Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/28359
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Ahmed Mohamed Nageeb Alwasela-
dc.contributor.authorSupervisor, -Mohsin Hassan Abdalla Hashim-
dc.date.accessioned2023-04-10T06:50:36Z-
dc.date.available2023-04-10T06:50:36Z-
dc.date.issued2023-01-19-
dc.identifier.citationAhmed, Ahmed Mohamed Nageeb Alwasela . New Direction in Derivative Free Optimization \ Ahmed Mohamed Nageeb Alwasela ahmed ; Mohsin Hassan Abdalla Hashim .- Khartoum:Sudan University of Science and Technology,College of Science,2023.-105 p.:ill.;28cm.-Ph.Den_US
dc.identifier.urihttps://repository.sustech.edu/handle/123456789/28359-
dc.descriptionThesisen_US
dc.description.abstractIn this thesis, we study a derivative-free trust-region algorithm for large-scale unconstrained optimization, using symmetric-rank1 (SR1) to update the Hessian at every iteration. The centeral finite-difference iterations are used to approximate the gradient of the function. The iterative solution method and truncated Newton method were used to solve the trust-region sub-problem. Its performance is tested on some problems and compared the solutions found by truncated Newton method and iterative solution method.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science & Technologyen_US
dc.subjectScienceen_US
dc.subjectMathematicsen_US
dc.subjectDerivativeen_US
dc.subjectFree Optimizationen_US
dc.titleNew Direction in Derivative Free Optimizationen_US
dc.title.alternativeاتجاه جديد في الامثلية خالية المشتقةen_US
dc.typeThesisen_US
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
New Direction in ... .pdfResearch2.41 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.