Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/8990
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElamin, Yousra ElfatihYousif Mohammed
dc.contributor.authorSupervisor - Eltahir Mohammed Houssien
dc.date.accessioned2014-12-17T07:52:43Z
dc.date.available2014-12-17T07:52:43Z
dc.date.issued2014-05-20
dc.identifier.citationElamin,Yousra ElfatihYousif Mohammed.Using Bayesian Network Inference to Modeling Lung Cancer Diagnosis/Yousra ElfatihYousifM.Elamin;Eltahir Mohammed Houssien.-khartoum:Sudan University of Science and Technology,College of Engineering,2014.-57p:ill;28cm.-M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/8990
dc.descriptionthesisen_US
dc.description.abstractThis study subjective to deal with probabilistic inference of lung cancer diagnosis involving features that are not directly related, and for which the conditional probability cannot be readily computed using a simple application of the Bayes' theorem that illustrates a simple Bayesian Network example for exact probabilistic inference using Pearl's message-passing algorithm to model the diagnostic of lung cancer. The model of diagnosis examined over 200 patients and the results were been satisfied.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectBiomedical Engineeringen_US
dc.subjectBayesian Networken_US
dc.subjectInference to Modeling Lungen_US
dc.subjectCancer Diagnosisen_US
dc.titleUsing Bayesian Network Inference to Modeling Lung Cancer Diagnosisen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Engineering

Files in This Item:
File Description SizeFormat 
Using Bayesian Network ...pdftitle101.15 kBAdobe PDFView/Open
Abstract.pdfAbstract196 kBAdobe PDFView/Open
Research.pdfResearch517.2 kBAdobe PDFView/Open
MATLAB program used as tool in this modeling.pdfappendix113.62 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.