Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/8022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbd Elrahman Fadel Elmola, Shaza Merghani
dc.contributor.authorSupervisor - Mohamed El Hafiz Mustafa
dc.date.accessioned2014-11-13T08:40:33Z
dc.date.available2014-11-13T08:40:33Z
dc.date.issued2008-10
dc.identifier.citationAbd Elrahman Fadel Elmola, Shaza Merghani. Recognizing Arabic (Indian) Hand-written Digits by Using Markov Hidden Models/ Shaza Merghani Abd Elrahman Fadel Elmola؛ Mohamed El Hafiz Mustafa .-Khartoum : sudan university of science and technology,computer science,2008.-43p:ill;28cm.M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/8022
dc.descriptionThesisen_US
dc.description.abstractHidden markov models (HMMs) are stochastic models which are widely used in speech recognition. Later HMMs began to be applied in handwriting recognition. This thesis tested the performance of HMMs on Indian handwritten digits recognition using SUST-ARG-digits dataset. SUST-ARG digits dataset is a newly established Indian handwritten numeral dataset collected by Sudan University of Science and Technology Arabic Recognition Group. Features are extracted from digits images using chain coding method. HMMs trained using Baum-Welch algorithm by a training dataset of size 1350 samples of the nine digits (150 samples for each digit). The best number of states has been searched experimentally. The experiments show that a model with 9 states gives the best results (97.78% recognition rate) on a testing data of size 180 of the nine digits (20 samples for each digit).en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoen_USen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMarkov Hidden Modelsen_US
dc.subjectArabic (Indian)en_US
dc.subjectHidden markov models (HMMs)en_US
dc.subjectSUST-ARGen_US
dc.subjectBaum-Welch algorithmen_US
dc.titleRecognizing Arabic (Indian) Hand-written Digits by Using Markov Hidden Modelsen_US
dc.title.alternativeالتعرف على الأرقام العربية (الهندية) المكتوبة باستخدام نماذج ماركوف الخفيةen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Computer Science and Information Technology

Files in This Item:
File Description SizeFormat 
Recognizing Arabic ( Indian )....pdfTitle23.83 kBAdobe PDFView/Open
Abstract.pdfAbstract126.41 kBAdobe PDFView/Open
chapter 1.pdf
  Restricted Access
chapter 20.88 kBAdobe PDFView/Open Request a copy
chapter 2.pdf
  Restricted Access
chapter 39.31 kBAdobe PDFView/Open Request a copy
chapter 3.pdf
  Restricted Access
chapter 200.86 kBAdobe PDFView/Open Request a copy
chapter 4.pdf
  Restricted Access
chapter 519.26 kBAdobe PDFView/Open Request a copy
chapter 5.pdf
  Restricted Access
chapter 9.29 kBAdobe PDFView/Open Request a copy
Table 4.2.pdfAppendix11.76 kBAdobe PDFView/Open
Reference.pdfReference11.13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.