).Letv,denote the projection of v € mto r, (). It
follows that for v € Vand © € twe haverp,ﬁp_ € M(r,(m)). Moreover, there exists € >

0 such that
Cv,ﬁ(a) = /ZC

Vp,Up—

(@), a €Cg)(e (6)
Let

o6 = Re(8,?) € (af)

And p& = (p$)y € (af))*its projection with respect to a standard Levi subgroup Mof G.
Note that if P = M x Uis a standard, 8 —stable parabolic subgroup of Gthen(pg)z =

Re( /2 >
Ay

Proposition (3.2.2) [3]:-

Letrrhe an admissible representationofGso thatAjacts onm as a unitary character and let
w be a character ofA{ /A% G. The followingare equivalent.

(a)For everyc € M(m)we have

lc(s)w(s)| < oo;

G/H
SE[CA+/ =0
A

0

(b)For every standard, 8 — stable parabolic F — subgroup P
= M x U of Gand for every y
€ ep(m) we have Re(x) + Re(¢) + pSis M — relatively positive.
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Proof:-
Let{y,: @ €A%/H}be as in Lemma (3.1.9)(2). In the notation of the lemma lett, =
V. (@), e = {e(@):e € E}and

S={y(w):y €Y} = { 1_[ ta®:n, € Lsofor alla EAG/H}.
aenG/H

It follows from Lemma (3.1.9)(3) that we have the disjoint union

AG/H >0] U €S.

EEE
For a subset ] €A%/Hand a positive integer Nlet

tZa:N < Tla}; S;(N); = {nt;la;o <ng <N

a€j
Note that S; (N), is a finite set. Clearly, for any fixed Nwe have the disjoint union
s= ][ s,

JSAG/H

S](N)o =

aeAG/H\]

And therefore

D e@eel=) > ) lee)aes)l

[CAG/H >0] €€e JcAG/H seS;(N)

:z Z z |w(es)| z |c(ets)w(s)].

€€e JcAG/H s€S;(N)4 SEST(N)o

Since c(et) € M(m) and the first three summations on the right hand side are over a
finite set, we see that condition (1) is equivalent to the condition:
For every ¢ € M(m) and ] €A%/Hthere existsN > 0 such that we have
> ol < . )
SESJ(N)o
ForJ CAG/Hlet] =A¢ [0 = —1]UP~*(J)and P = M x U = P,. Let S;,be the lattice
generated by {t,: a €AS/H \ J }. We further formulate the condition:
5:/2(S)|Q(S))((S)w(8)| < ooforallN > 0,] CA®/H (8)
SESJ(N)o
X € ep(m)and polynomials Qon S,,with complex coefficients.
Clearly (8) holds if and only if for all ] SAS/H, y € ep(m) and a €AG/H \ Jwe have

1
SP/Z(ta)I)(a)(ta)l < 1. Note that S;(N),lis contained in AGM and that 6p |4,, = Opla,,-
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By Lemma (3.1.11) we get that (2) is equivalent to (8). It is therefore enough to show
that conditions (7) and (8) are equivalent.
Assume that condition (8) holds. Fixc € M(m)and] SA¢/H  (so that [ =A% [0 =

—1JUPY(J)andP = M x U = P)).Leté € M (rp(n)) be the matrix coefficient
associated by the Casselman pairing and € > 0 be given by (6) so that

1
c(a) = 6,2 (@)é(a),  a€cie)
An element of Ayis of the form «a|,, for somea €A%\ I. Henceea%/H\ J. It therefore
follows from the definition of the sets S;(N), that there exists Nlarge enough so that

S;(N)y € cjlg (€).To show that condition (7) holds it is therefore enough to show that

1
P AICTLOMSIRES
SES](N)O
A standard argument shows that there exist polynomials Q,, ¥ € ep()on Sy, only

finitely many of which are non-zero, so that
)= ) Q) x(€), sESy.

x€ep(m)
Hence (7) follows immediately from (8).

Conversely, assume that (8) does not hold. Let] SA/H, o eab/H\ Jand, in the above

1
notation,y € ep (1r)be such that 6P/2(ta)|)(a)(ta)| > 1. Then

ZSESJ(N)O 6;/2(s)|)((s)a)(s)| = o for allN > 0. Set ¢ = C, zwhere v € mis such that
vPis an eigenvector of AM with eigen value y(this realizes yas an exponent of malong
P) and ¥ € tis such that (vp, ¥p) = 1. Then, ¢|,,, = xand the above argument applying
the Casselman pairing shows that for Nlarge enough
Y leo®l= Y 8 1o = o

SESJ(N)o SESJ(N)o
Thus, condition (7) fails to hold. (Indeed, S;(N;), € S;(N;), for Ny < N, and therefore,
if condition (7) holds then it is satisfied with Narbitrarily large.)
Definition (3.2.3) [3]:-
We say that a smooth representation of G /Afis H —integrable if for any
c € M(m) we have

J lc(h)| dh < o.
H/AE

1
Let pf = Re (5 /2>and recall that the set [W¢/H /W "] was defined in Corollary

Pg!

(3.1.7)(3).We can now formulate our main result.
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Theorem (3.2.4) [3]:-

Let 7 be an admissible representation of G /A%. Then wis H —integrable if and only if for
any 6 —stable, standard parabolic subgroup P = M x Uof Gand any y € &p(m),the
element Re(x) + pf — 2w(pll) is M —relatively positive for all w € [WE/H jWH].
Proof:-

Let NS/Hbe a subset of N;(AF ) consisting of a choice of a representative nforevery
element w € [WS/H /WH]. Since every (left or right) translation by Gof an element of
M(m) is again in M(m) it follows from Proposition (3.2.1) (in its notation) that mis
H —integrable if and only if

2 573 ()lc(s)| < o forall ¢ € M(m) 9)
seCH 20
By Corollary (3.1.7) we have
[CF*°] = U, cyorm ™ [CAG/H >°] n

And therefore,
> s ©le(s)l <

sect=0

If and only if

;0;} (n71sn)|c(n~1sn)| <

G/H
ECA ,20

0

for all ne NS/H, Note that c(n '.n) € M(m) and that Re(dpéqc(n‘l.n))z

2w(pk), when nrepresents w € [WS/H/W*H]. It now follows from Proposition (3.2.2)
(applied withw = 5ng n~Ll.n| A} that (9) is equivalent to the condition in the statement of
the theorem.
Theorem (3.2.4) points on the significance of the exponents

i = (p§)§ — 2w(pll) = (p§,); — 2w(pl) € (ai,), = (ap)§
forw € [WS/H /WH]. We will now present means to compute these exponents using the
action of 8on the various root data involved.
Fora € X" letLH(resp.L?) be the weight space of ain Lie(G) (resp. Lie(H)).
Thus L = 0ifa ¢ 37 . Set

MS =dimL¢, MY =dimlLi.

Since A} is 8 —fixed, its adjoint action on Lie(G) commutes with the & —action. Thus,
each LS is a@ —invariant subspace of Lie(G).
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Lemma (3.2.5) [3]:-
Leta € Y 6/H and set
a = TT(9|Lg).

(a)we have mg, = 2ME — M§.

G
(b)if 6(B) + Bfor every B € Z such thatf|,+ = a thenmg, = 0

Proof:-

The linear involution fon L%decomposes the space into a sum of the eigenspacesrelated
to the eigenvalues 1 and—1. The 1 —eigenspace is precisely LS N Lie(G)? = L.
Thus,mg , = 1. MY + (—1). (M§ — LD).

Suppose that ais as in the assumption of (2). Then there is an even number of elements
of Y% whose restriction toA;is aand we can enumerate them as { By, ..., B V1, -» Yic}
with  6(B;) = y;. Thus, LSadmits a decomposition LS = V; @ V,with 8(V,) =
V,(indeed take V;to be the direct sum of root eigenspaces in Lie(G) with respect to

{ B1, .-, B Yand similarly V, with respect to {ys, ..., ¥, })- Evidently, this implies that 6] ¢
is of zero trace.
Let $,6/H>0 .= yG/H n ¢ AF, A%/H)be the set of positive roots in Y.6/H . These are the
non-zero restrictions to A+0 of roots in };%>° .
Proposition (3.2.6) [3]:-
For every w € [WE/H /WH]. we have
1
Pem="75 z Mg -1 (@)

anG/H,>0_
Proof. Recall that 65 (a) = | det(Ad(a)|Lie(Py))|F,a € Ay. Applied to Hthis gives

1

pl = > Z M «

aez H,>0

Applied to Gand composed with the projection of p{f to (ag)#we have

1
(Po)e = z MG a

aEZG/Hr>°
Now, Ietw € [WE/H/WH] be given Then,
1
w(pl) z MY w(a) = = z Mg a =7 z MYy @ (10)
anH>0 aEW(ZH>0 anG/H,>o

The last equality is obtained as follows. By Corollary (3.1.7)(4) we have w(X™>° )

ZG/H ,>0
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The equality will therefore follow if we show that M[’;’ =0 (e, thatp ¢ X7 Yforp e
w‘l(ZG/ H>0 )\ZH'>° Assume by contradiction that—3 € X% . As above, by

Corollary(3.1.7)(4) we have —w(B8) € X¢">%  je poth +w(B) € R¢/H>°
which is a contradiction.
Finally, there exists n € N; (A¢ ) (a representative of w™1) such that Ad(n)(L%) =

LS -1 forall e € B¢ Hence,M$ = MS-. ,, and we can write
1
(pg)i =5 Z M1 () @ (1D
O.’EZG/H >0

The statement now follows from (10), (11) and Lemma (3.2.5).We examine our criterion
for H-integrability of matrix coefficients oncertain symmetric spaces. Sakellaridis and
Venkatesh defined the notion of

a strongly tempered spherical variety. We recall the definition and make an analogous
definition for square-integrable representations.

Definition (3.2.7) [3]:-

We say that G /H is strongly tempered (resp. strongly discrete) if every irreducible
tempered (resp. square-integrable) smooth representation m of G is H-integrable.

We provide examples of families of symmetric spaces for which the above properties
hold. In order to be able to apply Theorem (3.2.4) to this problem, we first need to recall
Casselman’s criterion for square integrability and a similar criterion for temperdness.
Theorem (3.2.8) [3]:-

Let = be an admissible representation of G for which the centre of Gacts by a
unitary character. Then m is square-integrable (resp. tempered) if and only ifRe(y) €
C(Ay, Ay (resp. Re(x) € C(Ay,Ay)), for any standard parabolic F-subgroupP =
M x Uof G andany y € ep(m).

It is straightforward from the definitions that an M, -relatively (weakly) positive element
of (ay), is also M-relatively (weakly) positive for every standard 6-stable Levi subgroup
M.The following is therefore a straight for ward consequence of Corollary (3.1.13) and
Theorems (3.2.4) and (3.2.8)

Corollary(3.2.9) [3]:-

If the relative test characters pg,,are M;-relatively positive (resp. weakly positive) for all
w € [WC/H /WH], then G/H is strongly tempered (resp. strongly discrete).

Let E/F be a quadratic field extension. Let H be a connected, reductive F-group and
G = Resg,r (Hg) be the restriction of scalars from E to F of the group H considered as
an E-group. Thus, G = H(E). The Galois involution of E /F defines an involution on G
that we denote by 6. We identifyH with G¢ and call G /H a Galois symmetric space.
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Since H is defined over F, so are the Lie algebra Lie(H) and the adjoint action on

it.Hence, we have
Lie(G) = Lie(H)(E) = Lie(H) Qr E
and the actionof h € Hisgivenas Ad(h)(v @ e) = Ad(h)v Q e,v € Lie(H),e € E.It
follows, that any eigenvalue of Ad(A%) on Lie(G) is also an eigenvalue on Lie(H) and
therefore Y6/ = YH In particular, Wé/H = WH,
Since standard parabolic subgroups of H are in bijection with subsets of A7, 9-stable
,standard parabolic subgroups of G are in bijection with subsets of A¢/Hand AH= AG/H
the map P — P? is a bijection between 8-stable, standard parabolic Fsubgroupsof G and
standard parabolic F-subgroups of H with inverse Q — Resg/r (Qg).In particular, we
have  P? = PH.We have the following
Lemma (3.2.10) [3]:-
Let P be a 8-stable, stanadrd parabolic F-subgroup of G. Then 6;/2|P9 = Opg.
It follows that (pg;,)s = 2p§ and hence p&,,; = 0 where e is the identity in W¢/#.
Hence, the following is immediate from Corollary(3.2.9).
Corollary (3.2.11) [3]:-
Every Galois symmetric space G/H is strongly discrete.We can also state the precise
criterion inferred from an application of Theorem (3.2.4) to the Galois case.
Theorem (3.2.12) [3]:-
Let G/H be a Galois symmetric space and let wbe an admissible representation of G /A¢.
Then m is H-integrable if and only if for any 8-stable parabolic subgroupP = M x U
of G and any y € ep(m), the element Re(y) is M-relatively positive.
Assume now in addition that A, = A} . Then by (3) 3¢ = Y6/# = Y'H and in particular
AS= A, Thus, standard parabolic subgroups of G are all 8-stable and in particular P, =
P;. In paricular, for any standard parabolic subgroup P = M x U of G we have AM =
Afand A= AS/H (M). The following is therefore immediate from Theorems (3.2.12)
and (3.2.8).
Corollary (3.2.13) [3]:-
Assume that G/H is a Galois symmetric space and A, = A{. Let = be an admissible
representation of G /A. Then m is H-integrable if and only if 7 is square-integrable.
LetG = GL,. Every symmetric matrix /] € GL, defines an F-involution 6(g) =
Jtg~J~* on G. Denote the associated orthogonal group by 0; = G = H.
After G-conjugation if necessary, we may assume without loss of generality that J is of
the form
Wy
Jo

Wy
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whereJ, € GL,_,, defines an anisotropic quadratric form (r is the Witt index of J) and
w, € GL, is the permutation matrix (w;.); ; = 6;,+1—;. We may and do further assume
that J, is diagonal.
We choose the torus of diagonal matrices in G to be the 8-stable maximal F-split torus
Ay. We Write €; € ay for the character of A, that takes a diagonal matrix to its i-th entry
and identifya; = R™ by identifying {e¢, ..., €,} with the standard basis of R™. Note that

Ay ={diag (a4, ...,an,1,...,...,a;%, ...,a;):a; EF*, i=1,..,7}
We write

N = €ilaz € (ao)g-

Let P, be the Borel subgroup of upper triangular matrices in G. For a decomposition
Mt Ane = nlet P yoiny) = Mmy+.4n) X Umy+..4n,) D€ the associated standard
parabolic subgroups of Gwith its standard Levi decomposition, where the Levi subgroup
M, +..+n»is isomorphic to L, X .. X GLy, .
Then P, = Py, 12n-r1,.,1) = My XUy is a standard, minimal 6-stable parabolic F-
subgroup of G. The intersection P’ = P, n H" is a minimal parabolic F-subgroup of
H’.The root system

FO/H = {{+(771 * 771)' 1<i#j< 7”} U{tn, £2n:i=1,..,1} 2r<n (12)
(t(itn)1<izj<rju{t2n:i=1,..,7) 2 =n
Is of type BC, when 2r < n and of type C, when 2r = n. We have
S {{m Miv1tizs U {1} 2r <n (13)
{771 m+1} LU {an} 2r = n.

We write E;; © Lie(G) = gl,(F) for the one-dimensional subspace of matrices
vanishing outside the (i, j)-th entry. These are the weight spaces for the roots in }.¢. For
integersa < b let [a,b] = {a,a+1,...,b} be the corresponding interval of integers.
Note thatthe action of 6 on gl,,(F) (given by 6(X) = —J* XJ~Dsatisfies O(E;;) =
Eny1-jn+1—iWhenever i,j € [L,r]U[n+1—7r,n] and O(EL,j) = Ejn4q—; for 1 <
i <randr <j < n-—r.lt easily follows that for a € X6/7\ {2,,...,2n,} and
every B € Y% such that Blaz = awe have 8(B) # . Thus, by Lemma (3.2.5)(2),
mg o = 0. Further more, 6 acts by —1 onLCz"m = E;n+1-; and there fore my 5, = —1.

In case n = 2r (H is an F-split orthogonal group), the root system Y is of type
Dp, A= {(n; =021 Y22 U {n,_; + n,} and WH is an index 2 subgroup of W¢/H It is
easyto check that [W¢/H /WH] = {e, €}, where ¢ is the simple reflection associated with
the root 27, € AS/# and e is the identity. It is straight for ward that mg 14y = Mg,

forall « € Y5/ It there fore follows from Proposition (3.2. 6)that PG/H = Pé/H-
Otherwise, when 2r < Y# is of type B, A= {n; — n; . J/Zi U {n, Jand WH = WE/H,
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In all cases, combining this with Proposition (3.2.6) the relative test characters are
given by

r r—1
G
P‘cA;//H =Zm =zj.(nj—nj+1)+r.nr, w € [Wr/WH]. (14)
i=1 j=1

This is M, -relatively positive by the second equality. Thus, from Corollary (3.2.9) we
deducethe following.
Corollary (3.2.14) [3]:-
The symmetric space GL,, /0, is strongly tempered for every symmetric matrix
] € GL,.
We provide another family of strongly tempered symmetric spaces. The computation of
relative test characters in the case at hand reduces to that of the previous. We there fore
maintain all the notation defined and use different letters todenote the symmetric space
we now consider.
Recall that E = F[t ]/F is a quadratic extension with Galois involution a. We consider
the following embedding of O, as a the group of fixed points of an involution on the
unitary group associated with Jand E /F.
Let G' = Resg/r(Gg) and consider o as the Galois involution on G'.Note that the
involution 6 on G = (G")? extends to an involution on G’ by the same formula
0(g) =J'9 1) 1,g € G' and that o and & commute. Let 8’ = 8o = 06 andU =
Ugp = (G"?" be the associated unitary group.
Note that o restricts to an involution on Uand U’ = 0; = H. We consider now the
symmetric space U/H.
From this explicit construction it is easy to see that there exists a o-stable, maximalF-
split torus AJ of U such that A} is the maximal F-split torus in (A3)°. Furthermore,

P{ = Resgr(Py,. 12n-r1,.1) NU
is a minimal o-stable parabolic F-subgroup of U such that PY n H® = P/,

We consider Lie(U) as the 6'-fixed subspace of Lie(G') = gl,(E) = gL,(F) +
7.gL,(F).Thus,

Lie(U) = {X +1V:X,Y € gl,(F),X = —JtXJ~1,Y = JtY] 1},

By studying the adjoint action of Af on Lie(U) we observe that YU/H = yG/H
(whereon both sides we view elements as characters on Ag) and AUV/H=A6/" Hence
ZWU/H>0 = yG/H>0  Eyrthermore, for every a € YU/H>0\{2n,,...,2n,} there is a
subspace V, € gl,,(F) (explicated bellow) so that LY = LY+ @ LY~ where
L =(w+0'(w):veV,} and LY ={v+60'(v):v € 1V,} For all such @ we have
dimLy* = dim LY~ and clearly oacts by=+1 onL,* respectively.Thereforem, , =
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0=mg,. AlSO Ly, = TE;ni1—; is one dimensional and clearly mg,,, =—-1 =
Mgy, fori = 1,...,7.
It follows that m,, =my, for all a € }V/H =y6/H This allows us to argue
verbatimas in Corollary (3.2.14) to deduce the following.
Corollary (3.2.15) [3]:-
Let E/F be a quadratic extension and /] € GL, a symmetric matrix.Then the symmetric
space U, g/ /0, is strongly tempered.
For the sake of completeness, we provide here the above mentioned spaces V,, that
complete the reduction of our computation to that of the previous. For 1 <i <j <r we
have
VTli—TIj =Ei; and Vni+77j = Eint1-j
= 1,...,r we have

n—r
.= © E

j=r+1

Let G = GL,,and v = 72 € F. Define the involution 8(g) = tgt~! on G where

e=aiag (O )8 )

Note that H = G% = GL,(E). We can choose 4, to be the diagonal torus in G. It is6-
stable and

whereas if 2r < n fori

Al ={diag (a,,a,,a,,0,, ...,a,,a,):a; € F*,i =1,..,n}
P8 = P, n H is a minimal parabolic subgroup of H = H".
We then haveY¢/# = YHand WE/H = WH, For each a € Y¢/# there are four roots
inY:%such that Blaz = a. The involution & does not fix any of the four. Thus, by Lemma
(3.25)(2), mg o = 0 for all a € 3,/#>°. In particular, the relative test character p¢ ,; =

0.From Corollary (3.2.9) we have the following.

Corollary (3.2.16) [3]:-

The symmetric space GL,,(F)/GL,(E) is strongly discrete .To describe an explicit
realization of the symmetric space that we consider next it is convenient to maintain the
notation of the previous. For a symmetric matrix J € GL,, wecan embed the
corresponding unitary group U, g/ in Sp,, as follows. To J= (a;;) weassociate the anti-

symmetric matrix A; € GL,,whose whose (i,j)-th 2 x 2 block is givenby

0 ai’j
(ai,j 0 )

Leto(g) = A]tg‘lA]‘1 be the involution on G so that G = Sp,; =~ Sp,,. Note thatthe
involutions o and & commute, hence 6 restricts to an involution on Sp,;and S'pﬁj ~
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Uyg/r - The group U, g/r is quasi-split over F. It is well known that if n is odd
thenevery unitary group is G L, (E)-conjugate to U,, g . If n is even then there are two
conjugacy classes of non-isomorphic unitary groups determined by the norm class of the
discriminant. We consider the two cases as follows.
Let G = Spa,, = Spznand Uy = (G1)? = U, g/r. Ifnisevenlets € F* be
suchthat § detwn—2 det w,, is not a norm from E to F and let
Wn/2-1
I = d
Whn/2-1
whered = diag(1,9). Set G, = SPa,;, = SPan and U, = (G3)? = U, g /r the non-quasi
splitunitary group.
In order to unify notation for the two cases at hand we set | = w,,(resp.] = J,) andG’ =
G1(resp.G' = G3) and let U = (G")? be the corresponding unitary group. We canchoose
the minimal 8-stable parabolic subgroup P; of G’ to be
, P(Z(n)) nG' J=w,
A= {P(z(n/Z—l)A_z(n/Z—l)) nG' J =1z
a

where (2®) = (2,...,2). It contains a @-stable maximal F-split torus Ayof G’, such
that(A4g)™* is the maximal F-split torus of U such that

(Ay)T = {diag (a,a4, ..., Ay, Op, Ipp_sr, a7t a; L, o a7t a7t):  a; € FF,

i=1,..,71}
wherer = [n/2] in the quasi-split case, and r = n/2 — 1 in the non-quasi-split case.
Forour computation we recall that
Lie(G") = {X € gl,(F): — ApXA;* = X},

The root system Y:¢"/U s of the same type as in the example of subsection 3.2.6. Namely
26’1V s of type BC, when 2r < n and of type C,when 2r = n. We may therefore
denotethe roots as in (12) where n; is the character of (4;)™ that satisfies

ni(diag (ay,ay, .., ar, @, Lon_ar a7t a7%, o artai)) = a, i=1,..,7.
The simple roots A%’/ are then given by (13).We now have}V = ¥¢/V and therefore
WY =w&/Uin all cases.
It is now a straightforward verification that for any a € :¢'/U \ {2n4,..., 2n,} there are
four roots B in Y% such that Bleany+ = @ and the involution 8 fixes none of them. It

follows from Lemma (3.2.5)(2) that mg , = 0 forall @ € 3¢"/V \ {2n4,..., 2n,.}.
Fork = 1,...,r the root space L‘Z";M consists of matrices X € Lie(G") such that

the(i,j)-th 2 x 2 block of X iszerounlessi = k = n 4+ 1 — j in which case it is of

the form(‘cl _ba)for some a,b,c € F.We denote such an element by X, ,, .. Then
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H(Xa!bfc) = X_a,U_lc,Ub
and there fore mg ,,,, = —1. It now follows from Proposition (3.2.6) that the relative test

character is given by
T
por = Z mi
H =1

which is M;-relatively positive (M; is the Levi subgroup of P/ containing Ag) by the
secondequality in (14). Thus, from Corollary (3.2.9) we deduce the following.
Corollary (3.2.17) [3]:-
For every symmetric matrix J € GL,(F) the symmetric space SpA]/U],E/Fis strongly
tempered. The symmetric spaces GL,,,(F)/GL,(F X GL,(F) and
GLypi1(F)/ GLn(F) X GLy,,(F) are strongly discrete:-
LetG = GL, 4+n, and 8(g) = tgt™', g € G wheret = diag(l,,, —I,,). Then,
H=G%=GL,, X GLy,.
Let P, = P, be the standard Borel subgroup of upper triangular matrices and A, the
diagonal torus in G. Then A, = A} and there fore 3.¢ = 3:¢/# is of type A, 4n,—1.FOr
1<i#j<n;+n, let a;; €Y be the root corresponding to the weight spaceE; ;
defined. Then, ¥¢/# = %5 = {B,,..., Bn +n,—1}. Where B; = a;;44, for 1 <i<n; +
n, — 1. We identify W& = w¢/# with the group S,_,, of permutations on{1,...,n; +
n,} so that w(a; ;) = ayywey for all w € WE. The set [WS/# /WH] consists ofall
permutations that satisfy w(i) < w(j) forall 1 <i < j < n;and
nM+1<i<j<n +n,.
Lemma (3.2.18) [3]:-
If either n, = n, orn, = n; + 1 then pg/H is M, -relatively weakly positivefor every

w € [WEH /WH] If ny = n, = 1then p), is M;-relatively positive for every
w € [WE/H jwH],
Proof:-
For every w € [WS/H /WH], we write

p‘C/;V/H = a‘llvﬁl + o+ arv¥1+n2—1,8n1+n2—1
with half-integers aw i . Then pg/ is M, -relatively weakly positive if and only if a)’ =
Oforall 1 < k < ny +n, — 1. It is M;-relatively positive when the inequalities are strict.
Note that for 1 < i # j < n; + n, we have

Clga..={1 i,j>n1_ or i,j <ny

L -1 otherwise

andthata; ; = B; + Biy1 +- -+ + Bj—q foralli < j. Set

d(w, k) =# {(i,j) »1<i<k<j<n + N2 My,a, -1 W10y — 1}-
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By Proposition (3.2.6) we have

1
af = =5 |[dw,—#{G): 1<i<k<j<mtmmeg . . =-1}]
1
= 1w, k) = (k( + 1, = k) = d(w, k)]
k(ny +7n, —k
_ (nq an ) —dw, k).

Note that translating by w~1we get that
_ . 1=w(@) £k <w() <n; +n,. }
d(w, k) =# {(l’])' either1<i<j<n, orn+1<i<j<n +ny)
Let
_ {max{l <i<n;:w() <k} wl <k
— o k <w(1).

w

Note thate,, < k,
K— e _{max{lSiSnz:w(n1+i) <k} wing+1) <k
Yy =

0 k<w(mn+1)

and{w(i):1<i<e,}Uu{wn, +i):1<i <k-e,}={1,...,k} It follows that
d(W; k) = ew(nl - ew) + (k - ew)(nz - (k - ew))-
Thus, in order to have a; = 0 we need to show that

ke(k — (r;l tny) _ e (ew — 1) + (k — ) ((k — e) — 115). (15)

Consider first the case n; = n, and let ¢(t) = t(t — ny), t € R. It is a convex real
function and therefore

2¢(k/2) = ¢(ew) + ¢(k - ew)
( this is precisely the inequality (15)) and equality holds if and only if e, = k — e,,. This
shows that a;y > 0 in this case. If in additionn; = 1thenk = lande, # k —e,,.
Thus inthis case a;” > 0 and pgy, is M, -relatively positive.

Assume now that n, = n; + 1. If e, = k — e, then (15) is always an equality.
Assumenow that e,, # k — e, and let (t) = t* — t(

t—ey,
k-2e,,
a real function with non-negative second derivative and therefore

21/)(](/2) = l/J(ew) + 1P(k - ew)
which is precisely the inequality (15). The lemma follows. The following is now
immediate from Lemma (3.2.18) and Corollary (3.2.9).
Corollary (3.2.19) [3]:-
The symmetric spaces GL,,/GL, X GL, and GLyy.1/GL, X GL,,, are strongly
discrete. The symmetric space GL,/GL,; X GL; is strongly tempered. For an H-integrable
representation r of G and a vector ¥ in 7 let £; i be the linear formonm defined by

+ nl),t € R. Again, itis
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Pon(v) = f ¢, (h) dh.

H/AL

We write LY, = {£34: U € T} € Homy(mw,C) for the subspace of H-invariant linear
formson  emerging as integrals of matrix coefficients.
Let X = G/H be the G-symmetric space associated with 6. Xis calledstrongly tempered
iIf G/H, is strongly tempered (in the sense of Definition (3.2.7)), for everyz € X where
H, is the stabilizer of z in G. The statement of assumes that X is strongly tempered, but
the proof considers a single G-orbit at a time.It therefore implies the following.
Theorem (3.2.20) [3]:-(Sakellaridis-Venkatesh)
Assume that G is F-split and that G /H is stronglytempered. If 7t is an irreducible, square-
integrable representation of G then

% = Homy(m, C).
If 7 is a representation of G parabolically induced from an irreducible, square-integrable
representation of a Levi subgroup of G then we have the implication

Homy(m,C) +#0 = L} +0.

The following is therefore an immediate consequence of Theorem (3.2.20) and
Corollaries (3.2.16), (3.2.17) and (3.2.19).
Corollary (3.2.21) [3]:-
For the following symmetric spaces G /H and for every irreducible square-integrable
representation r of G we have

% = Homy(m, C).
(a)GLy/0,for a symmetric matrix J € GL,,.
(b)Sp2n /U g/rfor a symmetric matrix J € GL,.
(¢)GL,/GL; X GL,.
When G = GL,, it follows from Zelevinsky’s classification that representations of G
parabolically induced from irreducible square-integrable are precisely the irreducible
temperedrepresentations of G. We therefore also have the following.
Corollary (3.2.22) [3]:-
In cases 1 and 3 of Corollary (3.2.21), for every irreducible tempered representation m of
G we have

Homy(m,C) +#0 = L§ #0.

Lemma(3.2.22) [7]

Let _ be an irreducible representation of a reductive p-adic group and let P = MN be a
parabolic subgroup of G. Suppose that M is a direct product of two reductive subgroups
M;andM,. Let T;be an irreducible representation of M;and let T,be a representation of
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M,. Supposen < Indg(T1 & T,):Then there exists an irreducible representation T,such
that T & Ind3 (T, ® Ty)
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Chapter 4

Quasi — Compact Endomorphisms and Primary Ideals in
Commutative UnitalBanach Algebras

Among other things , our results lead to the observation that when B is strongly regular ,
every Riesz endomorphism of B is quasi-nilpotent on an invariant maximal ideal . Some
of the implications of our work for various other types of function algebra are explored

Section(4.1) Spectral Projection and Primary ldeals

Let X be a complex Banach space. The essential spectrum o, (T) of abounded operator
T : X — X is the set of all complex numbers A for which thedifference A — T isnot a
Fredholm operator. T'is quasi-compact if

0. (T) € {A: |2 < 1},
And Riesz if 6, (T) < {0}.

Let Bbe a commutative unitalBanach algebra. An endomorphism of B is a bounded
linear operator T: B—— Bwhich is multiplicative and preserves the multiplicative identity
1 € B. Operators of this type have received a great deal of attention , and their properties
are well understood in certain cases. As the following theorem of Feinstein and
Kamowitz makes clear, quasi-compact endomorphisms are rather special.

Theorem (4.1.1) [4]:-

Let B be a semi-prime commutative unital Banach algebra with connected character
space ®p. Let The a quasi-compact endomorphism of B. Then:

() o c{A:14 <1} U{1};
(i)  the eigenvalue 1has(algebraic) multiplicity 1and eigenspace C - 1;
(iii)  there is a character x, € ®zsuch that the sequence (T™),-,converges in norm
to the rank 1projection b = x,(b) - 1. We have the following result.
Theorem (4.1.2) [4]:-

Let B be a semi-prime commutative unital Banach algebra with connected character
space ®p. Let Tbe a quasi-compact endomorphism of B, and suppose that 7*x, = x,.
Then there is a family Jof T-invariant closed primary ideals of finite codimension in
Band hull {x,}, for which
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om0 @ 1>nmy=| Jo(7) )

I€]

The maximal ideal M (x,) = {b € B:xy(b) = 0}always belongs to .
Here

7.(T) =inf{r > 0:|A| <r forall A € ¢.(T)}

Is the essential spectral radius of T, and (for each I € J) T /Iis the endomorphism of B/I
which satisfies

(T/D(+D)=Tb+I1 (b € B)

forevery b € B.

An ideal in a commutative Banach algebra is said to be primary if it is simultaneously
modular and contained in only one maximal ideal. We will later exploit the fact that, for
many algebras of differentiable functions, these ideals are often of a very particular form.
For example, if Qis a convexbounded domain in R%every closed primary ideal in
Ck(2)contains an ideal of the form

{fu€e B:(D*u)(u) =0 forall |a| <k}

for some x € 2. We will see later that this implies that every Riesz endomorphism Tof
ck(0)satisfies o(T) = {0,1}. This conclusion will, in fact, be shown to apply
throughout a large class of Shilov-regular function algebras on the closed unit ball in R¢.
The situation for algebras of infinitely differentiable functions is much more interesting.
In this direction, Theorem(4.1.2) can be used to reproduce a large proportion of the
results in the literature concerning the spectra of Riesz endomorphisms on algebras of
holomorphic functions on domains in C. Among these is the following (now well-known)
Theorem of Kamowitz. Below, Dis the open unit disk, and z: D — Cis the associated
inclusion map.

Theorem (4.1.3) [4]:-

Let The a Riesz endomorphism of the disk algebra A(D), and suppose that the
function ¢ = Tzfixes a point p = ¢(p)in the open unit disk. Then the spectrum of Tis
given by

o(T) = {0,1} U {¢'<P>": k€ N}.

Asimilar conclusion applies for a large number of other algebras of holomorphic
functions on . Theorem(4.1.2) will allow us to prove a significant generalisation of
Theorem(4.1.3) , one which subsumes a large number of existing results in this area. In
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particular, we will show that the same conclusion applies in every unital Banach algebra
obtained by completing the algebra of polynomials in zwith respect to a norm for which
the multiplication operators f — (z — p)fare bounded below (for p € D).

The machinery described is then used to prove a version of Theorem(4.1.2) . Recovery of
this central result is followed by a brief examination of some of the implications of our
work for determining the spectra of Riesz endomorphisms of algebras possessing
particular primary ideal structures. We devoted to examining some of the implications of
our results for Riesz endomorphisms in two rather different classes of function algebra:
one class contains only regular algebras, and the other consists solely of algebras of
functions which are holomorphic in the unit disk.

Given any linear map T: X — Ybetween vector spaces Xand Y, we will henceforth write
ker(T) =T 1(0) ={x € X:Tx =0} and Im (T) = {Tx:x € X}

for the kernel and range of T.
Let Xbe a non-zero complex Banach space. The symbol L(X)denotes the unitalBanach
algebra of all bounded linear operators on X. Givenany T € L(X), we set

p(T) = {1 € C:A—T isinvertible L(X)}, o(T) = C\p(T),
p.(T) ={A € C:A—Tis a Fredholm operator}, o,(T) = C\p,(T).

These are referred to as the resolvent, spectrum, essential resolvent and essential
spectrum of Trespectively.

Suppose that Xis infinite dimensional and let K(X)be the closed, proper ideal in
L(X)consisting of all T € L(X)which are compact. It follows from Atkinson’s theorem
that, for each T € L(X), a.(T)is precisely the spectrum of T + K (X)in the Calkin algebra
L(X)/K(X). As such, a,(T)is a non-empty, compact subset of Cwith ¢,(T) <€ a(T). An
Important connection between the essential and actual spectra of an operator is provided
by the so-called punctured neighbourhood theorem, which we now quickly recall.

Theorem (4.1.4) [4]:-

Let Xbe a complex Banach space, let T € L(X)and let Ube a component of p,(T).
Then either U € o(T)or U n a(T)is at most countable and each A € U n a(T)is isolated
ina(T).

Now let obe a non-empty compact subset of C. We write O (o)for the algebra of germs of
holomorphic functions over o, equipped with the inductive compact open topology . We
use the symbol z,for the germ over oof the complex co-ordinate functional zon C. Given
disjoint compact subsets cand o’of C, we denote by 1, ,,, the germ over o U ¢’obtained
in the following manner. Let U,U’be disjoint open neighbourhoods of ocand
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o'respectively. Now let hbe the holomorphic function on U U U'which is 1on Uand 0on
U’ and let 1, ;,be the germ of hover o U ¢’. It is clear that 1, ,,is an idempotent in
O (o U ¢")which does not depend on the particular choice of Uand U'.

For an element b € Bof a unitalBanach algebra B, the main single-variable holomorphic
functional calculus theorem asserts that there is a unique continuous unital algebra
homomorphism @,:0(a (b)) — Bsatisfying the condition @,,(z4,) = b. It is standard
that elements of Im(0,)commute with b. If o € o(b)and both gand its complement
o' = o(b)\oare compact, we define P,(d) = 0,(1,,,), and refer to this as the spectral
projection of aover . Each 1, ,,is an idempotent in O(a(b))and 0,is multiplicative, so
each spectral projection P,(o)is an idempotent in Bwhich commutes with b.The next
lemma summarises some pertinent properties of these idempotents when B = L(X)for a
Banach space X.

Lemma (4.1.5) [4]:-

Let Xbe a non-zero complex Banach space and let T € L(X). Let ¢ € ¢(T)and
suppose that both gand o(T) \oare compact when considered as subsets of C. Then
P (o)has the following properties:

(1)  The subspaces Im(Pr(o))and Ker(PT(o))are T-invariant closed subspaces of
Xsuch that X = Im(Py(0)) @ Ker(Pr(0)). If cis a non-empty proper subset of
o(T)then the spectra of the restrictions of Tto Im(Pr(o))and Ker(Pr(o))are o
and o(T)\orespectively. The projection Pr(o)is zero if and only if gis empty
and is the identity operator if and only if ¢ = o(T).

(i)  If there is a number t > Osuch that |[A] < tfor all A € gand |A] > tfor all 1 €
o(T)\athen Im(Py(0)) = {x € X:[|[T"x||/t™ = 0 asn — oo}.

(iii)  If aconsists of a single isolated point Aof o (T)and A - T'is Fredholm then P, (o)is
a finite rank operator. In this case, there is a non-negative integer kfor which
Im(Pr(0)) = Ker((A — T)®).

It follows from (iii) that if gis a finite set of isolated points of o(T)belonging to
pe(T)then Pr(o)is a finite rank operator; it is simply the sum of the finite rank operators
Pr({A})for A € o(this is easy to see by writing 1, ;1)\ +as the sum of germs of the form
Inemngy for A € o). Assertion (i) appears as an exercise , and relies on
considerations approaching so-called local spectral theory. The explicit description of
Im(Py(0))provided to us by (ii) in the circumstances described will be very useful later.

Let B be a commutative unital Banach algebra, and let I € Bbe an ideal. We write

() = Py NI+ = {x edg: I S M(x)},
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and refer to this as the hull of I. Let x € ®5. Having agreed to use the symbol mz(x)to
denote the set of all closed primary ideals in B contained in the maximal ideal M(x) =
x~1(0), we have

ng(x) ={l : lis aclosed idealin B and {x} = #(I)}.

Let Abe a second commutative unital Banach algebra and let Hom(A4, B)be the set of all
bounded linear operators T:A — Bwhich are multiplicative and which send the
multiplicative identity in Ato that in B. An operator of this type obviously induces a
continuous map

THdy - 0y

such that TT(x) = T * xfor every x € dgz(where T*: B* — A*is the usual Banach space
adjoint of T). Indeed, it is through this map that homomorphisms of commutative Banach
algebras are typically studied.

Let The an endomorphism of B, and let I € Bbe a closed T-invariant ideal. Letting
Q,: B —» B/Ibe the quotient map, it is standard that Q;fmaps ® 5 /Ihomeo-morphically

onto #(I). In fact, it does us no particular harm to identify Q;rwith the inclusion map of
#(D)into ®5. The fact that Iis T-invariant obviously makes h(l)in-variant under T, so
T Trestricts to give a map t: £(I) — £(I)(given, of course, by T(x) = T*xfor each x €
#(1)). Since the endomorphism T /Iis defined by the property thatQ,T = (T/1)Q,, it is
clear that tis topologically conjugate to (T/I)T. It follows, in particular, that when Iis a
closed ideal for which T/Iis invertible, T*maps #(I)ontoitself. This observation will
turn out to be very important.

Given a closed T-invariant ideal Ifor which T /Iis invertible in L(B/I), the hull Z(I)now
clearly belongs to the collection

C={E cd,: T'E = E}.

The union F(T*) = Ugec Eis the so-called fixed setof TT, and is known to coincide

with the intersection n;_, T*"®5. The following lemma is now a consequence of
part(iii) of Theorem(4.1.1).

Lemma (4.1.6) [4]:-

Let Bbe a semi-prime commutative unital Banach algebra with connected character space
dg, and let The a quasi-compact endomorphism of B. Suppose that T*x, = x,for some
Xy € ®p, and that I < Bis a closed T-invariant ideal for which T /Iis invertible. Then I €

g (Xo)-

60



Proof:-

By Theorem(4.1.1) , the sequence (T™),-,converges in norm to a projection of the form
b - y,(b) -1for some y, € 5. As Feinstein and Kamowitz note , this implies that
F(T™) = {y,}. The result now follows by noting that any fixed point of TThelongs to
F(TT); our insistence that T*x, = x,is simply to ensure that x, = y,.

The following Lemma reveals the source of the ideals mentioned in Theorem(4.1.2) ;
they will be the kernels of certain spectral projections.

Lemma (4.1.7) [4]:-

Let Bbe a semi-prime commutative unitalBanach algebra with connected character space,
and let Tbe a quasi-compact endomorphism of B. Let

o= 0d(T) N {A: |A] = r}

forany r,(T) < r < 1. Then g,ls finite, and I, = Ker(Pr(g,.))is a closed T-invariant
ideal of finite codimension in B.

Proof:-

It is clear that o,.is a compact subset of C. Applying Theorem(4.1.4) with Uequal to the
unbounded component of p,(T), we observe that, in addition, every A € g,is isolated in
o(T). As a compact subset of Cwith no accumulation points, o.is finite. It is clear from
Lemma(4.1.5) (and the remarks immediately following it) that I, = Ker(P;(o,))is a
closed T-invariant subspace of finite codimension in B.

We have not yet established that I,.is an ideal. To do this, we first observe that since o (T)
Is compact and every point of o,.is isolated in a(T), the complement a(T) \o,is also a
compact subset of C. This implies, in particular, that there isa 0 < t(r) < rfor such that

o, = o(T) N {A:|A] > t(r)}
and o(T)\o, = o(T) N {A:|1] > t(r)}.
Invoking part (ii) of Lemma(4.1.5), we see that
L. ={b € B:||IT"b||/t(r)"* - 0 asn — oo} (2)

The fact that Iris an ideal now follows from Theoreml1which ensures, of course, that Tis
power bounded.

It is clear from part (i) of Theorem(4.1.1)that
Im (PT(U1)) =1Im (PT({l}))
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By part (ii) of the same theorem, this subspace has dimension 1. It follows that I, =
Ker(Pr(07))is a maximal ideal. It is already clear that the ideal I.is contained in the
maximal ideal I;for each 7, (T) <r < 1. With Lemma(4.1.6) at our disposal, the
following observation helps us show (among other things) that /;is the onlymaximal
ideal with this property.

Lemma (4.1.8) [4]:-

Let Band The as in Lemma(4.1.7) and define o,.and I,.as before for r,(T) < r < 1. Then
o(T/I,.) = o,for all suchr.

Proof:-
Letr,(T) <r <1,andlet
i:Im (Pr(0,)) » B and Q.:B - B/I,

be the appropriate inclusion and quotient maps. Composing these in the obvious fashion,
we obtain a Banach space isomorphism

Uy = Qpiy:Im (PT(O-r)) - B/Ir

Letting T,.be the restriction of Tto Im(Pr(o,)), we have the equations i,.T,, = Ti,.and

QT = (T/DQy.

Taken together, these lead to the intertwining relation (T/I)U, = U, T,. Since this
implies that T,.and T /Ihave the same spectrum, the result now follows from part (i) of
Lemma(4.1.5).

We have now assembled everything we need in order to prove Theorem(4.1.2). However
, before we do so, it is perhaps worth making explicit the respective roles of Lemmas
(4.1.6),(4.1. 7)and (4.1.8). Under the hypotheses of Theorem(4.1.2) , Lemma (4.1.7)
provides us with a family of closed T-invariant ideals of finite codimension in B; these
are simply the kernels of the spectral projections Pr(og)for 7,(T) <r < 1. Lemma
(4.1.8) does two things. Unsurprisingly, it tells us that

o(T) N {2: 12| > 7.(T)} = U o(T/L).
1e(T)<r=s1

However, this is not its only rble. At this stage in the proof, we do not yet know anything
about the hulls £(1,.), except that they all contain x,. It is here that Lemma(4.1.8)really
comes to our rescue; the fact that 0 € g,.means that each of the endomorphismsT/I,.is

62



invertible, and it is this information which (via Lemma(4.1.6) ) allows us to show that
each I.belongs to gz (x).
We now prove the following strong form of Theorem(4.1.2).

Theorem (4.1.9) [4]:-

Let Bbe a semi-prime commutative unitalBanach algebra with connected character space
dg, and let The a quasi-compact endomorphism of B. Let x, € ®gsatisfy T x, = x,.
Then there is a family jof closed T-invariant ideals with the following properties

() o) Nn{A:|A] >1(T)} = Ue;a(T/I);

(i) ] & mp(xo);

(iii)  the maximal ideal M (x,)always belongs to J;

(iv) each I € Jisthe kernel of a finite rank spectral projection associated with T;

(v) Jis at-most-countable, and its elements form a chain, in the sense that if I, 1’ €
Jtheneither I € ' or I' € I;

(vi) forr,(T) <r <1, thereissome I € Jfor which o(T,)is contained in the disk
A:)4 <r}.

Proof:-

Invoking Lemma(4.1.7), and setting

J ={Ker (Pr(og)):1.(T) <7 < 1}, (3)

we have immediately that Jis a family of T-invariant closed ideals of finite codimension
in B. Assertions (i)—(vi) are now proved as follows.

(i) Sincea(T) N{A:|A] > r,(T)}is the union of the sets
r,=0d(T)N{A:|1] =1}

forr,(T) <r <1, this part is clear from Lemma 8.

(i)  Making a second appeal to Lemma (4.1.8), we observe that for each ideal I € J,
the spectrum o (T /I)consists solely of points of modulus strictly larger than 0.
This means, in particular, that each of the operators (T'/I)I € Jis invertible.
Lemma(4.1.6) therefore implies that ] € mg(x,).

(ili)  Showing that I; = Ker(Py(o07))is a maximal ideal is achieved using the
argument described in the comments before Lemma(4.1.8). Explicitly, a
combination of Theorem(4.1.1) and Lemma(4.1.5) gives us

B =1Im(P{1})) ® L.
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Using part (ii) of Theorem(4.1.1), this implies that I; has codimension1 in B.
Having already shown that I, is an ideal, this gives us what we need.

(iv) This is immediate from definition (3).

(v)  The fact that Jis at-most-countable is a straightforward consequence of the
punc-turedneighbourhood theorem (Theorem(4.1.4) ). That Jis a chain in the
sense indicated is easily proved using description (2)from the proof of
Lemma(4.1.7).

(vi) Letr,(T) <r <1.Setting! = Ker(Pr(o,)), Lemma(4.1.5)tells us that

o(Ty) = a(T)\oy = a(T) N{A:[A] <7}.
The proof is now complete.

Function algebra is a semi simple commutative unital Banach algebra, considered as an
algebra of continuous functions on its character space. Let Bbe such an algebra. Then, as
we will recall, Bis said to be:
(a) Regular if for each closed subset F € dgand each pointx € ®z\F, there is some
f € Bsatisfying f(x) = land f(F) < {0}; and
(b) Strongly regular ifrg (x) = {M(x)}forevery x € dp.

When Bis regular and x € &5, we write J(x)for the closure of the ideal
Jo(x) = {f € B: f~1(0) is a neighbourhood of x}.

A celebrated result of Shilov ensures that when Bis regular, J(x)is the intersection of all
the closed ideals I € mgz(x). We exploit this to establish the following consequence of
Theorem(4.1.9).

Theorem (4.1.10) [4]:-

Let Bbe a regular function algebra with connected character space ®,. Let T be a Riesz
endomorphism of B, and suppose that T*x, = x,. Then J(x,)is a T-invariant closed
ideal, and

{03 ua(T) ={0}u (T/](x0)).
Proof:-

Showing that J(x,)is T-invariant is straightforward, and can be achieved by using the
fact that Tf = f o TTfor each f € B. Let ] € my(x,)be the family of ideals supplied by
Theorem(4.1.9) , and fix any  &. Then, by part (vi), there is some I € Jsuch that

o(T;) € (A: 1] < e},
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As the restriction of a Riesz operator to a closed T-invariant subspace, Tj,is also a Riesz
operator. This implies, in particular, that p(T};)is connected, hence that o (T|y) <

o (T;)for every Tj;-invariant closed subspace N < I. Using Shilov’s result, we therefore
see that

G(Tll(xo)) c {A:|1] < €}

Since an identical conclusion is available for every € > 0, T(,,)is quasi-nilpotent. The
result now follows from the standard spectral inclusions o (T) < a(T|y) U o(T|y)and
o(T\y) € o(T) U a(T|y), which hold for any closed T-invariant subspace NofB. The
proofs associated with the latest inclusions can be found .

The next result indicates, among other things, that a Riesz endomorphism of a strongly
regular function algebra can never have a nontrivial spectrum.

Corollary (4.1.11) [4]:-

Let Bbe a regular function algebra with connected character space, and let The a Riesz
endomorphism ofBB. Let x,be the element of ®zfor which T*x, = x,, and suppose that
J(xo)has finite codimension in B. Then o(T) = {0, 1}.

Proof:-

By the previous result, the nonzero spectrum of Tcoincides with that of T/J(x,) (an
operator on a finite dimensional space). This means that o(T)is finite. Now choose any
nonzero point Aof o(T). Since Tis a Riesz operator, Ais necessarily an eigenvalue. It
follows that A" € a(T)for every n € N, which leads to a contradiction unless 4 = 1.
Although the class of algebras to which Corollary (4.1.11) applies is very large, quite a
number of standard regular function algebras lie entirely beyond its reach. Examples
include the ‘big’ Lipschitz algebras Lip(Y)over compact metric spaces. However, even
these algebras are not immune to the following theorem.

Theorem (4.1.12) [4]:- Let Bbe a semi-prime commutative unitalBanach algebra with
connected character space @ 5. Let Tbe a quasi-compact endomorphism of B, and let
xobe a character for which T*x, = x,. Suppose that

a(T) N {A: |A] > r(T)}

contains a point other than 1. Then there is a bounded point derivation dat x,such that
T*d # 0.
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Before proceeding with the proof, we remind that a bounded point derivation(on a
commutative unital Banach algebra B) is bounded linear functional d € B*such that
d(uv) = x(u)dv + x(v)duholds for some x € ®zand all u,v € B.

In this case, dis said to be a bounded point derivation at x. It is standard that Bsupports a
bounded point derivation at some x € ®gif and only if M(x) #= M(x)?2.

Proof:-

Our hypothesis on a(T)means that there is some r > Ofor which the set o, = a(T) N
{1 :]A| = r}contains at least two points. The ideal I. = Ker(P;(o,))therefore has
codimension at least 2. As a non-trivial finite dimensional commutative unitalBanach
algebra with exactly one maximal ideal, the quotient algebra B/I,.supports at least one
nonzero bounded point derivation; call this d,,. Letting Q: B — B/I,.be the quotient map,
set d = Q*d,; it is straightforward to verify that this is a bounded point derivation on
Bat x with

T*d = Q*(T/1,)*d,.

The result follows, since Q*is injective and (by Lemma(4.1.8) ), (T /I)*is invertible. This
result complements an existing result of Udo Klein who proved an analogous assertion
for compact endomorphisms of uniform algebras.

Section(4.2) : Applications for Concrete Function Algebras :-
It goes without saying that the results have some serious consequences for Riesz
endomorphisms of strongly regular algebras such as C(X)and lip(Y)(where Xis any
connected compact Hausdorff space and Yis any connected compact metric space); it is
iImmediate from any of the three previous results that such operators all have spectra
equal to {0, 1}. Our aim, at least, is to describe another large class of function algebras
with this property. For simplicity, we work with function algebras defined on (the closure
of) the open ball 2in R¢. However much of what we have to say applies equally to
algebras on T%and other connected compact smooth manifolds.

We write C*(2)for the algebra of k-times continu-ously differentiable functions u :
) — Cwhich, together with their partial derivatives D%uof orders |a| < k, extend to be
continuous on . This is a regular function algebra under the norm

1 _
lullewa = ) —lm(@DW@I (e Cck@)).

lx|<k

Setting C®°(2) = Ng»1 C*(2), we now recall a famous result of Shilov; a particularly
straightforward proof of this theorem can be found by Mirkil’s treatise.
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Theorem (4.2.1) [4]:-(Shilov, 1950)

Let Bbe a Banach space of functions on Q2(or any other compact smooth manifold),
equipped with pointwise addition and a topology stronger than that of pointwise
convergence on 2. Then C*(2) c Bif and only if C*(2) < Bfor some k € N.The
following result is also due to Shilov, and can be found in, of Gelfand, Shilov and
Raikov.

Theorem (4.2.2) [4]:-

Let B'and B"be regular function algebras with the same space Xof maximal ideals;
furthermore, let B’ € B"'with B'dense in B”. If /' c B'and J'" < B”are the minimal
primary ideals corresponding to the same point x, € Xand the quotient algebra B'/]is
finite dimensional then B"'/]"is also finite dimensional, and its dimension is no greater
than that of B'/J".

With these two results at our disposal, we can give the following application of Corollary
(4.1.11). The regularity of the domain 2means that the next result applies, in particular,
when Bis one of the Sobolev algebras

WsP(Q) = {uelP(2): D*ueLP() for |a| < s}
withl < p,s < +ocand sp > d.
Theorem (4.2.3) [4]:-

Let Bbe Banach algebra of continuous functions on 2for which C* (2)is dense in B. Let
Tbhe a Riesz endomorphism of B. Then a(T) = {0,1}.

Proof:-

It is clear from Theorem(4.2.1)that, under our hypotheses, there is some k € Nfor which
C*(0)is dense in B. Since the inclusion maps C*(2) - Band B — C(2)are both
continuous, there are constants C;and C,such that

Ifllo,c00 < Cillfllz < C2llflli,00,02
for every f € C*().

Since the spectral radius of any element of C*(Q)is therefore the same with respect to
Bas it is with respect to C*(R2), it follows that these two algebras have ‘the same’ space
of maximal ideals. This latest assertion is, of course, to be understood in the sense that
the restriction map x = x,¢kgis @ homeomorphism of ®zonto ® k5. Recalling that

every minimal primary ideal in C*(2)is of the form
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J'={ueck): (D*u)(x) = 0 for |a| < k},

for some x € 12, an application of Theorem(4.2.2)(with B’ = C*(2)and B"” = B)
indicates that B /] (x)is finite dimensional for every x € ®g. The result is now an
obvious consequence of Corollary (4.1.11).

Our next application demonstrates a little of what can be achieved when we appeal to
Theorem(4.1.9) more directly. For the remainder of this essay, Bis a unitalBanach
algebra of functions which are continuous on the open unit disk and holomorphic on its
interior. We will also assume that Bcontains the inclusion map z: D — C. The only other
restriction we will impose is that

z-p)B={feB:f(p)=f'(p)=---=f*D(p) =0} (4)

for each p € D(the opendisk) and each k € N. We note that this condition is
automatically satisfied when the polynomials (in z) are dense in Band there is a ¢, >
Ofor each p € Dsuch that

Ifll < ¢, llz = Pl

for each f € B. The disk algebra A(D)is easily seen to have this property.Our insistence
that (4)holds is purely to give us access to the following theorem of Domar from 1982.
Theorem (4.2.4) [4]:-

Let Bbe a commutative unitalBanach algebra, let f € B, and suppose that, for each n €
N, the principal ideal M,, = f™B has codimensionn. Then the M,are theonly closed
primary ideals of finite-codimension with M,, € M.

In light of our assumptions on B, this implies that the only closed primary ideals at p of
finite codimension are of the form (4).

We can now prove the following theorem; given the looseness of our assumptions on B,
it subsumes a large number of existing algebra-specific results .

Theorem (4.2.5) [4]:-

Let ¢be a continuous self-map of Dfor which f o ¢ € Bfor every f € B. Suppose that
the operator defined by

Tf=feo¢, (f € B)
IsRiesz, and that ¢has a fixed point pin D, the open unit disk. Then

o(T) = {0,1} U {¢'(p)*: k € N}.

68



Proof:-

Combining Domar’s theorem with assumption (4), we have
mg(p) = {My: k € N}, ()

whereM,, = {f € B: f(p) = f'(p) =---= f* D (p) = 0}for each k € N. It is clear that B
cannot have any idempotents other than the functions f = Oand f = 1so, by the Shilov
idempotent theorem, ®zis connected. Invoking Theorem(4.1.9) , there is a family J <
g (p)of closed, primary ideals of finite codimension in Bsuch that

oM\ 10} = | Jo/n.
€]

We know, of course, that each I € Jis equal to M, for some k € N, and this makes the
problem of determining o(T)particularly tractable. Fixing any k € N, let C[y]be the
algebra of formal polynomials with coefficients in C, and let jz’,fbe the operator from

Binto C[y]/y*C[y]given by
k-1 1
=) 207, (feB)
=0

whereZis the residue class of yin C[y]/y*C[y]. It is easy to see that givenany! € J, there
is a k € Nfor which T/Iis similar to an endomorphismT,: C[y]/y*C[y] = C[y]/y*C[y],
where

k-1 k-1
_ !
Tk(ZalZl>= a (jkp—p), kEN (6)
1=0

=0

Here, we adopt the convention that, in all cases, (j{,fqb — p)%is the identity element in
C[y]/y*C[y]. A routine calculation shows that the matrix of T} (with respect to the basis
1,Z,7%,...,Z% 1) is lower triangular, with 1,¢'(p),¢'(p)?...,¢'(p)* talong the
diagonal. Thus, given anyl € J,

a(T/D) = {p'(p)! :j=0,1,....k — 1}
for some k € N. This is enough for us to be able to conclude that
a(T) € {0,1} U {¢'(p)*:k € N}.

That {0,1} < o (T)is obvious, so it only remains to show that ¢'(p)* € o(T)for every
k € N. If it were guaranteed that ] = mz(p), this would already be clear. However, this is
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not what Theorem(4.1.9)tells us. To complete the proof, we consider the bounded linear
functional on Bgiven by

6p(f) = f'(), (f € B).

The chain rule now gives T*6,, = ¢'(p)d,. As Tis Riesz, this means that either ¢'(p) =0,
or ¢'(p)is an eigen value of T. The result now follows from the fact that the set of eigen
values of Tis closed under powers. We have said nothing about the situation when p €
®;\D. Here, the result is much more dependent on the algebra under consideration.
However, progress can still be made with the help of Theorem (4.1.12); the situation is
particularly straightforward when Bhas no non-zero bounded point derivations at
pointsof ®5z\D.

Theorem (4.2.6) [8].
Let I be asecondary ideal of a commutative ring R. Then If Q is a weakly primary ideal
(resp. weakly prime ideal) of R, then I NQ is secondary.
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Dim : dimension 2
Ker : kernel 2
Rng : range 2
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