

Dedication

I dedicate my dissertation work to my great family. A special feeling of gratitude to my greatest and loving parents,

Dr; ElfatihYousif Elamin andMrs; Aisha Ali Reheiman

whosedraw all successful steps in my life. To my lovely brothers and sisters Mohammed,Sumia, Ahmed and Sarah have never left my side and have supported me all time.

Ask Allah to keepthem to me forever.

Acknowledgement

I would like to thank the Department of Biomedical Engineering and collage of Graduate Studies at the Sudan University of Science and Technology for providing me opportunity to conduct my research and providing any assistance requested research and continuously providing me support both in terms of moral and technically. Great thankful present to my supervisor

Dr;Eltahir Mohammed Hussein

for all the support in my research and experimentations.

Finally I would like to thank the teachers, colleagues and administrators in our department that assisted me with this research. Their excitement and willingness to provide feedback made the completion of this research an enjoyable experience

Table of Contents

SN.	Content	Page No
1	Chapter One : Introduction	
1.1	General View.....	1
1.2	Problem Statement.....	3
1.3	Objectives.....	3
1.4	Methodology.....	3
1.5	Thesis Layout.....	4
2	Chapter Two : Literature Review	
2.1	Literature Review.....	5
3	Chapter Three : Theoretical Background	
3.1	Bayesian Network.....	7
3.1.1	Bayesian network basics.....	7
3.1.2	Bayesian Networks – Structure.....	8
3.1.3	Bayesian Networks – Probabilities.....	8
3.1.4	Bayesian Networks Pearl's Belief Propagation Algorithm.....	8
3.1.4.1	Purpose of Algorithm.....	8
3.1.4.2	Boundary Conditions.....	11
3.1.4.3	Dealing with Cycles.....	12
3.2	Lung Cancer.....	14
3.2.1	Introduction.....	14
3.2.2	Anatomy.....	14
3.2.3	Cancer and Its Causes.....	15

3.2.4	Symptoms and Their Causes.....	17
3.2.5	Diagnosis.....	18
3.2.6	Finding Lung Cancer Cells.....	18
3.2.7	Treatment.....	19
3.2.7.1	Surgery.....	20
3.2.7.2	Radiation Therapy.....	20
3.2.7.3	Chemotherapy.....	21
3.2.7.4	Targeted Therapy.....	21
4	Chapter Four: The proposed system (Methodology)	
4.1	Introduction.....	22
4.2	Samples collection.....	22
4.3	Creating the Bayesian Network.....	23
4.4	Visualizing the Bayesian Network as a Graph.....	24
4.5	Initializing the Bayesian Network.....	25
4.6	Expanding the Network.....	32
4.7	Drawing the Expanded Network.....	33
4.8	Performing g Exact Inference on Clustered Trees.....	34
4.9	Explaining Away the Lung Cancer.....	35
4.10	Results of using model.....	37
5	Chapter Five: Conclusion and Recommendations	
5.1	Conclusion.....	40
5.2	Recommendations.....	40
References		
	References.....	41

Appendix

MATLAB program used as tool in this modeling.....	43
---	----

List of Figures

SN.	Figure	Page No
Fig. 3.1	Section of a singly connected network around node X.....	9
Fig. 3.2	A multiple connected network.....	12
Fig 3.3	Possible solution.....	13
Fig 4.1	Bayesian Network – Graph structure.....	24
Fig 4.2	Bayesian Network Graph structure – CPT.....	25
Fig 4.3	Distribution of conditional probability.....	26
Fig 4.4	Initialized network with empty evidence set.....	27
Fig. 4.5	Initialized network with evidence B=true.....	27
Fig 4.6	Abnormal x-rays.....	28
Fig 4.7	Bronchitis and abnormal x-rays.....	29
Fig 4.8	The comparing of three situations by plotting probabilities	30
Fig. 4.9	Conditional probability with evidence of abnormal X-Ray Result.....	31
Fig 4.10	Bayesian Network – Graph structure – Expanded.....	32
Fig 4.11	Biograph object with 4 nodes and 3 edges.....	34
Fig 4.12	Explaining away with evidence of dyspnea.....	37

List of Tables

SN.	Table	Page No
	Table 4.1 Conditional Probability Table.....	23

Abstract

This study subjective to deal with probabilistic inference of lung cancer diagnosis involving features that are not directly related, and for which the conditional probability cannot be readily computed using a simple application of the Bayes' theorem that illustrates a simple Bayesian Network example for exact probabilistic inference using Pearl's message-passing algorithm to model the diagnostic of lung cancer.

The model of diagnosis examined over 200 patients and the results were been satisfied.

المُسْتَخْلَص

تم اختيار هذا النموذج على ٢٠٠ مريض من مرضى سرطان الرئة وكانت النتائج مرضية.