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Chapter 1 

Additive Maps on Standard Operator Algebras Preserving 

InvertibilitiesorZero Divisors 

    Let 𝒜 and ℬ be standard operator algebras on infinite dimensional complex Banach 

spaces 𝑋and  , respectively , and let 𝛷 be an additive surjection from 𝒜  onto ℬ . We 

prove that if 𝛷 is unital and preserves any one of (left, right ) invertibility, (left, right ) 

zero divisors (left, right ) topological divisors of zero , quasi – affinity , injectivity , 

surjectivity ,range density , lower –bounded ness and left (right ) maximal ideals in both 

directions, then it has one of the following forms : isomorphism , conjugate isomorphism 

, anti- isomorphism .  

Assume (𝑃) is a property, we say that a map preserves property (𝑃) if, for every T in the 

domain of 𝛷, T possesses (𝑃) ⇒ Φ(T) possesses (𝑃);Φ preserves (𝑃) in both directions 

if T possesses (𝑃) ⇒ Φ(T ) possesses (𝑃). Over the past decades, there hasbeen a 

considerable interest in the study of linear maps on operator algebras that preserve 

certain properties of operators. Many results having been obtained by now reveal the 

relation between linear structure and the algebraic structure of operator algebras, and 

help us to understand the operator algebras better.                                          . 

 Some have been devoted to characterizing linear maps on operator algebras preserving 

some properties concerning the invertibility, kernel and range of operators. Let Xand Y 

be two complex Banach spaces, and ℬ(X, Y)(ℬ(X)𝑖𝑓 X = Y) be the Banach space of all 

bounded linear operators from Xinto Y.Sour our proved that a unital linear bijective map 

preserving invertibility fromℬ(X)onto ℬ(Y)is either an isomorphism or an anti-

isomorphism. Aupetit  

showed that every unital linear surjection preserving invertibility in both directions 

between von Neumann algebras is a Jordan isomorphism. We improved the 

above result of Aupetit by omitting the assumption “in both directions”, and proved that 

every unital linear surjection preserving invertibility between von Neumann algebras is a 

Jordan homomorphism. It was shown in that every surjective unital linear map on 

ℬ(X)preserving injectivity of operators in both directions isan automorphism and every 

surjective unital linear map on ℬ(H) preserving surjectivity of operators in both 

directions is an automorphism, where His a complex Hilbert space. We discussed the 

linear surjective maps compressing various parts of the spectrum containing the 

boundary of the spectrum on C∗-algebras 𝒜of real rank zero and showed that such linear 

maps are Jordan homomorphisms. If A is a standard operator sub algebra of  ℬ(X), we 

also obtained the descriptions of unital linear surjective maps preserving the left 

invertibility, the right invertibility,the lower-bounded ness or the surjectivity of operators 
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on A, the last result particularly generalizes the result concerning the surjectivity 

preservers mentioned above by omitting “in both directions” and considering the maps 

on general standard operator algebras on Banach spaces. Recall that a standard operator 

algebra on a Banach space Xis a closed subalgebra in ℬ(X)which contains the identity 

Iand the ideal of all finite rank operators. We show that every unital linear surjection 

from ℬ(X)onto ℬ(Y)which preserves the quasi-affinity of operators iseither an 

isomorphism or an anti-isomorphism, and every unital linear surjection from ℬ(X)onto 

ℬ(Y)which preserves the range density of operators is in fact an isomorphism. 

Another interesting problem is to characterize the linear maps which preserve 

zero products. Semrl showed  that every unital surjective linear map on ℬ(𝑋)which 

preserves zero products in both directions is an automorphism. It was proved that every 

surjective linear map between standard operator algebras on Banach space is an 

isomorphism multiplied by a scalar if it preserves zero products in both directions. 

Similar results were obtained  for bounded unital linear maps onnest algebras with 

atomic nests.A more general (and more difficult) situation would be to consider an 

algebra only as a ring, and to assume the maps being additive only. In this direction, only 

a few results concerning the preserver problem have been obtained .Hou and Gaoshowed  

that every surjective additive map on ℬ(𝐻)preserving zero products in both directions is 

an automorphism or a conjugate automorphism multiplied by a scalar. The purpose is to 

discuss the additive maps between standard operator algebras on complex Banach spaces 

which preserve various properties in both directions concerning the invertibility, kernel 

and range of operators, zero divisors, by one method for all.      

We first fix some notations. We always assume that 𝑋 and 𝑌 are infinite dimensional 

complex Banach spaces. For 𝑥 ∈  𝑋 and 𝑓 ∈  𝑋∗, rank one operator 𝑦 → 〈𝑦, 𝑓〉𝑥 is 

denoted by ⊗  𝑓 , here, 〈𝑦, 𝑓〉 denotes the value of 𝑓 𝑎𝑡 𝑦. As usual, ℂ and ℕ stand for 

complex plane and the set of natural numbers, respectively. Let 𝑀 be a linear subspace of 

𝑋, the dimension of 𝑀 is denoted by 𝑑𝑖𝑚 𝑀. 

 For𝑇 ∈  ℬ(𝑋), 𝜎(𝑇 ), 𝜎𝑝(𝑇 ), 𝑟𝑛𝑔(𝑇 ) 𝑎𝑛𝑑 𝑘𝑒𝑟(𝑇 ) denote the spectrum, point 

spectrum,range and kernel of T, respectively. 𝑟𝑎𝑛𝑘(𝑇) denotes the rank of 𝑇 which is the 

dimension of 𝑟𝑛𝑔(𝑇). A map 𝜑: 𝑋 → 𝑌 is called conjugate linear if it is additive 

and𝜑(𝜆𝑥) = �̅�𝜑(𝑥) holds for all scalars 𝜆 ∈ ℂ and vectors 𝑥 ∈ 𝑋; more generally, 𝜑is 

called 𝜏-quasi-linear if it is additive and 𝜑(𝜆𝑥)  =  𝜏(𝜆)𝜑(𝑥) holds for all scalars𝜆 ∈ ℂ 

and vectors 𝑥 ∈  𝑋, where τ is a ring automorphism of ℂ. 

Let 𝒜 be a Banach algebra. Recall that an element 𝑇 ∈ 𝒜 is called a left (resp.,right) 

zero divisor if there exists a non zero element 𝑆 ∈ 𝒜 such that 𝑇 𝑆 =  0 (resp.,𝑆𝑇 =

 0). A zero divisor is an element of 𝒜 which is both a left and a right zero divisor. We 
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call 𝑇 a left (resp., right) topological divisor of zero if there exists asequence {𝑆𝑛}𝑛=1
∞ ⊂

𝒜 satisfying ‖𝑆𝑛‖ = 1 such that 𝑇𝑆𝑛 →  0(resp., 𝑆𝑛𝑇 →  0).A topological divisor of 

zero is an element which is both a left and a right topological divisor of zero. We denote 

by 𝒮𝒜 , 𝒮𝑙
𝒜  , 𝒮𝑟

𝒜  , 𝒵𝒜 , 𝒵𝑙
𝒜  , 𝒵𝑟

𝒜 , 𝒯𝒵𝒜 , 𝒯𝒵𝑙
𝒜  𝑎𝑛𝑑 𝒯𝒵𝑟

𝒜 the subsets of all non 

invertible elements, left non invertible elements, right non invertible elements, zero 

divisors, left zero divisors, right zero divisors, topological divisors of zero, left 

topological divisors of zero and right topological divisors of zero, respectively, in 𝒜. An 

element in 𝒜 is called semi-invertible if it is either left invertible or right invertible. The 

notions of semi-zero divisor, semi-topological divisors of zero and semi-maximal ideals 

may be defined similarly. 

Assume that 𝒜 is a standard operator algebra on a complex Banach space 𝑋. 

Let Ω𝒜  and Θ𝒜  be any one of the subsets  

𝒮𝒜 , 𝒮𝑙
𝒜 , 𝒮𝑟

𝒜 , 𝒵𝒜 , 𝒵𝑙
𝒜 , 𝒵𝑟

𝒜 , 𝒯𝒵𝒜 , 𝒯𝒵𝑙
𝒜 , 𝒯𝒵𝑟

𝒜 , 𝒮𝑙
𝒜 ∩ 𝒮𝑟

𝒜  , 𝒵𝑙
𝒜 ∪ 𝒵𝑟

𝒜  and 𝒯𝒵𝑙
𝒜 ∪

𝒯𝒵𝑟
𝒜. We say that Θ𝒜  is the dual of Ω𝒜 , denoted by (Ω𝒜), if, replacing 𝒜 by ℬ(𝐻) 

with 𝐻 an infinite dimensional complex Hilbert space, we have 𝑇 ∈ Ωℬ(𝐻)  ⇔ 𝑇∗ ∈

Θℬ(𝐻)holds true for every operator 𝑇 ∈ ℬ(𝐻). It is clear, by the above definition, that 

(Ω𝒜)′′ = ((Ω𝒜)′)′ = Ω𝒜 , (𝒮𝑙
𝒜)′ = 𝒮𝑟

𝒜 , (𝒵𝒜)′ = 𝒵𝒜  𝑎𝑛𝑑 (𝒵𝑙
𝒜 ∪ 𝒵𝑟

𝒜)′ = 𝒵𝑙
𝒜 ∪ 𝒵𝑟

𝒜, 

etc.For 𝑇 ∈ 𝒜, 𝜎𝒜(𝑇) stands for the spectrum of 𝑇 relative to 𝒜. Let ℱ𝑛(𝑋) denotethe 

set of all operators in ℬ(𝑋) with rank not greater than n and ℂ𝕀 + ℱ𝑛(𝑋) = {𝛼𝐼 +

 𝐹 | 𝛼 ∈ ℂ 𝑎𝑛𝑑 𝐹 ∈ ℱ𝑛(𝑋)}. The following lemma is useful in the sequel. It characterizes 

the rank one operators in terms of the subsets listed above and the operators in ℂ𝕀 +

ℱ2(𝑋). 

Lemma (1.1)[1]:- 

Let 𝒜 be a standard operator algebra on a complex Banach space 𝑋 and Ω𝒜  denote any 

one of the subsets 𝒮𝒜 , 𝒮𝑙
𝒜 , 𝒮𝑟

𝒜 , 𝒵𝒜 , 𝒵𝑙
𝒜 , 𝒵𝑟

𝒜 , 𝒯𝒵𝒜 , 𝒯𝒵𝑙
𝒜 , 𝒯𝒵𝑟

𝒜  , 𝒯𝒵𝑙
𝒜 ∪

𝒯𝒵𝑟
𝒜 , 𝒮𝑙

𝒜 ∩ 𝒮𝑟
𝒜  𝑎𝑛𝑑 𝒵𝑙

𝒜 ∪ 𝒵𝑟
𝒜  𝑜𝑓 𝒜. Then, for an operator 𝐴 ∈ 𝒜, the following 

conditions are equivalent. 

(a) 𝐴has rank one. 

(b) For every 𝑇 ∈ 𝒜 and every scalar 𝑐 ≠ 1, if 𝑇 +  𝐴 and 𝑇 + 𝑐𝐴 ∈ Ω𝒜  , then 

𝑇 ∈ Ω𝒜 . 

(b’) For every 𝑇 ∈ ℂ𝕀 + ℱ2 and every scalar 𝑐 ≠ 1, if 𝑇 +  𝐴 and 𝑇 +  𝑐𝐴 ∈ Ω𝒜 , 

then 𝑇 ∈ Ω𝒜 .  

    (c) For every 𝑇 ∈ 𝒜, if 𝑇 +  𝐴 and 𝑇 +  2𝐴 Ω𝒜then 𝑇 ∈ Ω𝒜 .                                           

(c’) For every 𝑇 ∈ ℂ𝕀 + ℱ2, if 𝑇 +  𝐴 and T + 2𝐴 ∈  Ω𝒜, then 𝑇 ∈  Ω𝒜 . 
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Proof:- 

(𝑏)  ⇒  (𝑏’)  ⇒  (𝑐’)and(𝑏)  ⇒  (𝑐)  ⇒  (𝑐′) are obvious. For the sake of simplicity, we 

omit the superscript “A” of A in the proof of this lemma. 

(𝑎)  ⇒  (𝑏). Write 𝐴 =  𝑥 ⊗  𝑓. Assume, on the contrary, that there exists an 

element𝑇 ∈ 𝒜, a non zero scalar 𝑐 ≠ 1 such that 𝑇 +  𝐴 and 𝑇 +  𝑐𝐴 ∈ Ω  but 𝑇 ∉ Ω , 

we will deduce a contradiction. 

If Ω = 𝒮𝑙
𝒜, then 𝑇 is left invertible and there is an element 𝑆 ∈ 𝒜 such that 

𝑆𝑇 =  𝐼. Since 𝐼 +  𝑆𝐴 and 𝐼 +  𝑐𝑆𝐴 are in 𝒮𝑙
𝒜 , {−1,−𝑐−1} ⊆ 𝜎𝒜(𝑆𝐴) = 𝜎(𝑆𝐴), 

this contradicts the fact that the spectrum of any rank one operator can not includestwo 

non zero points. 

     The cases Ω = 𝒮𝑟
𝒜, or 𝒮𝒜 are dealt with similarly, and then, it is clear that 

(𝑎)  ⇒  (𝑏) holds true for 𝒮𝑙
𝒜 ∩ 𝒮𝑟

𝒜 .                                                                                    

If ⊗ = 𝒯𝒵𝑙
𝒜 ∪ 𝒯𝒵𝑟

𝒜, then 𝑇 ∉ Ω  implies 𝑇 is a bijection and hence invertible as an 

operator with the inverse 𝑇−1 which may not belong to 𝒜. However, 𝑇−1𝐴 ∈ 𝒜 is a 

rank one operator, and the above argument is also valid for this case.If Ω = 𝒯𝒵𝑙
𝒜, then 𝑇 

is lower bounded and hence, is injective and has closed range. 𝑇 +  𝐴and𝑇 + 𝑐𝐴 ∈ Ω =

𝒯𝒵𝑙
𝒜 imply that there exist unit vector sequences{𝑥𝑛} and {𝑢𝑛} such that ‖(𝑇 +

𝐴)𝑥𝑛‖ →  0 and ‖(𝑇 + 𝑐𝐴)𝑢𝑛‖ → 0 𝑎𝑠 𝑛 → ∞. Since, as bounded subsets in ℂ, both 

{〈𝑥𝑛, 𝑓〉 } and {〈𝑢𝑛, 𝑓〉 } have convergent subsequences, without loss of generality, we 

may assume that〈𝑥𝑛, 𝑓〉 →  𝑎 and 〈𝑢𝑛, 𝑓〉 →  𝑏 as𝑛 →  ∞. It follows that 𝑇 𝑥𝑛 → −𝑎𝑥 

and 𝑇𝑢𝑛 → −𝑐𝑏𝑥 as n → ∞. Obviously, both 𝑎 𝑎𝑛𝑑 𝑏are non zero because 𝑇 ∉ 𝒯𝒵𝑙
𝒜. 

Therefore one sees that 𝑥 ∈ 𝑟𝑛𝑔(𝑇). Pick 𝑢 ∈ 𝑋 so that 𝑇𝑢 =  𝑥, then 𝑇(𝐼 + 𝑢 ⊗ 𝑓) =

𝑇 + 𝑥 ⊗ 𝑓 ∈ 𝒯𝒵𝑙
𝒜 implies that 𝐼 + 𝑢 ⊗  𝑓 is not invertible. Similarly, 𝐼 +  𝑐𝑢 ⊗  𝑓 is 

not invertible. Thus the spectrum of rank one operator 𝑢 ⊗ 𝑓contains two distinguished 

nonzero points, a contradiction. 

It is easy to verify from the case Ω = 𝒯𝒵𝑙
𝒜 that (𝑎) ⇒ (𝑏) is still true for cases 

thatΩ = 𝒯𝒵𝑙
𝒜or 𝑇𝑍 = 𝒯𝒵𝑙

𝒜 ∩ 𝒯𝒵𝑟
𝒜 . 

Let Ω = 𝒵𝑙
𝒜. Then 𝑇 is injective and, as 𝑐 ≠ 1, there exist linearly independent vectors 

𝑢 𝑎𝑛𝑑 𝑣 such that 𝑇 𝑢 = −〈𝑢, 𝑓〉𝑥and 𝑇𝑣 =  −𝑐〈𝑣, 𝑓〉𝑥. However, the injectivity of 𝑇 

implies that 𝑢 𝑎𝑛𝑑 𝑣 are linearly dependent, a contradiction. The cases Ω = 𝒵𝑙
𝒜or 𝑇𝑍 =

𝒵𝑙
𝒜 ∩ 𝒵𝑟

𝒜can be treated analogously. 

By now the only case remained is  Ω = 𝒵𝑙
𝒜 ∪ 𝒵𝑟

𝒜, and it is obvious, by applying what 

have been proved above, that we need only to consider the case that 𝑇 + 𝐴 ∈ 𝒵𝑙
𝒜\𝒵𝑟

𝒜 

and 𝑇 + 𝑐𝐴 ∈ 𝒵𝑙
𝒜\𝒵𝑟

𝒜, while 𝑇 ∉ 𝒵𝑙
𝒜 ∪ 𝒵𝑟

𝒜. It follows from 𝑇 + 𝐴 ∈ 𝒵𝑙
𝒜\𝒵𝑟

𝒜 that 
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there exists a vector 𝑢 such that 𝑇𝑢 = 𝑥. Since 𝑇(𝐼 + 𝑐𝑢 ⊗ 𝑓) = 𝑇𝑐𝐴 ∈ 𝒵𝑟
𝒜  \𝒵𝑙

𝒜 , (𝐼 +

𝑐𝑢 ⊗ 𝑓) ∉ 𝒵𝑙
𝒜 and hence is invertible. However, this implies 𝑇 + 𝑐𝐴 ∉ 𝒵𝑟

𝒜  , a 

 contradiction. 

(𝑐) ⇒ (𝑎). Let ⊗ = 𝒵𝒜. Assume that rank𝐴 >  1, we will prove that condition (c) is 

not satisfied. Firstly assume that there exists a functional 𝑓 ∈ 𝑋∗ such that 

𝑓, 𝐴∗𝑓 , (𝐴∗)2𝑓 are linearly independent. Take vectors 𝑥0, 𝑥1, 𝑥2 ∈  𝑋 such that 

𝑥𝑖 , (𝐴
∗)𝑗𝑓 = 𝛿𝑖𝑗 (the Kronecker symbol) for 𝑖, 𝑗 =  0, 1, 2. Let 

𝑇 = 𝑥0⊗ (3‖𝐴‖𝑓 − 𝐴∗𝑓) + 𝑥1⊗ (3‖𝐴‖𝐴∗𝑓 − 2(𝐴∗)2𝑓) + 𝑥2⊗ (3‖𝐴‖𝑓 − 𝐴∗𝑓)

− 3‖𝐴‖𝐼. 

Then 𝑇 ∈ ℂ𝐼 + ℱ2(𝑋), (𝑇
∗ + 𝐴∗)𝑓 = 0and (𝑇∗ + 2𝐴∗)𝐴∗𝑓 =  0. Thus 𝑇 + 𝐴and 𝑇 +

2𝐴 ∈ 𝒵𝑟
𝒜 . Furthermore,(𝐴 − 3‖𝐴‖𝐼)[(𝐴 − 3‖𝐴‖𝐼)−1(𝑇 + 3‖𝐴‖𝐼) + 𝐼] + 𝐴 ∈ 𝒵𝑟

𝒜 and 

since (𝐴 − 3‖𝐴‖𝐼)−1(𝑇 + 3‖𝐴‖𝐼) is of rank-2, we see that(𝐴 − 3‖𝐴‖𝐼)−1(𝑇 +

3‖𝐴‖𝐼) + 𝐼 ∈ 𝒵𝑙
𝒜 . This implies that 𝑇 + 𝐴 ∈ 𝒵𝑙

𝒜 . Similarly,𝑇 + 2𝐴 ∈ 𝒵𝑙
𝒜.Note 

that,𝒵𝒜 = 𝒵𝑙
𝒜 ∩ 𝒵𝑟

𝒜. So we get 𝑇 + 𝐴 and 𝑇 + 2𝐴 are in 𝒵𝒜. However, it is easily 

checked that 𝑇 is invertible in 𝒜 and hence, can not be in𝒵𝒜 . 

Next assume that for any 𝑔 ∈ 𝑋∗, the functionals 𝑔, 𝐴∗𝑔 , (𝐴∗)2𝑔 are linearly dependent. 

Then, 𝐴∗ and consequently 𝐴, is an algebraic operator of degree not greater than two . 

That is, there exists a polynomial 𝑝(𝑡) of degree notgreater than two such that 𝑝(𝐴) = 0. 

If the degree of 𝑝(𝑡)is 1, then 𝐴 =  𝑎𝐼 for somescalar 𝑎 ≠ 0. Pick a vector 𝑦 ∈  𝑌 so 

that 𝑦, 𝑔 =  𝑎 and let 𝑇 =  𝑦 ⊗  𝑔 −  2𝑎𝐼. Then𝑇 is invertible, but 𝑇 +  𝐴and 𝑇 +

2𝐴 ∈ 𝒵𝒜. So, from now on, we always assumethat 𝐴 is not a scalar multiple of the 

identity and the degree of 𝑝(𝑡) is 2. In this casethere exist scalars 𝛼 𝑎𝑛𝑑 𝛽such that 

𝑝(𝑡)  =  (𝑡 −  𝛼)(𝑡 −  𝛽). 

Case (i). 𝛼 ≠  0and 𝛽 ≠ 𝛼. If 𝛽 = 0, then, since𝑟𝑎𝑛𝑘 𝐴 ≥ 2, 𝑑𝑖𝑚 𝑘𝑒𝑟(𝐴 −  𝛼𝐼) 2; if 

𝛽 ≠ 0, then 𝐴 is invertible and, at least one of the subspaces𝑘𝑒𝑟(𝐴 −  𝛼𝐼) and 𝑘𝑒𝑟(𝐴 −

 𝛽𝐼) has dimension greater than 1 since 𝑋 is of infinite dimension. So, without loss of 

generality, we may assume that 𝑑𝑖𝑚 𝑘𝑒𝑟(𝐴 − 𝛼𝐼) 2. Thus, there exist closed sub spaces 

𝑉1, 𝑉2 𝑎𝑛𝑑 𝑉3 𝑜𝑓 𝑋 with dim 𝑉2 =  1 such that 𝑋 has the space decomposition 𝑋 = 𝑉1 +

𝑉2 + 𝑉3 and 𝐴 has the corresponded matrix representation 

𝐴 = (

𝛼 0 0
0 𝛼𝐼2 0
0 0 𝛽𝐼3

). 

where𝐼2 and 𝐼3 are the identities on 𝑉2 and 𝑉3, respectively. Let 
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𝑇 = (

−𝛼 0 0
0 −𝛼𝐼2 0
0 0 −𝛽𝐼3

). 

then𝑇 ∈ ℂ𝐼 + ℱ1(𝑋) is invertible but both 𝑇 + 𝐴 and 𝑇 + 2𝐴 are zero divisors 

of 𝒜. 

Case (ii). 𝛼 = 𝛽 ≠ 0. Since 𝑟𝑎𝑛𝑘𝐴 >  1, there exist linearly independent functional 

𝑓1, 𝑓2 ∈  𝑋
∗ such that 𝐴∗𝑓1 =  𝛼𝑓1 and 𝐴∗𝑓1 = 𝑓1 +  𝛼𝑓2. Take vectors 𝑥𝑖 ∈  𝑋 (𝑖 = 1, 2) 

such that 〈𝑥𝑖 , 𝑓𝑗〉 =  𝛿𝑖𝑗(𝑖, 𝑗 =  1, 2). If 𝛼 ≠ ±1, let 𝑇 = (𝑥1 − 𝑥2) ⊗ 𝑓1 + (𝛼
2𝑥1 +

 𝑥2) ⊗ 𝑓2 − (𝛼 +  1)𝐼. Then 𝑇 ∈ ℂ𝐼 + ℱ2(𝑋) and 𝑇 is invertible since 𝜎𝒜(𝑇) =

{−𝛼 −  1,−𝛼 ±  𝑖𝛼}. Because (𝑇∗ + 𝐴∗)𝑓2 = 0and (𝑇∗ + 2𝐴∗) × (𝑓1 −  𝛼𝑓2) = 0, we 

have 𝑇 + 𝐴 and 𝑇 + 2𝐴 ∈ 𝒵𝑟
𝒜. Note that both 𝐴 − (𝛼 +  1)𝐼and 2𝐴 − (𝛼 +  1)𝐼 are 

invertible, this implies that we also have 𝑇 +  𝐴 and 𝑇 + 2𝐴 ∈ 𝒵𝑙
𝒜 and hence 𝑇 + 𝐴and 

𝑇 +  2𝐴 ∈ 𝒵𝒜. If 𝛼 =  1, let 𝑇 = (𝑥1 − 2𝑥2)  ⊗ 𝑓1 + (−𝑥1 + 𝑥2)  ⊗ 𝑓2 −  3𝐼, then 

𝑇 ∈ ℂ𝐼 + ℱ2(𝑋) and 𝜎(𝑇 )  =  {−3,−2 ± √2}.It is easy to check that (𝑇∗ + 𝐴∗)(𝑓1 −

𝑓2)  =  0 and(𝑇∗ +  2𝐴∗)𝑓2 = 0, so we have 𝑇 +  𝐴 and 𝑇 + 2𝐴 ∈ 𝒵𝑟
𝒜. Since 3𝐼 −  𝐴 

and 3𝐼 −  2𝐴 are invertible, similar to the above argument, we also have that 𝑇 +  𝐴and 

𝑇 + 2𝐴 ∈ 𝒵𝑙
𝒜. Thus both 𝑇 +  𝐴and 𝑇 +  2𝐴 are zero divisors while 𝑇 is not. If 𝛼 =

 −1, let 𝑇 = (−𝑥1 − 2𝑥2) ⊗ 𝑓1 + (−𝑥1 − 𝑥2) ⊗ 𝑓2 + 3𝐼, then 𝑇 ∈ ℂ𝐼 + ℱ2(𝑋) and 

𝜎(𝑇) = {3,2 ± √2}. As (𝑇∗ + 𝐴∗)(𝑓1 + 𝑓2) = 0 and (𝑇∗ + 2𝐴∗)𝑓2 = 0, thus 𝑇 +  𝐴 and 

𝑇 +  2𝐴 are zero divisor, but 𝑇 is not. 

Case (iii). 𝛼 =  𝛽 =  0. Since 𝑟𝑎𝑛𝑘 𝐴 >  1, there exist functional, 𝑔 ∈ 𝑋∗ such that 

𝑓, 𝐴∗𝑓 , 𝑔, 𝐴∗𝑔 are linearly independent. Let𝑓1 = 𝑓, 𝑓2 = 𝐴
∗𝑓 , 𝑓3 = 𝑔 and 𝑓4 = 𝐴

∗𝑔.Take 

vectors 𝑥𝑖 ∈ 𝑋 (𝑖 = 1, 2, 3, 4) such that 〈𝑥𝑖 , 𝑓𝑗〉 =  𝛿𝑖𝑗(𝑖, 𝑗 =  1, 2, 3,4). Put 𝑇 = 𝑥2⊗

𝑓1 + 2𝑥4⊗𝑓3 − √2𝐼. It is easily checked that 𝑇 ∈ ℂ𝐼 + ℱ2(𝑋)is invertible and(𝑇∗ +

𝐴∗)(𝐴∗𝑔 + √2𝑔) = 0 as well as(𝑇∗ + 2𝐴∗)(√2𝐴∗𝑓 + 𝑓) =  0. The invertibility of 𝐴 −

√2𝐼 and 2𝐴 − √2𝐼 also imply that there exist nonzero vectors 𝑢 𝑎𝑛𝑑 𝑣 such that 

(𝑇 +  𝐴)𝑢 = 0and (𝑇 + 2𝐴)𝑣 = 0. Thus we get 𝑇 +  𝐴 and 𝑇 +  2𝐴 ∈ 𝒵𝒜. This 

finishes the proof of (𝑐′) ⇒ (𝑎) for the case that 

Ω = 𝒵𝒜. 

Since every choice of  has 𝒵𝒜 as a subset and since every element in  is 

not invertible in 𝒜, we see from the arguments for the case Ω = 𝒵𝒜 above that 

(𝑐′) ⇒ (𝑎) also holds true for every choice of Ω𝒜 , which completes the proof. 

Lemma (1.2)[1]:- 

Let 𝒜 be a standard operator algebra on a complex Banach space 𝑋and 𝐴, 𝐵 ∈ 𝒜. If 𝐴 +

𝑅 ∈ Ω ⇒ 𝐵 + 𝑅 ∈ Ω1 for every operator 𝑅 ∈ ℂ𝐼 + ℱ1(𝑋), 
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then 𝐴 =  𝐵. Here Ω and Ω1 denote any one of the subsets 𝒮𝒜 , 𝒮𝑙
𝒜 , 𝒮𝑟

𝒜 , 𝒵𝒜 , 𝒵𝑙
𝒜 ,

𝒵𝑟
𝒜 , 𝒯𝒵𝒜 , 𝒯𝒵𝑙

𝒜 , 𝒯𝒵𝑟
𝒜  , 𝒯𝒵𝑙

𝒜 ∪ 𝒯𝒵𝑟
𝒜 , 𝒮𝑙

𝒜 ∩ 𝒮𝑟
𝒜  𝑎𝑛𝑑 𝒵𝑙

𝒜 ∪ 𝒵𝑟
𝒜of 𝒜, respectively. 

Proof:- 

      LetΩ and Ω1be any one of the 12 subsets in the lemma, respectively. We 

first note that 𝒵𝒜 ⊆  Ω ∩ Ω1. For any nonzero vector 𝑥 ∈ 𝑋, denote 𝐴𝑥 = 𝑦. Fix a 

scalar 𝜆 such that |𝜆| > 𝑚𝑎𝑥{‖𝐴‖, ‖𝐵‖} and 𝑦 ≠ 𝜆𝑥. Let 𝑀 = {𝑓 ∈ 𝑋∗|〈𝑥, 𝑓〉 = 1}.If 

𝑓 ∈  𝑀, then 𝜆 ∈ 𝜎𝑝(𝐴 − (𝑦 − 𝜆𝑥)⊗ 𝑓). Since |𝜆| > ‖𝐴‖, one sees that 𝜆 

also belongs to 𝜎𝑐(𝐴 − (𝑦 −  𝜆𝑥) ⊗ 𝑓). Thus𝐴 − 𝜆 − (𝑦 − 𝜆𝑥)⊗ 𝑓 ∈ 𝒵𝒜 ⊆ Ω. 

It follows from the hypothesis that 𝐵 − 𝜆 − (𝑦 − 𝜆𝑥) ⊗ 𝑓 ∈ Ω1 and consequently, 

𝜆 ∈ 𝜎𝒜(𝐵 − (𝑦 −  𝜆𝑥)  ⊗  𝑓). Now |𝜆| > ‖𝐵‖ implies 𝜆 ∈ 𝜎𝑝(𝐵 − (𝑦 𝜆𝑥) ⊗ 𝑓). 

So there exists a nonzero vector 𝑢𝑓 such that (𝐵 − (𝑦 − 𝜆𝑥) ⊗ 𝑓)𝑢𝑓 = 𝜆𝑢𝑓. Note 

that 𝑢𝑓 = 〈𝑢𝑓 , 𝑓〉(𝐵 − 𝜆)
−1(𝑦 − 𝜆𝑥). Let 𝑢 = (𝐵 − 𝜆)−1(𝑦 − 𝜆𝑥), then (𝐵 − (𝑦 −

𝜆𝑥)⊗ 𝑓)𝑢 = 𝜆𝑢 holds for every 𝑓 ∈  𝑀. If 𝑥 and 𝑢 are linearly independent, then 

there exists some 𝑓 ∈ 𝑀 such that 〈𝑢, 𝑓〉 = 0, which leads to (𝐵 − 𝜆)𝑢 =  0 and 

𝑢 = 0. This contradiction shows that(𝐵 − (𝑦 −  𝜆𝑥) ⊗ 𝑓)𝑥 = 𝜆𝑥 and hence,𝐵𝑥 =

𝑦.From the arbitrariness of 𝑥 it follows that 𝐵 =  𝐴. 

The following theorem is the basic result in this paper. It says that if a unital 

additive map from a standard operator algebra onto another one preserves any one ofthe 

mentioned twelve subsets, then it has one of the following forms: isomorphism, 

conjugate isomorphism, anti-isomorphism and conjugate anti-isomorphism. 

Theorem (1.3)[1]:- 

       Let 𝒜 𝑎𝑛𝑑 ℬ be standard operator algebras on complex Banach spaces 𝑋and 𝑌, 

respectively, and let Φ:𝒜 → ℬ be a unital surjective additive map. Let Ωℛ be any one of 

the subsets 𝒮𝒜 , 𝒮𝑙
𝒜 , 𝒮𝑟

𝒜 , 𝒵𝒜 , 𝒵𝑙
𝒜 , 𝒵𝑟

𝒜 , 𝒯𝒵𝒜 , 𝒯𝒵𝑙
𝒜 , 𝒯𝒵𝑟

𝒜  , 𝒮𝑙
𝒜 ∩ 𝒮𝑟

𝒜  , 𝒵𝑙
𝒜 ∪

𝒵𝑟
𝒜𝑎𝑛𝑑 𝒯𝒵𝑙

𝒜 ∪ 𝒯𝒵𝑟
𝒜  of ℛ with ℛ =  𝐴 or ℬ.If Φ(𝑇) ∈ Ωℬ ⇔ 𝑇 ∈ Ω𝒜 , then either 

there exists an invertible bounded linear orconjugate linear operator 𝐴 ∶  𝑋 →  𝑌 such 

that Φ(𝑇) = 𝐴𝑇 𝐴−1 for all 𝑇 ∈ 𝒜, orthere exists an invertible bounded linear or 

conjugate linear operator 𝐴 ∶  𝑋∗ → 𝑌such that Φ(𝑇) = 𝐴𝑇∗𝐴−1 for all 𝑇 ∈ 𝒜. The last 

case can not occur if any one of 𝑋 and 𝑌 is not reflexive, or if 𝒜 contains a element 𝑆 

such that 𝑆 ∈ Ω𝒜 but𝑆∗ ∉ 𝐴∗,where 𝒜∗ = {𝑇
∗ | 𝑇 ∈ 𝒜}. 

Proof:- 

Assume that Φ(𝑇)  ∈  𝐵 ⇔  𝑇 ∈  𝐴. 

Claim 1.Φis injective 

We first assert that, if 𝑆 ∈ 𝒜 such that 𝑇 +  𝑆 ∈ Ω𝒜 ⇒ 𝑇 ∈ Ω𝒜  for every 𝑇 ∈ 

𝒜, then 𝑆 =  0. This is an immediate consequence of Lemma (1.2). Now, the injectivity 
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of Φ follows from this assertion. Indeed, if Φ(𝑆)  =  0, then 𝑇 +  𝑆 ∈ Ω𝒜 ⇒ Φ(𝑇) ∈

Ωℬ ⇒ 𝑇 ∈ Ω𝒜  for all 𝑇 ∈ 𝒜 and hence 𝑆 =  0. 

Claim 2.Φ preserves rank-one operators in both directions. 

Let 𝑇 ∈ 𝒜 with 𝑟𝑎𝑛𝑘 𝑇 =  1. For arbitrary 𝐹 ∈ ℂ𝐼 + ℱ2(𝑋) ⊂ ℬ there exists 

𝑆 ∈ 𝒜 such that Φ(𝑆)  =  𝐹. If both 𝐹 +Φ(𝑇) and 𝐹 +  2Φ(𝑇) are in Ωℬ, then both S 

+ T and S + 2T are in A. By Lemma (1.1)((𝑎)  ⇒ (𝑐)), we get 𝑆 ∈ Ω𝒜 and hence 𝐹 ∈

Ωℬ. So, by Lemma (1.1)((𝑐′) ⇒ (𝑎)) again, we have 𝑟𝑎𝑛𝑘 Φ(𝑇) =  1. Because 

Φ−1(Ωℬ) = Ω𝒜,  preserves rank-one operators in both directions.  

Since Φ is additive, we see that the restriction of Φ to ℱ(𝑋) is a bijection between 

ℱ(𝑋) 𝑎𝑛𝑑 ℱ(𝑌) and preserves rank-oneness in both directions. It follows that there 

exists a ring automorphism 𝜏 ∶ ℂ → ℂ and either 

  (i) there exist τ-quasi-linear bijective maps A ∶  X →  𝑌 and 𝐶 ∶  𝑋∗ → 𝑌∗such 

that (𝑥 ⊗  𝑓 ) = 𝐴𝑥 ⊗  𝐶𝑓 for all 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗, or 

(ii) there exist 𝜏-quasi-linear bijective maps 𝐴 ∶  𝑋∗  →  𝑌 and 𝐶 ∶  𝑋 → 𝑌∗ such 

that (𝑥 ⊗  𝑓 )  =  𝐴𝑓 ⊗  𝐶𝑥 for all 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗.                                           

Note that the assumption that Φ(𝐼)  =  𝐼 has not been used by far. Claim 3. If case (i) 

occurs, then Φ(𝑥 ⊗ 𝑓) = 𝐴(𝑥 ⊗ 𝑓)𝐴−1 for all 𝑥 ∈ 𝑋and 𝑓 ∈ 𝑋∗; if case (ii) occurs, then 

Φ(𝑥 ⊗ 𝑓 ) = 𝐴(𝑥 ⊗ 𝑓 )∗𝐴−1 for all 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗. Assume that case (i) occurs, we 

first show that 〈𝐴𝑥, 𝐶𝑓〉 = 𝜏(〈𝑥, 𝑓〉) for all𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗. If〈𝑥, 𝑓〉 = 1, then 𝐼 − 𝑥 ⊗

𝑓 ∈ 𝒵𝒜 ⊆ Ω𝒜 , and hence, 𝐼 − 𝐴𝑥 ⊗ 𝐶𝑓 ∈ Ωℬ as Φ is unital, which yields 〈𝐴𝑥, 𝐶𝑓〉 = 1. 

If 〈𝑥, 𝑓〉 = 𝛼 ≠  0, then𝜏(𝛼)−1〈𝐴𝑥, 𝐶𝑓〉 = 〈𝐴(𝛼−1𝑥), 𝐶𝑓〉 = 〈𝛼−1𝑥, 𝑓〉 = 1, so 

〈𝐴𝑥, 𝐶𝑓〉 = 𝜏(𝛼). Now assume that 〈𝑥, 𝑓〉 = 0, if 〈𝐴𝑥, 𝐶𝑓〉 = 𝛽 ≠ 0, then 

I − 𝐴(𝜏−1(𝛽−1)𝑥) ⊗ 𝐶𝑓 ∈ Ωℬ ,but this implies 𝐼 − 𝜏−1(𝛽−1)𝑥 ⊗ 𝑓 ∈ Ω𝒜  and 〈𝑥, 𝑓〉 =

𝜏−1(𝛽) ≠ 0, a contradiction. Thus, for any rank-1 operator 𝑥 ⊗  𝑓 ∈ 𝒜and 𝑦 ∈  𝑌, we 

have 

Φ(𝑥 ⊗ 𝑓)𝑦 = (𝐴𝑥 ⊗ 𝐶𝑓)𝑦 = 〈𝑦, 𝐶𝑓〉𝐴𝑥 = 〈𝐴𝐴−1𝑌, 𝐶𝑓〉𝐴𝑥 = 𝜏(〈𝐴−1𝑦, 𝑓〉)𝐴𝑥

= 𝐴(𝑥 ⊗ 𝑓)(𝐴−1𝑦) = 𝐴(𝑥 ⊗ 𝑓)𝐴−1𝑦. 

Therefore, Φ(𝑥 ⊗ 𝑓) = 𝐴(𝑥 ⊗ 𝑓)𝐴−1. 

If case (ii) occurs, then, similarly, we have 〈𝐴𝑓, 𝐶𝑥〉 = 𝜏(〈𝑥, 𝑓〉) for all 𝑥 ∈  𝑋 

and 𝑓 ∈ 𝑋∗, and consequently, the corresponding part of the claim is true. 

Claim 4. 𝜏(𝜆)  =  𝜆for all  𝜆 ∈ ℂ or 𝜏(𝜆)  = λ̅for all 𝜆 ∈ ℂ. 

Since a nonzero continuous ring homomorphism of ℂ must be either the identity or the 

complex conjugation , we need only to prove that 𝜏 is 

continuous. Assume, on the contrary, that 𝜏 is not continuous, then 𝜏is not bounded on 

any neighborhood of 0. 
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Assume the case (i) occurs. Take a linear functional 𝑔1 ∈ 𝑌
∗with ‖𝑔1‖ ≤ 1,and then, 

pick a unit vector 𝑢1 ∈ 𝑋 so that 〈u1, 𝐶
−1𝑔1〉 ≠ 0. Since 𝜏is unbounded  

on{𝜆〈u1, 𝐶
−1𝑔1〉: |𝜆| < 2

−1}, 𝜏(𝜆1〈u1, 𝐶
−1𝑔1〉) > 1 for some 𝜆1with |𝜆1|  < 2

−1. Let 

𝑥1 = 𝜆1𝑢1. Then ‖𝑥1‖ < 2
−1and |𝜏(〈x1, 𝐶

−1𝑔1〉)|  >  1. Take 𝑔2 ∈  𝑌
∗ with‖𝑔2‖ ≤ 1 

such that 𝐶−1𝑔2 ∈  {𝑥1}
⊥. It is clear that 𝐶−1𝑔1and 𝐶−1𝑔2are linearly independent. Thus 

we can take a unit vector 𝑢2 ∈ 𝑋 such that 〈u2, 𝐶
−1𝑔2〉 ≠ 0 while〈u2, 𝐶

−1𝑔1〉 = 0. By 

the unboundedness of τ on the set  {𝜆〈u2, 𝐶
−1𝑔2〉: |𝜆| < 2

−2}, there exists 𝜆2 such that 

|𝜏(𝜆2〈u2, 𝐶
−1𝑔2〉)|  >2. Let 𝑥2 = 𝜆2𝑢2. Then ‖𝑥2‖ < 2

−2and |𝜏(〈u2, 𝐶
−1𝑔1〉)|  >  2. 

Suppose that 𝑥1, 𝑥2, . . . , 𝑥𝑛 and 𝑔1, 𝑔2, . . . , 𝑔𝑛 are takenso that 0 < ‖𝑥𝑖‖ < 2
−𝑖, 0 <

‖𝑔𝑖‖ ≤ 1, 〈ui, 𝐶
−1𝑔𝑘〉 =  0 whenever 𝑖 ≠  𝑘, and𝜏( 〈ui, 𝐶

−1𝑔𝑘〉)|  >  𝑖, 𝑖, 𝑘 =  1, 2, . . . , 𝑛. 

Take 𝑔𝑛+1 so that 𝐶−1𝑔𝑛+1 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑛}
⊥ and ‖𝑔𝑛+1‖ ≤ 1. Then𝐶−1𝑔𝑛+1 ∉

𝑉{𝐶−1𝑔1, . . ., 𝐶
−1𝑔𝑛}, the linear spanof {𝐶−1𝑔𝑘 , 𝑘 =  1, . . . , 𝑛}. Pick 𝑢𝑛+1 with 

‖𝑢𝑛+1‖ = 1 suchthat〈𝑢𝑛+1, 𝐶
−1𝑔𝑛+1〉 ≠ 0  while 〈𝑢𝑛+1, 𝐶

−1𝑔𝑖〉 = 0if 𝑖 =  1, 2, . . . , 𝑛. 

Since 𝜏 is unbounded on {𝜆〈𝑢𝑛+1, 𝐶
−1𝑔𝑛+1〉: |𝜆| < 2

−(𝑛+1)}, we get a 𝜆𝑛+1 with 

|𝜆𝑛+1| < 2
−(𝑛+1) such that |𝜏(〈𝑢𝑛+1, 𝐶

−1𝑔𝑛+1〉)| > 𝑛 + 1, where 𝑥𝑛+1 =

𝜆𝑛+1𝑢𝑛+1.Continuing this process, we get two sequences {𝑥𝑛}𝑛=1
∞  and {𝑔𝑛}𝑛=1

∞  which 

satisfy the conditions 

(a) ‖𝑥𝑛‖ < 2
−𝑛and‖𝑔𝑛‖ ≤ 1 for every 𝑛; 

(b) 〈𝑥𝑛, 𝐶
−1𝑔𝑘〉 = 0 whenever 𝑛 ≠ 𝑘; 

(c) |𝜏(〈𝑥𝑛, 𝐶
−1𝑔𝑛〉|  >  𝑛. 

Note that 𝑥 = ∑ 𝑥𝑛
∞
𝑛=1  is a vector in 𝑋, so 𝐴𝑥 ∈  𝑌. However, for any 𝑛 ∈ ℕ, we 

Have 

‖𝐴𝑥‖ ≥ |〈𝐴𝑥, 𝑔𝑛〉|  =  |𝜏(〈𝑥, 𝐶
−1𝑔𝑛〉)|  >  𝑛, 

a contradiction. This shows that 𝜏 must be continuous. 

Claim 5. 𝐴is a bounded linear or conjugate linear bijection. 

This follows immediately from the fact 〈𝐴𝑥, 𝐶𝑓〉 =  𝜏(〈𝑥, 𝑓〉) in case (i) (or,〈𝐴𝑓, 𝐶𝑥〉 =

 𝜏(〈𝑥, 𝑓〉) in case (ii)) and the Claim 4 as well as the Closed Graph Theorem. 

Claim 6. Φ(𝑇) =  𝐴𝑇𝐴−1for all 𝑇 ∈ 𝒜 if case (i) occurs, or Φ(𝑇) =  𝐴𝑇∗𝐴−1for all 𝑇 ∈

𝒜 if case (ii) occurs. 

Suppose that the case (i) happens. Let Ψ(𝑇) = 𝐴−1Φ(𝑇 )𝐴 for every 𝑇 ∈

𝒜.ThenΨ: 𝒜 → 𝒜 is a unital linear bijective map, Ψ(Ω𝒜) = Ω𝒜  and, by Claim 

3Ψ(𝑥 ⊗ 𝑓) = 𝑥 ⊗ 𝑓 for every rank-1 operator 𝑥 ⊗ 𝑓 ∈ 𝒜. Thus, for every 𝑇 ∈ 𝒜 and 

𝜆 ∈ ℂ,Ψ(𝑇) + 𝜆 + 𝑥 ⊗ 𝑓 ∈ Ω𝒜 if and only if 𝑇 +  𝜆 +  𝑥 ⊗  𝑓 ∈ Ω𝒜 . It follows from 

Lemma (1.2) that we have Ψ(𝑇)  =  𝑇 and there fore, Φ(𝑇)  =  𝐴𝑇 𝐴−1. 

If the case (ii) occurs, similar to the proof of the case (i), we have that both 𝐴 ∶ 𝑋 ∗ →  𝑌 

and 𝐶 ∶  𝑋 →  𝑌∗ are invertible. Let 𝐽 ∶  𝑌 →  𝑌∗∗ and 𝐾 ∶  𝑋 → 𝑋∗∗ be then atural 

embeddings. Then, from 〈𝐴𝑓, 𝐶𝑥〉 =  𝜏(〈𝑥, 𝑓〉) with 𝜏(𝜆)  ≡  𝜆 or 𝜏(𝜆)  ≡  �̅� and the 
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equation 〈𝑊𝑥, 𝑓〉 = 〈𝑥,𝑊∗𝑓〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for conjugate linear operator 𝑊, we have𝐶 ∗𝐽𝐴 = 𝐼𝑋∗ and 

𝐴∗𝐶 = 𝐾. So 𝐽(𝑌) = 𝑌∗∗and 𝐾(𝑋)  =  𝑋∗∗. It follows that 𝑋and 𝑌 are reflexive. 

Let Ψ(𝑇 = 𝐴∗(𝑇)∗(𝐴∗)−1. Since 𝑋 and 𝑌 are reflexive, Ψ: 𝒜 → 𝒜 is a unitallinear 

bijective map, and it is clear that 𝑇 ∈ Ω𝒜  if and only if  Ψ(𝑇) ∈ (Ω𝒜)′, where(Ω𝒜)′ is 

the dual of Ω𝒜 . By Claim 3, Ψ(𝑥 ⊗ 𝑓) = 𝑥 ⊗ 𝑓 for every rank-1 element 𝑥 ⊗ 𝑓 ∈ 𝒜. 

Thus we have 𝑇 + 𝑅 ∈  Ω𝒜 ⇔Ψ(𝑇) + 𝑅 ∈ (Ω𝒜)′ for every𝑅 ∈ ℂ𝐼 + ℱ1. It follows 

from Lemma (1.2) that Ψ(𝑇) = 𝑇 and hence ,Φ(𝑇) = 𝐴𝑇∗𝐴−1. 

If there exists an element 𝑆 ∈ 𝒜 such that 𝑆 ∈ Ω𝒜but 𝑆∗ ∉ Ω𝒜∗, where 𝐴∗ = {𝑇
∗| 𝑇 ∈

𝒜}, then Φ cannot take the form Φ(·) =  𝐴(·)∗𝐴−1 since Φ(𝑆) = 𝐴𝑆∗ × 𝐴−1 ∉ Ωℬ. The 

proof is finished.  

We remark that any form of isomorphism, conjugate isomorphism, anti-isomorphism and 

conjugate anti-automorphism that Φ takes in Theorem (1.3) may occur for every choice 

of Ωℛ. This can be seen by assuming that both 𝑋 and 𝑌 are reflexive but not separable, 

and by taking 𝒜 = ℂ𝐼 +𝒦(𝑋), where 𝒦(𝑋) is the ideal of compact operators or the 

norm closure of the ideal of finite-rank operators. We also remark that if Φis linear in 

Theorem (1.3), then Φis either an isomorphism or ananti-isomorphism. 

Recall that an operator 𝑇 ∈ ℬ(𝑋) is said to be quasi-affine if it is both injective and has a 

dense range; 𝑇 is said to be lower-bounded if there exists a positive number 𝑐 >  0 such 

that ‖𝑇 𝑥‖ ≥ 𝑐‖𝑥‖ holds for all 𝑥 ∈  𝑋. Now we apply Theorem (1.3) to answer some 

preserver problems for additive maps on standard operator algebras in the following 

results. We point out that some of these preserver problems were not answered even for 

linear maps. 

Theorem (1.4)[1]:- 

Let 𝒜 and ℬ be standard operator algebras on complex Banach spaces 𝑋and 𝑌, 

respectively, and let Φ: 𝐴 → 𝐵 be a unital surjective additive map. Then the following 

are equivalent. 

(a)Φpreserves the invertibility of elements in both directions. 

(b)Φpreserves the semi-invertibility of elements in both directions. 

(c)Φpreserves zero divisors in both directions. 

(d)Φpreserves semi-zero divisors in both directions. 

(e)Φpreserves topological divisors of zero in both directions. 

(f)Φpreserves semi-topological divisors of zero in both directions. 

(g)Φpreserves the quasi-affinity of operators in both directions. 

(h)Φ preserves maximal semi-ideals in both directions. 

(i) Either there exists an invertible bounded linear or conjugate linear operator 

𝐴: 𝑋 → 𝑌 such that Φ(𝑇)  =  𝐴𝑇 𝐴−1 for all 𝑇 ∈ 𝒜, or there exists an invertible 

bounded linear or conjugate linear operator 𝐴 ∶  𝑋 ∗ →  𝑌 such that Φ(𝑇) =

𝐴𝑇∗𝐴−1 for all 𝑇 ∈ 𝒜; the last case occurs only if 𝑋 and 𝑌 are reflexive. 
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Proof:- 

It is obvious that (i) implies each one of the conditions (a)–(h).  

(𝑎)  ⇒  (𝑖), . . . , (𝑓)  ⇒  (𝑖) are immediate from Theorem (1.3) by taking Ωℛ the subsets 

𝒮ℛ , 𝒮𝑙
ℛ ∩ 𝒮𝑟

ℛ , 𝒵ℛ , 𝒵𝑙
ℛ ∪ 𝒵𝑟

ℛ , 𝒯𝒵𝑟
ℛ  𝑎𝑛𝑑  𝒯𝒵𝑙

ℛ ∪ 𝒯𝒵𝑟
ℛ  of ℛ, respectively, with ℛ =

𝒜 𝑜𝑟 ℬ. As to (𝑔) ⇒ (𝑖), we note that 𝑇 ∈ 𝒜 is quasi-affine as an operator in ℬ(𝑋) if 

and only if 𝑇 is neither a left zero divisor nor a right zero divisor of 𝒜 since ℱ(𝑋)  ⊂ 𝒜, 

thus we have (𝑑)  ⇔ (𝑔). (ℎ)  ⇒  (𝑖) follows from (𝑎)  ⇒  (𝑖) because an element is 

neither in any maximal left ideals nor in any maximal right ideals if and only if it is 

invertible. 

Theorem (1.5)[1]:- 

     Let 𝒜 and ℬ be standard operator algebras on complex Banach spaces 𝑋and 𝑌, 

respectively, and let Φ: 𝒜 → ℬ be a unital surjective additive map. Then any one of the 

following conditions (𝑎)– (𝑙) implies that (𝑛) holds true.Moreover, if 𝒜 contains a left 

invertible element which is not invertible, then the statements (𝑎)– (𝑚) are equivalent. 

(a)Φ preserves the left invertibility of elements in both directions. 

(b)Φ preserves the right invertibility of elements in both directions. 

(c)Φ preserves left zero divisors in both directions. 

(d)Φ preserves right zero divisors in both directions. 

(e)Φ preserves left topological divisors of zero in both directions. 

(f)Φ preserves right topological divisors of zero in both directions. 

(g)Φ preserves the injectivity of operators in both directions. 

(h)Φ preserves the range density of operators in both directions. 

 (i)Φ preserves the lower-boundedness of operators in both directions. 

 (j)Φ preserves the surjectivity of operators in both directions. 

(k)Φ preserves maximal left ideals in both directions. 

(l)Φ preserves maximal right ideals in both directions. 

(m) There exists an invertible bounded linear or conjugate linear operator 𝐴 ∶ 𝑋 →   𝑌 

such that Φ(𝑇)  =  𝐴𝑇 𝐴−1 for every 𝑇 ∈ 𝒜. 

(n) Either there exists an invertible bounded linear or conjugate linear operator 𝐴 ∶  𝑋 →

 𝑌 such that Φ(𝑇)  =  𝐴𝑇 𝐴−1 holds for every 𝑇 ∈ 𝒜, or there exists an invertible 

bounded linear or conjugate linear operator 𝐴 ∶  𝑋∗  →  𝑌 such that Φ(𝑇)  =  𝐴𝑇∗𝐴−1 

holds for every 𝑇 ∈ 𝒜. The last case occurs only if 𝑋 and 𝑌 are reflexive. 

Proof:- 

 (𝑎)  ⇒  (𝑛), . . . , (𝑓)  ⇒  (𝑛)follow directly from Theorem (1.3). It is obvious that (𝑎) ⇔

(𝑘) since an element fails to have a left inverse if and only if it is included in a maximal 

left ideal. Similarly, (𝑏) ⇔ (𝑙). Since 𝒜 and ℬ are standard operator algebras, one 

checks easily that (𝑐)  ⇔  (𝑔), (𝑑)  ⇔  (ℎ), (𝑒)  ⇔  (𝑖) 𝑎𝑛𝑑 (𝑓)  ⇔  (𝑗). Hence any one 

of (𝑎)– (𝑙) will imply (𝑛). 
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Moreover, if 𝒜 contains a left invertible element 𝑆 which is not invertible, witha left 

inverse 𝑅, then 𝑆 is also a right zero divisor, right topological divisor of zero but 𝑆∗ is 

not; 𝑅 is right invertible, left zero divisor, left topological divisor of zero but 𝑅∗ is not. 

These ensure that Φ can not take the form Φ(𝑇)  =  𝐴𝑇∗𝐴−1 for every 𝑇 ∈ 𝒜. Therefore, 

each of the conditions (𝑎)– (𝑙) is equivalent to (𝑚), completing the proof. 

Corollary (1.6)[1]:- 

Let Φ: ℬ(𝐻) → ℬ(𝐾) be a unital surjective additive map, where 𝐻 and 𝐾 are infinite 

dimensional complex Hilbert spaces. Then the following statements are equivalent. 

 (a)Φ preserves the left invertibility of elements in both directions. 

(b)Φ preserves the right invertibility of elements in both directions. 

(c)Φ preserves the injectivity of operators in both directions. 

(d)Φ preserves the range density of operators in both directions. 

(e)Φ preserves the lower-boundedness of operators in both directions. 

(f)Φ preserves the surjectivity of operators in both directions. 

(g) There exists an invertible bounded linear or conjugate linear operator 𝐴:𝐻 → 𝐾 such 

that Φ(𝑇)  =  𝐴𝑇 𝐴−1 for every 𝑇 ∈ ℬ(𝐻). 

Proof:- 

 (𝑏) ⇒ (𝑐). We use a method similar to that used . By Theorem (1.3), we have to verify 

that Φ can only take the form Φ(·) = 𝐴(·)𝐴−1.To see this, assume, on the contrary, that 

Φ has the form Φ(𝑇 ) = 𝐴𝑇∗𝐴−1 for every𝑇 ∈ ℬ(𝑋). Then, both 𝑋 and 𝑌are reflexive. 

There exists aseparable subspace 𝑊 of 𝑌 and a linear projection 𝑃 from 𝑌 onto 𝑊 such 

that ‖𝑃‖ = 1. Since 𝑊 is a separable Banach space, according to 

 Ovsepian P elczynski’ sresulton the existence of total bounded biorthogonal systems in 

separable Banach spaces, there is a vector sequence {𝑦𝑛} ⊂ 𝑊 and a functional 

sequence{𝑔𝑛} ⊂ 𝑊
∗ = 𝑟𝑛𝑔(𝑃∗) such that (a)𝑔𝑚(𝑦𝑛) = 𝛿𝑚𝑛 for 𝑚, 𝑛 =  1, 2, . .. ; (b) the 

linearspan of {𝑦𝑛} is dense in 𝑊 in the norm topology; (c) if 𝑦 ∈  𝑊 and 𝑔𝑛(𝑦) = 0 

forall 𝑛 ∈ ℕ, then 𝑦 = 0; (d) s𝑢𝑝n‖𝑦𝑛‖‖𝑔𝑛‖ = 𝑀 < ∞. 

Let 𝑆 = ∑ 2−𝑛∞
𝑛=1 𝑦𝑛⊗𝑔𝑛 +  𝐼 −  𝑃. We claim that 𝑆 is a bounded injective operator 

with dense range but not invertible on 𝑌. Indeed, the boundedness of 𝑆 follows from the 

condition (d) and ‖𝑃‖ = 1, while the range density of 𝑆 follows from thefact that 

{𝑦𝑛}𝑛=1
∞ ⊂ 𝑟𝑛𝑔(𝑆). Because∑ 2−𝑛∞

𝑛=1 𝑦𝑛⊗𝑔𝑛 is compact, 𝑆 is not invertible. From the 

surjectivity of Φ, we can find an operator 𝑇 ∈ ℬ(𝑋) such that Φ(𝑇) =  𝑆. Itis clear that 

𝑇 has dense range. For any non zero functional 𝑓 ∈ 𝑋∗,let 𝑔 = 𝑇∗𝑓 (≠ 0). It is easily 

seen that 0 ∈ 𝜎𝑝(𝑇
∗ − 𝑔 ⊗  𝑥) for arbitrary 𝑥 ∈  𝑋satisfying 〈𝑥, 𝑓〉 = 1. This implies 

that the range of Φ(𝑇) −  𝐴𝑔⊗ ℎ is not dense for arbitrary ℎ ∈ 𝑌∗satisfying 〈𝐴𝑓, ℎ〉 =

1. Hence for every ℎ ∈ 𝑌∗satisfying 〈𝐴𝑓, ℎ〉 = 1, there is anonzero functional 𝑤 ∈ 𝑌∗ 

such that 𝑆∗𝑤 = 〈𝑤, 𝐴𝑔〉ℎ. As 𝑤 ≠ 0 we have 𝑆∗𝑤 ≠ 0and consequently, the range of 𝑆∗ 

contains 𝑠𝑝𝑎𝑛{ℎ ∈ 𝑌∗| 〈𝐴𝑓, ℎ〉 = 1for some 𝑓 ∈ 𝑋∗}. But, 
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 𝑠𝑝𝑎𝑛{ℎ ∈ 𝑌∗|〈𝐴𝑓, ℎ〉 = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑓 ∈ 𝑋∗} = 𝑌∗ because 𝐴 ∶  𝑋 ∗ →  𝑌is invertible, 

which contradicts to the noninvertibility of 𝑆. So the second case cannot occur. 

The proof of (𝑎) ⇒ (𝑐) is similar.We have the following theorem . 

Theorem (1.7)[1]:- 

Let 𝒜 and ℬ be standard operator algebras on complex Banach spaces X and Y, 

respectively, and let Φ: 𝒜 → ℬ be a surjective additive map. Then Φ preserves zero 

products in both directions if and only if there exist a scalar cand an invertible bounded 

linear or conjugate linear operator 𝐴 ∶  𝑋 →  𝑌 such thatΦ(𝑇) = 𝑐𝐴𝑇𝐴−1 for every 𝑇 ∈

𝒜. 

Proof:- 

We need only to prove the necessity. Assume that Φ preserves zero products in both 

directions. It is clear that Φ preserves left as well as right zero divisors in both directions. 

By the notice before the Claim 3 in the proof of Theorem (1.3), one sees that Φ is 

injective and preserves rank-oneness in both directions, and hence there exist 𝜏 -quasi-

linear bijections 𝐴 and 𝐶 such that either the case (i) or the case (ii) listed there occurs. 

We claim that the case (ii) cannot happen. Assume, on the contrary, that the case (ii) 

occurs, then for every rank one operator 𝑥 ⊗ 𝑓 ∈ 𝒜 we have Φ(𝑥 ⊗  𝑓 )  =  𝐴𝑓 ⊗

 𝐶𝑥. Pick 𝑢 ∈  𝑋 and 𝑓 ∈ 𝑋∗ so that 〈𝑢, 𝑓〉  = 0. Since 𝐴 and 𝐶 are surjective, there exist 

𝑥 ∈  𝑋 and ℎ ∈ 𝑋∗ such that 〈𝐴ℎ, 𝐶𝑥〉 ≠ 0. However,(𝑥 ⊗ 𝑓)(𝑢 ⊗ ℎ) = 0 implies 0 =

Φ(𝑥 ⊗  𝑓 )Φ(𝑢 ⊗  ℎ) = 〈𝐴ℎ, 𝐶𝑥〉 𝐴𝑓 ⊗ 𝐶𝑢 ≠  0, a contradiction. Thus, only the case 

(i) occurs, that is, Φ(𝑥 ⊗  𝑓 )  =  𝐴𝑥 ⊗  𝐶𝑓 holds for every rank one operator 𝑥 ⊗

 𝑓 ∈ 𝒜. Next we show that Φ(𝐼) = 𝑐𝐼 for some nonzero scalar 𝑐. For any 𝑥 ⊗ 𝑓 ∈ 𝒜, if 

〈𝑥, 𝑓〉 =  𝛼 ≠  0, since 

(𝐼 − 𝛼−1𝑥 ⊗ 𝑓)(𝑥 ⊗ 𝑓) = (𝑥 ⊗ 𝑓)(𝐼 − 𝛼−1𝑥 ⊗ 𝑓) = 0, 

andΦ is zero-product preserving, we have 

(Φ(𝐼) − 𝜏(𝛼)−1𝐴𝑥 ⊗ 𝐶𝑓)(𝐴𝑥 ⊗ 𝐶𝑓) = ((𝐴𝑥 ⊗ 𝐶𝑓))((Φ(𝐼) − 𝜏(𝛼)−1𝐴𝑥 ⊗ 𝐶𝑓)) =

0,this yields that Φ(𝐼)(𝐴𝑥 ⊗  𝐶𝑓 )  =  (𝐴𝑥 ⊗  𝐶𝑓 )Φ(𝐼 ); if 〈𝑥, 𝑓〉 =  0, pick a vector 

𝑢 ∈  𝑋 so that 〈𝑢, 𝑓〉 ≠ 0, then by what has just been proved we have  Φ(𝐼 )((𝐴𝑥 +

𝐴𝑢) ⊗  𝐶𝑓 )  =  ((𝐴𝑥 +  𝐴𝑢)  ⊗  𝐶𝑓 ) Φ(𝐼 ) and  Φ(𝐼)(𝐴𝑢⊗ 𝐶𝑓) = (𝐴𝑢 ⊗

𝐶𝑓) Φ(𝐼), these still imply  Φ(𝐼)(𝐴𝑥 ⊗ 𝐶𝑓) = (𝐴𝑥 ⊗ 𝐶𝑓 ) Φ(𝐼 ). Since both 𝐴 and 𝐶 

are surjective, we see that  Φ(𝐼) commutes with every rank one operator and hence must 

be a multiple of the identity, that is,  Φ(𝐼)  =  𝑐𝐼 for some scalar 𝑐. By the injectivity of 

 Φ, 𝑐 ≠ 0. Now, 𝑐−1 Φ is a unital surjective additive map preserving left zero divisor in 

both directions, then applying Theorem (1.5), one completes the proof immediately.  

Theorem (1.8) [5].  

A finite dimensional Hopf algebra H is a symmetric Frobenius algebra if and only if H is 

unimodular and its antipode S satisfies S2is an inner automorphism of H. 
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Chapter 2 

 

Additive Maps onto Matrix Mpaces Compressing the Spectrum 

 

We prove that given a unital 𝐶∗- algebra 𝒜 and an additive and surjective map 𝑇 ∶

 𝒜 →  ℳ𝑛such that the spectrum of 𝑇(𝑥) is a subset of the spectrum of 𝑥 for each 𝑥 ∈

 𝒜, then 𝑇 is either an algebra morphism, or an algebra anti-morphism . 

Let 𝒜be a (complex) unitalBanach algebra, and denote its unit by 1. By 𝜎(𝑎)we shall 

denote the spectrum of the element 𝑎 ∈ 𝒜and 𝜌(𝑎)will be its spectral radius. A well-

known result in the theory of Banach algebras, the Gleason–Kahane–Żelazko theorem, 

states that if 𝑓:𝒜 → 𝑪is 𝑪-linear (that is, additive and homogeneous with respect to 

complex scalars) and 𝑓(𝑎) ∈ 𝜎(𝑎)for every 𝑎 ∈ 𝒜, then 𝑓is multiplicative.  Kowalski 

and Slodkowski generalized their result, by proving that if 𝑓:𝒜 → 𝐶with 𝑓(0) =

0satisfies 

                              𝑓(𝑥) − 𝑓(𝑦) ∈ 𝜎(𝑥 − 𝑦)(𝑥, 𝑦 ∈ 𝒜),                               (1) 

then𝑓is automatically 𝑪-linear, and therefore also multiplicative. (That 𝑓is 𝑹-linear and 

the fact that 𝑓(𝑖𝑎) = 𝑖𝑓(𝑎)for all 𝑎 ∈ 𝒜come automatically from the inclusions (1), 

which combine spectrum-preserving properties and additivity properties on the 

functional 𝑓.) In particular, if 𝑓:𝒜 → 𝐶 is additive and 𝑓(𝑥) ∈ 𝜎(𝑥)for every 𝑥 ∈ 𝒜, 

then 𝑓is a character of 𝒜. 

The natural extension of the Gleason–Kahane–Żelazko theorem for the case when the 

range Coffis replaced by ℳ𝑛, the algebra of 𝑛 × 𝑛matrices over 𝑪, was obtained by 

Aupetit . 

Theorem (2.1) [2]:- 

      If 𝑇:𝒜 →ℳ𝑛is a surjective𝑪-linear map such that 

                                                  𝜎(𝑇(𝑥)) ⊆ 𝜎(𝑥)(𝑥 ∈ 𝒜),                               (2) 

then either 

𝑇(𝑥𝑦) = 𝑇(𝑥)𝑇(𝑦)(𝑥, 𝑦 ∈ 𝒜)    𝑜𝑟   𝑇(𝑥𝑦) = 𝑇(𝑥)𝑇(𝑦)(𝑥, 𝑦 ∈ 𝒜).       (3) 

We state that if 𝑇:𝒜 →ℳ𝑛is linear, unital and onto, sending invertible elements from 

Ainto invertible elements of ℳ𝑛, then 𝑇is of the form (3). If (2)holds, then 𝑥 ∈

𝒜invertible implies 0 ∉ 𝜎(𝑥), thus by (2)we have 0 ∉ 𝜎(𝑇(𝑥)), which means that the 

matrix 𝑇(𝑥)is invertible. By Lemma(2.6) we also have that 𝑇sends the unit element of 

𝒜into the unit element of ℳ𝑛. Thus, under the hypothesis of Theorem(2.1) we have that 

𝑇is unital and invertibility-preserving. Under the hypothesis of Theorem(2.1) , the map 
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𝑇is either an algebra morphism, or an algebra anti-morphism. We study the same type of 

problem as the one considered by Theorem(2.1), assuming only additivity instead of 

linearity over the complex field 𝑪. Our first result states that if 𝒜is supposed to be a 𝐶∗-

algebra,then we arrive at the same conclusion by assuming only additivity on𝑇. 

Theorem (2.2)[2]:- 

Let 𝒜be a unital𝐶∗-algebra and suppose 𝑇:𝒜 →ℳ𝑛is a surjective additive map such 

that (2) holds. Then 𝑇is of the form (3). 

As a corollary, we obtain the following generalization for the case of additive maps 

defined on 𝐶∗-algebras which compress the spectrum. 

Theorem (2.3)[2]:- 

Let 𝒜be a unital𝐶∗-algebra, and let ℬbe a complex, unitalBanach algebra having a 

separating family of irreducible finite-dimensional representations. Suppose 𝑇:𝒜 → ℬis 

additive and onto such that (2)holds. Then 𝑇is a Jordan morphism, that is 

𝑇(𝑥2) = 𝑇(𝑥)2(𝑥 ∈ 𝒜). 

    For the general case of an arbitrary Banach algebra 𝒜, we shall impose an extra 

surjectivity assumption on the map 𝑇in order to obtain the same type of result. 

Theorem (2.4)[2]:- 

    Let 𝒜be a unitalBanach algebra and suppose 𝑇:𝒜 →ℳ𝑛is a surjective additive map 

such that (2)holds. Suppose also that there exist 𝑥1, . . . , 𝑥𝑛2 ∈ 𝒜such that 

{𝑇(𝑥1) + 𝑇(𝑖𝑥1)/𝑖, … , 𝑇(𝑥𝑛2) + 𝑇(𝑖𝑥𝑛2)/𝑖} ⊆ ℳ𝑛                            (4) 

are linearly independent over 𝑪. Then 𝑇is of the form (2.3). 

We do not know whetherthe assumption that the matrices in (4)spanℳ𝑛over the complex 

field may be removed from the statement of Theorem(2.4). We believe that this 

hypothesis can be eliminated, being a consequence of the fact that 𝑇is surjective and that 

(2)holds, but we have not been able to prove it. An important part of the proof of 

Theorem(2.4) can be carried out without the surjectivity hypothesis given by (4)being 

assumed, using only the surjectivity of the map 𝑇. Throughout this part, 𝒜will denote an 

arbitrary unitalBanach algebra. The first result shows that, as in the C-linear case , under 

the hypothesis of Theorem(2.2)we have that the continuity of the map 𝑇is automatic. 

Theorem (2.5) [2]:-    Let 𝑇be an additive map from 𝒜onto ℳ𝑛such that 

                                                  𝜌(𝑇(𝑎)) ≤ 𝜌(𝑎)(𝑎 ∈ 𝒜).                                 (5) 
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Then 𝑇is continuous, and therefore also 𝑹-linear. 

Proof:- 

    Since 𝑇is supposed to beadditive, it is sufficient to prove the continuity at 0 ∈ 𝒜. 

Suppose that 𝑎𝑘 → 0in 𝒜and let us prove first that (𝑇(𝑎𝑘))𝑘 ⊆ℳ𝑛is bounded. Using 

the surjectivity of 𝑇, it is sufficient to prove that given any 𝑥 ∈ 𝒜then 

(𝑡𝑟(𝑇(𝑎𝑘)𝑇(𝑥)))𝑘 ⊆ 𝐶is bounded, where 𝑡𝑟(·)denotes the usual trace onℳ𝑛. By (5), for 

each 𝑘we have that 

𝜌((𝑇(𝑎𝑘 + 𝑥))
2) = (𝜌(𝑇(𝑎𝑘 + 𝑥)))

2
≤ (𝜌(𝑎𝑘 + 𝑥))

2 ≤ ‖𝑎𝑘 + 𝑥‖
2 ≤ (‖𝑎𝑘‖ + ‖𝑥‖)

2, 

which implies 

|𝑡𝑟 (𝑇(𝑎𝑘)
2 + 2𝑡𝑟(𝑇(𝑎𝑘)𝑇(𝑥)) + 𝑡𝑟(𝑇(𝑥)

2))| ≤ 𝑛(‖𝑎𝑘‖
2 + 2‖𝑎𝑘‖‖𝑥‖ + ‖𝑥‖

2). 

Since 𝑎𝑘 → 0and 𝜌(𝑇(𝑎𝑘))  ≤ 𝜌(𝑎𝑘)  ≤ ‖𝑎𝑘‖for each 𝑘, this gives 𝜌(𝑇(𝑎𝑘)) → 0and 

therefore 𝑡𝑟(𝑇(𝑎𝑘)
2)  → 0. Thus 

2 lim
𝑘→∞

𝑠𝑢𝑝 |𝑡𝑟(𝑇(𝑎𝑘)𝑇(𝑥))| ≤ 𝑛‖𝑥‖
2 + |𝑡𝑟(𝑇(𝑥))2|, 

and therefore (𝑡𝑟(𝑇(𝑎𝑘)𝑇(𝑥)))𝑘is bounded, as desired. 

Since ℳ𝑛is finite dimensional, without loss of generality we may suppose that 𝑇(𝑎𝑘) →

𝑤 ∈ ℳ𝑛, and let us prove that 𝑤 = 0. We shall use the fact that the spectral radius on a 

general Banach algebra is upper semicontinuous and the fact that on ℳ𝑛the spectral 

radius is continuous .Given any 𝑎 ∈ 𝒜and 𝑚 ∈ 𝑁, by (5)we have 𝜌(𝑇(𝑚𝑎𝑘 + 𝑎))  ≤

𝜌(𝑚𝑎𝑘 + 𝑎). Using that 𝑇is additive, this gives 𝜌(𝑚𝑇(𝑎𝑘)  + 𝑇(𝑎))  ≤ 𝜌(𝑚𝑎𝑘 + 𝑎). 

Therefore 

lim
𝑘→∞

𝑠𝑢𝑝 𝜌(𝑚𝑇(𝑎𝑘) + 𝑇(𝑎)) ≤ lim
𝑘→∞

𝑠𝑢𝑝 𝜌(𝑚𝑎𝑘 + 𝑎). 

Since the spectral radius is continuous on ℳ𝑛, that 𝑇(𝑎𝑘) → 𝑤in ℳ𝑛gives 

lim
𝑘→∞

𝑠𝑢𝑝 𝜌(𝑚𝑇(𝑎𝑘) + 𝑇(𝑎)) = lim
𝑘→∞

𝜌(𝑚𝑇(𝑎𝑘) + 𝑇(𝑎)) = 𝜌(𝑚𝑤 + 𝑇(𝑎)). 

Since the spectral radius is upper semi continuous on  𝒜, that 𝑎𝑘 → 0 in 𝒜 gives 

lim
𝑘→∞

𝑠𝑢𝑝 (𝑚𝑎𝑘 + 𝑎) ≤ 𝜌(𝑎). 

Hence given any 𝑎 ∈ 𝒜we have that 𝜌(𝑚𝑤 + 𝑇(𝑎))  ≤ 𝜌(𝑎)for all 𝑚 ∈ 𝑁. Since 𝑇is 

supposed to besurjective, we deduce that given any 𝑏 ∈ ℳ𝑛we can find ℳ𝑏 ≥ 0such 

that 



        

17 
 

                                           𝜌(𝑚𝑤 + 𝑏) ≤ ℳ𝑏(𝑚 ∈ 𝑁).                                     (6) 

Taking 𝑏 = 0in (6)we get 𝜌(𝑤) = 0. If 𝑤 ∈ ℳ𝑛were not zero, we may write it as 

𝑤 = 𝑦−1

[
 
 
 
 
0 1 0
0 0 ∗
⋮
0
0

⋮
0
0

⋱
…
…

… 0
… 0
⋮
0
0

⋮
∗
0]
 
 
 
 

𝑦 

For some invertible𝑦 ∈ ℳ𝑛. For 

𝑏 = 𝑦−1 [

0 0 ⋯
1 ∗ …
⋮
0

⋮
0

⋱
⋯

0
0
⋮
0

] 𝑦 ∈ ℳ𝑛 

we have that 𝜆2 −𝑚divides the characteristic polynomial of 𝑚𝑤 + 𝑏. Hence 𝜌(𝑚𝑤 +

𝑏)  ≥ √𝑚for all 𝑚 ∈ 𝑁, contradicting (6). 

The following lemma and Theorem(2.5)show that an additive surjective map 𝑇:𝒜 →

ℳ𝑛satisfying (2)is automatically unital. 

Lemma (2.6) [2]:- 

Let 𝑇:𝒜 →ℳ𝑛be additive and onto such that (2)holds. Then 𝑇(𝜆1)  = 𝜆𝐼𝑛for every 𝜆 ∈

𝐶, where𝐼𝑛is the unit matrix ofℳ𝑛. 

Proof:- 

By Theorem(2.5)we have that 𝑇is continuous, and therefore also 𝑹-linear. Since 𝑇is 

onto, by the open mapping theorem for surjective𝑹-linear maps we find 𝑁 > 0such that 

𝑦 ∈ ℳ𝑛implies the existence of 𝑥 ∈ 𝒜such that 𝑇(𝑥) = 𝑦and ‖𝑥‖ ≤ 𝑁‖𝑦‖. Let 𝜆 ∈

𝐶and denote 𝑢 = 𝑇(𝜆1)  ∈ ℳ𝑛. Then given any 𝑦 ∈ ℳ𝑛, we have 

𝜎(𝜆𝐼𝑛 − (𝑢 + 𝑦)) = 𝜆 − 𝜎(𝑢 + 𝑦) = 𝜆 − 𝜎(𝑇(𝜆1 + 𝑥)) ⊆ 𝜆 − 𝜎(𝜆1 + 𝑥)

= 𝜆 − (𝜆 + 𝜎(𝑥)) = −𝜎(𝑥), 

Where𝑥 ∈ 𝒜was such that 𝑇(𝑥) = 𝑦and ‖𝑥‖ ≤ 𝑁‖𝑦‖. Thus  

𝜌(𝜆𝐼𝑛 − (𝑢 + 𝑦)) ≤ 𝜌(𝑥) ≤ ‖𝑥‖ ≤ 𝑁‖𝑦‖, 

That is 

𝜌((𝜆𝐼𝑛 − 𝑢) − 𝑦) ≤ 𝑁‖𝑦‖,              (𝑦 ∈ ℳ𝑛). 
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The Zemánek characterization of the radical implies that 𝜆𝐼𝑛 − 𝑢belongs to the radical of 

ℳ𝑛. That is, 𝑢 = 𝜆𝐼𝑛, since ℳ𝑛is semisimple. 

Suppose now that 𝑇:𝒜 →ℳ𝑛is a surjective additive map such that (2)holds. By 

Theorem(2.5), we have that 𝑇is 𝑹-linear. Following an idea , given any 𝑟 ∈ 𝑹we have 

𝜎 (𝑒𝑖𝑟𝑇(𝑒−𝑖𝑟𝑥)) ⊆ 𝑒𝑖𝑟𝜎(𝑒−𝑖𝑟𝑥) = 𝜎(𝑥) 

For every 𝑥 ∈ 𝒜. From the 𝑹-linearity of 𝑇we also have 

𝑒𝑖𝑟𝑇(𝑒−𝑖𝑟𝑥) = (cos 𝑟 + 𝑖 sin 𝑟)(cos 𝑟 . 𝑇(𝑥) − sin 𝑟 . 𝑇(𝑖𝑟))

= 𝑇(𝑥)(𝑐𝑜𝑠2 𝑟 + 𝑖 sin 𝑟 . cos 𝑟) −  𝑇(𝑖𝑥)(cos 𝑟 . sin 𝑟 + 𝑖 𝑠𝑖𝑛2𝑟)

= 𝑇(𝑥) + 𝑇(𝑖𝑥)/2 + 𝑒2𝑖𝑟(𝑇(𝑥) − 𝑇(𝑖𝑥)/𝑖)/2. 

Thus 

                      𝜎(𝑅(𝑥) + 𝜉𝑆(𝑥)) ⊆ 𝜎(𝑥)(𝑥 ∈ 𝒜;  𝜉 ∈ 𝐶, |𝜉| = 1),                   (7) 

where we have denoted 

𝑅(𝑥) =
𝑇(𝑥) + 𝑇(𝑖𝑥)/𝑖

2
              (𝑥 ∈ 𝒜) 

And 

𝑆(𝑥) =
𝑇(𝑥) − 𝑇(𝑖𝑥)/𝑖

2
(𝑥 ∈ 𝒜). 

Since 𝑇is 𝑹-linear, one can easily check that 𝑅 𝑎𝑛𝑑 𝑆are both 𝑹-linear transformations 

from 𝒜into ℳ𝑛. More than that, 𝑅(𝑖𝑥) = 𝑖𝑅(𝑥)for every 𝑥 ∈ 𝒜, and therefore 𝑅is 𝑪-

linear. Also, 𝑆(𝑖𝑥) = −𝑖𝑆(𝑥)for every 𝑥 ∈ 𝒜, and therefore 𝑆is conjugate-linear. Thus 

𝑇(𝑥) = 𝑅(𝑥) + 𝑆(𝑥)(𝑥 ∈ 𝒜), 

where𝑅is 𝑪-linear and Sis �̅�-linear. Observe also that by Lemma (2.6) we have 𝑅(1) =

𝐼𝑛and 𝑆(2.1) = 0 ∈ ℳ𝑛. 

The inclusions (7)imply the following spectral inequalities for the maps 𝑅and𝑆. 

Theorem (2.7) [2]:- 

     Suppose 𝑇:𝒜 →ℳ𝑛is a surjective additive map such that (2)holds. Then 𝑅(𝑒𝑎) ∈

ℳ𝑛is invertible for each 𝑎 ∈ 𝒜, and 

                                𝜌 (𝑆(𝑥𝑒𝑎)(𝑅(𝑒𝑎))
−1
) ≤ 𝜌(𝑥)(𝑎, 𝑥 ∈ 𝒜).                      (8) 
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Proof:- 

     Consider 𝑥 ∈ 𝒜 with 𝜌 (𝑥) < 1and an arbitrary 𝑎 ∈ 𝒜. Let 𝜉 ∈ 𝐶with |𝜉| = 1. Then 

for each 𝑟 ∈ 𝑹we have that (𝜉̅ − 𝑥)𝑒𝑟𝑎 ∈ 𝒜is invertible, and (2)gives 

𝜎(𝑇((𝜉̅ − 𝑥)𝑒𝑟𝑎))  ⊆ 𝑪\{0}. Then 

𝜎(𝜉̅𝑅(𝑒𝑟𝑎)) − 𝑇(𝑥𝑒𝑟𝑎) + 𝜉𝑆(𝑒𝑟𝑎) ⊆ 𝐶{0}, 

And therefore 

𝜎(𝑅(𝑒𝑟𝑎)) − 𝜉𝑇(𝑥𝑒𝑟𝑎) + 𝜉2𝑆(𝑒𝑟𝑎)

⊆ 𝐶\{0},         (𝑎 ∈ 𝒜, 𝜌(𝑥) < 1, |𝜉| = 1, 𝑟 ∈ 𝑅).                                           (9) 

This leads us to consider the family of analytic multi valued functions (𝐾𝑟)𝑟∈[0,1]given 

by 

𝐾𝑟(𝜆) = 𝜎(𝑅(𝑒
𝑟𝑎) − 𝜆𝑇(𝑥𝑒𝑟𝑎) + 𝜆2𝑆(𝑒𝑟𝑎))(𝜆 ∈ 𝐶). 

Since by Theorem(2.5)we have that 𝑇, Rand 𝑆are continuous and since the spectrum 

function is continuous on matrices, for each 𝜆 ∈ 𝐶we have that the function 𝑟 → 𝐾𝑟(𝜆)is 

continuous with respect to 𝑟. We apply now the multivalued form of Rouché’s Theorem 

given to see that 

(𝐾0(𝐷)\𝐾1(𝐷))⋃(𝐾1(𝐷)\𝐾0(𝐷)) ⊆⋃{𝐾𝑟(𝜉): 𝑟 ∈ [0,1],   |𝜉| = 1}. 

(By 𝑫we have denoted the open unit disk in 𝑪.) Now (9)implies that 0 ∉ 𝐾𝑟(𝜉)for 𝑟 ∈

[0, 1]and |𝜉| = 1, and therefore (𝐾1(𝐷)\𝐾0(𝐷)) ⊆ 𝐶\{0}. That 𝑅(1) = 𝐼𝑛and 𝑆(1)  =

0imply 𝐾0(𝜆)  = 𝜎(𝐼𝑛 − 𝜆𝑇(𝑥)). But 𝜎(𝑇(𝑥))  ⊆ 𝜎(𝑥)  ⊆ 𝐷, and therefore 𝐾0(𝜆) ⊆

𝐶\{0}for all 𝜆 ∈ 𝐷. That 𝐾1(𝐷)\𝐾1(𝐷)does not contain 0 ∈ 𝐶implies then 𝐾1(𝐷)  ⊆

𝐶\{0}, and therefore 

𝜎(𝑅(𝑒𝑟𝑎) − 𝜆𝑇(𝑥𝑒𝑎) + 𝜆2𝑆(𝑒𝑎)) ⊆ C\{0}    (a ∈ 𝒜, 𝜌(𝑥) < 1, |𝜆| < 1).        (10) 

Taking 𝜆 = 0in (10), we see that 𝑅(𝑒𝑎)is an invertible matrix. Denoting 𝑠 =

𝑇(𝑥𝑒𝑎)(𝑅(𝑒𝑎))−1 ∈ ℳ𝑛and 𝑝 = 𝑆(𝑒𝑎)(𝑅(𝑒𝑎))−1 ∈ ℳ𝑛, we infer from (10)that 

𝑑𝑒𝑡(𝜇2𝐼𝑛 − 𝜇𝑠 + 𝑝) ≠ 0for |𝜇| > 1. Let us observe now that 𝜇 → 𝑑𝑒𝑡(𝜇2𝐼𝑛 − 𝜇𝑠 +

𝑝)is just the characteristic polynomial of 

[
0 𝐼𝑛
−𝜌 𝑠

] ∈ ℳ2𝑛, 

And therefore 
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               𝜌 ([
0 𝐼𝑛

−𝑆(𝑒𝑎)𝑅(𝑒𝑎)−1 𝑇(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1
]) ≤ 1                (a ∈ 𝒜, 𝜌(𝑥) < 1). 

For 𝑥 → 𝜂𝑥with |𝜂| = 1we get 

  𝜌 ([
0 𝐼𝑛

−𝑆(𝑒𝑎)𝑅(𝑒𝑎)−1 0
] + 𝜂 [

0 0
0 𝑅(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1

] + �̅� [
0 0
0 𝑆(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1

]) ≤ 1, 

And therefore 

𝜌 (𝜂 [
0 𝐼𝑛

−𝑆(𝑒𝑎)𝑅(𝑒𝑎)−1 0
] + 𝜂2 [

0 0
0 𝑅(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1

] + [
0 0
0 𝑆(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1

]) ≤ 1 

for all |𝜂| = 1. Using Vesentini’s theorem and the maximum principle for subharmonic 

functions we infer that 

𝜌 ([
0 0
0 𝑆(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1

]) ≤ 1. 

Therefore 𝜌(𝑆(𝑥𝑒𝑎)𝑅(𝑒𝑎)−1) ≤ 1for all 𝑎 ∈ 𝒜and for all 𝑥 ∈with 𝜌(𝑥) < 1. Using the 

fact that 𝑆is conjugate-homogeneous, we obtain (8). 

Let us remark that, under the hypothesis of Theorem(2.7), we have 𝑑𝑒𝑡𝑆(𝑥) = 0for 

every𝑥 ∈ 𝒜. Indeed, taking 𝑥 = 1 in (8)we see that 𝜌(𝑆(𝑒𝑎)(𝑅(𝑒𝑎))−1) ≤ 1for 

every𝑎 ∈ 𝒜. There fore 𝜌(𝑆(𝑒𝜆𝑎)(𝑅(𝑒𝜆𝑎))−1)  ≤ 1for every 𝑎 ∈ 𝒜and 𝜆 ∈ 𝐶. This 

implies that the analytic function 𝜆 → 𝑑𝑒𝑡 𝑆(𝑒𝜆𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑒𝑡(𝑅(𝑒𝜆𝑎))−1is bounded on 𝐶. 

Classical Liouville’s theorem implies that it is therefore constant. Since 𝑆(1) = 0, then 

𝑑𝑒𝑡𝑆(𝑒𝜆𝑎) = 0 for 𝜆 = 0, and therefore 𝑑𝑒𝑡𝑆(𝑒𝜆𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑒𝑡 (𝑅(𝑒𝜆𝑎))
−1
= 0for every 𝜆 ∈

𝐶. Thus 𝑑𝑒𝑡𝑆(𝑒𝜆𝑎)  = 0on 𝐶, and in particular 𝑑𝑒𝑡𝑆(𝑒𝑎)  = 0. Now if 𝑥 ∈ 𝒜is 

arbitrary, the holomorphic functional calculus shows that 𝜉1 + 𝑥 ∈ 𝒜is an exponential 

for |𝜉| > 𝜌(𝑥). Then 𝑑𝑒𝑡(𝑆(𝑥)) = 𝑑𝑒𝑡(𝑆(𝜉1 + 𝑥)) = 0, where 𝜉was chosen such that 

|𝜉| > 𝜌(𝑥). 

Let us observe that until now in this part, the only surjectivity assumption that was used 

in the proofs is the one we have on the map 𝑇. By Theorem(2.5)we have that 𝑅is 

continuous, and by Lemma(2.6)we have that𝑅is unital. By Theorem(2.7), the map 

𝑅sends exponentials from 𝒜into invertible matrices. Then the proof shows that given 

any complex polynomial 𝑝, we have 

𝑡𝑟(𝑅(𝑝(𝑥)𝑦)) = 𝑡𝑟(𝑝(𝑅(𝑥))𝑅(𝑦))           (𝑥, 𝑦 ∈ 𝒜) 

In particular, tr(R(xy)) =tr(R(x)R(y))for every xand y, and 

tr(((R(𝑥)2− R(𝑥2))R(y)) =0(x, y ∈ A)                                      .     (11) 
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If we further suppose (4)to be true, then 𝑅is also surjective and (11)implies that 𝑅(𝑥)2 =

𝑅(𝑥2)for every 𝑥 ∈ 𝒜. Thus 𝑅is a Jordan morphism and therefore, since ℳ𝑛is prime, of 

the form (3). We shall use this property in the proofs of both Theorem(2.2)and 

Theorem(2.4). 

Theorem (2.2) [2]:- 

Let 𝒜be a unital𝐶∗-algebra and suppose 𝑇:𝒜 →ℳ𝑛is a surjective additive map such 

that (2)holds. Then 𝑇is of the form (3). 

As a corollary, we obtain the following generalization for the case of additive maps 

defined on 𝐶∗-algebras which compress the spectrum. 

Proof:- 

By Theorem(2.7), we have that (8)holds. Let 𝑎 ∈ 𝒜be a self-adjoint element. Then for 

every 𝑟 ∈ 𝑅we have that 𝑒𝑖𝑟𝑎 ∈ 𝒜is a unitary element. In particular, ||𝑒𝑖𝑟𝑎||  =

𝜌(𝑒𝑖𝑟𝑎) = 1. For an arbitrary 𝑦 ∈ 𝒜and 𝜆 = 𝛼 + 𝑖𝛽 ∈ 𝐶, where 𝛼, 𝛽 ∈ 𝑅, by taking 

𝑥 = 𝑦𝑒 − 2𝑖𝛽𝑎 ∈ 𝒜in (8)we see that 

𝜌 (𝑆(𝑦𝑒 �̅�𝑎) (𝑅(𝑒𝜆𝑎))
−1

) = 𝜌 (𝑆(𝑦𝑒−2𝑖𝛽𝑎𝑒(𝛼+𝑖𝛽)𝑎) (𝑅(𝑒(𝛼+𝑖𝛽)𝑎))
−1

) ≤ 𝜌(𝑦𝑒−2𝑖𝛽𝑎)

≤ ‖𝑦𝑒−2𝑖𝛽𝑎‖ ≤ ‖𝑦‖‖𝑒−2𝑖𝛽𝑎‖ = ‖𝑦‖. 

The continuity of 𝑆and 𝑅, together with the facts that 𝑆is conjugate-linear and 𝑅is 𝑪-

linear imply that 𝜆 → 𝑆(𝑦𝑒 �̅�𝑎)(𝑅(𝑒𝜆𝑎))−1is analytic from 𝑪into ℳ𝑛. Then Liouville’s 

Spectral Theorem implies that 𝜆 → 𝑆(𝑦𝑒 �̅�𝑎)(𝑅(𝑒𝜆𝑎))−1is constant on 𝑪. In particular, 

for every 𝜆we have 

𝜎 (𝑆(𝑦𝑒 �̅�𝑎) (𝑅(𝑒𝜆𝑎))
−1

) = 𝜎 (𝑆(𝑦1)(𝑅(1))
−1
) = 𝜎(𝑆(𝑦)), 

the last equality being true since by Lemma (2.6) we have that 𝑅(1) is the 𝑛 ×  𝑛 

identity matrix. Thus 

𝜎((𝑆(𝑦) + 𝜆𝑆(𝑦𝑎) + 𝜆2(𝑦𝑎2)/2 +⋯)(𝐼𝑛 − 𝜆𝑅(𝑎) +⋯))

= 𝜎(𝑆(𝑦))(𝜆 ∈ 𝐶).                                                                                               (12) 

Taking 𝑦 =  1 in (12), since by Lemma (2.6) we have that 𝑆(1) is the 𝑛 ×  𝑛 zero 

matrix we obtain that 

𝜌((𝜆𝑆(𝑎) + 𝜆2𝑆(𝑎2)/2 +⋯)(𝐼𝑛 − 𝜆𝑅(𝑎) + ⋯)) = 0            (𝜆 ∈ 𝐶). 

Dividing the last equality by 𝜆 ≠ 0 and letting 𝜆 →  0 we see that 𝜌 (𝑆 (𝑎))  =  0. This 

holds for any arbitraryself-adjoint element 𝑎 ∈ 𝒜; if 𝑥 ∈ 𝒜 is now arbitrary, with 𝑥 =
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 𝑎 + 𝑖𝑏 where 𝑎, 𝑏 ∈ 𝒜 are self-adjoint elements,then 𝜌(𝑆(𝑎 + 𝑟𝑏))  =  0 for every 𝑟 ∈

 𝑅, the element 𝑎 + 𝑟𝑏 ∈ 𝒜 being self-adjoint. Thus 𝜌(𝑆 (𝑎)  +  𝑟𝑆 (𝑏))  =  0for every 

𝑟 ∈  𝑅, and for the analytic function 𝜆 →  𝑆 (𝑎)  +  𝜆𝑆 (𝑏) this implies that 𝜌 (𝑆(𝑎) +

𝜆𝑆 (𝑏)) = 0for every 𝜆 ∈ 𝐶. Taking 𝜆 = −𝑖 we infer that 𝜌(𝑆(𝑥))  =  0, equality which 

holds for every 𝑥 ∈ 𝒜. Now if𝑦, 𝑧 ∈ 𝒜 are arbitrary elements, we have ρ(𝑆(𝑦) +

𝜆𝑆(𝑧)) = 𝜌(𝑆(𝑦 + 𝜆𝑧)) = 0 for every 𝜆 ∈  𝐶. In particular𝑡𝑟((𝑆(𝑦) + 𝜆𝑆(𝑧))2) = 0 for 

every 𝜆 ∈ 𝐶, and therefore 

                                𝑡𝑟(𝑆(𝑦)𝑆(𝑧)) = 0              (𝑦, 𝑧 ∈ 𝒜).                                         (13) 

Equation (12) implies that given any 𝑦 ∈ 𝒜 and any self-adjoint element 𝑎 ∈ 𝒜 we 

have 

𝑡𝑟((𝑆(𝑦) + 𝜆𝑆(𝑦𝑎) + 𝜆2(𝑦𝑎2)/2 +⋯)(𝐼𝑛 − 𝜆𝑅(𝑎) +⋯)) = 𝑡𝑟(𝑆(𝑦))(𝜆 ∈ 𝐶). 

Computing the coefficient of 𝜆, we see that 𝑡𝑟(𝑆(𝑦𝑎))  =  𝑡𝑟(𝑆(𝑦)𝑅(𝑎)). That 

𝜌(𝑆(𝑦𝑎))  =  0 gives 𝑡𝑟(𝑆(𝑦𝑎))  =  0,and therefore 𝑡𝑟(𝑆(𝑦)𝑅(𝑎))  =  0. By (13) we 

also have 𝑡𝑟(𝑆(𝑦)𝑆(𝑎))  =  0. Now if 𝑥 = 𝑎 + 𝑖𝑏 is arbitrary, where𝑎, 𝑏 ∈ 𝒜 are self-

adjoint elements, then 

𝑡𝑟(𝑆(𝑦)𝑇(𝑥)) = 𝑡𝑟(𝑆(𝑦)𝑅(𝑥)) + 𝑡𝑟(𝑆(𝑦)𝑆(𝑥))

= 𝑡𝑟(𝑆(𝑦)𝑅(𝑎) + 𝑖𝑡𝑟(𝑆(𝑦)𝑅(𝑏) − 𝑖𝑡𝑟(𝑆(𝑦)𝑆(𝑏)) = 0. 

Thus 𝑡𝑟(𝑆(𝑦)𝑇(𝑥))  =  0 for every 𝑥, 𝑦 ∈ 𝒜. The surjectivity of 𝑇 implies that 𝑆 is 

identically zero. Thus𝑇 =  𝑅. In particular 𝑅 is surjective, and then (11) implies that 𝑅 is 

a Jordan morphism and therefore ofthe form (3). Thus, the same is true for 𝑇 =  𝑅too. 

As a corollary, we obtain the characterization of additive, surjective, spectrum 

compressing maps into Banach algebras having a separating family of irreducible finite-

dimensional representations. 

Theorem (2.3) [2]:- 

Let 𝒜be a unital𝐶∗-algebra, and let ℬbe a complex, unitalBanach algebra having a 

separating family of irreducible finite-dimensional representations. Suppose 𝑇:𝒜 → ℬis 

additive and onto such that (2)holds. Then 𝑇is a Jordan morphism, that is 

𝑇(𝑥2) = 𝑇(𝑥)2(𝑥 ∈ 𝒜). 

    For the general case of an arbitrary Banach algebra 𝒜, we shall impose an extra 

surjectivity assumption on the map 𝑇in order to obtain the same type of result. 

Proof:- 
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Let 𝜋 be a finite-dimensional irreducible representation of 𝐵. Using the Jacobsondensity 

theorem, we have that 𝜋: 𝐵 → ℳ𝑛 is surjective, for some 𝑛 ≥ 1.  Define 𝑇𝜋 ∶ 𝒜 →

ℳ𝑛byputting 𝑇𝜋 =  𝜋 ∘ 𝑇. Then 𝑇𝜋 is additive and onto, and 

𝜎(𝑇𝜋(𝑥)) = 𝜎 (𝜋(𝑇(𝑥))) ⊆ 𝜎(𝑥)(𝑥 ∈ 𝒜). 

We use then Theorem (2.2) to see that 𝑇𝜋 is a Jordan morphism. Thus 

𝜋(𝑇(𝑥2) − 𝑇(𝑥2)) = 0                (𝑥 ∈ 𝒜), 

and using now the fact that ℬ has a separating family of irreducible finite-dimensional 

representations weconclude that 𝑇(𝑥2) = 𝑇(𝑥2) for all 𝑥 ∈ 𝒜. 

Theorem (2.4) [2]:- 

    Let 𝒜be a unitalBanach algebra and suppose 𝑇:𝒜 →ℳ𝑛is a surjective additive map 

such that (2)holds. Suppose also that there exist 𝑥1, . . . , 𝑥𝑛2 ∈ 𝒜such that 

{𝑇(𝑥1) + 𝑇(𝑖𝑥1)/𝑖, … , 𝑇(𝑥𝑛2) + 𝑇(𝑖𝑥𝑛2)/𝑖} ⊆ ℳ𝑛                            (4) 

are linearly independent over 𝑪. Then 𝑇is of the form (3). 

We do not know whetherthe assumption that the matrices in (4)spanℳ𝑛over the complex 

field may be removed from the statement of Theorem(2.4). We believe that this 

hypothesis can be eliminated, being a consequence of the fact that 𝑇is surjective and that 

(2)holds, but we have not been able to prove it. An important part of the proof of 

Theorem(2.4)can be carried out without the surjectivity hypothesis given by (4)being 

assumed, using only the surjectivity of the map 𝑇. Throughout this part, 𝒜will denote an 

arbitrary unitalBanach algebra. The first result shows that, as in the C-linear case , under 

the hypothesis of Theorem(2.2) we have that the continuity of the map 𝑇is automatic. 

Proof:- 

We have seen that for 𝑅(𝑥) = (𝑇(𝑥 + 𝑇(𝑖𝑥)/𝑖)/2and 𝑆(𝑥) = (𝑇(𝑥) − 𝑇(𝑖𝑥)/𝑖)/2, the 

map 𝑅:𝒜 →ℳ𝑛is 𝐶-linear, while 𝑆:𝒜 →ℳ𝑛 is conjugate-linear. Also, the hypothesis 

(4) implies that 𝑅 is also onto,and therefore the final remark in previous part  implies that 

𝑅 is either an algebra morphism, or an algebraanti-morphism. Let us suppose, for 

example, that 𝑅 is a morphism. 

Consider an arbitrary 𝑦 ∈ 𝒜 with 𝜌(𝑦) < 1 and an arbitrary 𝜉 ∈ 𝐶with |𝜉| = 1. The 

holomorphicfunctional calculus shows that 𝜉1 − 𝑦 ∈ 𝒜 is an exponential, and then (8) 

implies that 𝜌(𝑆(𝑥(𝜉1 − 𝑦))(𝑅(𝜉1 − 𝑦))−1)  ≤  𝜌 (𝑥) for all 𝑥. That is, 𝜌((𝜉̅𝑆(𝑥) −

𝑆(𝑥𝑦))(𝐼𝑛 − 𝜉̅𝑅(𝑦)
−1)  ≤  𝜌 (𝑥). Since 𝑅 is an algebra morphism,then𝜌(𝑅(𝑦))  ≤
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 𝜌(𝑦)  <  1, and we then have (𝐼𝑛 − 𝜉̅𝑅(𝑦))
−1 = 𝐼𝑛 + 𝜉̅𝑅(𝑦) + 𝜉̅

2𝑅(𝑦)2 + · · · . The 

sub harmonic function 

𝜇 ↦ 𝜌(𝜇𝑆(𝑥) − 𝑆(𝑥𝑦)(𝐼𝑛 + 𝜇𝑅(𝑦) + 𝜇
2𝑅(𝑦)2 +⋯)) 

is well-defined on a neighborhood of the closed unit disk and is bounded by 𝜌(𝑥) for 

|𝜇|  =  1. Using themaximum principle we see that, for 𝜌(𝑦)  <  1 and 𝑥 ∈ 𝒜 we have 

𝜌((𝜇𝑆(𝑥) − 𝑆(𝑥𝑦))(𝐼𝑛 + 𝜇𝑅(𝑥) + 𝜇
2𝑅(𝑦)2 +⋯)) ≤ 𝜌(𝑥)(|𝜇| ≤ 1)         (14) 

For 𝜇 =  0 in (14) we get 𝜌(𝑆(𝑥𝑦)) ≤ 𝜌(𝑥) 𝑓𝑜𝑟 𝜌(𝑦) < 1, and using once more the 

conjugate-homogeneity of𝑆 we infer that 

                                   𝜌(𝑆(𝑥𝑦)) ≤ 𝜌(𝑥)𝜌(𝑦)(𝑥, 𝑦 ∈ 𝒜),                               (15) 

Taking the trace of the analytic function in the left hand side of the inequality from (14) 

and computing the coefficients of 𝜇 and 𝜇2, the Cauchy inequalities imply the existence 

of 𝑐1 >  0 and 𝑐2 > 0 such that 

|𝑡𝑟(𝑆(𝑥) − 𝑡𝑟(𝑆(𝑥𝑦)𝑅(𝑦))| ≤ 𝑐1𝜌(𝑥)(𝑥 ∈ 𝒜, 𝜌(𝑦) < 1)               (16) 

And 

|𝑡𝑟(𝑆(𝑥)𝑅(𝑦) − 𝑡𝑟(𝑆(𝑥𝑦)𝑅(𝑦)2)| ≤ 𝑐2𝜌(𝑥)(𝑥 ∈ 𝒜, 𝜌(𝑦) < 1).               (17) 

Taking 𝑦 = 1 in (15) we get |𝑡𝑟(𝑆(𝑥))| ≤ 𝑛𝜌(𝑥), and then from (16) we infer the 

existence of 𝑐3 > 0 suchthat |𝑡𝑟(𝑆(𝑥𝑦)𝑅(𝑦))| ≤ 𝑐3𝜌(𝑥) for all 𝑥, 𝑦 ∈ 𝒜, with 𝜌(𝑦) <

1. Since S is conjugate-homogeneous and 𝑅 ishomogeneous, this gives 

|𝑡𝑟(𝑆(𝑥𝑦)𝑅(𝑦)| ≤ 𝑐3𝜌(𝑥)𝜌(𝑦)
2(𝑥, 𝑦 ∈ 𝒜).                                    (18) 

Using the homogeneity of 𝑆 and 𝑅 in (17), we have 

|𝑡𝑟(𝑆(𝑥)𝑅(𝑦))𝜌(𝑦)2 − 𝑡𝑟(𝑆(𝑥𝑦)𝑅(𝑦)2)| ≤ 𝑐3𝜌(𝑥)𝜌(𝑦)
3(𝑥, 𝑦 ∈ 𝒜).            (19) 

(For arbitrary 𝑥, 𝑦 ∈ 𝒜and 𝜀 >  0, applying (17) to 𝑥 and 𝑦/(𝜌(𝑦)  +  𝜀) we see that 

|𝑡𝑟(𝑆(𝑥)𝑅(𝑦))(𝜌(𝑦) + 𝜀)2 − 𝑡𝑟(𝑆(𝑥𝑦)𝑅(𝑦)2)| ≤ 𝑐2𝜌(𝑥)(𝜌(𝑦) + 𝜀)
3, (𝑥, 𝑦 ∈ 𝒜). 

and then we let 𝜀 →  0.) If 𝑅(𝑦)2 =  0, then (19) gives |𝑡𝑟(𝑆(𝑥)𝑅(𝑦))| ≤

𝑐2𝜌(𝑥)𝜌(𝑦) for all 𝑥 ∈ 𝒜. If𝑅(𝑦)2 = 𝑅(𝑦), then using (18) in (19) we obtain that for all 

𝑥 ∈ 𝒜 we have 

|𝑡𝑟(𝑆(𝑥)𝑅(𝑦))𝜌(𝑦)2| ≤ 𝑐3𝜌(𝑥)𝜌(𝑦)
2 + 𝑐2𝜌(𝑥)𝜌(𝑦)

3. 
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Thus, there exist 𝑐4, 𝑐5 ≥  0 such that for 𝑦 ∈ 𝒜 if we have either 𝑅(𝑦)2 =  0or 

𝑅 (𝑦)2 = 𝑅(𝑦), then 

|𝑡𝑟(𝑆(𝑥)𝑅(𝑦))| ≤ 𝜌(𝑥)(𝑐4 + 𝑐5𝜌(𝑥))(𝑥 ∈ 𝒜).                                 (20) 

Let now 𝑥, 𝑢 ∈ 𝒜 be arbitrary and 𝑦 ∈ 𝒜 such that either  𝑅(𝑦)2 =  0, or 𝑅(𝑦)2 =

𝑅(𝑦). Since 𝑅 is amorphism, for each invertible element 𝑤 ∈ 𝒜 we have that 𝑅(𝑦)2 = 0 

implies (𝑅(𝑤−1𝑦𝑤))2 = 𝑅(𝑤−1𝑦2𝑤) = 𝑅(𝑤−1)𝑅(𝑦)2𝑅(𝑤) = 0, and analogously 

𝑅(𝑦)2 = 𝑅(𝑦) implies 𝑅(𝑤−1𝑦𝑤)2 = 𝑅(𝑤−1𝑦𝑤). By (20), the entire function 

𝜆 ⟼ 𝑡𝑟(𝑆(𝑥)𝑅(𝑒−𝜆𝑢𝑦𝑒𝜆𝑢)) 

is then bounded on 𝐶, and therefore, by classical Liouville’s theorem, is constant. The 

coefficient of 𝜆for its Taylor series is therefore zero, and using one more the fact that 𝑅 is 

a morphism we infer that𝑡𝑟 (𝑆(𝑥)𝑅(𝑢)𝑅(𝑦)) −   𝑡𝑟(𝑆(𝑥)𝑅(𝑦)𝑅(𝑢)) = 0. Thus 

𝑡𝑟 ((𝑆(𝑥)𝑅(𝑢) − 𝑅(𝑢)𝑆(𝑥))𝑅(𝑦)) = 0, 

for all 𝑦 ∈ 𝒜 such that either 𝑅(𝑦)2 =  0, or 𝑅(𝑦)2 = 𝑅(𝑦). Since 𝑅 is surjective, by 

taking 𝑦 such that𝑅(𝑦) has 1 on the (𝑗, 𝑘) entry and zeroes everywhere else, we obtain 

that 𝑆(𝑥)𝑅(𝑢)  −  𝑅(𝑢)𝑆(𝑥) = 0forall 𝑥, 𝑢 ∈ 𝒜. We use once more the surjectivity of 𝑅 

to infer that 𝑆(𝐴) ⊆ 𝐶𝐼𝑛. Since 𝑑𝑒𝑡𝑆(𝑥) is always 

zero (see the remark following the proof of Theorem (2.7)), we obtain that 𝑆 itself is 

identically zero. Therefore𝑇 =  𝑅, and the theorem is proved. 

 Corollary (2.8) [6]. 

Let A be a semi-simple commutative Banach algebras with the unite A and B 

acommutative  Banach algebra with the unite B, respectively. Suppose that T is a 

multiplicative map from A onto B and preserves the spectrum. Then B is semi-simple 

and T is an isomorphism from A onto B, in particular, there exists a homeomorphism Φ 

from MBonto MAsuch that the equation 

(Tf )(y) = f_Φ(y)_(y ∈MA) 

holds for every f ∈A.. 
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Chapter 3 

ACriterion for Integrability of Matrix Coefficients with Respect 

to Asymmetric Space 

 

The group case reduces to Casselman’s square-integrability criterion. As a consequence 

we assert that certain families of symmetric spaces are strongly tempered in the sense of 

Sakellaridis and Venkatesh. For some other families our result implies that matrix 

coefficients of all irreducible, discrete series  representations are 𝑮𝜃- integrable.  

Section (3.1)   Preliminaries on the Symmetric Subgroup:- 

Let 𝐹be a 𝑝 −adic field. Let𝐺be the group of 𝐹 −points of a reductive 𝐹 −group, 𝜃 

aninvolution on 𝐺and 𝐻 = 𝐺𝜃the subgroup of 𝜃-fixed points. In this work we providea 

criterion for 𝐻-integrability of matrix coefficients of admissible representations of 𝐺in 

terms of their exponents along 𝜃 −stable parabolic subgroups of 𝐺. In the group 

case(𝐺 =  𝐻 × 𝐻, 𝜃(𝑥, 𝑦)  =  (𝑦, 𝑥)) our result reduces to Casselman’s square-

integrability criterion. 

For a smooth representation 𝜋of𝐺, let Hom 𝐻(𝜋, 𝐶) be the space of 𝐻 −invariant linear 

forms on 𝜋. As apparent, for example, from the general treatment , this space plays an 

essential role in the harmonic analysis of the space 𝐺/𝐻. See also for the study of 

𝐻 −invariant linear forms on induced representations in the context of a 𝑝 −adic 

symmetric space and  in the more general setting of a spherical variety. 

Furthermore, the understanding of 𝐻 −invariant linear forms in the local setting has 

applications to the study of period integrals of automorphic forms. A conjecture of 

Ichino-Ikeda treats a different setting in which the pair (𝐺, 𝐻) is of the Gross-Prasad 

type. Itclaims, roughly speaking, that under appropriate assumptions, the Hermitian form 

on an irreducible, tempered, automorphic representation of G associated to the absolute 

value squared of the 𝐻 −period integral factorizes as a product of local 𝐻 −integrals of 

the associated matrix coefficients. The conjectural frame work  suggests a generalization 

of this phenomenon, which will include the symmetric case. (For an explicit factorization 

of a somewhat different nature .) 

Integrability of matrix coefficients provides an explicit construction of the local 

components of period integrals of automorphic forms. Factorizable period integrals, in 

turn , are intimately related with special values of L-functions and with Langlands 

functoriality conjectures. 

The above global conjectures suggest to study the following purely local questions. Let 

𝐴𝐺be the maximal split torus in the centre of 𝐺and 𝐴𝐺
+the connected component of its 
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intersection with𝐻. Let 𝜋be a smooth representation of𝐺and �̃�a smooth linear form in its 

contragredient�̃�. 

(i) Is the linear form 

ℓ�̃�, 𝜋(𝑣) ≔ ∫ �̃�(𝜋(ℎ)𝑣)𝑑ℎ
 

𝐻/𝐴𝐺
+

 

well defined on 𝜋by an absolutely convergent integral? (When this is the case 

ℓ�̃�,𝐻 ∈Hom𝐻(𝜋, 𝐶). ) 

(ii)Is it non-zero? 

The answer we provide for the first question is a relative analogue of Casselman’s 

criterion. 

We recall that, essentially, that criterion says that an admissible representation 𝜋of 𝐺is 

square-integrable if and only if all its exponents are positive. The two main ingredients in 

its proof are: 

(a) The Cartan decomposition of 𝐺, which allows to test convergence of a 𝐺-integral by 

convergence of a series summed over a positive cone in the lattice associated with a 

maximal split torus in 𝐺. 

(b) Casselman’s pairing, which is a tool to study the asymptotics of matrix coefficients in 

a positive enough cone in terms of its Jacquet modules along parabolic subgroups and 

eventually, in terms of the exponents of the representation. 

Similarly, testing 𝐻 −integrability, can be put in terms of convergence of a series 

summed over a positive cone in a maximal split torus in𝐻. In order to apply the 

asymptotics of matrix coefficients of representations of G one has to relate positivity of 

the cone in 𝐻 to positivity of relevant cones in𝐺. We achieve this by further studying a 

root system, introduced by Helminck-Wang, associated to a symmetric space 𝐺/𝐻. It is a 

root system containing that of 𝐻that we refer to as the descendent root system. 

A key ingredient in our proof is the relation, obtained in Corollary (3.1.8), between the 

twonotions of positivity. 

In what follows. Let 𝑃1 be a minimal 𝜃 −stable parabolicsubgroup of 𝐺and  𝑃0 a minimal 

parabolic subgroup of 𝐺contained in  𝑃1. There exists a maximal split torus  𝐴0 of 𝐺in  

𝑃0 that is 𝜃 −stable. Let𝑎0
∗ = 𝑋∗(𝐴0) ⊗ℤ ℝ where 𝑋∗(𝐴0) is the lattice of  𝐹 −characters 

of𝐴0. Then 𝜃acts as an involution on 𝑎0
∗  and gives rise to a decomposition 

𝑎0
∗ = (𝑎0

∗)𝜃
+⊕ (𝑎0

∗)𝜃
− 

where  (𝑎0
∗)𝜃
±is the ±1 −eigenspace of 𝜃. 

Let𝑃be a parabolic subgroup of𝐺containing 𝑃0 (a standard parabolic subgroup) witha 

standard Levi decomposition 𝑃 =  𝑀 ⋉ 𝑈and let 𝐴𝑀be the maximal split torus in the 

centre of𝑀. Then 𝑎0 admits a decomposition 

𝑎0
∗ = 𝑎𝑀

∗ ⨁(𝑎0
𝑀)∗ 
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where 𝑎𝑀
∗ = 𝑋∗(𝐴𝑀) ⊗ℤ ℝ. Assume that 𝑃(and therefore also𝑀)is𝜃 −stable. Then 

𝜃 −acts on𝑎𝑀
∗ as an involution and decomposes it into the •±1 −eigenspaces 

 

𝑎𝑀
∗ = (𝑎𝑀

∗ )𝜃
+⨁(𝑎𝑀

∗ )𝜃
− . 

Let 

𝜆 ⟼ (𝜆𝑀)𝜃
+ ∶ 𝑎0

∗ ⟶ (𝑎𝑀)𝜃
+ 

 

be the projection to the first component with respect to the decomposition 

 

𝑎0
∗ = (𝑎0

∗)𝜃
+⨁(𝑎0

∗)𝜃
−⨁(𝑎0

𝑀)∗ . 

 

Let 𝐴𝑀
+ be the connected component of 𝐴𝑀

𝜃  .Then(𝑎𝑀
∗ )𝜃

+ ≃ 𝑋(𝐴𝑀
+ )⊗ℤ ℝand in  

particular(𝑎0
∗)𝜃
+ ≃ 𝑋(𝐴0

+) ⊗ℤ ℝ. 

Let ∑  𝐺 be the root system of𝐺with respect to 𝐴0 and let △ be the set of simple 

rootsdetermined by 𝑃0. Let △𝐺 𝐻⁄ (𝑀)be the set of non-zero restrictions to 𝐴𝑀
+ of the 

elements of △. We say that 𝜆 ∈ 𝑎0
∗  is 𝑀 −relatively positive if (𝜆𝑀)𝜃

+is a linear 

combination of the elements of △𝐺 𝐻⁄ (𝑀) with positive coefficients. 

There are two other root systems relevant to our main result. The root system ∑  𝐻 of 

𝐻with respect to 𝐴0
+ and the descendent root system∑  𝐺 𝐻⁄

 which is the set of roots of 𝐴0
+ 

in Lie(𝐺). Let 𝑊𝐻and  𝑊𝐺 𝐻⁄ be the associated Weyl groups. By definition, ∑  𝐻 ⊆ ∑  𝐺  

and this induces the imbedding 𝑊𝐻 ⊆  𝑊𝐺 𝐻⁄ . In Corollary (3.1.8) we define a particular 

set of representatives [ 𝑊𝐺 𝐻⁄ /𝑊𝐻]for the coset space 𝑊𝐺 𝐻⁄ /𝑊𝐻. 

Let 𝜌0
𝐺 ∈ 𝑎0

∗  be the usual half sum of positive roots in ∑  𝐺 (summed with 

multiplicities).Note that similarly, 𝜌0
𝐻 ∈ (𝑎0

∗)𝜃
+and that  𝑊𝐺 𝐻⁄ H acts on (𝑎0

∗)𝜃
+.Our main 

result takes the following form. 

Theorem (3.1.1)[3]:- 

𝐿𝑒𝑡  𝜋 𝑏𝑒 𝑎𝑛 admissible 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺. The matrix coefficient of 𝜋𝑖𝑠𝐻 − 

integrable if and only if for every 𝜃 − stable, standard parabolic subgroup 𝑃 =  𝑀 ⋉

𝑈of𝐺, 𝑎𝑛𝑦 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝜒of𝜋𝑎𝑙𝑜𝑛𝑔𝑃𝑎𝑛𝑑 𝑎𝑛𝑦 𝑤 ∈ [ 𝑊𝐺 𝐻⁄ /𝑊𝐻]𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡ℎ𝑎𝑡𝜌0
𝐺 −

2𝑤𝜌0
𝐻 + 𝑅𝑒(𝜒)is 𝑀 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 

For the definition of exponents of admissible representations see latter. For thedefinition 

of 𝑅𝑒(𝜒)  ∈ 𝑎𝑀
∗ for a character 𝜒of 𝐴𝑀see (1). 

Following Sakellaridis-Venkatesh, we say that 𝐺/𝐻is strongly tempered (resp. strongly 

discrete) if matrix coefficients of irreducible, tempered (resp. discrete series) 

representations of 𝐺are all 𝐻-integrable. 

Pairs of the Gross-Prasad type are strongly tempered in the special orthogonal case andin 

the unitary case. As a consequence of the general criterion obtained in this work, we 
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provide   examples of symmetric spaces that are strongly tempered or at least strongly 

discrete. We recapitulate the results here. 

Corollary(3.1.2) [3] :- 

Let 𝐸/𝐹 be a quadratic extension and 𝐽 ∈  𝐺𝐿𝑛(𝐹) a symmetric matrix. 

𝐼𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑎𝑠𝑒𝑠 𝐺/𝐻 𝑖𝑠 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑒𝑑: 

 

𝐺 𝐻 

𝐺𝐿𝑛(𝐸) 𝑂𝐽(𝐹) 

U𝐽,𝐸 𝐹⁄ (𝐹) 𝑂𝐽(𝐹) 

Sp2𝑛(𝐹) U𝐽,𝐸 𝐹⁄ (𝐹) 

GL2(𝐹) GL1(𝐹) × GL1(𝐹) 

 

Here𝑂𝐽is the orthogonal group associated to𝐽andU𝐽,𝐸 𝐹⁄ the unitary group associated to 

𝐽and 𝐸/𝐹. 

In the following cases𝐺/𝐻is strongly discrete: 

 

𝐺 𝐻 

𝐺′(𝐸) 𝐺′(𝐹) 

GL2𝑛(𝐹) 𝐺𝐿𝑛(𝐸) 

GL2𝑛(𝐹) GL𝑛(𝐹) × GL𝑛(𝐹) 

GL2𝑛+1(𝐹) GL𝑛(𝐹) × GL𝑛+1(𝐹) 

 

Here𝐺′ is any reductive group defined over𝐹. 

   For real symmetric spaces it is shown that weak positivity of 𝜌0
𝐺 − 2𝜌0

𝐻isequivalent 

to𝐿2(𝐺 𝐻⁄ ) being tempered. It will be interesting to study the relation between 

temperedness of 𝐿2(𝐺 𝐻⁄ ) and the above properties, strongly tempered/discrete, in the 

𝑝 −adic case. 

When 𝐺is split over𝐹, Sakellaridis and Venkatesh show that if𝐺/𝐻isstrongly tempered 

then all 𝐻 −invariant linear forms of an irreducible, square-  integrablerepresentation 𝜋of 

𝐺emerge as 𝐻 −integrals of matrix coefficients, i.e., 

Hom𝐻(𝜋, 𝕔) = {ℓ�̃�,𝐻: �̃� ∈ �̃�}. 

We apply this result in end latter to some examples of symmetric spaces that are strongly 

tempered by our criterion. This expands on some similar recently obtained results. Pairs 

of Gross-Prasad type are strongly tempered and of multiplicity one. For those cases, the 

non-vanishing of 𝐻 −integrals of matrix coefficients was obtained. For irreducible 

cuspidal representations it is shown for all symmetric spaces that all 𝐻 −invariant linear 

forms emerge as 𝐻 −integrals of matrix coefficients.  
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  We recall in end of this section some basic facts about symmetric spaces. In particular 

we recall the definition of the descendent root system associated to a symmetric space 

𝐺/𝐻by Helminck and Wang and prove some relations with the root systems of 𝐺and of 

𝐻that are relevant to the rest of this work. We prove the main result, a criterion for 

𝐻 −integrability of matrix coefficients. We provide examples of strongly 

tempered/discrete symmetric spaces based on our main result. We apply results of 

Sakellaridis and Venkatesh to provide examples where 𝐻 −invariant linear forms emerge 

as integrals of matrix coefficients. 

Let 𝐹be a𝑝 −adic field. In general, if 𝑿 is an algebraic variety defined over 

𝐹(an𝐹 −Variety) we write 𝑋 =  𝑿(𝐹) for its 𝐹 −points. 

Let 𝐺 be an algebraic 𝐹 −group and 𝐴𝐺 the maximal 𝐹 −split torus in the centre of 𝐺.We 

denote by𝑋∗(𝐺) the group of F-rational characters of  𝐺. Let 𝑎𝐺
∗ = 𝑋∗(𝐺)⊗ℤ ℝ andlet  

𝑎𝐺 = 𝐻𝑜𝑚ℝ(𝑎𝐺
∗ , ℝ) be its dual vector space with the natural pairing 〈. , . 〉 = 〈. , . 〉𝐺 . 

Wehave  𝑎𝐺
∗ = 𝑎𝐴𝐺

∗ . 

To 𝜆 ⊗ 𝑎 ∈ 𝑎𝐺
∗we associate the character g 𝑔 ↦ |𝜆(𝑔)|𝑎of𝐺. This extends to a bijection 

from 𝑎𝐺
∗ to the group of positive continuous characters of𝐺. We denote by 𝑅𝑒(𝜒) ∈ 𝑎𝐺

∗ the 

pre-image of a positive character𝜒: 𝐺 → 𝑅>0. If 𝜒: 𝐺 → 𝕔∗ is any continuous 

homomorphism then we set 

                                              𝑅𝑒(𝜒) = 𝑅𝑒(|𝜒|).                                                 (1) 

Let 𝑋∗(𝐺) be the set of one parameter subgroups of 𝐺(i.e., 𝐹 −homomorphisms 𝔾𝑚 →

𝑮).For an 𝐹 −torus𝑻, 𝑋∗(𝑇) is a free abelian group of finite rank. The natural pairing 

of𝑋∗(𝑇) with 𝑋∗(𝐺) allows us to identify 𝑎𝑇with 𝑋∗(𝑇)⊗ℤ ℝ 

Let 𝛿𝐺be the modulus function of 𝐺1. 

From now on assume that 𝑮 is a connected reductive group. Let 𝑨𝐺be the 

maximal𝐹 −split torus in the centre of𝑮. 

Let 𝑷0 = 𝑴0 ⋉𝑼0 be a minimal parabolic 𝐹 −subgroup of 𝑮 with Levi component 

𝑴0and unipotent radical  𝑼0. Set 𝑨0 = 𝐴𝑀0 , 𝒂0 = 𝒂𝑀0and  𝒂0
∗ = 𝒂𝑀0

∗ .Then 𝑨0 is a 

maximal𝐹 −split torus in𝑮. 

A parabolic 𝐹 −subgroup 𝑃 of 𝐺 is called semi-standard if it contains 𝑨0, and standardif 

it contains 𝑷0 If 𝑷 is semi-standard, it admits a unique Levi subgroup 𝑴 containing𝑨0. 

We will say that 𝑴 is a semi-standard Levi subgroup of𝑮. When we write that𝑷 = 𝑴⋉

𝑼 is a semi-standard parabolic 𝐹 −subgroup of𝑮, we will mean that 𝑴 is the unique 

semi-standard Levi subgroup of 𝑷 and 𝑼 is the unipotent radical of𝑷. 

𝒂0 = 𝒂𝑀⊗𝑎0
𝑀. 

More generally, if 𝑸 =  𝑳 ⋉ 𝑽 is another semi-standard 𝐹 −parabolic subgroup of 𝑮 

containing𝑷 then 𝑎𝐿is a subspace of 𝑎𝑀and there is a canonical decomposition 

𝒂𝑀 = 𝒂𝐿⊗𝑎𝑀
𝐿 . 
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Similar decompositions apply to the dual spaces. For 𝜆 ∈ 𝒂0
∗  we denote by 𝜆𝑀its 

projection to 𝒂𝑀
∗  and by 𝜆𝑀

𝐿 its projection to (𝒂𝑀
𝐿 )∗. 

Let 𝑇 be an𝐹 −split torus in𝑮. If 0 ≠ 𝒱 ∈ 𝐿𝑖𝑒(𝐺)  and 0 ≠ 𝛼 ∈ 𝑋∗(𝑇)   are such 

that𝐴𝑑(𝑡)𝑣 =  𝛼(𝑡)𝑣, 𝑡 ∈ 𝑻  then we say that 𝛼is a root of 𝐺with respect to 𝑇and𝑣is a 

root vector with root𝛼. Let 𝑅(𝑇, 𝐺) be the set of all roots of 𝐺with respect to𝑇. 

  Let ∑    = ∑  𝐺 𝑅(𝐴0, 𝐺) It is a subset of 𝑋∗(𝐴0) that spans (𝒂0
𝐺)∗and forms a root 

system. 𝐿𝑒𝑡 ∑  >0
 = ∑  𝐺,>0

 = 𝑅(𝐴0, 𝑃0)be the set of positive roots and △=△𝐺the basis of 

simple roots with respect to 𝑃0. Let 𝑊𝐺denote the Weyl group of ∑  𝐺 .For a standard 

parabolic subgroup 𝑷 =  𝑴 ⋉ 𝑼 of 𝑮 let △𝑀=△⋂∑  𝑀 be the set of simple roots of 𝑀 

with respect to 𝑀 ∩ 𝑃0. Furthermore, let 

△𝑀= {𝛼|𝐴𝑀: 𝛼 ∈△
𝑀} \{0}. 

For 𝜆 ∈ 𝑋∗(𝐺) we associate a parabolic 𝐹 −subgroup 𝑷(𝜆)  =  𝑷𝑮(𝜆). It is defined as the 

set of points 𝑥 ∈ 𝑮 so that the map 𝑎 ↦ 𝜆(a)𝑥𝜆(a)−1: 𝔾𝑚 → 𝑮extends to an𝐹 −rational 

map 𝔾𝑎 → 𝐺. (Here we view the multiplicative group 𝔾𝑚as a subvariety of the additive 

group 𝔾𝑎.) It naturally comes with a Levi decomposition𝑷(𝜆)  =  𝑴(𝜆) ⋉ 𝑼(𝜆) where 

the Levi component𝑴(𝜆) is the centralizer of the image of 𝜆and the unipotent radical 

consists of the elements 𝑥where the above extended map sends 0 to the identity in 𝑮. The 

group 𝑷(−𝜆) is the parabolic subgroup of 𝑮 opposite to 𝑷(𝜆) so that 𝑷(𝜆)  ∩ 𝑷(−𝜆)  =

 𝑴(𝜆). Every parabolic 𝐹 −subgroup of 𝑮 is of the form 𝑷(𝜆) for some ∈ 𝑋∗(𝐺) . 

Furthermore, every semi-standard parabolic 𝐹 −subgroup of 𝐺 is of the form 𝑃(𝜆) where 

𝜆 ∈ 𝑋∗(𝐴0).(In fact, semi-standard parabolic 𝐹 −subgroups of 𝐺 are in bijection with 

facets of 𝑎0with respect to root hyperplanes associated to∑  .) 

   For a subset 𝐼 ⊆△let 𝜆𝐼 ∈ 𝑋∗(𝐴0)be such that 〈𝛼, 𝜆𝐼〉 = 0. for all 𝛼 ∈ 𝐼and 〈𝛼, 𝜆𝐼〉 >

0 for all 𝛼 ∈ △ 𝐼⁄ .Then𝑷𝑰  =  𝑷(𝜆𝐼) is a standard parabolic𝐹 −subgroup of  𝐺. In fact, 

𝑷𝑰is independent of a choice of 𝜆𝐼as above and 𝐼 ↦ 𝑷𝑰is an order preserving bijection 

between subsets of △and standard parabolic 𝐹 −subgroups of𝐺. We denote by 𝑷𝑰 =

 𝑴𝑰 ⋉𝑼𝑰 the associated Levi decomposition and let 𝑨𝑰 = 𝑨𝑴𝑰 . Then 𝐴𝐼is the connected 

component of ∩𝛼∈𝐼ker𝛼 ⊆ 𝐴0and △𝑀𝐼 . Note that 𝑃∅ = 𝑃0 and 𝑃△ = 𝐺. 

Let 𝑇 be an𝐹 −split torus. For a subset𝑆 ⊆ 𝑋∗(𝑇)let 

𝑎𝑇
 𝑠,>0 = {𝑥 ∈ 𝑎𝑇: 〈𝛼, 𝑥〉 > 0, 𝛼 ∈ 𝑆} 

𝑎𝑇
𝑠,≥0

be its closure and 

𝑋∗(𝑇)
𝑠,≥0 = 𝑋∗(𝑇)⋂𝑎𝑇

𝑠,≥0. 

Also let 

𝐶(𝑇, 𝑆) = {∑𝑎𝛼𝛼

𝛼∈𝑆

: 𝑎𝛼 ∈ ℝ>0𝛼 ∈ 𝑆} 

and let 𝐶̅(𝑇, 𝑆) be its closure. 

Fix auniformizer̟ of 𝐹once and for all. Then,𝑋∗(𝑇) can be embedded in 𝑇by 
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𝑥 ↦ 𝑥(�̅�).  We denote the image of this embedding by 𝐶𝑇. Then 𝑇/𝐶𝑇is compact. 

Let𝐶𝑇
𝑠,≥0

be the image of 𝑋∗(𝑇)
𝑠,≥0in 𝐶𝑇 .. 

Let 𝑃 =  𝑀 ⋉ 𝑈 be a standard parabolic 𝐹 −subgroup of 𝐺. For 𝜖 > 0 let 

𝐶𝐴𝑀
𝑠,>0(𝜖) = {𝑎 ∈ 𝐶𝐴𝑀: |𝛼(𝑎)|𝐹 < 𝜖, 𝛼 ∈△𝑀}. 

Note that if 𝜖 ≤ 1  then𝐶𝐴𝑀
>0(𝜖) ⊆ 𝐶𝐴𝑀

△𝑀,≥0, 

Let 

𝐶0
≥0(𝜖) = 𝐶𝐴0

△𝐺,≥0
 

and fix a maximal compact subgroup 𝐾 = 𝐾𝐺 of 𝐺‘adapt`e�́�𝐴0’ in the terminology. By 

our choice of𝐾there exists a finite set 𝐹0 in 𝑀0 such that 

 

𝐺 = ∐ ∐𝐾𝑓𝑐𝐾.

𝑓∈𝐹00∈𝐶0
≥0

 

Fix a Haar measure on 𝐺and let vol(𝑋) denote the measure of a subset 𝑋of 𝐺.  

Lemma (3.1.3) [3]:- 

There exists a basisℐof neighbourhoods of the identity in 𝐺 consisting of open normal 

subgroups of𝐾such that 

vol(𝐾0𝑓𝑐𝐾0) = 𝛿𝑃0
−1(𝑓𝑐) vol(𝑘0) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐾0 ∈ ℐ 

Let 𝜃be an involution on 𝐺 defined over𝐹and 

𝐇 = 𝑮𝜃 = {𝑔 ∈ 𝑮: 𝜃(𝑔) = 𝑔}. 

We further denote by 𝜃the differential of its action on𝐺. It is an involution on Lie(𝐺)and 

                                         Lie (𝐻) = Lie (𝐺)𝜃                                                           (2) 

Let 𝐇○be the connected component of the identity in𝐇. It is a connected reductive 

𝐹 −group and 𝐇○is of finite index in 𝐇. 

For a 𝜃 −stable 𝐹 −torus 𝐓 in 𝐺 let 𝐓+ (resp. 𝐓−) be the maximal subtorus of 𝐓𝜃(resp. 

{𝑡 ∈ 𝑇: 𝜃(𝑡)  = 𝑡−1}). Then 𝐓 = 𝐓+𝐓−  In particular, an element of 𝑋∗(𝑇)is determined 

byits restrictions to 𝐓+ and 𝐓− 

Note that 𝜃induces an involution on the set𝑋∗(𝐺) that we further denote by 𝜃, its 

fixedpoints are precisely the elements of 𝑋∗(𝐻). 

Lemma (3.1.4) [3]:- 

The collection of parabolic𝐹 −subgroups of𝐇○is the set of groups of the form𝐏 ∩

𝐇○where𝐏is a𝜃 −stable parabolic𝐹 −subgroup of𝐆. 

Proof:- 

A parabolic 𝐹 −subgroup of 𝐇○is of the form 𝑃𝐇○(𝜆), where 𝜆 ∈ 𝑋∗(𝐻
○) ⊆ 𝑋∗(𝐺).It 

follows by definition that 𝐏𝐇○(𝜆) = 𝐏𝐆(𝜆) ∩ 𝐇
○.Note further that 𝜃(𝜆)  =  𝜆andtherefore 

𝜃(𝐏𝐆(𝜆))  =  𝐏𝐆(𝜃(𝜆))  =  𝐏𝐆(𝜆), i.e.,𝐏𝐆(𝜆) is a 𝜃 −stable parabolic F-subgroup of𝑮. 
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Conversely, suppose that P is a 𝜃 −stable parabolic 𝐹 −subgroup of 𝐺. There exists a 

maximal 𝜃 −stable torus A of 𝐺 contained inside 𝑃. Now, there exists 𝜆 ∈ 𝑋∗(𝐴
+)such 

that 𝑃 =  𝐏𝐆(𝜆).Since𝐴+ ⊆ 𝐇○, the 𝐹 −subgroup 𝑷 ∩ 𝐇○ = 𝐏𝐇○(𝜆) of 𝐇○is parabolic. 

Fix a minimal parabolic 𝐹 −subgroup 𝑷𝟎
𝑯 of  𝐇○. Let 𝑷𝟏 be minimal amongst 

the𝜃 −stable parabolic 𝐹 −subgroups𝑷of 𝑮 such that 𝑷 ∩ 𝐇○ = 𝑷𝟎
𝑯.  It follows from 

Lemma (3.1.4) that 𝑷𝟏 is in fact a minimal 𝜃 −stable parabolic 𝐹 −subgroup of 𝑮. 

 We may choose the minimal parabolic 𝐹 −subgroup 𝐏𝟎of 𝑮 to be contained in 𝐏𝟏. We 

may and do further choose 𝐀𝟎  to be 𝜃 −stable. Thus 𝜃acts on 𝑋∗( A0), 𝑋
∗( A0),  a0 

and  𝒂𝟎
∗ . 

Note that if 𝛼 ∈ ∑  𝐺 has root vector 𝑣 ∈ Lie(𝐺) then 

𝐴𝑑(𝜃(𝑎))𝜃(𝑣) = 𝜃(𝐴𝑑(𝑎)𝑣) = 𝛼(𝑎)𝜃(𝑣),   𝑎 ∈ 𝑨𝟎, 

i.e., 𝜃(𝑣) is a root vector for 𝜃(𝛼) and therefore 𝜃acts on ∑  𝐺 and maps the root space of 

𝛼to that of𝜃(𝛼). 

If 𝐏 =  𝐌 ⋉ 𝐔 is a semi-standard 𝜃 −stable parabolic 𝐹 −subgroup of 𝐆then𝐔 and 𝐌are 

𝜃 −stable by the uniqueness of the semi-standard Levi decomposition. Thus, AM is also 

𝜃 −stable. 

𝑨𝟎
+is a maximal 𝐹 −split torus of H and the standard Levidecomposition 𝐏1  =  𝐌1 ⋉ 𝐔1 

is such that 𝐌1 is the centralizer of 𝑨𝟎
+ in 𝐆. 

Since 𝜃acts as an involution on 𝑎0 it decomposes it into a direct sum of the 

±1 −eigenspaces which we denote by   (𝑎0)𝜃
±. Similarly. 

𝑎0
∗ =  (𝑎0

∗)𝜃
+ ⨂(𝑎0

∗)𝜃
− . 

The inclusion 𝑋∗(A0
+) ⊆ 𝑋∗(A0) induces the identification 

𝑋∗(A0
+) ⊗ℤ ℝ ≃  (𝑎0)𝜃

+.  

It is straightforward that the pairing 〈. , . 〉𝐺is 𝜃invariant and therefore  (𝑎0
∗)𝜃
+is the dualof 

 (𝑎0)𝜃
±.Thus,〈. , . 〉𝐺restricted to  (𝑎0

∗)𝜃
+ ×  (𝑎0

∗)𝜃
−is the natural pairing 〈. , . 〉𝐻defined with 

respect to  A0
+. 

Let 𝐏 =  𝐌 ⋉ 𝐔 be a standard, 𝜃 −stable parabolic 𝐹 −subgroup of 𝐺. Then 𝜃acts asan 

involution on aMand we obtain a decomposition aM = (aM)𝜃
+ ⊗ (aM)𝜃

−to the 

•±1 −eigenspaces . A similar decomposition holds for the dual space and (aM)𝜃
±is the 

dual of (𝑎M)𝜃
± . We have (𝑎M)𝜃

+ = 𝑎AM+ and similarly for the dual space. We denote by 

𝜆𝜃
±theprojection of 𝜆 ∈ 𝑎M

∗ to (𝑎M
∗ )𝜃

± . 

   Every 𝜃 −stable, semi-standard parabolic 𝐹 −subgroup of 𝐺 is of the form 𝐏𝐆(𝜆)  for 

some 𝜆 ∈ 𝑋∗(A0
+).In particular, there exists 𝜆1 ∈ 𝑋∗(A0

+) such that 𝐏𝟏 = 𝐏𝐆(𝜆1). 

Let∑  𝐻 = 𝑅(A0
+, 𝐻)be the root system of 𝐻,∑  𝐻,>0

 = 𝑅(A0
+, P0

H)  the subset of 

positiveroots and △𝐻the basis of simple roots with respect to P0
Hand𝑊𝐻the Weyl group 

of ∑  𝐻 . 



        

34 
 

Let ∑  𝐺 𝐻⁄
 = 𝑅(A0

+, 𝐺)be the set of roots of A0
+in Lie(𝐺). Clearly ∑  𝐻 ⊆ ∑  𝐺 𝐻⁄

  .It follows 

that, unlessempty, ∑  𝐺 𝐻⁄
 is a root system with Weyl group𝑊𝐺 𝐻⁄ =

𝑁𝐺(A0
+) 𝐺𝐺(A0

+)⁄ (Recall that 𝐺𝐺(A0
+) = 𝑀1). In particular, 𝑊𝐻 ⊆ 𝑊𝐺 𝐻⁄ . Furthermore, if 

∑  𝐺 𝐻⁄
 is empty then 𝐻 AG

+⁄ is compact. This case will be of little interest to us and we 

assume in what follows that 𝐻 AG
+⁄ is isotropic. We call∑  𝐺 𝐻⁄

 the descendent root system. 

Since the root space decomposition of Lie(G) with respect to 𝐴0 automatically provides a 

decomposition of Lie(G) into A0
+ -eigenspaces we have 

∑  
𝐺 𝐻⁄

 

 

= {𝛼|A0+: 𝛼 ∈∑  
𝐺

 
}\{0}.                                               (3) 

Lemma (3.1.5) [3]:- 

Let 𝛼 ∈ ∑  𝐺 be such that 𝛼|A0+ ∈ ∑  𝐺 .Then𝛼 ∈ ∑  𝐺,>0
  if and only if 𝛼|A0+ ∈ ∑  𝐻,>0

 . 

Proof:- 

Recall that 𝜆1 ∈ 𝑋∗(A0
+) is such that  P1 = P𝐆(𝜆1) and 𝑃0

𝐻 = 𝐏𝐇○(𝜆1). Thus, 

𝛼|A0+ ∈ ∑  𝐺,>0
 if and only if ,〈𝛼|A0+  , 𝜆1〉𝐻 > 0.  Our embedding of 𝑋∗(A0

+) in  (𝑎0
∗)𝜃
+θ 

identifies 𝛼|A0+with 1
2
(𝛼 + 𝜃(𝛼)).  Since 𝜃(𝜆1) =  𝜆1it follows that 

〈𝛼 , 𝜆1〉𝐺 = 〈
1

2
(𝛼 + 𝜃(𝛼)) , 𝜆1〉𝐺 = 〈𝛼|A0+  , 𝜆1〉𝐻 .       

Since 𝑈1 ⊆ 𝑈0 it follows immediately that if 𝛼|A0+ ∈ ∑  𝐻,>0
  then 𝛼 ∈ ∑  𝐺,>0

   Conversely, 

if 𝛼 ∈ ∑  𝐺,>0
 then 〈𝛼 , 𝜆1〉𝐺 ≥ 0 . If 〈𝛼 , 𝜆1〉𝐺 = 0 then 𝛼 ∈ 𝑅(𝑀1, 𝐴0).But since  A0

+ 

contained in the centre of 𝑀1 this contradicts the fact that 𝛼|A0+ 0is non-trivial. It follows 

that 〈𝛼 , 𝜆1〉𝐺 > 0  and therefore that 𝛼|A0+ ∈ ∑  𝐻,>0
 . 

𝜃(𝑥)|A0+ = 𝑥|A0+and𝜃(𝑥)|A0− = −𝑥|A0− for all 𝑥 = 𝑋∗(A0)                        (4) 

It follows that 

𝑥 + 𝜃(𝑥) = 0 if and only if  𝑥|A0+ = 0                                                            (5) 

Let 

△𝐺 [𝜃 = −1] = {𝛼 ∈△𝐺; 𝜃(𝛼) = −𝛼}𝛿{𝛼 ∈△𝐺: 𝛼|A0+ = 0}. 

Let𝑋0 be the subgroup of 𝑋∗(A0
+) generated by △𝐺 [𝜃 = −1]. Also set 

△𝐺 [𝜃 ≠ −1] = △𝐺 △𝐺 [𝜃 = −1]⁄  

Lemma (3.1.6) [3]:- 

For every 𝛼 ∈△𝐺 [𝜃 ≠ −1]there exist 𝛽 ∈△𝐺 [𝜃 = −1]and 𝑥 ∈ 𝑋0 such that 

 𝜃(𝛼)  =  𝛽 +  𝑥. 

Proof:- 

It follows from the definitions that 𝑋0 is 𝜃 −stable. Thus, the action of 𝜃on 𝑋∗(A0) 

induces an action (that we still denote by 𝜃) as an involution on Γ ≔ 𝑋∗(A0) X0⁄  . 

Let 𝛼 ∈△𝐺 [𝜃 ≠ −1].  If 𝜃(𝛼)  =  𝛼then 𝛽 =  𝛼, 𝑥 =  0 and we are done. Assumethat 

𝜃(𝛼)  ≠ 𝛼. Let 𝑣 ∈ Lie(𝐺) be a root vector for 𝛼. Then 𝜃(𝑣) is a root vector for𝜃(𝛼) and 

by our assumption 𝑣and 𝜃(𝑣) are linearly independent. It follows from (4) that𝑣 +
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 𝜃(𝑣) ∈ Lie(𝐺)𝜃 =  Lie(𝐻) is a root vector for the root 𝛼|A0+ ∈ ∑  𝐻 . By Lemma 

(3.1.5)𝛼|A0+ ∈ ∑  𝐻,>0
 and 𝜃(𝛼) ∈ ∑  𝐺,>0

  

Let 𝑥 ↦ �̅� be the projection of 𝑋∗(A0) to Γ and let △𝐺 [𝜃 ≠ −1] = {𝛼1, … , 𝛼𝑡}. Clearly, 

{�̅�1, … , �̅�𝑡}are ℤ −linearly independent in Γ. Since 𝜃(𝛼𝑖)  ∈ ∑  𝐺,>0
  for all 𝑖, it follows 

that there exists 𝑀 = (𝑛𝑖,𝑗)  ∈ 𝑀𝑡(ℤ), a matrix of non-negative integers, such that 

𝜃(𝛼𝑖)̅̅ ̅̅ ̅̅ ̅ =  ∑𝑛𝑖,𝑗

𝑡

𝑗=1

�̅�𝑖 . 

Since 𝜃is an involution we get that 𝑀2  =  𝐼𝑡is the identity matrix. It is now 

straightforward that𝑀is a permutation matrix. The lemma follows 

△𝐺 𝐻⁄ = {𝛼|A0+ ∶ 𝛼 ∈△
𝐺 [𝜃 ≠ −1]} = {𝛼|A0+ ∶ 𝛼 ∈△

𝐺}\{0} ⊆ 𝑋∗(A0
+) 

Proposition (3.1.7) [3]:- 

The set△𝐺 𝐻⁄ is a basis of simple roots for the descendentroot system∑  𝐺 𝐻⁄
 . 

Proof:- 

Let 𝛽 =  𝛼|A0+ ∈ ∑  𝐺 𝐻⁄
 with 𝛼 ∈ ∑  𝐺 (see (3)). Then either 𝛼or −𝛼is a  

Linear combination with positive integer coefficients of elements of △. Restricting to  A0
+ 

we getthat, respectively, 𝛽or −𝛽is a linear combination with positive integer coefficients 

of elements of △𝐺 𝐻⁄  .To prove the proposition we therefore only need to show that 

△𝐺 𝐻⁄ is linearly independent. Set △𝐺 𝐻⁄ = {𝛽1, … , 𝛽𝑡}and fix 𝛼1, … , 𝛼𝑡 ∈ △
𝐺 [𝜃 ≠ −1] so 

that 𝛽𝑖 = 𝛼𝑖|A0+  , 𝑖 = 1,… , 𝑡.  Let 𝛼𝑖
′ ∈△𝐺 [𝜃 ≠ −1] be given by Lemma (3.1.6) so 

that𝜃(𝛼𝑖) − 𝛼𝑖
′ ∈ 𝑋0. After rearrangement we may assume that there exist 𝑘, 0 ≤ 𝑘 ≤

𝑡such that 𝛼𝑖
′ = 𝛼𝑖if and only if 𝑖 ≤ 𝑘. Note that {𝛼𝑖: 𝑖 =  1, . . . , 𝑡}  ∪  {𝛼𝑖

′ : 𝑘 < 𝑖 ≤ 𝑡}is a 

subset of exactly 2𝑡 − 𝑘 elements in △𝐺 [𝜃 ≠ −1]. 

Suppose that 𝑥1𝛽1, … , 𝑥𝑡𝛽𝑡 = 0, 𝑥1, … , 𝑥𝑡 ∈ ℝand let 𝛾 = 𝑥1𝛼1, … , 𝑥𝑡𝛼𝑡 . Then 

𝛾|A0+ = 0and by (5) 𝛾 +  𝜃(𝛾)  =  0. Therefore 

∑2𝑥𝑖𝛼𝑖 +

𝑘

𝑖=1

∑ 𝑥𝑖(𝛼𝑖 + 𝛼𝑖
′)

𝑡

𝑖=𝑘+1

∈ 𝑋0. 

 

From the linear independence of △𝐺it follows that 𝑥𝑖 = 0 for all 𝑖.The   proposition 

follows. 

Note that our identifications give an action of the Weyl group 𝑊𝐺 𝐻⁄ on the vector 

space (𝑎0)𝜃
+and on its dual  (𝑎0

∗)𝜃
+ . 

Corollary (3.1.8) [3]:- 

We have 

(a)△𝐺  ⊆ 𝐶̅(𝐴0
+,△𝐺 𝐻⁄ ); 

(b)  [(𝑎0)𝜃
+]△

𝐺 𝐻⁄ ,≥0 ⊆  [(𝑎0)𝜃
+]△

𝐻,≥0𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒𝑋∗(A0
+)△

𝐺 𝐻⁄ ,≥0
⊆ 𝑋∗(A0

+)△
𝐻,≥0
; 
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(c) The set  

 [ 𝑊𝐺 𝐻⁄ /𝑊𝐻] ≔ {𝑤 ∈ 𝑊𝐺 𝐻⁄ : 𝑤−1 [(𝑎0)𝜃
+]△

𝐺 𝐻⁄ ,≥0 ⊆  [(𝑎0)𝜃
+]△

𝐻,≥0} 

𝑓𝑜𝑟𝑚𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠 𝑓𝑜𝑟𝑊𝐺 𝐻⁄ /𝑊𝐻𝑎𝑛𝑑 

𝑋∗(A0
+)△

𝐻,≥0
= ⋃𝒘∈ [ 𝑊𝐺 𝐻⁄ /𝑊𝐻]𝑤

−1𝑋∗(A0
+)△

𝐺 𝐻⁄ ,≥0; 

(d)𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦𝑤 ∈  [ 𝑊𝐺 𝐻⁄ /𝑊𝐻], 𝑤(∑  𝐻,≥0
 ) ⊆ 𝐶̅(𝐴0

+,△𝐺 𝐻⁄ ). 

Proof:- 

Since ∑  𝐻 ⊆ ∑  𝐺 𝐻⁄
 it follows from (c) and Lemma (3.1.5) that every element of ∑  𝐻,≥0

  is 

a restriction to A0
+of an element of∑  𝐺,≥0

 . In particular, if 𝛽 =  𝛼|A0+ ∈△
𝐻with 𝛼 ∈

∑  𝐺,≥0
 ⊆ 𝐶̅(𝐴0,△

𝐺)then writing 𝛼as a positive linear combination of elements of △𝐺 and 

restricting to A0
+ shows that 𝛽 ∈ 𝐶̅(𝐴0

+,△𝐺 𝐻⁄ ). This shows part (a). 

Part (b) is straightforward from part (a). 

Recall that ∑  𝐻 ⊆ ∑  𝐺 𝐻⁄
 are root systems in  (𝑎0

∗)𝜃
+. For𝜆 ∈ (𝑎0

∗)𝜃
+Let 

𝐻𝜆 = {𝑥 ∈ (𝑎0)𝜃
+: 〈𝜆, 𝑥〉 = 0}. 

We have the Weyl chamber decomposition in the dual space 

 (𝑎0)𝜃
+\(⋃𝑎∈∑  𝐻 

𝐻𝛼) = ∐ 𝑤 [(𝑎0)𝜃
+]△

𝐻,≥0

𝑤∈𝑊𝐻

 

with respect to the root system ∑  𝐻 . The union is of connected components. By 

Proposition (3.1.7) we similarly have a decomposition 

  (𝑎0)𝜃
+\(⋃𝑎∈∑  𝐺 𝐻⁄

 
𝐻𝛼) = ∐ 𝑤 [(𝑎0)𝜃

+]𝐺 𝐻⁄ ,≥0
𝑤∈𝑊𝐺 𝐻⁄  

with respect to the root system ∑  𝐺 𝐻⁄
 . 

Since ⋃𝑎∈∑  𝐻 
𝐻𝛼 ⊆ ⋃𝑎∈∑  𝐺 𝐻⁄

 
𝐻𝛼 ,any connected component of  (𝑎0)𝜃

+\(⋃𝑎∈∑  𝐻 
𝐻𝛼)is 

contained in a connected component of  (𝑎0)𝜃
+\(⋃𝑎∈∑  𝐺 𝐻⁄

 
𝐻𝛼). In particular, taking 

closures we have 

 [(𝑎0)𝜃
+]△

𝐻,≥0 = ⋃𝒘∈ [ 𝑊𝐺 𝐻⁄ /𝑊𝐻]𝑤
−1 [(𝑎0)𝜃

+]△
𝐺 𝐻⁄ ,≥0 

And part (c) follows. 

Finally, for all𝑤 ∈  [ 𝑊𝐺 𝐻⁄ /𝑊𝐻], 𝛼 ∈ ∑  𝐻,≥0
  and 𝜆 ∈  [(𝑎0)𝜃

+]△
𝐺 𝐻⁄ ,≥0we have 

〈𝑤(𝛼), 𝜆〉 = 〈𝛼, 𝑤−1(𝜆)〉 ≥ 0 

Note, that  [(𝑎0)𝜃
+]△

𝐺 𝐻⁄ ,≥0and 𝐶̅(𝐴0
+,△𝐺 𝐻⁄ )are both closed convex cones in Euclidean 

spaces, in the sense that they are closed under linear combinations with positive 

coefficients. Hence, by duality of convex cones, we have 

𝐶̅(𝐴0
+,△𝐺 𝐻⁄ ) = {𝑥 ∈ (𝑎0

∗)𝜃
+ ∶  〈𝛼, 𝜆〉 ≥ 0, ∀𝜆 ∈  [(𝑎0)𝜃

+]△
𝐺 𝐻⁄ ,≥0} 

The corollary follows.  

Lemma (3.1.9) [3]:- 

(𝑎)𝑇ℎ𝑒 𝑑𝑢𝑎𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑠 𝑋∗ = 𝑋∗(A0
+/ AG

+)𝑎𝑛𝑑𝑋∗  = 𝑋∗(A0
+)/𝑋∗( AG

+)𝑎𝑟𝑒 𝑜𝑓𝑟𝑎𝑛𝑘|△𝐺 𝐻⁄ | 
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(𝑏)𝑇ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑠𝑒𝑡{𝑦𝛼: 𝛼 ∈△
𝐺 𝐻⁄ } ⊆ 𝑋∗(A0

+)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡〈𝛼, 𝑦𝛼〉 > 0  𝑎𝑛𝑑 〈𝛼, 𝑦𝛽〉

= 0 𝑓𝑜𝑟 𝑎𝑙𝑙   𝛼 ≠ 𝛽  𝑖𝑛 △𝐺 𝐻⁄  

(𝑐)𝐹𝑜𝑟 𝑠𝑢𝑐ℎ 𝑎 𝑠𝑒𝑡{𝑦𝛼: 𝛼

∈△𝐺 𝐻⁄ }, 𝑙𝑒𝑡 𝑌 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓𝑋∗𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑏𝑦 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒𝑦𝛼’𝑠 

 𝑎𝑛𝑑𝑌≥0𝑏𝑒 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓𝑌𝑔𝑖𝑣𝑒𝑛𝑏𝑦 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 

∑ 𝑛𝛼𝑦𝛼
𝛼∈△𝐺 𝐻⁄

𝑤𝑖𝑡ℎℤ≥0   

𝑇ℎ𝑒𝑛 𝑌 𝑖𝑠𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑋∗𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠 

 𝐸 𝑓𝑜𝑟𝑋∗/𝑌𝑠𝑜 𝑡ℎ𝑎𝑡 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑢𝑛𝑖𝑜𝑛 

𝑋∗(A0
+)△

𝐺 𝐻⁄ ,≥0 /𝑋∗( AG
+) =∐𝑒 + 𝑌≥0

𝑒∈E

 

Proof:- 

By definition we have 

⋂𝛽∈△𝐺 𝐻⁄ ker 𝛽 ⊆ ⋂𝛼∈△𝐺  𝑘𝑒𝑟 𝛼 

Hence, since 𝐴𝐺is the connected component of ⋂𝛼∈△𝐺𝑘𝑒𝑟𝛼, we also have that AG
+is the 

connected component of  ⋂𝛽∈△𝐺 𝐻⁄ ker 𝛽. 

It follows that △𝐺 𝐻⁄ embeds into 𝑋∗and its image is a basis of the ℚ−vector space 

 𝑋∗⊗ℤ ℚ. In particular part (a) follows. For each element of the dual basis (of 

  𝑋∗⊗ℤ ℚ.) there is a positive integer that multiplies it into 𝑋∗. Choosing representatives 

mod 𝑋∗( AG
+) we obtain a set{𝑦𝛼: 𝛼 ∈△

𝐺 𝐻⁄ }} as in (b). As its image in 𝑋∗is a basis of 

 𝑋∗⊗ℤ ℚ it follows that 𝑌is of finite index in 𝑋∗. 

Let 𝐸′be a complete set of representatives for 𝑋∗/𝑌 and let 𝑐𝛼 = 〈𝛼, 𝑦𝛼〉 > 0,𝛼 ∈△𝐺 𝐻⁄ . 

For 𝑒′ ∈ 𝐸′let  𝑚𝑒 ′,𝛼 ∈ ℤ be minimal such that 〈𝛼, 𝑒′〉 + 𝑚𝑒 ′,𝛼𝑐𝛼 > 0  and let𝑒 =  𝑒′+

∑ 𝑚𝑒 ′,𝛼𝑦𝛼𝛼∈△𝐺 𝐻⁄ . Then 𝐸 = {𝑒: 𝑒′ ∈ 𝐸′}is still a complete set of representatives for 

𝑋∗/𝑌. Note that 

〈𝛼, 𝑒〉 = 〈𝛼, 𝑒 ′〉 + 𝑚𝑒 ′,𝛼𝑐𝛼 ≥ 0  

Hence𝐸 ⊆ 𝑋∗(A0
+)△

𝐺 𝐻⁄ ,≥0and 〈𝛼, 𝑒〉 = min
x∈𝑋∗(A0

+)△
𝐺 𝐻⁄ ,≥0⋂(𝑒+𝑌)

〈𝛼, 𝑥〉 for all  𝛼 ∈△𝐺 𝐻⁄ . 

It follows that  

𝑋∗(A0
+)△

𝐺 𝐻⁄ ,≥0⋂(𝑒 + 𝑌) = 𝑒 + 𝑌≥0 

And part (3) follows. _ 

Let 𝑷 ∶△𝐺 [𝜃 ≠ −1] →△𝐺 𝐻⁄   be the surjective map defined by restriction to A0
+. 

Lemma (3.1.10) [3]:- 

Let 𝐼 ⊆△𝐺  .Then𝑷𝐼is 𝜃 −stable if and only if there exists 𝐽 ⊆△𝐺 𝐻⁄ such 

that𝐼 =△𝐺 [𝜃 ≠ −1]⋃𝑃−1(𝐽). In particula, 𝑷𝐼 = 𝑷△𝐺[𝜃=−1]. 
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Proof:- 

Assume that 𝑷𝐼is 𝜃 −stable. Recall that we may take 𝝀𝐼 ∈ 𝑋∗(A0
+) ⊆  (𝑎0)𝜃

+so that  𝑃𝐼 =

𝑃𝐺(𝜆𝐼). By definition △𝐺 [𝜃 = −1] ⊆  (𝑎0
∗)𝜃
−and therefore, 〈𝛼, 𝑦𝐼〉𝐺 = 0 for all 𝛼 ∈

△𝐺 [𝜃 = −1]. As argued in the proof of Lemma (3.1.6), for 𝛼 △𝐺 [𝜃 ≠ −1]  we have 

〈𝛼, 𝑦𝐼〉𝐺 = 〈𝑃(𝛼), 𝑦𝐼〉𝐻  . It follows that 

𝐼 = {𝛼 ∈△𝐺 〈𝛼, 𝑦𝐼〉𝐺 = 0} =△
𝐺 [𝜃 = −1]⋃𝑃−1(𝐽), 

Where𝐽 = {𝛼 ∈△𝐺 𝐻⁄ 〈𝛽, 𝜆𝐼〉𝐻 = 0} 

Conversely, let J ⊆△𝐺 𝐻⁄ and 𝐼 =△𝐺 [𝜃 = −1]⋃𝑃−1(𝐽). It follows from Proposition 

(3.1.7) and Lemma (3.1.9)(1) that there exists μ ∈ 𝑋∗(A0
+) such that 〈𝛽, μ〉𝐻 = 0  if 

 𝛽 ∈ 𝐽and 〈𝛽, μ〉𝐻 > 0  if 𝛽 ∈△
𝐺 𝐻⁄ \ 𝐽.  Arguing as above we get that 

 𝐼 = {𝛼 ∈△𝐺 〈𝛼, μ〉𝐺 = 0}. 

Therefore   𝑃𝐼 = 𝑃𝐺(μ).  As in Lemma (3.1.4) it follows that   𝑃𝐼is 𝜃 −stable.For a 

standard, 𝜃 −stable parabolic 𝐹 −subgroup 𝑃 =  𝑀 ⋉ 𝑈 of 𝐺 let 

△𝐺 𝐻⁄ (𝑀) = {𝛽|AM+ : 𝛽 ∈△
𝐺 𝐻⁄ } \{0} = {𝛼|AM+ : 𝛼 ∈△

𝐺} \{0}. 

Let 𝐽 ⊆△𝐺 𝐻⁄ and 𝐼 =△𝐺 [𝜃 = −1]⋃𝑃−1(𝐽) be such that 𝑃 = 𝑃𝐼 .  

Lemma (3.1.11) [3]:- 

Restriction to AM
+ defines a bijection between △𝐺 𝐻⁄ \ 𝐽and △𝐺 𝐻⁄ (𝑀).  Furthermore 

,△𝐺 𝐻⁄ (𝑀)is linearly independent. 

Proof:- 

Recall that 

𝐼 = △𝑀= {𝛼 ∈△𝐺: 𝛼|AM = 0}. 

Therefore 

△𝐺 𝐻⁄ (𝑀) = {𝛽|AM+ : 𝛽 ∈△
𝐺 𝐻⁄ \ 𝐽 } \{0}. 

Let △𝐺 𝐻⁄ \ 𝐽 = {𝛽1, … , 𝛽𝑡}. To conclude the lemma it is enough to show that for 

𝑥1, … , 𝑥𝑡 ∈ ℝwe have, if 𝑥1𝛽1, … , 𝑥𝑡𝛽𝑡is trivial on AM
+ then 𝑥𝑖 = 0  for all 𝑖 =  1,… , 𝑡.  

   If 𝛽 ∈△𝐺 𝐻⁄ \ 𝐽 then 𝛽 = 𝛼|A0+for some 𝛼 ∈△𝐺 [𝜃 ≠ −1]\𝐼.  Assume that 

∑ 𝑥𝑖𝛽𝑖|AM+
𝑡
𝑖=1 = 0. Let 𝛼𝑖 ∈△

𝐺 [𝜃 ≠ −1]\𝐼 be such that 𝛼𝑖|A0+ = 𝛽𝑖 and let 𝛾 =

∑ 𝑎𝑖𝛼𝑖
𝑡
𝑖=1  . Then 𝛾|AM+ = 0 and therefore by a standard argument that we already applied 

we have (𝛾 + 𝜃(𝛾))|AM = 0. 

Therefore, 𝛾 + 𝜃(𝛾) is a linear combination of elements of 𝐼 = △𝑀 . On the other hand, 

let 𝛼′𝑖 ∈△
𝐺 [𝜃 ≠ −1] be given by Lemma (3.1.6) so that 𝜃(𝛼𝑖) – 𝛼′𝑖 ∈ x0. Since 

𝛼𝑖 , 𝜃(𝛼𝑖) and 𝛼′𝑖coincide on A0
+ , it follows that 𝛼′𝑖is not trivial on AMand therefore 𝛼′𝑖 ∈

△𝐺\𝐼.    Since △𝐺 [𝜃 = −1] ⊆ 𝐼 every element of X0 is a linear combination of elements 

of 𝐼. It follows that ∑ 𝑥𝑖(𝛼𝑖 + 𝛼𝑖 ′
𝑡
𝑖=1  )is in the span of I. Arguing as in the proof of 

Proposition (3.1.7), by the linear independence of △𝐺it follows that 𝑥𝑖 = 0 for all 𝑖and 

the lemma follows. 



        

39 
 

We call 𝐶 (AM
+ ,△𝐺 𝐻⁄ (𝑀)) the cone of relatively positive elements in  (𝑎0

∗)𝜃
+. Recall that 

𝑎0
∗ = (𝑎0

𝑀)∗⨂(𝑎𝑀
∗ )𝜃

+⨂(𝑎𝑀
∗ )𝜃

−. 

Definition (3.1.12) [3]:- 

𝐴𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝜆 ∈ 𝑎0
∗𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑀 −relatively positive(resp. weakly positive) if its 

projection (𝜆𝑀)𝜃
+𝑡𝑜(𝑎𝑀)𝜃

+𝑖𝑠 𝑖𝑛𝐶 (AM
+ ,△𝐺 𝐻⁄ (𝑀)) 

( 𝑟𝑒𝑠𝑝. 𝐶̅ (AM
+ ,△𝐺 𝐻⁄ (𝑀))). 

Corollary (3.1.13) [3]:- 

With the above notation we have 

△𝐺 𝐻⁄ (𝑀) = {𝛼|AM: 𝛼 ∈△𝑀}\{0}. 

𝑇ℎ𝑢𝑠, 𝑎𝑛𝑦𝜆 ∈ 𝐶(𝐴𝑀,△𝑀)is𝑀 −r𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑎𝑛𝑦𝜆 ∈ 𝐶̅(𝐴𝑀,△𝑀)𝑖𝑠𝑀 −

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑤𝑒𝑎𝑘𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 

Proof:- 

It follows from Lemma (3.1.11) that every element of △𝐺 𝐻⁄ (𝑀) is of the form 𝛽|AM+ for 

some 𝛽 ∈△𝐺 𝐻⁄  \ 𝐽. Let 𝛼 ∈△𝐺be such that  𝛼|A0+ = 𝛽. Then 𝛼 ∉ 𝐼,and therefore 𝛼|AM ≠

0 i.e., 𝛾:= 𝛼|AM ∈△𝑀is such that 𝛾|AM+ = 𝛽|AM+ . Conversely, if 𝛽 ∈△𝑀is such that 

𝛽|AM+ ≠ 0  then 𝛽 = 𝛼|AM for some 𝛼 ∈△𝐺 [𝜃 ≠ −1]. Thus, 𝛾:= 𝛼|A0+ ∈△
𝐺 𝐻⁄ is such that 

𝛽|AM+ = 𝛾|AM+ and therefore 𝛽|AM+ ∈△
𝐺 𝐻⁄ (𝑀).  The rest of the corollary is now 

straightforward. 

 

Section (3.2)  H– integrability and non – vanishing:- 

 

We apply Lemma (3.1.3) to 𝐻○with respect to the minimal parabolic Subgroup 𝑃0
𝐻 and 

the maximal 𝐹 −split torus A0
+. Write 𝑃0

𝐻  = 𝑀0
𝐻 ⋉ 𝑈0

𝐻 where 𝑀0
𝐻is the centralizer in 

𝐻○of A0
+ and therefore 𝑀0

𝐻 ⊆ 𝑀1
𝜃 .  Let 

𝐶0
𝐻,≥0 = 𝐶

 A0
+

△𝐻,≥0. 

Choose a finite subset 𝐹0
𝐻 of 𝑀0

𝐻 in such a way that 

𝐻○ = ∐ ∐ 𝐾𝐻
○
𝑓𝑐𝐾𝐻

○

𝑐∈𝐶0
𝐻,≥0𝑓∈𝐹0

𝐻

 

Holds. We further insure that 𝐹0
𝐻 is such that Lemma (3.1.3) holds for 𝐻○with 𝐼𝐻as a 

basisof open normal subgroups of 𝐾𝐻
○
. 

For a subset 𝑋of 𝐶 A0+let [𝑋] be its image under the projection to 𝐶 A0+/𝐶 AG+  . 

Let 𝐶∞( AG
+\𝐺)be the space of functions 𝜙: 𝐺 → ℂ such that 𝜙(𝑎𝑔)  =  𝜙(𝑔), 𝑔 ∈ 𝐺, 𝑎 ∈

 AG
+and there exists an open subgroup 𝐾0 of 𝐺such that 𝜙is bi−𝐾0 −invariant. 
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Proposition (3.2.1) [3]:- 

Let 𝜙 ∈ 𝐶∞( AG
+\𝐺). Then the following conditions are equivalent: 

(𝑎)∫ |𝜙(ℎ)|𝑑ℎ < ∞; 
 AG
+\𝐻

 

(𝑏)∑ 𝛿
𝑃0
𝐻
−1

𝑠∈[𝐶0
𝐻,≥0]

(𝑠)|𝜙(ℎ1𝑠ℎ2)| < ∞𝑓𝑜𝑟𝑎𝑙𝑙ℎ1, ℎ2 ∈ 𝐻. 

Proof:- 

Since𝐶 AG+is cocompact in  AG
+ , condition (1) holds if and only if∫ |𝜙(ℎ)|𝑑ℎ < ∞.

𝐶
 AG
+\𝐻

 Let 

D be a (finite) set of representatives for 𝐻/𝐻○and let𝐾0 ∈ 𝐼
𝐻 IH be such that 𝜙(𝑑. ) 

𝐻 =∐∐ ∐ 𝑑𝐾𝐻
○
𝑓𝑐𝐾𝐻

○

𝑐∈𝐶0
𝐻,≥0𝑓∈𝐹0

𝐻𝑑∈𝐷

 

and therefore 

∫ |𝜙(ℎ)|𝑑ℎ ≤ ∑ ∑ ∑ ∑ ∫ |𝜙(𝑑ℎ)|𝑑ℎ
𝐾0𝑒1𝑓𝑠𝑒2𝐾0

=

𝑠∈[𝐶0
𝐻,≥0]𝑒1,𝑒2∈𝐸𝑓∈𝐹0

𝐻𝑑∈𝐷𝐶
 AG
+\𝐻

 

∑ ∑ ∑ ∑ |𝜙(𝑑𝑒1𝑓𝑠𝑒2)|vol(𝐾0𝑒1𝑓𝑠𝑒2𝐾0).

𝑠∈[𝐶0
𝐻,≥0]𝑒1,𝑒2∈𝐸𝑓∈𝐹0

𝐻𝑑∈𝐷

 

Note further that 

vol(𝐾0𝑒1𝑓𝑠𝑒2𝐾0) = vol(𝑒1𝐾0𝑓𝑠𝐾0𝑒2) = vol(𝐾0𝑓𝑠𝐾0) = 𝛿𝑃0𝐻
−1(𝑓𝑠) vol(𝐾0) 

Where the identities follow respectively by the normality of 𝐾0 in 𝐾𝐻
○
, the invariance 

ofthe Haar measure on 𝐻and Lemma (3.1.3) Thus, 

∫ |𝜙(ℎ)|𝑑ℎ
𝐶
 AG
+\𝐻

≤ vol(𝐾0)∑ ∑ 𝛿
𝑃0
𝐻
−1(𝑓)

𝑓∈𝐹0
𝐻𝑑∈𝐷

∑ ∑ 𝛿
𝑃0
𝐻
−1(𝑠)

𝑠∈[𝐶0
𝐻,≥0]𝑒1,𝑒2∈𝐸

|𝜙(𝑒1𝑠𝑒2)|. 

 

Since the sums over 𝑑, 𝑓, 𝑒1, 𝑒2 are finite clearly (2) implies (1). Similarly, if 

 

𝑋 = ⋃
𝑠∈[𝐶0

𝐻,≥0]
𝐾0𝑠𝐾0 

Then 

vol(𝐾0) ∑ |𝜙(ℎ1𝑠ℎ2)|

𝑠∈[𝐶0
𝐻,≥0]

= ∫ |𝜙(ℎ)|𝑑ℎ
𝐶
 AG
+\ℎ1𝑋 ℎ2

≤ ∫ |𝜙(ℎ)|𝑑ℎ
𝐶
 AG
+\𝐻

 

and therefore (1) implies (2). 

Let (𝜋, 𝑉) be an admissible, smooth (complex valued) representation of 𝐺.For a parabolic 

subgroup𝑃 =  𝑀 ⋉ 𝑈of 𝐺, let (𝑟𝑝(𝜋), 𝑟𝑝(𝑉)) denote the normalized 
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Jacquet module of 𝜋with respect to𝑃. It is an admissible representation of 𝑀. We say that 

a character 𝜒of  𝐴𝑀is an exponent of 𝜋along 𝑃, if it is an 𝐴𝑀–eigenvalue on 𝑟𝑝(𝑉), i.e., 

there exists 0 ≠ 𝑣 ∈ 𝑟𝑝(𝑉) such that 𝑟𝑝(𝜋)(𝑎)𝑣 = 𝜒(𝑎)𝑣, 𝑎 ∈ 𝐴𝑀. See for a more 

detailed discussion of this definition. If 𝜋is of finite length then so is 𝑟𝑝(𝜋). In this case, 

the exponents are the restrictions to𝐴𝑀of the central characters of the irreducible 

components in a decomposition series for 𝑟𝑝(𝜋). 

Let𝜀𝑃(𝜋)denote the set of all exponents of 𝜋along 𝑃. 

Let 𝜋be an admissible representation of 𝐺and let �̃�be its contragredient. For 𝑣 ∈ 𝜋and 

�̃� ∈ �̃�the function 

𝐶𝑣,�̃�(𝑔) = �̃�(𝜋(𝑔)𝑣), 𝑔 ∈ 𝐺 

Is called a matrix coefficient of 𝜋.Let𝑀(𝜋)be the space of all matrix coefficients of 𝜋. 

Casselman developed a tool to study the a symptotics of matrix coefficients of 𝜋in terms 

of matrix coefficients of Jacquet modules of 𝜋. We recall the results relevant to us. 

Let𝑃 =  𝑀 ⋉ 𝑈be a standard parabolic subgroup of 𝐺and let 𝑃 −be the opposite 

parabolic. Casselman defined an𝑀 −invariant pairing on 𝑟𝑝(𝜋) × 𝑟𝑝−(𝜋)that identifies 

𝑟𝑝−(𝜋)as the contragredient of 𝑟𝑝(𝜋).Let𝑣𝑝denote the projection of 𝑣 ∈ 𝜋to 𝑟𝑝(𝜋). It 

follows that for 𝑣 ∈ 𝑉and �̃� ∈ �̃�we have𝐶𝑣𝑝,�̃�𝑝− ∈ 𝑀(𝑟𝑝(𝜋)). Moreover, there exists 𝜖 >

0 such that 

𝐶𝑣,�̃�(𝑎) = 𝛿𝑃
1
2⁄ 𝐶𝑣𝑝,�̃�𝑝−(𝑎), 𝑎 ∈ 𝐶𝐴𝑀

>0(𝜖)                                             (6) 

  Let 

𝜌0
𝐺 = 𝑅𝑒 (𝛿𝑃0

1
2⁄ ) ∈ (𝑎0

𝐺)∗ 

 

And 𝜌𝑀
𝐺 = (𝜌0

𝐺)𝑀 ∈ (𝑎𝑀
𝐺 )∗its projection with respect to a standard Levi subgroup 𝑀of 𝐺. 

Note that if 𝑃 =  𝑀 ⋉ 𝑈is a standard, 𝜃 −stable parabolic subgroup of 𝐺then(𝜌𝑀
𝐺 )𝜃

+ =

𝑅𝑒 (𝛿𝑃
1
2⁄ |
𝐴𝑀
+
). 

Proposition (3.2.2) [3]:- 

Let𝜋be an admissible representationof𝐺so that𝐴𝐺
+acts onπ as a unitary character and let  

𝜔 be a character of𝐴0
+ /𝐴𝐺

+ G. 𝑇ℎ𝑒 followingare equivalent. 

(𝑎)𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦𝑐 ∈ 𝑀(𝜋)𝑤𝑒 ℎ𝑎𝑣𝑒 

∑ |𝑐(𝑠)𝜔(𝑠)| < ∞;

𝑆∈[𝐶
𝐴0
+
△𝐺 𝐻⁄ ,≥0]

 

 (𝑏)𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑, 𝜃 − 𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝐹 − 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑃 

=  𝑀 ⋉ 𝑈 𝑜𝑓 𝐺𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜒

∈ 𝜀𝑃(𝜋) 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑅𝑒(𝜒) + 𝑅𝑒(𝜀) + 𝜌0
𝐺is M − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 
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Proof:- 

Let{𝑦𝛼: 𝛼 ∈△
𝐺 𝐻⁄ }be as in Lemma (3.1.9)(2). In the notation of the lemma let𝑡𝛼 =

𝑦𝛼(�̅�), 𝜀 = {𝑒(�̅�): 𝑒 ∈ 𝐸}and 

𝑆 = {𝑦(�̅�): 𝑦 ∈ 𝑌≥0} = { ∏ 𝑡𝛼
𝑛𝛼

𝛼∈△𝐺 𝐻⁄

: 𝑛𝛼 ∈ ℤ≥0for all𝛼 ∈△
𝐺 𝐻⁄ }. 

It follows from Lemma (3.1.9)(3) that we have the disjoint union 

[𝐶
 A0
+

△𝐺 𝐻⁄ ,≥0] =∐𝜖𝑆.

𝜖∈𝜀

 

For a subset 𝐽 ⊆△𝐺 𝐻⁄ and a positive integer 𝑁let 

𝑆𝐽(𝑁)0 = { ∏ 𝑡𝛼
𝑛𝛼

𝛼∈△𝐺 𝐻\𝐽⁄

: 𝑁 < 𝑛𝛼} ,    𝑆𝐽(𝑁)1 = {∏𝑡𝛼
𝑛𝛼

𝛼∈𝐽

: 0 ≤ 𝑛𝛼 ≤ 𝑁} 

𝑆𝐽(𝑁) = 𝑆𝐽(𝑁)0𝑆𝐽(𝑁)1 ⊆ 𝑆. 

Note that 𝑆𝐽(𝑁)1 is a finite set. Clearly, for any fixed 𝑁we have the disjoint union 

𝑆 = ∐ 𝑆𝐽(𝑁).

𝐽⊆△𝐺 𝐻⁄

 

And therefore 

∑ |𝑐(𝑠)𝜔(𝑠)| =

𝑠∈[𝐶
 A0
+

△𝐺 𝐻⁄ ,≥0]

∑ ∑ ∑ |𝑐(𝜖𝑠)𝜔(𝜖𝑠)|

𝑠∈𝑆𝐽(𝑁)𝐽⊆△𝐺 𝐻⁄𝜖∈𝜀

=∑ ∑ ∑ |𝜔(𝜖𝑠)|

𝑠∈𝑆𝐽(𝑁)1𝐽⊆△𝐺 𝐻⁄𝜖∈𝜀

∑ |𝑐(𝜖𝑡𝑠)𝜔(𝑠)|

𝑠∈𝑆𝐽(𝑁)0

. 

 

Since 𝑐(𝜖𝑡) ∈ 𝑀(𝜋) and the first three summations on the right hand side are over a 

finite set, we see that condition (1) is equivalent to the condition: 

For every 𝑐 ∈ 𝑀(𝜋) and 𝐽 ⊆△𝐺 𝐻⁄ there exists𝑁 > 0 such that we have 

∑ |𝑐(𝑠)𝜔(𝑠)|

𝑠∈𝑆𝐽(𝑁)0

< ∞.                                                       (7) 

For 𝐽 ⊆△𝐺 𝐻⁄ let 𝐼 =△𝐺 [𝜃 = −1]⋃𝑃−1(𝐽) and 𝑃 =  𝑀 ⋉ 𝑈 =  𝑃𝐼 . Let 𝑆𝑀be the lattice 

generated by {𝑡𝛼: 𝛼 ∈△
𝐺 𝐻⁄   \ 𝐽 }. We further formulate the condition: 

∑ 𝛿𝑃
1
2⁄ (𝑠)|𝑄(𝑠)𝜒(𝑠)𝜔(𝑠)|

𝑠∈𝑆𝐽(𝑁)0

< ∞𝑓𝑜𝑟𝑎𝑙𝑙𝑁 > 0, 𝐽 ⊆△𝐺 𝐻⁄  ,                 (8) 

𝜒 ∈ 𝜀𝑃(𝜋)and polynomials 𝑄on 𝑆𝑀with complex coefficients. 

Clearly (8) holds if and only if for all 𝐽 ⊆△𝐺 𝐻⁄ , 𝜒 ∈ 𝜀𝑃(𝜋)   and 𝛼 ∈△𝐺 𝐻⁄  \ 𝐽we have 

𝛿𝑃
1
2⁄ (𝑡𝛼)|𝜒𝜔(𝑡𝛼)| < 1. Note that 𝑆𝐽(𝑁)0is contained in  A0

+M and that 𝛿𝑃0|𝐴𝑀  = 𝛿𝑃|𝐴𝑀 . 
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By Lemma (3.1.11) we get that (2) is equivalent to (8). It is therefore enough to show 

that conditions (7) and (8) are equivalent. 

Assume that condition (8) holds. Fix𝑐 ∈ 𝑀(𝜋)and𝐽 ⊆△𝐺 𝐻⁄   (so that 𝐼 =△𝐺 [𝜃 =

−1]⋃𝑃−1(𝐽)𝑎𝑛𝑑𝑃 =  𝑀 ⋉ 𝑈 = 𝑃𝐼). Let�̃� ∈ 𝑀 (𝑟𝑝(𝜋)) be the matrix coefficient 

associated by the Casselman pairing and 𝜖 > 0 be given by (6) so that 

𝑐(𝑎) = 𝛿𝑃
1
2⁄ (𝑎)�̃�(𝑎), 𝑎 ∈ 𝑐𝐴𝑀

>0(𝜖) 

An element of △𝑀is of the form 𝛼|𝐴𝑀 for some𝛼 ∈△𝐺\ 𝐼. Hence∈△𝐺 𝐻⁄ \ 𝐽. It therefore 

follows from the definition of the sets 𝑆𝐽(𝑁)0 that there exists 𝑁large enough so that 

𝑆𝐽(𝑁)0 ⊆ 𝑐𝐴𝑀
>0(𝜖).To show that condition (7) holds it is therefore enough to show that 

∑ 𝛿𝑃
1
2⁄ (𝑠)|�̃�(𝑠)𝜔(𝑠)|

𝑠∈𝑆𝐽(𝑁)0

< ∞. 

A standard argument  shows that there exist polynomials 𝑄𝜒, 𝜒 ∈ 𝜀𝑃(𝜋)on 𝑆𝑀, only 

finitely many of which are non-zero, so that 

�̃�(𝑠) = ∑ 𝑄𝜒(𝑠)

𝜒∈𝜀𝑃(𝜋)

𝜒(∈ 𝑠),   𝑠 ∈ 𝑆𝑀. 

Hence (7) follows immediately from (8). 

Conversely, assume that (8) does not hold. Let𝐽 ⊆△𝐺 𝐻⁄ , 𝛼 ∈△𝐺 𝐻⁄ \ 𝐽,and, in the above           

notation,𝜒 ∈ 𝜀𝑃(𝜋)be such that 𝛿𝑃
1
2⁄ (𝑡𝛼)|𝜒𝜔(𝑡𝛼)| ≥ 1.  Then  

∑ 𝛿𝑃
1
2⁄ (𝑠)|𝜒(𝑠)𝜔(𝑠)|𝑠∈𝑆𝐽(𝑁)0 = ∞ for all𝑁 > 0. Set 𝑐 = 𝐶𝑣,�̃�where 𝑣 ∈ 𝜋is such that 

𝑣𝑃is an eigenvector of AM with eigen value 𝜒(this realizes 𝜒as an exponent of 𝜋along 

𝑃) and �̃� ∈ �̃�is such that 〈𝑣𝑃, �̃�𝑃〉 = 1. Then, �̃�|AM = 𝜒and the above argument applying 

the Casselman pairing shows that for 𝑁large enough 

∑ |𝑐(𝑠)𝜔(𝑠)|

𝑠∈𝑆𝐽(𝑁)0

= ∑ 𝛿𝑃
1
2⁄ |�̃�(𝑠)𝜔(𝑠)|

𝑠∈𝑆𝐽(𝑁)0

= ∞. 

Thus, condition (7) fails to hold. (Indeed, 𝑆𝐽(𝑁2)0 ⊆ 𝑆𝐽(𝑁1)0  for 𝑁1 < 𝑁2 and therefore, 

if condition (7) holds then it is satisfied with 𝑁arbitrarily large.)  

Definition (3.2.3) [3]:-  

We say that a smooth representation 𝜋of 𝐺/𝐴𝐺
+is 𝐻 −integrable if for any 

𝑐 ∈ 𝑀(𝜋) we have 

∫ |𝑐(ℎ)|
𝐻/𝐴𝐺

+
𝑑ℎ < ∞. 

Let 𝜌0
𝐻 = 𝑅𝑒 (𝛿

𝑃0
𝐻

1
2⁄ )and recall that the set [𝑊𝐺 𝐻⁄ /𝑊𝐻] was defined in Corollary 

(3.1.7)(3).We can now formulate our main result. 
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Theorem (3.2.4) [3]:- 

Let  𝜋 be an admissible representation of 𝐺/𝐴𝐺
+. Then 𝜋is 𝐻 −integrable if and only if for 

any 𝜃 −stable, standard parabolic subgroup 𝑃 =  𝑀 ⋉ 𝑈of 𝐺and any 𝜒 ∈ 𝜀𝑃(𝜋),the 

element 𝑅𝑒(𝜒) + 𝜌0
𝐻 − 2𝜔(𝜌0

𝐻) is 𝑀 −relatively positive for all 𝑤 ∈ [𝑊𝐺 𝐻⁄ /𝑊𝐻]. 

Proof:- 

Let 𝑁𝐺/𝐻be a subset of 𝑁𝐺(𝐴0
+ ) consisting of a choice of a representative 𝑛forevery 

element 𝑤 ∈ [𝑊𝐺 𝐻⁄ /𝑊𝐻]. Since every (left or right) translation by 𝐺of an element of 

𝑀(𝜋) is again in 𝑀(𝜋) it follows from Proposition (3.2.1) (in its notation) that 𝜋is 

𝐻 −integrable if and only if 

∑ 𝛿
𝑃0
𝐻
−1(𝑠)|𝑐(𝑠)|

𝑠∈𝐶0
𝐻,≥0

< ∞  for all  c ∈ 𝑀(𝜋)                              (9) 

By Corollary (3.1.7) we have 

[𝐶0
𝐻,≥0] = ⋃𝑛∈𝑁𝐺 𝐻⁄  𝑛−1 [𝐶 A0+

△𝐺 𝐻⁄ ,≥0] 𝑛 

And therefore,  

∑ 𝛿
𝑃0
𝐻
−1

𝑠∈𝐶0
𝐻,≥0

(𝑠)|𝑐(𝑠)| < ∞ 

If and only if 

∑ 𝛿
𝑃0
𝐻
−1

𝑠∈𝐶
 A0
+

△𝐺 𝐻⁄ ,≥0

( 𝑛−1𝑠𝑛)|𝑐( 𝑛−1𝑠𝑛)| < ∞ 

for all 𝑛 ∈ 𝑁𝐺/𝐻. Note that 𝑐( 𝑛−1. 𝑛) ∈ 𝑀(𝜋) and that 𝑅𝑒 (𝛿𝑃0𝐻𝑐( 𝑛
−1. 𝑛)) =

2𝜔(𝜌0
𝐻), when 𝑛represents 𝑤 ∈ [𝑊𝐺 𝐻⁄ /𝑊𝐻]. It now follows from Proposition (3.2.2) 

(applied with𝜔 = 𝛿
𝑃0
𝐻
−1 𝑛−1. 𝑛| A0+  that (9) is equivalent to the condition in the statement of 

the theorem. 

Theorem (3.2.4) points on the significance of the exponents 

𝜌𝐺 𝐻⁄
𝑤 : = (𝜌0

𝐺)θ
+ − 2w(𝜌0

𝐻) = (𝜌𝑀1
𝐺 )

θ

+
− 2w(𝜌0

𝐻) ∈ ( a𝑀1
∗ )

θ

+
= ( a0

∗ )θ
+ 

for 𝑤 ∈ [𝑊𝐺 𝐻⁄ /𝑊𝐻].  We will now present means to compute these exponents using the 

action of 𝜃on the various root data involved. 

For 𝛼 ∈ ∑
G/H

let𝐿𝛼
𝐻(resp.𝐿𝛼

𝐻) be the weight space of 𝛼in Lie(𝐺) (resp. Lie(𝐻)). 

Thus 𝐿𝛼
𝐻 = 0if 𝛼 ∉ ∑H . Set 

𝑀𝛼
𝐺 = dim𝐿𝛼

𝐺 ,     𝑀𝛼
𝐻 = dim𝐿𝛼

𝐻 . 

Since  A0
+ is 𝜃 −fixed, its adjoint action on Lie(𝐺) commutes with the 𝜃 −action. Thus, 

each 𝐿𝛼
𝐺  is a𝜃 −invariant subspace of Lie(𝐺). 
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Lemma (3.2.5) [3]:- 

Let𝛼 ∈ ∑  G/H
 and set 

𝑚𝜃,𝛼 = 𝑇𝑟(𝜃|𝐿𝛼𝐺). 

(𝑎)𝑤𝑒 ℎ𝑎𝑣𝑒  𝑚𝜃,𝛼 = 2𝑀𝛼
𝐻 −𝑀𝛼

𝐺 . 

(𝑏)𝑖𝑓 𝜃(𝛽) ≠ 𝛽𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛽 ∈∑   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝛽|𝐴𝛼+ = 𝛼 𝑡ℎ𝑒𝑛 𝑚𝜃,𝛼 = 0
G

 
 

Proof:- 

The linear involution 𝜃on 𝐿𝛼
𝐺decomposes the space into a sum of the eigenspacesrelated 

to the eigenvalues 1 and−1. The 1 −eigenspace is precisely 𝐿𝛼
𝐺 ⋂Lie(𝐺)𝜃 = 𝐿𝛼

𝐻 . 

Thus, 𝑚𝜃,𝛼 = 1.𝑀𝛼
𝐻 + (−1). (𝑀𝛼

𝐺 − 𝐿𝛼
𝐻).  

Suppose that 𝛼is as in the assumption of (2). Then there is an even number of elements 

of ∑  G whose restriction to𝐴0
 +is 𝛼and we can enumerate them as { 𝛽1, … , 𝛽𝑘, 𝛾1, … , 𝛾𝑘} 

with 𝜃(𝛽𝑖) =  𝛾𝑖 .  Thus, 𝐿𝛼
𝐺 admits a decomposition 𝐿𝛼

𝐺 = 𝑉1⊕𝑉2with 𝜃(𝑉1) =

𝑉2(indeed take 𝑉1to be the direct sum of root eigenspaces in Lie(𝐺) with respect to 

 { 𝛽1, … , 𝛽𝑘}and similarly 𝑉2 with respect to {𝛾1, … , 𝛾𝑘}). Evidently, this implies that 𝜃|𝐿𝛼𝐺  

is of zero trace. 

Let ∑ ≔G H,>0⁄
 ∑ ⋂𝐶̅( A0

+,△G H⁄ )G H⁄
 be the set of positive roots in ∑  G H⁄

 . These are the 

non-zero restrictions to A+0 of roots in ∑  .G,>0
  

Proposition (3.2.6) [3]:- 

For every 𝑤 ∈ [𝑊𝐺 𝐻⁄ /𝑊𝐻].  we have 

𝜌𝐺 𝐻⁄
𝑤 = −

1

2
∑ 𝑚𝜃,𝑤−1

𝛼∈∑  .G H⁄ ,>0
 

(𝛼)𝛼 . 

Proof. Recall that 𝛿𝑃0(𝑎)  =  | 𝑑𝑒𝑡(𝐴𝑑(𝑎)|Lie(𝑃0))|𝐹, 𝑎 ∈ 𝐴0. Applied to 𝐻this gives 

𝜌0
𝐻 =

1

2
∑ 𝑀𝛼

𝐻

𝛼∈∑  H,>0
 

𝛼. 

Applied to 𝐺and composed with the projection of 𝜌0
𝐻 to (𝑎0

∗)θ
+we have 

(𝜌0
𝐻)θ
+ =

1

2
∑ 𝑀𝛼

𝐺

𝛼∈∑  G H⁄ ,>0
 

𝛼. 

Now, let 𝑤 ∈ [𝑊𝐺 𝐻⁄ /𝑊𝐻] be given. Then, 

𝑤(𝜌0
𝐻) =

1

2
∑ 𝑀𝛼

𝐻

𝛼∈∑  H,>0

𝑤(𝛼) =
1

2
∑ 𝑀𝑤−1(𝛼)

𝐻

𝛼∈𝑤(∑  )H,>0

𝛼 =
1

2
∑ 𝑀𝑤−1(𝛼)

𝐻

𝛼∈∑  
G H⁄ ,>0

𝛼.     (10) 

 

The last equality is obtained as follows. By Corollary (3.1.7)(4) we have 𝑤(∑  )H,>0 ⊆

∑  .G H⁄ ,>0
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The equality will therefore follow if we show that 𝑀𝛽
𝐻 = 0  (i.e., that 𝛽 ∉ ∑  )H  for 𝛽 ∈

𝑤−1(∑
G H⁄ ,>0

)\∑H,>0 .Assume by contradiction that−𝛽 ∈ ∑H,>0 . As above, by 

Corollary(3.1.7)(4) we have −𝑤(𝛽)  ∈ ∑G H⁄ ,>0
, i.e., both  ± 𝑤(𝛽)  ∈ ∑G H⁄ ,>0

 

which is a contradiction. 

Finally, there exists 𝑛 ∈ 𝑁𝐺(𝐴0
+ ) (a representative of 𝑤−1) such that 𝐴𝑑(𝑛)(𝐿𝛼

𝐺 ) =

𝐿𝑤−1(𝛼)
𝐺 for all 𝛼 ∈ ∑G H⁄ ,>0 . Hence,𝑀𝛼

𝐺 = 𝑀𝑤−1(𝛼)
𝐺  and we can write 

(𝜌0
𝐻)θ
+ =

1

2
∑ 𝑀𝑤−1(𝛼)

𝐺

𝛼∈∑
G H⁄ ,>0

𝛼.                                             (11) 

The statement now follows from (10), (11) and Lemma (3.2.5).We examine our criterion 

for 𝐻-integrability of matrix coefficients oncertain symmetric spaces. Sakellaridis and 

Venkatesh defined the notion of 

a strongly tempered spherical variety. We recall the definition and make an analogous 

definition for square-integrable representations. 

Definition (3.2.7) [3]:- 

 We say that 𝐺/𝐻 is strongly tempered (resp. strongly discrete) if every irreducible 

tempered (resp. square-integrable) smooth representation 𝜋 of 𝐺 is 𝐻-integrable. 

We provide examples of families of symmetric spaces for which the above properties 

hold. In order to be able to apply Theorem (3.2.4) to this problem, we first need to recall 

Casselman’s criterion for square integrability and a similar criterion for temperdness. 

Theorem (3.2.8) [3]:- 

Let 𝜋 be an admissible representation of 𝐺 for which the centre of 𝐺acts by a 

unitary character. Then 𝜋 is square-integrable (resp. tempered) if and only if𝑅𝑒(𝜒)  ∈

 𝐶(𝐴𝑀, ∆𝑀) (resp. 𝑅𝑒(𝜒)  ∈ 𝐶̅(𝐴𝑀, ∆𝑀)), for any standard parabolic 𝐹-subgroup𝑃 =

 𝑀 ⋉  𝑈 of 𝐺 and any 𝜒 ∈ 𝜀𝑃(𝜋). 

It is straightforward from the definitions that an 𝑀1-relatively (weakly) positive element 

of (𝑎0
∗)𝜃
+ is also 𝑀-relatively (weakly) positive for every standard 𝜃-stable Levi subgroup 

𝑀.The following is therefore a straight for ward consequence of Corollary (3.1.13) and 

Theorems (3.2.4) and (3.2.8) 

Corollary(3.2.9) [3]:- 

If the relative test characters 𝜌𝐺/𝐻
𝑤 are 𝑀1-relatively positive (resp. weakly positive) for all 

𝑤 ∈  [𝑊𝐺/𝐻/𝑊𝐻], then 𝐺/𝐻 is strongly tempered (resp. strongly discrete). 

Let 𝐸/𝐹 be a quadratic field extension. Let 𝐻 be a connected, reductive 𝐹-group and 

𝐺 = 𝑅𝑒𝑠𝐸/𝐹  (𝐻𝐸) be the restriction of scalars from 𝐸 𝑡𝑜 𝐹 of the group 𝐻 considered as 

an 𝐸-group. Thus, 𝐺 ≃  𝐻(𝐸). The Galois involution of 𝐸/𝐹 defines an involution on 𝐺 

that we denote by 𝜃. We identify𝐻 with 𝐺𝜃 and call 𝐺/𝐻 a Galois symmetric space. 
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    Since 𝐻 is defined over 𝐹, so are the Lie algebra 𝐿𝑖𝑒(𝐻) and the adjoint action on 

it.Hence, we have 

𝐿𝑖𝑒(𝐺)  ≃  𝐿𝑖𝑒(𝐻)(𝐸)  =  𝐿𝑖𝑒(𝐻)⊗𝐹 𝐸 

and the action of ℎ ∈  𝐻 is given as 𝐴𝑑(ℎ)(𝑣 ⊗ 𝑒) = 𝐴𝑑(ℎ)𝑣 ⊗ 𝑒, 𝑣 ∈ 𝐿𝑖𝑒(𝐻), 𝑒 ∈ 𝐸.It 

follows, that any eigenvalue of 𝐴𝑑(𝐴0
+) on 𝐿𝑖𝑒(𝐺) is also an eigenvalue on 𝐿𝑖𝑒(𝐻) and 

therefore ∑𝐺/𝐻 = ∑𝐻. In particular, 𝑊𝐺/𝐻  =  𝑊𝐻. 

Since standard parabolic subgroups of 𝐻 are in bijection with subsets of ∆𝐻, 𝜃-stable 

,standard parabolic subgroups of 𝐺 are in bijection with subsets of ∆𝐺/𝐻and ∆𝐻= ∆𝐺/𝐻 

the map 𝑃 ↦ 𝑃𝜃 is a bijection between 𝜃-stable, standard parabolic 𝐹subgroupsof 𝐺 and 

standard parabolic 𝐹-subgroups of 𝐻 with inverse 𝑄 ⟼ 𝑅𝑒𝑠𝐸/𝐹  (𝑄𝐸).In particular, we 

have       𝑃1
𝜃 = 𝑃0

𝐻.We have the following  

Lemma (3.2.10) [3]:- 

Let 𝑃 be a 𝜃-stable, stanadrd parabolic 𝐹-subgroup of 𝐺. Then 𝛿𝑃
1/2
|𝑃𝜃 = 𝛿𝑃𝜃.  

It follows that (𝜌𝑀1
𝐺 )𝜃

+  = 2𝜌0
𝐻 and hence 𝜌𝐺/𝐻

𝑒 = 0 where 𝑒 is the identity in 𝑊𝐺/𝐻. 

Hence, the following is immediate from Corollary(3.2.9). 

Corollary (3.2.11) [3]:- 

Every Galois symmetric space 𝐺/𝐻 is strongly discrete.We can also state the precise 

criterion inferred from an application of Theorem (3.2.4) to the Galois case. 

Theorem (3.2.12) [3]:- 

Let 𝐺/𝐻 be a Galois symmetric space and let 𝜋be an admissible representation of 𝐺/𝐴𝐺
+. 

Then 𝜋 is 𝐻-integrable if and only if for any 𝜃-stable parabolic subgroup𝑃 =  𝑀 ⋉  𝑈 

of 𝐺 and any 𝜒 ∈ 𝜀𝑃(𝜋), the element 𝑅𝑒(𝜒) is 𝑀-relatively positive. 

Assume now in addition that 𝐴0 = 𝐴0
+ . Then by (3) ∑𝐺 = ∑𝐺/𝐻  = ∑𝐻 and in particular 

△𝐺= △𝐻. Thus, standard parabolic subgroups of 𝐺 are all 𝜃-stable and in particular 𝑃0 =

 𝑃1. In paricular, for any standard parabolic subgroup 𝑃 = 𝑀 ⋉𝑈 of 𝐺 we have 𝐴𝑀 =

 𝐴𝑀
+ and △𝑀= △

𝐺/𝐻 (𝑀). The following is therefore immediate from Theorems (3.2.12) 

and (3.2.8). 

Corollary (3.2.13) [3]:- 

Assume that 𝐺/𝐻 is a Galois symmetric space and 𝐴0 = 𝐴0
+. Let 𝜋 be an admissible 

representation of 𝐺/𝐴𝐺. Then 𝜋 is 𝐻-integrable if and only if 𝜋 is square-integrable.   

Let 𝐺 =  𝐺𝐿𝑛. Every symmetric matrix 𝐽 ∈  𝐺𝐿𝑛 defines an 𝐹-involution 𝜃(𝑔)  =

 𝐽𝑡𝑔−1𝐽−1 on 𝐺. Denote the associated orthogonal group by 𝑂𝐽 = 𝐺
𝜃 = 𝐻. 

After 𝐺-conjugation if necessary, we may assume without loss of generality that 𝐽 is of 

the form 

(

𝑤𝑟
𝐽0

𝑤𝑟

) 
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where𝐽0 ∈  𝐺𝐿𝑛−2𝑟 defines an anisotropic quadratric form (𝑟 is the Witt index of 𝐽) and 

𝑤𝑟 ∈  𝐺𝐿𝑟 is the permutation matrix (𝑤𝑟)𝑖,𝑗 = 𝛿𝑖,𝑟+1−𝑗. We may and do further assume 

that 𝐽0 is diagonal. 

We choose the torus of diagonal matrices in 𝐺 to be the 𝜃-stable maximal 𝐹-split torus 

𝐴0. We Write 𝜖𝑖 ∈ 𝑎0
∗  for the character of 𝐴0 that takes a diagonal matrix to its 𝑖-th entry 

and identify𝑎0
∗ ≃ ℝ𝑛 by identifying {𝜖1, . . . , 𝜖𝑛} with the standard basis of ℝ𝑛. Note that 

𝐴0
+ = {𝑑𝑖𝑎𝑔 (𝑎1, … , 𝑎𝑟 , 1, … ,… , 𝑎𝑟

−1, … , 𝑎𝑟
−1): 𝑎𝑖 ∈ 𝐹

∗,   𝑖 = 1,… , 𝑟}. 

We write 

𝜂𝑖 = 𝜖𝑖|𝐴0+ ∈ (𝑎0)𝜃
+. 

Let 𝑃0 be the Borel subgroup of upper triangular matrices in 𝐺. For a decomposition 

𝑛1+. . . +𝑛𝑘 =  𝑛 let 𝑃(𝑛1+...+𝑛𝑘)  =  𝑀(𝑛1+...+𝑛𝑘) ⋉ 𝑈(𝑛1+...+𝑛𝑘) be the associated standard 

parabolic subgroups of 𝐺with its standard Levi decomposition, where the Levi subgroup 

𝑀(𝑛1+...+𝑛𝑘)is isomorphic to 𝐿𝑛1 ×…× 𝐺𝐿𝑛𝑘  . 

Then 𝑃1 = 𝑃(1,...,1,2𝑛−𝑟,1,...,1) = 𝑀1 ⋉ 𝑈1 is a standard, minimal 𝜃-stable parabolic 𝐹-

subgroup of 𝐺. The intersection 𝑃0
𝐻 = 𝑃1 ∩ 𝐻

° is a minimal parabolic 𝐹-subgroup of 

𝐻°.The root system 

∑𝐺/𝐻 = {
{±(𝜂𝑖 ± 𝜂𝑗): 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟} ∪ {±𝜂𝑖 , ±2𝜂𝑖: 𝑖 = 1,… , 𝑟}    2𝑟 < 𝑛

{±(𝜂𝑖 ± 𝜂𝑗): 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟} ∪ {±2𝜂𝑖: 𝑖 = 1,… , 𝑟}              2𝑟 = 𝑛
     (12) 

Is of type 𝐵𝐶𝑟 when 2𝑟 <  𝑛 and of type 𝐶𝑟when 2𝑟 =  𝑛. We have 

Δ
𝐺

𝐻 = {
{𝜂𝑖 − 𝜂𝑖+1}𝑖=1

𝑟−1 ∪ {𝜂𝑟}             2𝑟 < 𝑛

{𝜂𝑖 − 𝜂𝑖+1}𝑖=1
𝑟−1 ∪ {2𝜂𝑟}           2𝑟 = 𝑛.

                           (13) 

We write 𝐸𝑖,𝑗 ⊆  𝐿𝑖𝑒(𝐺) = 𝑔𝑙𝑛(𝐹) for the one-dimensional subspace of matrices 

vanishing outside the (𝑖, 𝑗)-th entry. These are the weight spaces for the roots in ∑𝐺. For 

integers𝑎 ≤  𝑏 let [𝑎, 𝑏]  =  {𝑎, 𝑎 + 1, . . . , 𝑏} be the corresponding interval of integers. 

Note thatthe action of 𝜃 on 𝑔𝑙𝑛(𝐹) (given by 𝜃(𝑋) = −𝐽𝑡 𝑋𝐽−1)satisfies 𝜃(𝐸𝑖,𝑗)  =

 𝐸𝑛+1−𝑗,𝑛+1−𝑖whenever 𝑖, 𝑗 ∈  [1, 𝑟] ∪ [𝑛 + 1 − 𝑟, 𝑛] and 𝜃(𝐸𝑖, 𝑗)  =  𝐸𝑗,𝑛+1−𝑖 for 1 ≤

 𝑖 ≤  𝑟 and 𝑟 <  𝑗 ≤  𝑛 − 𝑟.It easily follows that for 𝛼 ∈ ∑𝐺/𝐻  \ {2𝜂1, . . . , 2𝜂𝑟} and 

every 𝛽 ∈ ∑𝐺 such that 𝛽|𝐴0+ = 𝛼 we have 𝜃(𝛽) ≠ 𝛽. Thus, by Lemma (3.2.5)(2), 

𝑚𝜃,𝛼 = 0. Further more, 𝜃 acts by −1 on𝐿2𝜂𝑖
𝐺  =  𝐸𝑖,𝑛+1−𝑖 and there fore 𝑚𝜃,2𝜂𝑖 = −1. 

In case 𝑛 =  2𝑟 (𝐻 is an 𝐹-split orthogonal group), the root system ∑𝐻 is of type 

𝐷𝑅 , ∆
𝐻= {𝜂𝑖 − 𝜂𝑖+1}𝑖=1

𝑟−1 ∪ {𝜂𝑟−1  +  𝜂𝑟} and WH is an index 2 subgroup of 𝑊𝐺/𝐻. It is 

easyto check that [𝑊𝐺/𝐻/𝑊𝐻]  =  {𝑒, 𝜖}, where 𝜖 is the simple reflection associated with 

the root 2𝜂𝑟 ∈ ∆
𝐺/𝐻 and 𝑒 is the identity. It is straight for ward that 𝑚𝜃,𝜖−1(𝛼) = 𝑚𝜃,𝛼 

for all 𝛼 ∈ ∑𝐺/𝐻. It there fore follows from Proposition (3.2.6)that 𝜌𝐺/𝐻
𝜖 = 𝜌𝐺/𝐻

𝑒 .  

Otherwise, when 2𝑟 < ∑𝐻 is of type 𝐵𝑟, ∆
𝐻= {𝜂𝑖 − 𝜂𝑖+1}𝑖=1

𝑟−1 ∪ {𝜂𝑟} and 𝑊𝐻 = 𝑊𝐺/𝐻. 
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     In all cases, combining this with Proposition (3.2.6) the relative test characters are 

given by 

𝜌𝐺/𝐻
𝑤 =∑𝜂𝑖

𝑟

𝑖=1

=∑𝑗

𝑟−1

𝑗=1

. (𝜂𝑗 − 𝜂𝑗+1) + 𝑟. 𝜂𝑟 ,       𝑤 ∈ [𝑊
𝐺

𝐻/𝑊𝐻].                  (14) 

This is 𝑀1-relatively positive by the second equality. Thus, from Corollary (3.2.9) we 

deducethe following. 

Corollary (3.2.14) [3]:- 

The symmetric space 𝐺𝐿𝑛 /𝑂𝐽 is strongly tempered for every symmetric matrix 

 𝐽 ∈  𝐺𝐿𝑛. 

We provide another family of strongly tempered symmetric spaces. The computation of 

relative test characters in the case at hand reduces to that of the previous. We there fore 

maintain all the notation defined and use different letters todenote the symmetric space 

we now consider. 

Recall that 𝐸 =  𝐹[𝜏 ]/𝐹 is a quadratic extension with Galois involution 𝜎. We consider 

the following embedding of 𝑂𝐽 as a the group of fixed points of an involution on the 

unitary group associated with 𝐽and 𝐸/𝐹. 

Let 𝐺′ = 𝑅𝑒𝑠𝐸/𝐹(𝐺𝐸) and consider 𝜎 as the Galois involution on 𝐺′.Note that the 

involution 𝜃 on 𝐺 = (𝐺′)𝜎 extends to an involution on 𝐺′ by the same formula  

𝜃(𝑔) = 𝐽 𝑡𝑔−1𝐽−1, 𝑔 ∈  𝐺′ and that 𝜎 and 𝜃 commute. Let 𝜃′ = 𝜃𝜎 = 𝜎𝜃 and𝑈 =

𝑈𝐽,𝐸/𝐹  = (𝐺′)
𝜃′ be the associated unitary group. 

Note that 𝜎 restricts to an involution on 𝑈and 𝑈𝜎 = 𝑂𝐽 = 𝐻. We consider now the 

symmetric space 𝑈/𝐻. 

From this explicit construction it is easy to see that there exists a 𝜎-stable, maximal𝐹-

split torus 𝐴0
𝑈of 𝑈 such that 𝐴0

+ is the maximal 𝐹-split torus in (𝐴0
𝑈)𝜎. Furthermore, 

𝑃1
𝑈 = 𝑅𝑒𝑠𝐸/𝐹(𝑃1,…,1,2𝑛−𝑟,1,…,1) ∩ 𝑈 

is a minimal 𝜎-stable parabolic 𝐹-subgroup of 𝑈 such that 𝑃1
𝑈 ∩ 𝐻° = 𝑃1

𝐻. 

     We consider 𝐿𝑖𝑒(𝑈) as the 𝜃′-fixed subspace of 𝐿𝑖𝑒(𝐺′) ≃ 𝑔𝑙𝑛(𝐸) = 𝑔𝑙𝑛(𝐹) +

𝜏. 𝑔𝑙𝑛(𝐹).Thus, 

𝐿𝑖𝑒(𝑈) = {𝑋 + 𝜏𝑌: 𝑋, 𝑌 ∈ 𝑔𝑙𝑛(𝐹), 𝑋 = −𝐽
𝑡𝑋𝐽−1, 𝑌 = 𝐽𝑡𝑌𝐽−1}. 

     By studying the adjoint action of 𝐴0
+ on 𝐿𝑖𝑒(𝑈) we observe that ∑𝑈/𝐻 = ∑𝐺/𝐻 

(whereon both sides we view elements as characters on 𝐴0
+) and △𝑈/𝐻=△𝐺/𝐻. Hence 

∑𝑈/𝐻>0 = ∑𝐺/𝐻>0. Furthermore, for every 𝛼 ∈ ∑𝑈/𝐻>0\{2𝜂1, . . . , 2𝜂𝑟} there is a 

subspace 𝑉𝛼 ⊆ 𝑔𝑙𝑛(𝐹) (explicated bellow) so that 𝐿𝛼
𝑈 = 𝐿𝛼

𝑈,+⊕𝐿𝛼
𝑈,−

 where 

𝐿𝛼
𝑈,+ = {𝑣 + 𝜃′(𝑣): 𝑣 ∈ 𝑉𝛼}  𝑎𝑛𝑑  𝐿𝛼

𝑈,− = {𝑣 + 𝜃′(𝑣): 𝑣 ∈ 𝜏𝑉𝛼}  For all such 𝛼 we have 

𝑑𝑖𝑚𝐿𝛼
𝑈,+ = 𝑑𝑖𝑚 𝐿𝛼

𝑈,−
 and clearly 𝜎acts by•±1 on𝐿𝛼

𝑈,±
 respectively.Therefore𝑚𝜎,𝛼 =
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0 = 𝑚𝜃,𝛼. Also 𝐿2𝜂𝑖 =  𝜏𝐸𝑖,𝑛+1−𝑖 is one dimensional and clearly 𝑚𝜎,2𝜂𝑖 = −1 =

 𝑚𝜃,2𝜂𝑖   𝑓𝑜𝑟 𝑖 =  1, . . . , 𝑟. 

It follows that 𝑚𝜎,𝛼 = 𝑚𝜃,𝛼 for all 𝛼 ∈ ∑𝑈/𝐻 = ∑𝐺/𝐻. This allows us to argue 

verbatimas in Corollary (3.2.14) to deduce the following. 

Corollary (3.2.15) [3]:- 

Let 𝐸/𝐹 be a quadratic extension and 𝐽 ∈  𝐺𝐿𝑛 a symmetric matrix.Then the symmetric 

space 𝑈𝐽,𝐸/𝐹  /𝑂𝐽 is strongly tempered. 

For the sake of completeness, we provide here the above mentioned spaces 𝑉𝛼 that 

complete the reduction of our computation to that of the previous. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 we 

have 

𝑉𝜂𝑖−𝜂𝑗 = 𝐸𝑖,𝑗      𝑎𝑛𝑑   𝑉𝜂𝑖+𝜂𝑗 = 𝐸𝑖,𝑛+1−𝑗 

whereas if 2𝑟 <  𝑛 for 𝑖 =  1, . . . , 𝑟 we have 

𝑉𝜂𝑖 =

𝑛 − 𝑟
⊕

𝑗 = 𝑟 + 1
𝐸𝑖,𝑗 . 

Let 𝐺 = 𝐺𝐿2𝑛and 𝜈 = 𝜏2 ∈  𝐹. Define the involution 𝜃(𝑔)  =  𝑡𝑔𝑡−1 on 𝐺 where 

𝑡 = 𝑑𝑖𝑎𝑔 ((0 𝜐−1

1 0
) , … , (0 𝜐−1

1 0
)). 

Note that 𝐻 =  𝐺𝜃 ≃  𝐺𝐿𝑛(𝐸). We can choose 𝐴0 to be the diagonal torus in 𝐺. It is𝜃-

stable and 

𝐴0
+ = {𝑑𝑖𝑎𝑔 (𝑎1, 𝑎1, 𝑎2, 𝑎2, … , 𝑎𝑛, 𝑎𝑛): 𝑎𝑖 ∈ 𝐹

∗, 𝑖 = 1,… , 𝑛}. 

We can take P1 = P(2,...,2) to be the minimal θ-stable parabolic subgroup of 𝐺 so that 

𝑃0
𝐻 = 𝑃1 ∩  𝐻 is a minimal parabolic subgroup of 𝐻 = 𝐻°. 

We then have∑𝐺/𝐻 = ∑𝐻and 𝑊𝐺/𝐻 = 𝑊𝐻. For each 𝛼 ∈ ∑𝐺/𝐻 there are four roots 

in∑𝐺such that 𝛽|𝐴0+ = 𝛼. The involution 𝜃 does not fix any of the four. Thus, by Lemma 

(3.2.5)(2), 𝑚𝜃,𝛼 = 0 for all 𝛼 ∈ ∑𝐺/𝐻,>0. In particular, the relative test character 𝜌𝐺/𝐻
𝑒 =

0.From Corollary (3.2.9) we have the following. 

Corollary (3.2.16) [3]:- 

The symmetric space 𝐺𝐿2𝑛(𝐹)/𝐺𝐿𝑛(𝐸) is strongly discrete .To describe an explicit 

realization of the symmetric space that we consider next it is convenient to maintain the 

notation of the previous. For a symmetric matrix 𝐽 ∈ 𝐺𝐿𝑛, wecan embed the 

corresponding unitary group 𝑈𝐽,𝐸/𝐹 in 𝑆𝑝2𝑛 as follows. To J= (𝑎𝑖𝑗) weassociate the anti-

symmetric matrix 𝐴𝐽 ∈ 𝐺𝐿2𝑛whose whose (𝑖, 𝑗)-th 2 ×  2 block is givenby 

(
0 𝑎𝑖,𝑗
𝑎𝑖,𝑗 0

). 

Let 𝜎(𝑔) =  𝐴𝐽𝑡𝑔
−1𝐴𝐽

−1 be the involution on 𝐺 so that 𝐺𝜎 = 𝑆𝑝𝐴𝐽 ≃ 𝑆𝑝2𝑛. Note thatthe 

involutions 𝜎 and 𝜃 commute, hence 𝜃 restricts to an involution on 𝑆𝑝𝐴𝐽and 𝑆𝑝𝐴𝐽
𝜃 ≃
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𝑈𝐽,𝐸/𝐹 . The group 𝑈𝑤𝑛,𝐸/𝐹 is quasi-split over 𝐹. It is well known that if 𝑛 is odd 

thenevery unitary group is 𝐺𝐿𝑛(𝐸)-conjugate to 𝑈𝑤𝑛,𝐸/𝐹. If 𝑛 is even then there are two 

conjugacy classes of non-isomorphic unitary groups determined by the norm class of the 

discriminant. We consider the two cases as follows. 

Let 𝐺1
′ = 𝑆𝑝𝐴𝑤𝑛 ≃ 𝑆𝑝2𝑛 𝑎𝑛𝑑  𝑈1 = (𝐺1

′)𝜃 ≃ 𝑈𝑤𝑛,𝐸/𝐹. If 𝑛 is even let 𝛿 ∈ 𝐹∗ be 

suchthat 𝛿 detwn−2 𝑑𝑒𝑡 𝑤𝑛 is not a norm from 𝐸 𝑡𝑜 𝐹 and let 

𝐽2 = (

𝑤𝑛/2−1
𝑑

𝑤𝑛/2−1

) 

where𝑑 = 𝑑𝑖𝑎𝑔(1, 𝛿). Set 𝐺2
′ = 𝑆𝑝𝐴𝐽2 ≃ 𝑆𝑝2𝑛 𝑎𝑛𝑑 𝑈2 = (𝐺2

′)𝜃 ≃ 𝑈𝐽,𝐸/𝐹 the non-quasi 

splitunitary group. 

In order to unify notation for the two cases at hand we set 𝐽 = 𝑤𝑛(𝑟𝑒𝑠𝑝. 𝐽 = 𝐽2) and𝐺′ =

𝐺1
′(𝑟𝑒𝑠𝑝. 𝐺′ = 𝐺2

′) and let 𝑈 = (𝐺′)𝜃 be the corresponding unitary group. We canchoose 

the minimal 𝜃-stable parabolic subgroup 𝑃1
′ of 𝐺′ to be 

𝑃1
′ = {

𝑃(2(𝑛)) ∩ 𝐺
′                                     𝐽 = 𝑤𝑛

𝑃(2(𝑛/2−1),4.2(𝑛/2−1)) ∩ 𝐺
′                 𝐽 = 𝐽2

 

where (2(𝑎))  =  (2, . . . , 2)⏞      
𝑎

. It contains a 𝜃-stable maximal 𝐹-split torus 𝐴0
′ of 𝐺′, such 

that(𝐴0
′ )+ is the maximal 𝐹-split torus of 𝑈 such that 

(𝐴0
′ )+ = {𝑑𝑖𝑎𝑔 (𝑎1, 𝑎1, … , 𝑎𝑟 , 𝑎𝑟 , 𝐼2𝑛−4𝑟 , 𝑎𝑟

−1, 𝑎𝑟
−1, … , 𝑎1

−1, 𝑎1
−1):     𝑎𝑖 ∈ 𝐹

∗,

𝑖 = 1,… , 𝑟}, 

where𝑟 =  ⌊𝑛/2⌋ in the quasi-split case, and 𝑟 =  𝑛/2 −  1 in the non-quasi-split case. 

Forour computation we recall that 

𝐿𝑖𝑒(𝐺′′) = {𝑋 ∈ 𝑔𝑙𝑛(𝐹): − 𝐴𝐽𝑡𝑋𝐴𝐽
−1 = 𝑋}. 

The root system ∑𝐺′/𝑈 is of the same type as in the example of subsection 3.2.6. Namely 

,∑𝐺′/𝑈 is of type 𝐵𝐶𝑟 when 2𝑟 <  𝑛 and of type 𝐶𝑟when 2𝑟 =  𝑛. We may therefore 

denotethe roots as in (12) where 𝜂𝑖 is the character of (𝐴0
′ )+ that satisfies 

𝜂𝑖(𝑑𝑖𝑎𝑔 (𝑎1, 𝑎1, … , 𝑎𝑟 , 𝑎𝑟 , 𝐼2𝑛−4𝑟 , 𝑎𝑟
−1, 𝑎𝑟

−1, … , 𝑎1
−1, 𝑎1

−1)) = 𝑎𝑖 ,   𝑖 = 1,… , 𝑟. 

The simple roots △𝐺′/𝑈 are then given by (13).We now have∑𝑈 = ∑𝐺′/𝑈 and therefore 

𝑊𝑈 = 𝑊𝐺′/𝑈 in all cases. 

It is now a straightforward verification that for any 𝛼 ∈ ∑𝐺′/𝑈 \ {2𝜂1, . . . , 2𝜂𝑟} there are 

four roots β in ∑𝐺′ such that 𝛽|(𝐴0′ )+ =  𝛼 and the involution 𝜃 fixes none of them. It 

follows from Lemma (3.2.5)(2) that 𝑚𝜃,𝛼 =  0 for all 𝛼 ∈ ∑𝐺′/𝑈 \ {2𝜂1, . . . , 2𝜂𝑟}. 

For 𝑘 =  1, . . . , 𝑟 the root space 𝐿2𝜂𝑘
𝐺′  consists of matrices 𝑋 ∈  𝐿𝑖𝑒(𝐺′) such that 

the(𝑖, 𝑗)-th 2 ×  2 block of 𝑋 is zero unless 𝑖 =  𝑘 =  𝑛 +  1 −  𝑗 in which case it is of 

the form(
𝑎 𝑏
𝑐 −𝑎

)for some 𝑎, 𝑏, 𝑐 ∈  𝐹. We denote such an element by 𝑋𝑎,𝑏,𝑐. Then 
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𝜃(𝑋𝑎,𝑏,𝑐) = 𝑋−𝑎,𝜐−1𝑐,𝜐𝑏 

and there fore 𝑚𝜃,2𝜂𝑘 = −1. It now follows from Proposition (3.2.6) that the relative test 

character is given by 

𝜌𝐺′
𝐻

𝑒 =∑𝜂𝑖

𝑟

𝑖=1

 

which is 𝑀1
′-relatively positive (𝑀1

′  is the Levi subgroup of 𝑃1
′ containing 𝐴0

′ ) by the 

secondequality in (14). Thus, from Corollary (3.2.9) we deduce the following. 

Corollary (3.2.17) [3]:- 

For every symmetric matrix 𝐽 ∈ 𝐺𝐿𝑛(𝐹) the symmetric space 𝑆𝑝𝐴𝐽/𝑈𝐽,𝐸/𝐹is strongly 

tempered. The symmetric spaces 𝐺𝐿2𝑛(𝐹)/𝐺𝐿𝑛(𝐹 × 𝐺𝐿𝑣(𝐹) and 

 𝐺𝐿2𝑛+1(𝐹)/ 𝐺𝐿𝑛(𝐹)  × 𝐺𝐿𝑛+1(𝐹) are strongly discrete:- 

Let 𝐺 =  𝐺𝐿𝑛1+𝑛2  and 𝜃(𝑔) = 𝑡𝑔𝑡−1, 𝑔 ∈ 𝐺 where𝑡 = 𝑑𝑖𝑎𝑔(𝐼𝑛1 , −𝐼𝑛2). Then, 

 𝐻 = 𝐺𝜃 ≃ 𝐺𝐿𝑛1 ×  𝐺𝐿𝑛2. 

Let 𝑃1 = 𝑃0 be the standard Borel subgroup of upper triangular matrices and 𝐴0 the 

diagonal torus in 𝐺. Then 𝐴0 = 𝐴0
+ and there fore ∑𝐺 = ∑𝐺/𝐻 is of type 𝐴𝑛1+𝑛2−1.For 

1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛1 + 𝑛2 let 𝛼𝑖,𝑗 ∈ ∑
𝐺 be the root corresponding to the weight space𝐸𝑖,𝑗 

defined. Then, ∑𝐺/𝐻 = ∑𝐺 = {𝛽1, . . . , 𝛽𝑛1+𝑛2−1}. where 𝛽𝑖 = 𝛼𝑖,𝑖+1, for 1 ≤ 𝑖 ≤ 𝑛1 +

𝑛2 − 1. We identify 𝑊𝐺 = 𝑊𝐺/𝐻 with the group 𝑆𝑛1+𝑛2  of permutations on{1, . . . , 𝑛1 +

𝑛2} so that 𝑤(𝛼𝑖,𝑗) = 𝛼𝑤(𝑖),𝑤(𝑗) for all 𝑤 ∈ 𝑊𝐺. The set [𝑊𝐺/𝐻/𝑊𝐻] consists ofall 

permutations that satisfy 𝑤(𝑖) < 𝑤(𝑗) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛1and  

 𝑛1 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛1 + 𝑛2. 

Lemma (3.2.18) [3]:- 

       If either 𝑛2 = 𝑛1 or 𝑛2 = 𝑛1 + 1 then 𝜌𝐺/𝐻
𝑤  is 𝑀1-relatively weakly positivefor every 

𝑤 ∈ [𝑊𝐺/𝐻 /𝑊𝐻]. If 𝑛1 = 𝑛2 = 1 then 𝜌𝐺/𝐻
𝑤  is 𝑀1-relatively positive for every 

𝑤 ∈ [𝑊𝐺/𝐻 /𝑊𝐻]. 

Proof:- 

For every 𝑤 ∈ [𝑊𝐺/𝐻 /𝑊𝐻], we write 

𝜌𝐺/𝐻
𝑤 = 𝑎1

𝑤𝛽1 +⋯+ 𝑎𝑛1+𝑛2−1
𝑤 𝛽𝑛1+𝑛2−1 

with half-integers aw i . Then 𝜌𝐺/𝐻
𝑤  is 𝑀1-relatively weakly positive if and only if  𝑎𝑘

𝑤 ≥

 0forall 1 ≤ 𝑘 ≤ 𝑛1 + 𝑛2 − 1. It is 𝑀1-relatively positive when the inequalities are strict. 

Note that for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛1 + 𝑛2 we have 

𝑎𝜃,𝛼𝑖,𝑗 = {
1           𝑖, 𝑗 > 𝑛1   𝑜𝑟  𝑖, 𝑗 ≤ 𝑛1
−1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

 

and that 𝛼𝑖,𝑗 = 𝛽𝑖 + 𝛽𝑖+1 + · · ·  + 𝛽𝑗−1 for all 𝑖 <  𝑗. Set 

𝑑(𝑤, 𝑘) =⋕ {(𝑖, 𝑗) ∶   1 ≤ 𝑖 ≤ 𝑘 < 𝑗 ≤ 𝑛1 + 𝑛2, 𝑚𝜃,𝛼𝑤−1(𝑖),𝑤−1(𝑗)
= 1}. 
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By Proposition (3.2.6) we have 

𝑎𝑘
𝑤 = −

1

2
[𝑑(𝑤, 𝑘)−⋕ {(𝑖, 𝑗) ∶   1 ≤ 𝑖 ≤ 𝑘 < 𝑗 ≤ 𝑛1 + 𝑛2, 𝑚𝜃,𝛼𝑤−1(𝑖),𝑤−1(𝑗)

= −1}]

= −
1

2
[𝑑(𝑤, 𝑘) − (𝑘(𝑛1 + 𝑛2 − 𝑘) − 𝑑(𝑤, 𝑘))]

=
𝑘(𝑛1 + 𝑛2 − 𝑘)

2
− 𝑑(𝑤, 𝑘). 

Note that translating by 𝑤−1we get that 

𝑑(𝑤, 𝑘) =⋕ {(𝑖, 𝑗): 
1 ≤ 𝑤(𝑖) ≤ 𝑘 < 𝑤(𝑗) ≤ 𝑛1 + 𝑛2.                                

      𝑒𝑖𝑡ℎ𝑒𝑟 1 ≤ 𝑖 < 𝑗 ≤ 𝑛1   𝑜𝑟  𝑛1 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛1 + 𝑛2
}. 

Let 

𝑒𝑤 = {
max{1 ≤ 𝑖 ≤ 𝑛1: 𝑤(𝑖) ≤ 𝑘}   𝑤(1) ≤ 𝑘

0                                                    𝑘 < 𝑤(1).
 

Note that 𝑒𝑤 ≤  𝑘, 

𝑘 − 𝑒𝑤 = {
max{1 ≤ 𝑖 ≤ 𝑛2: 𝑤(𝑛1 + 𝑖) ≤ 𝑘}   𝑤(𝑛1 + 1) ≤ 𝑘
0                                                              𝑘 < 𝑤(𝑛1 + 1)

 

 

and {𝑤(𝑖): 1 ≤ 𝑖 ≤ 𝑒𝑤} ∪ {𝑤(𝑛1 + 𝑖): 1 ≤ 𝑖 ≤ 𝑘 − 𝑒𝑤} = {1, . . . , 𝑘}. It follows that 

𝑑(𝑤, 𝑘) = 𝑒𝑤(𝑛1 − 𝑒𝑤) + (𝑘 − 𝑒𝑤)(𝑛2 − (𝑘 − 𝑒𝑤)). 

Thus, in order to have 𝑎𝑘
𝑤 ≥  0 we need to show that 

𝑘(𝑘 − (𝑛1 + 𝑛2))

2
≤ 𝑒𝑤(𝑒𝑤 − 𝑛1) + (𝑘 − 𝑒𝑤)((𝑘 − 𝑒𝑤) − 𝑛2).                        (15) 

    Consider first the case 𝑛1 = 𝑛2 and let 𝜙(𝑡) = 𝑡(𝑡 − 𝑛1), 𝑡 ∈ ℝ. It is a convex real 

function and therefore 

2𝜙(𝑘/2) ≤ 𝜙(𝑒𝑤) + 𝜙(𝑘 − 𝑒𝑤) 

( this is precisely the inequality (15)) and equality holds if and only if 𝑒𝑤 = 𝑘 − 𝑒𝑤. This 

shows that 𝑎𝑘
𝑤 ≥  0 in this case. If in addition 𝑛1 =  1 then 𝑘 =  1 and 𝑒𝑤 ≠ 𝑘 − 𝑒𝑤. 

Thus inthis case 𝑎1
𝑤 > 0 and 𝜌𝐺/𝐻

𝑤  is 𝑀1-relatively positive. 

Assume now that 𝑛2 = 𝑛1 + 1. If 𝑒𝑤 = 𝑘 − 𝑒𝑤 then (15) is always an equality. 

Assumenow that 𝑒𝑤 ≠ 𝑘 − 𝑒𝑤 and let 𝜓(𝑡)  =  𝑡2 − 𝑡 (
𝑡−𝑒𝑤

𝑘−2𝑒𝑤
+ 𝑛1) , 𝑡 ∈ ℝ. Again, it is 

a real function with non-negative second derivative and therefore 

2𝜓(𝑘/2) ≤ 𝜓(𝑒𝑤) + 𝜓(𝑘 − 𝑒𝑤) 

which is precisely the inequality (15). The lemma follows. The following is now 

immediate from Lemma (3.2.18) and Corollary (3.2.9). 

Corollary (3.2.19) [3]:- 

The symmetric spaces 𝐺𝐿2𝑛/𝐺𝐿𝑛 × 𝐺𝐿𝑛 and 𝐺𝐿2𝑛+1/𝐺𝐿𝑛 × 𝐺𝐿𝑛+1 are strongly 

discrete. The symmetric space 𝐺𝐿2/𝐺𝐿1 × 𝐺𝐿1 is strongly tempered. For an 𝐻-integrable 

representation 𝜋 of 𝐺 and a vector �̃� in �̃� let ℓ�̃�,H be the linear formon𝜋 defined by 
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ℓ�̃�,H(𝑣) = ∫ 𝑐𝑣,�̃�
𝐻/𝐴𝐺

+
(ℎ) 𝑑ℎ. 

We write 𝐿𝐻
𝜋 = {ℓ�̃�,H: �̃� ∈ �̃�} ⊆ 𝐻𝑜𝑚𝐻(𝜋, ℂ) for the subspace of 𝐻-invariant linear 

formson 𝜋 emerging as integrals of matrix coefficients. 

Let 𝑋 =  𝐺/𝐻 be the 𝐺-symmetric space associated with 𝜃. 𝑋is calledstrongly tempered 

if 𝐺/𝐻𝑧 is strongly tempered (in the sense of Definition (3.2.7)), for every𝑧 ∈  𝑋 where 

𝐻𝑧 is the stabilizer of 𝑧 𝑖𝑛 𝐺. The statement of assumes that 𝑋 is strongly tempered, but 

the proof considers a single 𝐺-orbit at a time.It therefore implies the following. 

Theorem (3.2.20) [3]:-(Sakellaridis-Venkatesh) 

Assume that 𝐺 is 𝐹-split and that 𝐺/𝐻 is stronglytempered. If 𝜋 is an irreducible, square-

integrable representation of 𝐺 then 

𝐿𝐻
𝜋 = 𝐻𝑜𝑚𝐻(𝜋, ℂ). 

If 𝜋 is a representation of 𝐺 parabolically induced from an irreducible, square-integrable 

representation of a Levi subgroup of 𝐺 then we have the implication 

𝐻𝑜𝑚𝐻(𝜋, ℂ) ≠ 0      ⇒     𝐿𝐻
𝜋 ≠ 0. 

The following is therefore an immediate consequence of Theorem (3.2.20) and 

Corollaries (3.2.16), (3.2.17) and (3.2.19). 

Corollary (3.2.21) [3]:- 

For the following symmetric spaces 𝐺/𝐻 and for every irreducible square-integrable 

representation 𝜋 of 𝐺 we have 

𝐿𝐻
𝜋 = 𝐻𝑜𝑚𝐻(𝜋, ℂ). 

 (𝑎)𝐺𝐿𝑛/𝑂𝐽for a symmetric matrix 𝐽 ∈ 𝐺𝐿𝑛. 

(𝑏)𝑆𝑝2𝑛 /𝑈𝐽,𝐸/𝐹for a symmetric matrix 𝐽 ∈ 𝐺𝐿𝑛. 

(𝑐)𝐺𝐿2/𝐺𝐿1 × 𝐺𝐿1. 

When 𝐺 = 𝐺𝐿𝑛, it follows from Zelevinsky’s classification that representations of 𝐺 

parabolically induced from irreducible square-integrable are precisely the irreducible 

temperedrepresentations of 𝐺. We therefore also have the following. 

Corollary (3.2.22) [3]:- 

In cases 1 and 3 of Corollary (3.2.21), for every irreducible tempered representation 𝜋 of 

𝐺 we have 

𝐻𝑜𝑚𝐻(𝜋, ℂ) ≠ 0      ⇒     𝐿𝐻
𝜋 ≠ 0. 

 

 

 

Lemma(3.2.22) [7] 

Let _ be an irreducible representation of a reductive p-adic group and let P = MN be a 

parabolic subgroup of G. Suppose that M is a direct product of two reductive subgroups 

M1andM2. Let T1be an irreducible representation of M1and let T2be a representation of 
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M2. Supposeπ ↪ IndP
Q
(T1⊗T2):Then there exists an irreducible representation T2

′such 

that π ↪ IndP
Q
(T1⊗T2

′) 
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Chapter 4 

 

Quasi – Compact Endomorphisms and Primary Ideals in 

Commutative UnitalBanach Algebras 

Among other things , our results lead to the observation that when B is strongly regular , 

every Riesz endomorphism of B is quasi-nilpotent on an invariant maximal ideal . Some 

of the implications of our work for various other types of function algebra are explored  

Section(4.1) Spectral Projection and Primary Ideals 

Let 𝑋 be a complex Banach space. The essential spectrum 𝜎𝑒(𝑇) of abounded operator 

𝑇 ∶  𝑋 −→  𝑋 is the set of all complex numbers 𝜆 for which thedifference 𝜆 −  𝑇 is not a 

Fredholm operator. 𝑇is quasi-compact if 

𝜎𝑒(𝑇) ⊆ {𝜆: |𝜆| < 1}, 

And Riesz if 𝜎𝑒(𝑇)  ⊆ {0}. 

Let 𝐵be a commutative unitalBanach algebra. An endomorphism of 𝐵 is a bounded 

linear operator 𝑇: 𝐵−→ 𝐵which is multiplicative and preserves the multiplicative identity 

1 ∈ 𝐵. Operators of this type have received a great deal of attention , and their properties 

are well understood in certain cases. As the following theorem of Feinstein and 

Kamowitz makes clear, quasi-compact endomorphisms are rather special. 

Theorem (4.1.1) [4]:- 

Let 𝐵 be a semi-prime commutative unital Banach algebra with connected character 

space Φ𝐵. Let Tbe a quasi-compact endomorphism of 𝐵. Then: 

(i) 𝜎(𝑇)  ⊆ {𝜆 ∶ |𝜆|  < 1} ∪ {1}; 

(ii) the eigenvalue 1has(algebraic) multiplicity 1and eigenspace ℂ · 1; 

(iii) there is a character 𝑥0 ∈ Φ𝐵such that the sequence (𝑇𝑛)𝑛=1
∞ converges in norm 

to the 𝑟𝑎𝑛𝑘 1projection 𝑏 ↦ 𝑥0(𝑏)  · 1. We have the following result. 

Theorem (4.1.2) [4]:- 

Let 𝐵 be a semi-prime commutative unital Banach algebra with connected character 

space Φ𝐵. Let 𝑇be a quasi-compact endomorphism of 𝐵, and suppose that 𝑇∗𝑥0 = 𝑥0. 

Then there is a family 𝐽of 𝑇-invariant closed primary ideals of finite codimension in 

Band hull {𝑥0}, for which 
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                                     𝜎(𝑇) ∩ {𝜆 ∶  |𝜆| > 𝑟𝑒(𝑇)} =⋃𝜎(
𝑇

𝐼
)

𝐼∈𝐽

.                              (1) 

The maximal ideal 𝑀(𝑥0)  = {𝑏 ∈ 𝐵: 𝑥0(𝑏) = 0}always belongs to 𝐽. 

Here 

𝑟𝑒(𝑇) = inf{𝑟 > 0: |𝜆| ≤ 𝑟  𝑓𝑜𝑟 𝑎𝑙𝑙  𝜆 ∈  𝜎𝑒(𝑇)} 

is the essential spectral radius of 𝑇, and (for each 𝐼 ∈ 𝐽) 𝑇/𝐼is the endomorphism of 𝐵/𝐼 

which satisfies 

(𝑇/𝐼)(𝑏 + 𝐼) = 𝑇𝑏 + 𝐼      (𝑏 ∈  𝐵) 

for every 𝑏 ∈ 𝐵. 

An ideal in a commutative Banach algebra is said to be primary if it is simultaneously 

modular and contained in only one maximal ideal. We will later exploit the fact that, for 

many algebras of differentiable functions, these ideals are often of a very particular form. 

For example, if 𝛺is a convexbounded domain in ℝ𝑑,every closed primary ideal in 

𝐶𝑘(�̅�)contains an ideal of the form 

{𝑢 ∈ 𝐵: (𝐷𝛼𝑢)(𝑢) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  |𝛼| ≤ 𝑘} 

for some 𝑥 ∈ �̅�. We will see later that this implies that every Riesz endomorphism 𝑇of 

𝐶𝑘(�̅�)satisfies 𝜎(𝑇)  = {0,1}. This conclusion will, in fact, be shown to apply 

throughout a large class of Shilov-regular function algebras on the closed unit ball in ℝ𝑑. 

The situation for algebras of infinitely differentiable functions is much more interesting. 

In this direction, Theorem(4.1.2) can be used to reproduce a large proportion of the 

results in the literature concerning the spectra of Riesz endomorphisms on algebras of 

holomorphic functions on domains in ℂ. Among these is the following (now well-known) 

Theorem of Kamowitz. Below, 𝔻is the open unit disk, and 𝑧: �̅� → ℂis the associated 

inclusion map. 

Theorem (4.1.3) [4]:- 

     Let 𝑇be a Riesz endomorphism of the disk algebra 𝐴(�̅�), and suppose that the 

function 𝜙 = 𝑇𝑧fixes a point 𝑝 = 𝜙(𝑝)in the open unit disk. Then the spectrum of 𝑇is 

given by 

𝜎(𝑇) = {0,1} ∪ {𝜙′(𝑝)
𝑘
: 𝑘 ∈ ℕ}. 

Asimilar conclusion applies for a large number of other algebras of holomorphic 

functions on �̅�. Theorem(4.1.2) will allow us to prove a significant generalisation of 

Theorem(4.1.3) , one which subsumes a large number of existing results in this area. In 
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particular, we will show that the same conclusion applies in every unital Banach algebra 

obtained by completing the algebra of polynomials in 𝑧with respect to a norm for which 

the multiplication operators 𝑓 ↦ (𝑧 − 𝑝)fare bounded below (for 𝑝 ∈ 𝔻). 

The machinery described is then used to prove a version of Theorem(4.1.2) . Recovery of 

this central result is followed by a brief examination of some of the implications of our 

work for determining the spectra of Riesz endomorphisms of algebras possessing 

particular primary ideal structures. We devoted to examining some of the implications of 

our results for Riesz endomorphisms in two rather different classes of function algebra: 

one class contains only regular algebras, and the other consists solely of algebras of 

functions which are holomorphic in the unit disk. 

Given any linear map 𝑇: 𝑋 ⟶ 𝑌between vector spaces 𝑋and 𝑌, we will henceforth write 

ker(𝑇) = 𝑇−1(0) = {𝑥 ∈ 𝑋: 𝑇𝑥 = 0}  𝑎𝑛𝑑  𝐼𝑚 (𝑇) = {𝑇𝑥: 𝑥 ∈ 𝑋} 

for the kernel and range of 𝑇. 

Let 𝑋be a non-zero complex Banach space. The symbol 𝐿(𝑋)denotes the unitalBanach 

algebra of all bounded linear operators on 𝑋. Given any 𝑇 ∈ 𝐿(𝑋), we set 

𝜌(𝑇) = {𝜆 ∈ ℂ: 𝜆 − 𝑇 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝐿(𝑋)},     𝜎(𝑇) = ℂ\𝜌(𝑇), 

𝜌𝑒(𝑇) = {𝜆 ∈ ℂ: 𝜆 − 𝑇 𝑖𝑠 𝑎 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟},     𝜎𝑒(𝑇) = ℂ\𝜌𝑒(𝑇). 

These are referred to as the resolvent, spectrum, essential resolvent and essential 

spectrum of 𝑇respectively. 

Suppose that 𝑋is infinite dimensional and let 𝐾(𝑋)be the closed, proper ideal in 

𝐿(𝑋)consisting of all 𝑇 ∈ 𝐿(𝑋)which are compact. It follows from Atkinson’s theorem 

that, for each 𝑇 ∈ 𝐿(𝑋), 𝜎𝑒(𝑇)is precisely the spectrum of 𝑇 + 𝐾(𝑋)in the Calkin algebra 

𝐿(𝑋)/𝐾(𝑋). As such, 𝜎𝑒(𝑇)is a non-empty, compact subset of ℂwith 𝜎𝑒(𝑇)  ⊆ 𝜎(𝑇). An 

important connection between the essential and actual spectra of an operator is provided 

by the so-called punctured neighbourhood theorem, which we now quickly recall. 

Theorem (4.1.4) [4]:-  

       Let 𝑋be a complex Banach space, let 𝑇 ∈ 𝐿(𝑋)and let 𝑈be a component of 𝜌𝑒(𝑇). 

Then either 𝑈 ⊆ 𝜎(𝑇)or 𝑈 ∩ 𝜎(𝑇)is at most countable and each 𝜆 ∈ 𝑈 ∩ 𝜎(𝑇)is isolated 

in 𝜎(𝑇). 

Now let 𝜎be a non-empty compact subset of ℂ. We write 𝒪(𝜎)for the algebra of germs of 

holomorphic functions over 𝜎, equipped with the inductive compact open topology . We 

use the symbol 𝑧𝜎for the germ over 𝜎of the complex co-ordinate functional 𝑧on ℂ. Given 

disjoint compact subsets 𝜎and 𝜎′of ℂ, we denote by 1𝜎,𝜎′, the germ over 𝜎 ∪ 𝜎′obtained 

in the following manner. Let 𝑈,𝑈′be disjoint open neighbourhoods of 𝜎and 
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𝜎′respectively. Now let ℎbe the holomorphic function on 𝑈 ∪ 𝑈′which is 1on 𝑈and 0on 

𝑈′ and let 1𝜎,𝜎′be the germ of hover 𝜎 ∪ 𝜎′. It is clear that 1𝜎,𝜎′is an idempotent in 

𝒪(𝜎 ∪ 𝜎′)which does not depend on the particular choice of 𝑈and 𝑈′. 

For an element 𝑏 ∈ 𝐵of a unitalBanach algebra 𝐵, the main single-variable holomorphic 

functional calculus theorem asserts that there is a unique continuous unital algebra 

homomorphism 𝛩𝑏: 𝒪(𝜎(𝑏)) → 𝐵satisfying the condition 𝛩𝑏(𝑧𝜎(𝑏))  = 𝑏. It is standard 

that elements of 𝐼𝑚(𝛩𝑏)commute with b. If 𝜎 ⊆ 𝜎(𝑏)and both 𝜎and its complement 

𝜎′ = 𝜎(𝑏)\𝜎are compact, we define 𝑃𝑏(𝜎)  = 𝛩𝑏(1𝜎,𝜎 ′), and refer to this as the spectral 

projection of aover 𝜎. Each 1𝜎,𝜎 ′is an idempotent in 𝒪(𝜎(𝑏))and 𝛩𝑏is multiplicative, so 

each spectral projection 𝑃𝑏(𝜎)is an idempotent in 𝐵which commutes with 𝑏.The next 

lemma summarises some pertinent properties of these idempotents when 𝐵 = 𝐿(𝑋)for a 

Banach space 𝑋.  

Lemma (4.1.5) [4]:- 

      Let 𝑋be a non-zero complex Banach space and let 𝑇 ∈ 𝐿(𝑋). Let 𝜎 ⊆ 𝜎(𝑇)and 

suppose that both 𝜎and 𝜎(𝑇) \𝜎are compact when considered as subsets of ℂ. Then 

𝑃𝑇(𝜎)has the following properties: 

(i) The subspaces 𝐼𝑚(𝑃𝑇(𝜎))and 𝐾𝑒𝑟(𝑃𝑇(𝜎))are 𝑇-invariant closed subspaces of 

𝑋such that 𝑋 = 𝐼𝑚(𝑃𝑇(𝜎)) ⊕ 𝐾𝑒𝑟(𝑃𝑇(𝜎)). If σis a non-empty proper subset of 

𝜎(𝑇)then the spectra of the restrictions of 𝑇to 𝐼𝑚(𝑃𝑇(𝜎))and 𝐾𝑒𝑟(𝑃𝑇(𝜎))are 𝜎 

and 𝜎(𝑇)\𝜎respectively. The projection 𝑃𝑇(𝜎)is zero if and only if 𝜎is empty 

and is the identity operator if and only if 𝜎 = 𝜎(𝑇). 

(ii) If there is a number 𝑡 > 0such that |𝜆|  < 𝑡for all 𝜆 ∈ 𝜎and |𝜆| > 𝑡for all 𝜆 ∈

𝜎(𝑇)\𝜎then 𝐼𝑚(𝑃𝑇(𝜎)) = {𝑥 ∈ 𝑋: ‖𝑇
𝑛𝑥‖/𝑡𝑛 → 0 𝑎𝑠𝑛 → ∞}. 

(iii) If 𝜎consists of a single isolated point 𝜆of 𝜎(𝑇)and 𝜆 – 𝑇is Fredholm then 𝑃𝑇(𝜎)is 

a finite rank operator. In this case, there is a non-negative integer 𝑘for which 

𝐼𝑚(𝑃𝑇(𝜎))  = 𝐾𝑒𝑟((𝜆 − 𝑇)
𝑘). 

      It follows from (iii) that if 𝜎is a finite set of isolated points of 𝜎(𝑇)belonging to 

𝜌𝑒(𝑇)then 𝑃𝑇(𝜎)is a finite rank operator; it is simply the sum of the finite rank operators 

𝑃𝑇({𝜆})𝑓𝑜𝑟 𝜆 ∈ 𝜎(this is easy to see by writing 1𝜎,𝜎(𝑇)\𝜎as the sum of germs of the form 

1{𝜆},𝜎(𝑇)\{𝜆} 𝑓𝑜𝑟 𝜆 ∈ 𝜎). Assertion (ii) appears as an exercise , and relies on 

considerations approaching so-called local spectral theory. The explicit description of 

𝐼𝑚(𝑃𝑇(𝜎))provided to us by (ii) in the circumstances described will be very useful later. 

     Let 𝐵 be a commutative unital Banach algebra, and let 𝐼 ⊆ 𝐵be an ideal. We write 

𝓀(𝐼)  =  Φ𝐵  ∩  𝐼
⊥  =  {𝑥 ∈ Φ𝐵 ∶  𝐼 ⊆  𝑀(𝑥)},  
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and refer to this as the hull of 𝐼. Let 𝑥 ∈ Φ𝐵. Having agreed to use the symbol 𝜋𝐵(𝑥)to 

denote the set of all closed primary ideals in 𝐵 contained in the maximal ideal 𝑀(𝑥)  =

𝑥−1(0), we have 

𝜋𝐵(𝑥) = {𝐼 ∶  𝐼 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑑𝑒𝑎𝑙 𝑖𝑛 𝐵 𝑎𝑛𝑑 {𝑥}  =  𝓀(𝐼)}. 

Let 𝐴be a second commutative unital Banach algebra and let 𝐻𝑜𝑚(𝐴, 𝐵)be the set of all 

bounded linear operators 𝑇: 𝐴 → 𝐵which are multiplicative and which send the 

multiplicative identity in 𝐴to that in 𝐵. An operator of this type obviously induces a 

continuous map 

𝑇†: Φ𝐵 → Φ𝐴 

such that 𝑇†(𝑥)  = 𝑇 ∗ 𝑥for every 𝑥 ∈ Φ𝐵(where 𝑇∗: 𝐵∗ → 𝐴∗is the usual Banach space 

adjoint of 𝑇). Indeed, it is through this map that homomorphisms of commutative Banach 

algebras are typically studied. 

Let 𝑇be an endomorphism of 𝐵, and let 𝐼 ⊆ 𝐵be a closed 𝑇-invariant ideal. Letting 

𝑄𝐼: 𝐵 → 𝐵/𝐼be the quotient map, it is standard that 𝑄𝐼
†
maps Φ𝐵/𝐼homeo-morphically 

onto 𝓀(𝐼). In fact, it does us no particular harm to identify 𝑄𝐼
†
with the inclusion map of 

𝓀(𝐼)into Φ𝐵. The fact that 𝐼is T-invariant obviously makes h(I)in-variant under 𝑇†, so 

𝑇†restricts to give a map 𝜏: 𝓀(𝐼) → 𝓀(𝐼)(given, of course, by 𝜏(𝑥)  = 𝑇∗𝑥for each 𝑥 ∈

𝓀(𝐼)). Since the endomorphism 𝑇/𝐼is defined by the property that𝑄𝐼𝑇 = (𝑇/𝐼)𝑄𝐼, it is 

clear that 𝜏is topologically conjugate to (𝑇/𝐼)†. It follows, in particular, that when 𝐼is a 

closed ideal for which 𝑇/𝐼is invertible, 𝑇∗maps 𝓀(𝐼)ontoitself. This observation will 

turn out to be very important. 

Given a closed 𝑇-invariant ideal 𝐼for which 𝑇/𝐼is invertible in 𝐿(𝐵/𝐼), the hull 𝓀(𝐼)now 

clearly belongs to the collection 

𝒞 = {𝐸 ⊆ Φ𝐵 ∶  𝑇
∗𝐸 =  𝐸}. 

The union 𝐹(𝑇†) =  ⋃ 𝐸𝐸∈𝒞 is the so-called fixed setof 𝑇†, and is known to coincide 

with the intersection ∩𝑛=1
∞ 𝑇∗𝑛Φ𝐵. The following lemma is now a consequence of 

part(iii) of Theorem(4.1.1). 

Lemma (4.1.6) [4]:- 

Let 𝐵be a semi-prime commutative unital Banach algebra with connected character space 

Φ𝐵, and let 𝑇be a quasi-compact endomorphism of 𝐵. Suppose that 𝑇∗𝑥0 = 𝑥0for some 

𝑥0 ∈ Φ𝐵, and that 𝐼 ⊆ 𝐵is a closed 𝑇-invariant ideal for which 𝑇/𝐼is invertible. Then 𝐼 ∈

𝜋𝐵(𝑥0). 
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Proof:- 

By Theorem(4.1.1) , the sequence (𝑇𝑛)𝑛=1
∞ converges in norm to a projection of the form 

𝑏 ↦ 𝑦0(𝑏) ·1for some 𝑦0 ∈ Φ𝐵. As Feinstein and Kamowitz note , this implies that 

𝐹(𝑇†)  = {𝑦0}. The result now follows by noting that any fixed point of 𝑇†belongs to 

𝐹(𝑇†); our insistence that 𝑇∗𝑥0 = 𝑥0is simply to ensure that 𝑥0 = 𝑦0. 

The following Lemma reveals the source of the ideals mentioned in Theorem(4.1.2) ; 

they will be the kernels of certain spectral projections. 

Lemma (4.1.7) [4]:- 

Let 𝐵be a semi-prime commutative unitalBanach algebra with connected character space, 

and let 𝑇be a quasi-compact endomorphism of 𝐵. Let 

𝜎𝑟 =  𝜎(𝑇)  ∩ {𝜆 ∶  |𝜆|  ≥  𝑟} 

for any 𝑟𝑒(𝑇) < 𝑟 ≤ 1. Then 𝜎𝑟is finite, and 𝐼𝑟 = 𝐾𝑒𝑟(𝑃𝑇(𝜎𝑟))is a closed 𝑇-invariant 

ideal of finite codimension in 𝐵. 

Proof:- 

It is clear that 𝜎𝑟is a compact subset of ℂ. Applying Theorem(4.1.4) with 𝑈equal to the 

unbounded component of 𝜌𝑒(𝑇), we observe that, in addition, every 𝜆 ∈ 𝜎𝑟is isolated in 

𝜎(𝑇). As a compact subset of ℂwith no accumulation points, 𝜎𝑟is finite. It is clear from 

Lemma(4.1.5) (and the remarks immediately following it) that 𝐼𝑟 = 𝐾𝑒𝑟(𝑃𝑇(𝜎𝑟))is a 

closed 𝑇-invariant subspace of finite codimension in 𝐵. 

We have not yet established that 𝐼𝑟is an ideal. To do this, we first observe that since 𝜎(𝑇) 

is compact and every point of 𝜎𝑟is isolated in 𝜎(𝑇), the complement 𝜎(𝑇) \𝜎𝑟is also a 

compact subset of ℂ. This implies, in particular, that there is a 0 < 𝑡(𝑟) < 𝑟for such that 

𝜎𝑟 = 𝜎(𝑇) ∩ {𝜆: |𝜆| > 𝑡(𝑟)} 

𝑎𝑛𝑑      𝜎(𝑇)\𝜎𝑟 = 𝜎(𝑇) ∩ {𝜆: |𝜆| > 𝑡(𝑟)}.                         

Invoking part (ii) of Lemma(4.1.5), we see that 

𝐼𝑟 = {𝑏 ∈ 𝐵: ‖𝑇
𝑛𝑏‖/𝑡(𝑟)𝑛 → 0   𝑎𝑠 𝑛 → ∞}                        (2) 

The fact that Iris an ideal now follows from Theorem1which ensures, of course, that 𝑇is 

power bounded. 

It is clear from part (i) of Theorem(4.1.1)that 

𝐼𝑚 (𝑃𝑇(𝜎1)) = 𝐼𝑚 (𝑃𝑇({1})). 



        

62 
 

By part (ii) of the same theorem, this subspace has dimension 1. It follows that 𝐼1 =

𝐾𝑒𝑟(𝑃𝑇(𝜎1))is a maximal ideal. It is already clear that the ideal 𝐼𝑟is contained in the 

maximal ideal 𝐼1for each 𝑟𝑒(𝑇) < 𝑟 ≤ 1. With Lemma(4.1.6) at our disposal, the 

following observation helps us show (among other things) that 𝐼1is the onlymaximal 

ideal with this property. 

Lemma (4.1.8) [4]:- 

Let 𝐵and 𝑇be as in Lemma(4.1.7) and define 𝜎𝑟and 𝐼𝑟as before for 𝑟𝑒(𝑇) < 𝑟 ≤ 1. Then 

𝜎(𝑇/𝐼𝑟) = 𝜎𝑟for all such𝑟. 

Proof:- 

Let 𝑟𝑒(𝑇) < 𝑟 ≤ 1, and let 

𝑖𝑟: 𝐼𝑚 (𝑃𝑇(𝜎𝑟)) → 𝐵   𝑎𝑛𝑑  𝑄𝑟: 𝐵 → 𝐵/𝐼𝑟 

be the appropriate inclusion and quotient maps. Composing these in the obvious fashion, 

we obtain a Banach space isomorphism 

𝑈𝑟 = 𝑄𝑟𝑖𝑟: 𝐼𝑚 (𝑃𝑇(𝜎𝑟)) → 𝐵/𝐼𝑟 

Letting 𝑇𝑟be the restriction of 𝑇to 𝐼𝑚(𝑃𝑇(𝜎𝑟)), we have the equations 𝑖𝑟𝑇𝑟 = 𝑇𝑖𝑟and 

𝑄𝑟𝑇 = (𝑇/𝐼)𝑄𝑟. 

Taken together, these lead to the intertwining relation (𝑇/𝐼)𝑈𝑟 = 𝑈𝑟𝑇𝑟. Since this 

implies that 𝑇𝑟and 𝑇/𝐼have the same spectrum, the result now follows from part (i) of 

Lemma(4.1.5). 

We have now assembled everything we need in order to prove Theorem(4.1.2). However 

, before we do so, it is perhaps worth making explicit the respective rôles of Lemmas 

(4.1.6),(4.1. 7)and (4.1.8). Under the hypotheses of Theorem(4.1.2) , Lemma (4.1.7) 

provides us with a family of closed 𝑇-invariant ideals of finite codimension in 𝐵; these 

are simply the kernels of the spectral projections 𝑃𝑇(𝜎𝑅)for 𝑟𝑒(𝑇) < 𝑟 ≤ 1. Lemma 

(4.1.8) does two things. Unsurprisingly, it tells us that 

𝜎(𝑇) ∩ {𝜆: |𝜆| > 𝑟𝑒(𝑇)} = ⋃ 𝜎(𝑇/𝐼𝑟)

𝑟𝑒(𝑇)<𝑟≤1

. 

However, this is not its only rôle. At this stage in the proof, we do not yet know anything 

about the hulls 𝓀(𝐼𝑟), except that they all contain 𝑥0. It is here that Lemma(4.1.8)really 

comes to our rescue; the fact that 0 ∉ 𝜎𝑟means that each of the endomorphisms𝑇/𝐼𝑟is 
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invertible, and it is this information which (via Lemma(4.1.6) ) allows us to show that 

each 𝐼𝑟belongs to 𝜋𝐵(𝑥0). 

We now prove the following strong form of Theorem(4.1.2). 

Theorem (4.1.9) [4]:- 

Let 𝐵be a semi-prime commutative unitalBanach algebra with connected character space 

Φ𝐵, and let 𝑇be a quasi-compact endomorphism of 𝐵. Let 𝑥0 ∈ Φ𝐵satisfy 𝑇∗𝑥0 = 𝑥0. 

Then there is a family 𝐽of closed 𝑇-invariant ideals with the following properties 

(i) 𝜎(𝑇)  ∩ {𝜆 ∶ |𝜆|  > 𝑟𝑒(𝑇)}  = ⋃ 𝜎(𝑇/𝐼)𝐼∈𝐽 ; 

(ii) 𝐽 ⊆ 𝜋𝐵(𝑥0); 

(iii) the maximal ideal 𝑀(𝑥0)always belongs to 𝐽; 

(iv) each 𝐼 ∈ 𝐽is the kernel of a finite rank spectral projection associated with 𝑇; 

(v) 𝐽is at-most-countable, and its elements form a chain, in the sense that if 𝐼, 𝐼′ ∈

𝐽then either 𝐼 ⊆ 𝐼′ 𝑜𝑟 𝐼′ ⊆ 𝐼; 

(vi) for 𝑟𝑒(𝑇) < 𝑟 ≤ 1, there is some 𝐼 ∈ 𝐽for which 𝜎(𝑇|𝐼)is contained in the disk 

{𝜆 ∶ |𝜆|  < 𝑟}. 

Proof:- 

Invoking Lemma(4.1.7), and setting  

𝐽 = {𝐾𝑒𝑟 (𝑃𝑇(𝜎𝑅)): 𝑟𝑒(𝑇) < 𝑟 ≤ 1},                                            (3) 

we have immediately that 𝐽is a family of 𝑇-invariant closed ideals of finite codimension 

in 𝐵. Assertions (i)–(vi) are now proved as follows. 

(i) Since 𝜎(𝑇)  ∩ {𝜆 ∶ |𝜆|  > 𝑟𝑒(𝑇)}is the union of the sets  

𝑟𝑒 = 𝜎(𝑇) ∩ {𝜆: |𝜆| ≥ 𝑟} 

for 𝑟𝑒(𝑇)  < 𝑟 ≤ 1, this part is clear from Lemma 8. 

(ii) Making a second appeal to Lemma (4.1.8), we observe that for each ideal 𝐼 ∈ 𝐽, 

the spectrum 𝜎(𝑇/𝐼)consists solely of points of modulus strictly larger than 0. 

This means, in particular, that each of the operators (𝑇/𝐼)𝐼 ∈ 𝐽is invertible. 

Lemma(4.1.6) therefore implies that 𝐽 ⊆ 𝜋𝐵(𝑥0). 

(iii) Showing that 𝐼1 = 𝐾𝑒𝑟(𝑃𝑇(𝜎1))is a maximal ideal is achieved using the 

argument described in the comments before Lemma(4.1.8). Explicitly, a 

combination of Theorem(4.1.1) and Lemma(4.1.5) gives us 

𝐵 = 𝐼 𝑚 (𝑃𝑟({1}))⊕ 𝐼1. 
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Using part (ii) of Theorem(4.1.1), this implies that 𝐼1has codimension1 𝑖𝑛 𝐵. 

Having already shown that 𝐼1is an ideal, this gives us what we need. 

(iv) This is immediate from definition (3). 

(v) The fact that 𝐽is at-most-countable is a straightforward consequence of the 

punc-turedneighbourhood theorem (Theorem(4.1.4) ). That Jis a chain in the 

sense indicated is easily proved using description (2)from the proof of 

Lemma(4.1.7). 

(vi) Let 𝑟𝑒(𝑇)  < 𝑟 ≤ 1. Setting 𝐼 = 𝐾𝑒𝑟(𝑃𝑇(𝜎𝑟)), Lemma(4.1.5)tells us that 

𝜎(𝑇|𝐼) = 𝜎(𝑇)\𝜎𝑡 = 𝜎(𝑇) ∩ {𝜆: |𝜆| < 𝑟}. 

The proof is now complete. 

Function algebra is a semi simple commutative unital Banach algebra, considered as an 

algebra of continuous functions on its character space. Let 𝐵be such an algebra. Then, as 

we will recall, 𝐵is said to be: 

(a) Regular if for each closed subset 𝐹 ⊆ Φ𝐵and each point𝑥 ∈ Φ𝐵\𝐹, there is some 

𝑓 ∈ 𝐵satisfying 𝑓(𝑥)  = 1and 𝑓(𝐹)  ⊆ {0}; and 

(b) Strongly regular if𝜋𝐵(𝑥)  = {𝑀(𝑥)}for every 𝑥 ∈ Φ𝐵. 

When 𝐵is regular and 𝑥 ∈ Φ𝐵, we write 𝐽(𝑥)for the closure of the ideal 

𝐽0(𝑥) = {𝑓 ∈ 𝐵: 𝑓
−1(0) 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑥}. 

A celebrated result of Shilov ensures that when 𝐵is regular, 𝐽(𝑥)is the intersection of all 

the closed ideals 𝐼 ∈ 𝜋𝐵(𝑥). We exploit this to establish the following consequence of 

Theorem(4.1.9). 

Theorem (4.1.10) [4]:- 

Let 𝐵be a regular function algebra with connected character space Φ𝐵,. Let T be a Riesz 

endomorphism of 𝐵, and suppose that 𝑇∗𝑥0 = 𝑥0. Then 𝐽(𝑥0)is a 𝑇-invariant closed 

ideal, and 

{0} ∪ 𝜎(𝑇) = {0} ∪ (𝑇/𝐽(𝑥0)). 

Proof:- 

   Showing that 𝐽(𝑥0)is 𝑇-invariant is straightforward, and can be achieved by using the 

fact that 𝑇𝑓 = 𝑓 ∘ 𝑇†for each 𝑓 ∈ 𝐵. Let 𝐽 ⊆ 𝜋𝐵(𝑥0)be the family of ideals supplied by 

Theorem(4.1.9) , and fix any  𝜀. Then, by part (vi), there is some 𝐼 ∈ 𝐽such that 

𝜎(𝑇|𝐼) ⊆ {𝜆: |𝜆| < 𝜀}. 
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As the restriction of a Riesz operator to a closed 𝑇-invariant subspace, 𝑇|𝐼is also a Riesz 

operator. This implies, in particular, that 𝜌(𝑇|𝐼)is connected, hence that 𝜎(𝑇|𝑁)  ⊆

𝜎(𝑇|𝐼)for every 𝑇|𝐼-invariant closed subspace 𝑁 ⊆ 𝐼. Using Shilov’s result, we therefore 

see that 

𝜎(𝑇|𝐽(𝑥0)) ⊆ {𝜆: |𝜆| < 𝜀}. 

Since an identical conclusion is available for every 𝜀 > 0, 𝑇|𝐽(𝑥0)is quasi-nilpotent. The 

result now follows from the standard spectral inclusions 𝜎(𝑇) ⊆ 𝜎(𝑇|𝑁) ∪ 𝜎(𝑇|𝑁)and 

𝜎(𝑇|𝑁) ⊆ 𝜎(𝑇) ∪ 𝜎(𝑇|𝑁), which hold for any closed 𝑇-invariant subspace 𝑁of𝐵. The 

proofs associated with the latest inclusions can be found . 

The next result indicates, among other things, that a Riesz endomorphism of a strongly 

regular function algebra can never have a nontrivial spectrum. 

Corollary (4.1.11) [4]:- 

Let 𝐵be a regular function algebra with connected character space, and let 𝑇be a Riesz 

endomorphism of𝐵. Let 𝑥0be the element of Φ𝐵for which 𝑇∗𝑥0 = 𝑥0, and suppose that 

𝐽(𝑥0)has finite codimension in 𝐵. Then 𝜎(𝑇)  = {0, 1}. 

Proof:- 

By the previous result, the nonzero spectrum of 𝑇coincides with that of 𝑇/𝐽(𝑥0) (an 

operator on a finite dimensional space). This means that 𝜎(𝑇)is finite. Now choose any 

nonzero point 𝜆of 𝜎(𝑇). Since 𝑇is a Riesz operator, 𝜆is necessarily an eigenvalue. It 

follows that 𝜆𝑛 ∈ 𝜎(𝑇)for every 𝑛 ∈ ℕ, which leads to a contradiction unless 𝜆 = 1. 

Although the class of algebras to which Corollary (4.1.11) applies is very large, quite a 

number of standard regular function algebras lie entirely beyond its reach. Examples 

include the ‘big’ Lipschitz algebras 𝐿𝑖𝑝(𝑌)over compact metric spaces. However, even 

these algebras are not immune to the following theorem. 

Theorem (4.1.12) [4]:- Let 𝐵be a semi-prime commutative unitalBanach algebra with 

connected character space Φ𝐵. Let 𝑇be a quasi-compact endomorphism of 𝐵, and let 

𝑥0be a character for which 𝑇∗𝑥0 = 𝑥0. Suppose that 

𝜎(𝑇) ∩ {𝜆: |𝜆| > 𝑟𝑒(𝑇)} 

contains a point other than 1. Then there is a bounded point derivation 𝑑𝑎𝑡 𝑥0such that 

𝑇∗𝑑 ≠ 0. 
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Before proceeding with the proof, we remind that a bounded point derivation(on a 

commutative unital Banach algebra 𝐵) is bounded linear functional 𝑑 ∈ 𝐵∗such that 

𝑑(𝑢𝑣)  = 𝑥(𝑢)𝑑𝑣 + 𝑥(𝑣)duholds for some 𝑥 ∈ Φ𝐵and all 𝑢, 𝑣 ∈ 𝐵. 

In this case, 𝑑is said to be a bounded point derivation at 𝑥. It is standard that 𝐵supports a 

bounded point derivation at some 𝑥 ∈ Φ𝐵if and only if 𝑀(𝑥) ≠ 𝑀(𝑥)2̅̅ ̅̅ ̅̅ ̅̅ . 

Proof:- 

Our hypothesis on 𝜎(𝑇)means that there is some 𝑟 > 0for which the set 𝜎𝑟 = 𝜎(𝑇) ∩

{𝜆 ∶ |𝜆| ≥ 𝑟}contains at least two points. The ideal 𝐼𝑟 = 𝐾𝑒𝑟(𝑃𝑇(𝜎𝑟))therefore has 

codimension at least 2. As a non-trivial finite dimensional commutative unitalBanach 

algebra with exactly one maximal ideal, the quotient algebra 𝐵/𝐼𝑟supports at least one 

nonzero bounded point derivation; call this 𝑑0. Letting 𝑄:𝐵 → 𝐵/𝐼𝑟be the quotient map, 

set 𝑑 = 𝑄∗𝑑0; it is straightforward to verify that this is a bounded point derivation on 

𝐵at 𝑥0with 

𝑇∗𝑑 = 𝑄∗(𝑇/𝐼𝑟)
∗𝑑0. 

The result follows, since 𝑄∗is injective and (by Lemma(4.1.8) ), (𝑇/𝐼)∗is invertible.This 

result complements an existing result of 𝑈do Klein who proved an analogous assertion 

for compact endomorphisms of uniform algebras. 

Section(4.2) : Applications for Concrete Function Algebras :- 

It goes without saying that the results have some serious consequences for Riesz 

endomorphisms of strongly regular algebras such as 𝐶(𝑋)and 𝑙𝑖𝑝(𝑌)(where 𝑋is any 

connected compact Hausdorff space and 𝑌is any connected compact metric space); it is 

immediate from any of the three previous results that such operators all have spectra 

equal to {0, 1}. Our aim, at least, is to describe another large class of function algebras 

with this property. For simplicity, we work with function algebras defined on (the closure 

of) the open ball 𝛺in ℝ𝑑. However much of what we have to say applies equally to 

algebras on 𝕋𝑑and other connected compact smooth manifolds. 

   We write 𝐶𝑘(�̅�)for the algebra of 𝑘-times continu-ously differentiable functions 𝑢 ∶

𝛺 → ℂwhich, together with their partial derivatives 𝐷𝛼𝑢of orders |𝛼|  ≤ 𝑘, extend to be 

continuous on �̅�. This is a regular function algebra under the norm 

‖𝑢‖𝑘,∞,Ω = ∑
1

𝛼!
|𝛼|≤𝑘

lim
𝑥∈Ω
|(𝐷𝛼𝑢)(𝑥)|,           (𝑢 ∈ 𝐶𝑘(�̅�)). 

Setting 𝐶∞(�̅�) = ⋂ 𝐶𝑘(�̅�𝑘≥1 ), we now recall a famous result of Shilov; a particularly 

straightforward proof of this theorem can be found by Mirkil’s treatise. 
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Theorem (4.2.1) [4]:-(Shilov, 1950) 

      Let 𝐵be a Banach space of functions on �̅�(or any other compact smooth manifold), 

equipped with pointwise addition and a topology stronger than that of pointwise 

convergence on �̅�. Then 𝐶∞(�̅�) ⊂ 𝐵if and only if 𝐶𝑘(�̅�) ⊆ 𝐵for some 𝑘 ∈ ℕ.The 

following result is also due to Shilov, and can be found in, of Gelfand, Shilov and 

Raikov. 

Theorem (4.2.2) [4]:- 

      Let 𝐵′and 𝐵′′be regular function algebras with the same space 𝑋of maximal ideals; 

furthermore, let 𝐵′ ⊆ 𝐵′′with 𝐵′dense in 𝐵′′. If 𝐽′ ⊂ 𝐵′and 𝐽′′ ⊂ 𝐵′′are the minimal 

primary ideals corresponding to the same point 𝑥0 ∈ 𝑋and the quotient algebra 𝐵′/𝐽′is 

finite dimensional then 𝐵′′/𝐽′′is also finite dimensional, and its dimension is no greater 

than that of 𝐵′/𝐽′. 

With these two results at our disposal, we can give the following application of Corollary 

(4.1.11). The regularity of the domain 𝛺means that the next result applies, in particular, 

when 𝐵is one of the Sobolev algebras 

𝑊𝑠,𝑝(𝛺)  =  {𝑢 ∈ 𝐿𝑝(𝛺) ∶  𝐷𝛼𝑢 ∈ 𝐿𝑝(𝛺) 𝑓𝑜𝑟 |𝛼|  ≤  𝑠} 

with1 ≤ 𝑝, 𝑠 < +∞and 𝑠𝑝 > 𝑑. 

Theorem (4.2.3) [4]:- 

Let 𝐵be Banach algebra of continuous functions on �̅�for which 𝐶∞(�̅�)is dense in 𝐵. Let 

𝑇be a Riesz endomorphism of 𝐵. Then 𝜎(𝑇)  = {0,1}. 

Proof:- 

It is clear from Theorem(4.2.1)that, under our hypotheses, there is some 𝑘 ∈ ℕfor which 

𝐶𝑘(�̅�)is dense in 𝐵. Since the inclusion maps 𝐶𝑘(�̅�) → 𝐵and 𝐵 → 𝐶(�̅�)are both 

continuous, there are constants 𝐶1and 𝐶2such that 

‖𝑓‖0,∞,Ω ≤ 𝐶1‖𝑓‖𝐵 ≤ 𝐶2‖𝑓‖𝑘,∞,Ω 

for every 𝑓 ∈ 𝐶𝑘(�̅�). 

Since the spectral radius of any element of 𝐶𝑘(�̅�)is therefore the same with respect to 

𝐵as it is with respect to 𝐶𝑘(�̅�), it follows that these two algebras have ‘the same’ space 

of maximal ideals. This latest assertion is, of course, to be understood in the sense that 

the restriction map 𝑥 ↦ 𝑥|𝐶𝑘(�̅�)is a homeomorphism of Φ𝐵onto Φ𝐶𝑘(�̅�). Recalling that 

every minimal primary ideal in 𝐶𝑘(�̅�)is of the form 
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𝐽′ =  {u ∈ 𝐶𝑘(�̅�) ∶ (𝐷𝛼𝑢)(𝑥)  =  0 𝑓𝑜𝑟 |𝛼|  ≤  𝑘}, 

for some 𝑥 ∈ �̅�, an application of Theorem(4.2.2)(with 𝐵′ = 𝐶𝑘(�̅�)and 𝐵′′ = 𝐵) 

indicates that 𝐵/𝐽(𝑥)is finite dimensional for every 𝑥 ∈ Φ𝐵. The result is now an 

obvious consequence of Corollary (4.1.11). 

Our next application demonstrates a little of what can be achieved when we appeal to 

Theorem(4.1.9) more directly. For the remainder of this essay, 𝐵is a unitalBanach 

algebra of functions which are continuous on the open unit disk and holomorphic on its 

interior. We will also assume that 𝐵contains the inclusion map 𝑧: �̅� ⟶ ℂ. The only other 

restriction we will impose is that 

(𝑧 − 𝑝)𝑘𝐵 = {𝑓 ∈ 𝐵: 𝑓(𝑝) = 𝑓′(𝑝) = · · · = 𝑓(𝑘−1)(𝑝) = 0}                              (4) 

for each 𝑝 ∈ 𝔻(the opendisk) and each 𝑘 ∈ ℕ. We note that this condition is 

automatically satisfied when the polynomials (in 𝑧) are dense in 𝐵and there is a 𝑐𝑝 >

0for each 𝑝 ∈ 𝔻such that 

‖f‖ ≤ c𝑝‖(z −  p)f‖ 

for each 𝑓 ∈ 𝐵. The disk algebra 𝐴(�̅�)is easily seen to have this property.Our insistence 

that (4)holds is purely to give us access to the following theorem of Domar from 1982. 

Theorem (4.2.4) [4]:-  

Let 𝐵be a commutative unitalBanach algebra, let 𝑓 ∈ 𝐵, and suppose that, for each 𝑛 ∈

ℕ, the principal ideal 𝑀𝑛 = 𝑓
𝑛𝐵 has codimension𝑛. Then the 𝑀𝑛are theonly closed 

primary ideals of finite-codimension with 𝑀𝑛 ⊆ 𝑀1. 

In light of our assumptions on 𝐵, this implies that the only closed primary ideals at 𝑝 of 

finite codimension are of the form (4). 

We can now prove the following theorem; given the looseness of our assumptions on 𝐵, 

it subsumes a large number of existing algebra-specific results .  

Theorem (4.2.5) [4]:- 

Let 𝜙be a continuous self-map of �̅�for which 𝑓 ∘ 𝜙 ∈ 𝐵for every 𝑓 ∈ 𝐵. Suppose that 

the operator defined by 

𝑇𝑓 =  𝑓 ∘ 𝜙,      (𝑓 ∈  𝐵) 

isRiesz, and that 𝜙has a fixed point pin 𝔻, the open unit disk. Then 

𝜎(𝑇)  =  {0, 1}  ∪ {𝜙′(𝑝)𝑘 ∶  𝑘 ∈  ℕ}. 
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Proof:- 

Combining Domar’s theorem with assumption (4), we have 

𝜋𝐵(𝑝) =  {𝑀𝑘: 𝑘 ∈ ℕ},                                                   (5) 

where𝑀𝑘 = {𝑓 ∈ 𝐵: 𝑓(𝑝) = 𝑓′(𝑝) =···= 𝑓
(𝑘−1)(𝑝) = 0}for each 𝑘 ∈ ℕ. It is clear that 𝐵 

cannot have any idempotents other than the functions 𝑓 = 0and 𝑓 = 1so, by the Shilov 

idempotent theorem, Φ𝐵is connected. Invoking Theorem(4.1.9) , there is a family 𝐽 ⊆

𝜋𝐵(𝑝)of closed, primary ideals of finite codimension in 𝐵such that  

𝜎(𝑇) \ {0}  =⋃𝜎(𝑇/𝐼)

𝐼∈𝐽

. 

We know, of course, that each 𝐼 ∈ 𝐽is equal to 𝑀𝑘for some 𝑘 ∈ ℕ, and this makes the 

problem of determining 𝜎(𝑇)particularly tractable. Fixing any 𝑘 ∈ ℕ, let ℂ[𝑦]be the 

algebra of formal polynomials with coefficients in ℂ, and let 𝑗𝑝
𝑘be the operator from 

𝐵into ℂ[𝑦]/𝑦𝑘ℂ[𝑦]given by 

𝑗𝑝
𝑘𝑓 = ∑

1

𝑙!

𝑘−1

𝑙=0

𝑓(𝑙)(𝑝)𝑍𝑙 ,       (𝑓 ∈ 𝐵) 

where𝑍is the residue class of 𝑦in ℂ[𝑦]/𝑦𝑘ℂ[𝑦]. It is easy to see that givenany𝐼 ∈ 𝐽, there 

is a 𝑘 ∈ ℕfor which 𝑇/𝐼is similar to an endomorphism𝑇𝑘: ℂ[𝑦]/𝑦
𝑘ℂ[𝑦] → ℂ[𝑦]/𝑦𝑘ℂ[𝑦], 

where 

𝑇𝑘 (∑𝑎𝑙𝑍
𝑙

𝑘−1

𝑙=0

) = ∑𝑎𝑙

𝑘−1

𝑙=0

(𝑗𝑝
𝑘𝜙 − 𝑝)

𝑙
,   𝑘 ∈ ℕ                             (6) 

Here, we adopt the convention that, in all cases, (𝑗𝑝
𝑘𝜙 − 𝑝)0is the identity element in 

ℂ[𝑦]/𝑦𝑘ℂ[𝑦]. A routine calculation shows that the matrix of 𝑇𝑘(with respect to the basis 

1, 𝑍, 𝑍2, . . . , 𝑍𝑘−1) is lower triangular, with 1, 𝜙′(𝑝), 𝜙′(𝑝)2, . . . , 𝜙′(𝑝)𝑘−1along the 

diagonal. Thus, given any𝐼 ∈ 𝐽, 

𝜎(𝑇/𝐼)  =  {𝜙′(𝑝)𝑗 ∶ 𝑗 = 0, 1, . . . , 𝑘 −  1} 

for some 𝑘 ∈ ℕ. This is enough for us to be able to conclude that 

𝜎(𝑇)  ⊆  {0, 1}  ∪  {𝜙′(𝑝)𝑘: 𝑘 ∈ ℕ}. 

That {0, 1}  ⊆ 𝜎(𝑇)is obvious, so it only remains to show that 𝜙′(𝑝)𝑘 ∈ 𝜎(𝑇)for every 

𝑘 ∈ ℕ. If it were guaranteed that 𝐽 = 𝜋𝐵(𝑝), this would already be clear. However, this is 
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not what Theorem(4.1.9)tells us. To complete the proof, we consider the bounded linear 

functional on 𝐵given by 

𝛿𝑝
′ (𝑓)  =  𝑓′(𝑝) ,   (𝑓 ∈  𝐵). 

The chain rule now gives 𝑇∗𝛿𝑝
′ = 𝜙′(𝑝)𝛿𝑝

′ . As 𝑇is Riesz, this means that either 𝜙′(𝑝) =0, 

or 𝜙′(𝑝)is an eigen value of 𝑇. The result now follows from the fact that the set of eigen 

values of 𝑇is closed under powers.  We have said nothing about the situation when 𝑝 ∈

Φ𝐵\𝔻. Here, the result is much more dependent on the algebra under consideration. 

However, progress can still be made with the help of Theorem (4.1.12); the situation is 

particularly straightforward when 𝐵has no non-zero bounded point derivations at 

pointsof Φ𝐵\𝔻. 

Theorem (4.2.6) [8]. 

Let I be a secondary ideal of a commutative ring R. Then If Q is a weakly primary ideal 

(resp. weakly prime ideal) of R, then I ∩Q is secondary. 

  



        

71 
 

List of Symbols 

 

  

Symbol Page 

⊗     :   tensor product 

Dim  :   dimension 

Ker   :   kernel 

Rng  :   range 

Max  :   maximum 

Tr     :   trace 

Sup   :   supremum 

Det   :   determinanl 

Hom :  homomorphism 

⊕    :   orthogonal sum 

Re   :   real 

𝐿2   :    Hilbert Space 

Min :   minimum 

Res  :   Residue 

Diag :  diagonal 

Ind   :  indomorphism 

Inf   :  infimum 

Im   :  imaginary 

Lip  :  lipschity 

𝑊𝑠,𝑝: Sobolev algeber 
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