Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/8022
Title: Recognizing Arabic (Indian) Hand-written Digits by Using Markov Hidden Models
Other Titles: التعرف على الأرقام العربية (الهندية) المكتوبة باستخدام نماذج ماركوف الخفية
Authors: Abd Elrahman Fadel Elmola, Shaza Merghani
Supervisor - Mohamed El Hafiz Mustafa
Keywords: Markov Hidden Models
Arabic (Indian)
Hidden markov models (HMMs)
SUST-ARG
Baum-Welch algorithm
Issue Date: Oct-2008
Publisher: Sudan University of Science and Technology
Citation: Abd Elrahman Fadel Elmola, Shaza Merghani. Recognizing Arabic (Indian) Hand-written Digits by Using Markov Hidden Models/ Shaza Merghani Abd Elrahman Fadel Elmola؛ Mohamed El Hafiz Mustafa .-Khartoum : sudan university of science and technology,computer science,2008.-43p:ill;28cm.M.Sc.
Abstract: Hidden markov models (HMMs) are stochastic models which are widely used in speech recognition. Later HMMs began to be applied in handwriting recognition. This thesis tested the performance of HMMs on Indian handwritten digits recognition using SUST-ARG-digits dataset. SUST-ARG digits dataset is a newly established Indian handwritten numeral dataset collected by Sudan University of Science and Technology Arabic Recognition Group. Features are extracted from digits images using chain coding method. HMMs trained using Baum-Welch algorithm by a training dataset of size 1350 samples of the nine digits (150 samples for each digit). The best number of states has been searched experimentally. The experiments show that a model with 9 states gives the best results (97.78% recognition rate) on a testing data of size 180 of the nine digits (20 samples for each digit).
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/8022
Appears in Collections:Masters Dissertations : Computer Science and Information Technology

Files in This Item:
File Description SizeFormat 
Recognizing Arabic ( Indian )....pdfTitle23.83 kBAdobe PDFView/Open
Abstract.pdfAbstract126.41 kBAdobe PDFView/Open
chapter 1.pdf
  Restricted Access
chapter 20.88 kBAdobe PDFView/Open Request a copy
chapter 2.pdf
  Restricted Access
chapter 39.31 kBAdobe PDFView/Open Request a copy
chapter 3.pdf
  Restricted Access
chapter 200.86 kBAdobe PDFView/Open Request a copy
chapter 4.pdf
  Restricted Access
chapter 519.26 kBAdobe PDFView/Open Request a copy
chapter 5.pdf
  Restricted Access
chapter 9.29 kBAdobe PDFView/Open Request a copy
Table 4.2.pdfAppendix11.76 kBAdobe PDFView/Open
Reference.pdfReference11.13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.