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Abstract 
 
       In this thesis, we study a derivative-free trust-region algorithm for 

large-scale unconstrained optimization, using symmetric-rank1 (SR1) to 

update the Hessian at every iteration. The centeral finite-difference 

iterations are used to approximate the gradient of the function. The 

iterative solution method and truncated Newton method were used to 

solve the trust-region sub-problem. Its performance is tested on some 

problems and   compared the solutions found by truncated Newton method 

and iterative solution method.  
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 الخلاصة

 

انثقت  خانيت انًشتقت نلأيثهيت غيز -    في هذِ الاطزوحت قًُا بذراست خىارسييت يُطقت 

تى . نتحذيث هيسياٌ في كم تكزار (SR1)انًقيذة عهي َطاق واسع وباستخذاو انزتبت 

طزيقت انحم انتكزاري .استخذاو تكزاراث انفزق انًُتهي انًزكشي نتقزيب اَحذار انذانت 

تى اختبار ادائها . انثقت- وطزيقت َيىتٍ انًقطىعت تى استخذايهًا نحم انًسأنت انجشئيت نًُطقت

عهي بعض انًسائم ويقارَت انحهىل انتي وجذث بىاسطت طزيقت َيىتٍ انًقطىعت وطزيقت 

 .انحم انتكزاري 
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Chapter 1 
1.1 Introduction: 

 Many industrial and engineering applications need to solve optimization 

problems in which the derivatives of the objective function are unavailable.  

They try to avoid unnecessary evaluations in the objective function. The 

absences of computable derivatives prohibit the use of Taylor models 

largely used in differentiable problems. Moreover, in general, the 

optimization without derivatives is not easy, since we attempt to obtain a 

minimum point with less information [5].Derivative free optimization 

(DFO) methods are designed for solving nonlinear optimization without 

constraints where the derivative of the objective function are not available.  

We consider formally the problem  

min
𝑥∈𝑅𝑛

𝑓(𝑥) 

Where 𝑓is a smooth nonlinear objective function from 𝑅𝑛  into R and is 

bounded below. We assume that the gradient ∇𝑓(𝑥) and the Hessian 

∇2𝑓(𝑥) can not be computed for any 𝑥. There is a high demand from 

practitioners for such methods because this kind of problems occur 

relatively frequently in the industry. In applications either the evaluation of 

the objective function 𝑓(𝑥) is very difficult or expensive, or the derivatives 

of 𝒇are not available. The last situation occurs when the computation of 

𝒇(𝒙) at a given point 𝒙 results from some physical, chemical or 

econometrical experiment or measurement, or is a result of large and 

expensive computer simulation for which the source code is either not 

available or un modifiable, which can be considered as a black box. In 

practice the value of 𝑓(𝑥) is contaminated with noise or may be non-

smooth; but we don't consider these cases in this proposal. 

There are mainly four classes of derivative-free optimization methods.  

The first class of DFO algorithms are the direct search or pattern search 
methods which are based on the exploration of the variable space by using 
sample points from a predefined class geometric pattern and use either the 
Melder-Need simplex algorithm or parallel direct search  
algorithm.They do not exploit the inherit smoothness of the objective 
function and require therefore a very large number of function evaluations. 
They can be useful for non-smooth problems.  
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The second class of DFO's are line search methods which consists of a 
sequence of  𝑛 +  1 one-dimensional searches introduced by Powell. The 
combination of finite difference techniques coupled with quasi-Newton 
method constitutes the third class of the algorithms. The last class of the 
methods are based on modeling the objective function by multivariate 
interpolation in combination with the trust-region techniques.These 
methods were introduced by Winfried and by Powell. In this search we 
consider this class of DFO algorithms [1,10,12]. 
1.2 Statement of the problem: 

Designing a method to solve 

min
𝑥∈𝑅𝑛

𝑓(𝑥) 

Without the use of derivatives. it improves the way the derivatives are 

approximated .  

1.3 Objectives: 

 Attaining efficiency in the solution of the problem.  

 Enhancing trust region based methods. 

 Studying the performance of the proposed method. 

1.4 Methodology: 

 Polynomial interpolation is used to approximate the function 𝑓(𝑥) at a 

points {𝑦1, 𝑦2, 𝑦3 , …… , 𝑦𝑁}  where 𝑁 =
 𝑛+1 (𝑛+2)

2
 .These points are 

randomly selected using a proposed technique.. 

 trust region method is used in every iteration to produce an acceptable 

decrease in the function value. 

 Merging the search-based method for enhancement. 

1.5 Thesis Layout: 

 In Chapter 2  Fundamentals of Unconstrained Optimization. Line Search 

and Trust Regions. Some well-known method are studied. 

Chapter 3 Trust Region and solution of its sub-problem. Details of Quasi-

Newton's Methods in Chapter 4. 
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  Chapter 5 discusses the main algorithms  and results. MATLAB 

Computational of the Proposed Algorithm and  The thesis Conclusion. 
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Chapter 2 
Fundamentals of Unconstrained Optimization 

2.1 Introduction: 
In unconstrained optimization, we minimize an objective function that 
depends on real variables, with no restrictions at all on the values of these 
variables. The mathematical formulation is 
                                                     𝑚𝑖𝑛𝑥𝑓(𝑥)                                                                (2.1) 
Where𝑥 ∈ 𝐼𝑅𝑛 is a real vector with 𝑛 ≥ 1 components and 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅is a 
smooth function.Usually, we lack a global perspective on the function𝑓 . All 
we know are the values of 𝑓 and maybe some of its derivatives at a set of 
points 𝑥0, 𝑥1, 𝑥2, . . ..fortunately, our algorithms get to choose these points, 
and they try to do so in a way that identifies a solution reliably and without 
using too much computer time or storage. Often, the information about 
𝑓does not come cheaply, so we usually prefer algorithms that do not call for 
this information unnecessarily[1,12]. 
2.2 What is a Solution? 

Generally, we would be happiest if we found a global minimizer of 𝑓 , a 
point where the function attains its least value. A formal definition is a 
point 𝑥∗ is a global minimizer if 𝑓(𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥, where 𝑥 ranges over 
all of 𝐼𝑅𝑛  (or at least over the domain of interest to the modeler). The 
global minimizer can be difficult to find, because our knowledge of 𝑓 is 
usually only local.Since our algorithm does not visit many points, we 
usually do not have a good picture of the overall shape of 𝑓 , and we can 
never be sure that the function does not take a sharp dip in some region 
that has not been sampled by the algorithm. Most algorithms are able to 
find only a local minimizer, which is a point that achieves the smallest value 
of 𝑓 in its neighborhood. Formally, we say: 
A point 𝑥∗ is a local minimizer if there is a neighborhood 𝛾 of 𝑥∗ such that 
𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝛾 .(Recall that a neighborhood of 𝑥∗ is simply an 
open set that contains 𝑥∗) A point that satisfies this definition is sometimes 
called a weak local minimizer. This terminology distinguishes it from a 
strict local minimizer, which is the outright winner in its neighborhood. 
Formally, A point 𝑥∗ is a strict local minimizer (also called a strong local 
minimizer) if there is a neighborhood 𝛾 of 𝑥∗ such that  𝑓 (𝑥∗) < 𝑓(𝑥) for all 
𝑥 ∈ 𝛾 with 𝑥 ≠ 𝑥∗.For the constant function 𝑓 𝑥 = 2, every point 𝑥 is a 
weak local minimizer, while the function 𝑓 𝑥 = (𝑥 − 2)4 has a strict local 
minimizer at 𝑥 = 2.A slightly more exotic type of local minimizer is defined 
as follows. 
A point 𝑥∗is an isolated local minimizer if there is a neighborhood 𝛾 of  𝑥∗ 
such that  𝑥∗is the only local minimizer in 𝛾.Some strict local minimizers 
are not isolated, as illustrated by the function 
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𝑓 𝑥 = 𝑥4 cos  
1

𝑥
 + 2𝑥4 , 𝑓 0 = 0 

Which is twice continuously differentiable and has a strict local minimizer 
at 𝑥∗ = 0. 
However, there are strict local minimizers at many nearby points 𝑥𝑗  , and 

we can label these points so that 𝑥𝑗 → 0  as 𝑗 → ∞ .While strict local 

minimizers are not always isolated, it is true that all isolated local 
minimizers are strict. 
Figure 2.1 illustrates a function with many local minimizers. It is usually 
difficult to find the global minimizer for such functions, because algorithms 
tend to be “trapped”at local minimizers. This example is by no means 
pathological. In optimization problems associated with the determination 
of molecular conformation, the potential function to be minimized may 
have millions of local minima. 

 
 

Figure 2.1    A difficult case for Global Minimization. 
Sometimes we have additional “global” knowledge about f that may help in 
identifying global minima. An important special case is that of convex 
functions, for which every local minimizer is also a global minimizer. 
Recognizing a Local Minimum: 
From the definitions given above, it might seem that the only way to find 
out whether a point 𝑥∗ is a local minimum is to examine all the points in its 
immediate vicinity, to make sure that none of them has a smaller function 
value. When the function 𝒇 is smooth, however, there are more efficient 
and practical ways to identify local minima. In particular, if 𝒇 is twice 
continuously differentiable, we may be able to tell that 𝑥∗  is a local 
minimizer (and possibly a strict local minimizer) by examining just the 
gradient 𝛻𝑓(𝑥∗) and the Hessian𝛻2𝑓(𝑥∗).The mathematical tool used to 
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study minimizers of smooth functions is Taylor’s theorem. Because this 
theorem is central to our analysis throughout the search, we state it now. 
Theorem 2.1 (Taylor’s Theorem). 
Suppose that 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅 is continuously differentiable and that 𝑝 ∈ 𝐼𝑅𝑛 . 
Then we have that 
                        𝑓 𝑥 + 𝑝 = 𝑓(𝑥) + 𝛻 𝑓(𝑥 + 𝑡𝑝)𝑇  𝑝                                              (2.2) 
For some 𝑡 ∈ (0, 1). Moreover, if 𝑓 is twice continuously differentiable, we 
have that 

                         𝛻 𝑓 𝑥 + 𝑝 = 𝛻𝑓 𝑥 +  𝛻2 𝑓 𝑥 + 𝑡𝑝 𝑝𝑑𝑡
1

0
                              (2.3) 

and that 

                      𝑓 𝑥 + 𝑝 = 𝑓(𝑥) + 𝛻 𝑓 (𝑥)𝑇𝑝 +
1

2
𝑝𝑇𝛻2𝑓(𝑥 + 𝑡𝑝)𝑝,                 (2.4) 

For some 𝑡 ∈ (0, 1). 
Necessary conditions for optimality are derived by assuming that 𝑥∗ is a 
local minimize and then proving facts about 𝛻𝑓(𝑥∗) and 𝛻2𝑓(𝑥∗). 
Theorem 2.2 (First-Order Necessary Conditions): 
If 𝑥∗ is a local minimizer and  𝑓 is continuously differentiable in an open 
neighborhood of 𝑥∗, then 𝛻𝑓 𝑥∗ = 0  . 
Proof. 
 Suppose for contradiction that  𝛻𝑓 𝑥∗ ≠ 0. Define the vector 𝑝 = −𝛻𝑓 𝑥∗  
and note that  𝑝𝑇𝛻𝑓 𝑥∗ = − 𝛻𝑓 𝑥∗  2 <  0. Because 𝛻𝑓 is continuous 
near 𝑥∗, there is ascalar 𝑇 > 0 such that 
𝑝𝑇𝛻𝑓(𝑥∗ + 𝑡𝑝) < 0, for all 𝑡 ∈ [0, 𝑇 ].For any 𝑡 ∈ (0, 𝑇 ], we have by Taylor’s 
theorem that 
𝑓  𝑥∗ +  𝑡  𝑝 =  𝑓  𝑥∗ +  𝑡  𝑝𝑇𝛻𝑓(𝑥∗ + 𝑡𝑝), for some 𝑡 ∈ (0, 𝑡 ). 
Therefore, 𝑓(𝑥∗ + 𝑡 𝑝) < 𝑓 𝑥∗ for all 𝑡 ∈  (0, 𝑇 ]. We have found a direction 
leading away from 𝑥∗  along which 𝑓  decreases, so 𝑥∗  is not a local 
minimizer, and we have acontradiction. We call 𝑥∗ a stationary point if 
𝛻𝑓 𝑥∗ = 0. According to Theorem 2.2, any local minimizer must be a 
stationary point. 
For the next result we recall that a matrix 𝑩 is positive definite if 𝑝𝑇𝐵𝑝 > 0 
for all 𝑝 ≠ 0, and positive semi definite if 𝑝𝑇𝐵𝑝 ≥ 0 for all 𝑝. 
Theorem 2.3 (Second-Order Necessary Conditions): 
If 𝑥∗is a local minimizer of 𝒇 and 𝛻2𝑓 exists and is continuous in an open 
neighborhood of  𝑥∗, then 𝛻𝑓 𝑥∗ = 0 and 𝛻2𝑓( 𝑥∗) is positive semi definite. 
Proof. 
We know from Theorem 2.2, that 𝛻𝑓 𝑥∗ = 0. For contradiction, assume 
that 𝛻2𝑓( 𝑥∗) is not positive semi definite. Then we can choose a vector 𝑝 
such that  𝑝𝑇𝛻2𝑓( 𝑥∗)𝑝 < 0, and because 𝛻2𝑓 is continuous near  𝑥∗, there 
is a scalar 𝑇 > 0 such that 𝑝𝑇𝛻2𝑓( 𝑥∗ + 𝑡𝑝)𝑝 < 0 for all 𝑡 ∈ [0, 𝑇 ]. 
By doing a Taylor series expansion around  𝑥∗, we have for all 𝑡 ∈ (0, 𝑇 ] 
and some 𝑡 ∈ (0, 𝑡 ) that 
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𝑓( 𝑥∗ + 𝑡 𝑝)= 𝑓 ( 𝑥∗) + 𝑡  𝑝𝑇𝛻𝑓 𝑥∗ +
1

2
𝑡  2𝑝𝑇𝛻2𝑓 𝑥∗ + 𝑡𝑝 𝑝 < 𝑓( 𝑥∗). 

As in Theorem 2.2, we have found a direction from 𝑥∗ along which 𝑓 is 
decreasing, and so again, 𝑥∗ is not a local minimize. 
Theorem 2.4 (Second-Order Sufficient Conditions): 
Suppose that 𝛻2𝑓 is continuous in an open neighborhood of 𝑥∗ and that 
𝛻𝑓 𝑥∗ = 0 and 𝛻2𝑓(𝑥∗)  is positive definite. Then 𝑥∗  is a strict local 
minimizer of  𝑓. 
Theorem 2.5: 
When 𝑓 is convex, any local minimize 𝑥∗ is a global minimizer of  𝑓. If in 
addition 𝑓  is differentiable, then any stationary point 𝑥∗  is a global 
minimizer of 𝑓 . 
Proof.  
Suppose that x. is a local but not a global minimizer. Then we can find a 
point  𝑧 ∈ 𝐼𝑅𝑛  with  𝑓(𝑧) < 𝑓(𝑥∗). Consider the line segment that joins 𝑥∗ to 
z, that is, 
                                 𝑥 = 𝜆z +  1 − 𝜆 𝑥∗ ,for some  𝜆 ∈ (0, 1].                          (2.5) 

by the convexity property for 𝑓 , we have 
                              𝑓 𝑥 ≤ 𝜆𝑓 𝑧 +  1 − 𝜆 𝑓(𝑥∗) <  𝑓(𝑥∗)                                (2.6) 
any neighborhood 𝑁 of 𝑥. contains a piece of the line segment (2.5), so 
there will always be points 𝑥 ∈  𝑁 at which (2.6) is satisfied. Hence, 𝑥∗ is 
not a local minimizer.For the second part of the theorem, suppose that 𝑥∗ is 
not a global minimizer and choose 𝑧 as above. Then, from convexity, we 
have 

𝛻𝑓 𝑥∗ 𝑇 𝑧 − 𝑥∗ =
𝑑

𝑑𝜆
𝑓 𝑥∗ + 𝜆 𝑧 − 𝑥∗     𝜆=0 

lim
𝜆↓0

𝑓 𝑥∗ + 𝜆 𝑧 − 𝑥∗  − 𝑓 𝑥∗ 

𝜆
≤ lim

𝜆↓0

𝜆𝑓 𝑧 + (1 − 𝜆)𝑓 𝑥∗ − 𝑓 𝑥∗ 

𝜆
 

𝑓 𝑧 − 𝑓(𝑥∗) < 0. 
Therefore, 𝛻𝑓(𝑥∗)  ≠ 0, and so 𝑥∗ is not a stationary point. 
Nonsmooth problems: 
This search focuses on smooth functions, by which we generally mean 
functions whose second derivatives exist and are continuous. We note, 
however, that there are interesting problems in which the functions 
involved may be nonsmooth and even discontinuous. It is not possible in 
general to identify a minimizer of a general discontinuous function. If, 
however, the function consists of a few smooth pieces, with discontinuities 
between the pieces, it may be possible to find the minimizer by minimizing 
each smooth piece individually. If the function is continuous everywhere 
but non-differentiable at certain points, as in Figure 2.2, we can identify a 
solution by examing the subgradient or generalized gradient, which are 
generalizations of the concept of gradient to the nonsmooth case[1,12]. 
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Figure 2.2  Nonsmooth function with minimum at a kink. 

Here, we mention only that the minimization of a function such as the one 
illustrated in Figure 2.2(which contains a jump discontinuity in the first 
derivative 𝑓 ′ (𝑥) at the minimum) is difficult because the behavior of 𝑓 is 
not predictable near the point of nonsmoothness. That is, we cannot be 
sure that information about 𝑓 obtained at one point can be used to infer 
anything about 𝑓  at neighboring points, because points of 
nondifferentiability may intervene. However, minimization of certain 
special nondifferentiable functions, such as 
                                  𝑓 𝑥 =  𝑟(𝑥) 1 , 𝑓 𝑥 =  𝑟(𝑥) ∞                                      (2.7) 
(where𝑟(𝑥) is a vector function), 
2.3 Overview of Algorithms:  
All algorithms for unconstrained minimization require the user to supply a 
starting point, which we usually denote by 𝑥0. The user with knowledge 
about the application and the data set may be in a good position to choose 
𝑥0 to be a reasonable estimate of the solution. Otherwise, the starting point 
must be chosen by the algorithm, either by a systematic approach or in 
some arbitrary manner. 
Beginning at 𝑥0, optimization algorithms generate a sequence of iterates 
{𝑥𝑘}𝑘=0

∞  
that terminate when either no more progress can be made or when 

it seems that a solutionpoint has been approximated with sufficient 
accuracy. In deciding how to move from one iterate 𝑥𝑘  to the next, the 
algorithms use information about the function 𝑓 at 𝑥𝑘  , and possibly also 
information from earlier iterates 𝑥0, 𝑥1, . . . , 𝑥𝑘−1. They use this information 
to find a new iterate 𝑥𝑘+1 with a lower function value than 𝑥𝑘 . (There exist 
nonmonotone algorithms that do not insist on a decrease in 𝑓 at every step, 
but even these algorithms require 𝑓 to be decreased after some prescribed 
number 𝑚 of iterations, that is,  𝑓(𝑥𝑘) < 𝑓 (𝑥𝑘−𝑚 ). 
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There are two fundamental strategies for moving from the current point 𝑥𝑘  
to a new iterate 𝑥𝑘+1 . Most of the algorithms described in this search follow 
one of these approaches. 
Two Strategies: Line Search and Trust Region: 
In the line search strategy, the algorithm chooses a direction 𝑝𝑘  and 
searches along this direction from the current iterate 𝑥𝑘  for a new iterate 
with a lower function value. The distance to move along 𝑝𝑘  can be found by 
approximately solving the following one dimensional minimization 
problem to find a step length 𝛼: 
                                        𝑚𝑖𝑛𝛼>0𝑓(𝑥𝑘 + 𝛼𝑝𝑘)                                                         (2.8) 
By solving (2.8) exactly, we would derive the maximum benefit from the 
direction 𝑝𝑘 , but an exact minimization may be expensive and is usually 
unnecessary. Instead, the line search algorithm generates a limited number 
of trial step lengths until it finds one that loosely approximates the 
minimum of (2.8). At the new point, a new search direction and step length 
are computed, and the process is repeated. 
In the second algorithmic strategy, known as trust region, the information 
gathered about 𝑓 is used to construct a model function 𝑚𝑘  whose behavior 
near the current point 𝑥𝑘  is similar to that of the actual objective function  . 
Because the model 𝑚𝑘may not be agood approximation of 𝑓 when 𝑥 is far 
from 𝑥𝑘  , we restrict the search for a minimizer of 𝑚𝑘 to some region 
around 𝑥𝑘  . In other words, we find the candidate step 𝑝 by approximately 
solving the following subproblem: 
            𝑚𝑘(𝑥𝑘  +  𝑝)𝑝

𝑚𝑖𝑛 , where 𝑥𝑘 + 𝑝  lies inside the trust region.           (2.9) 

If the candidate solution does not produce a sufficient decrease in  𝑓 , we 
conclude that the trust region is too large, and we shrink it and re-solve 
(2.9). Usually, the trust region is a ball defined by   𝑝 2 ≤ ∆ where the 
scalar ∆ > 0 is called the trust-region radius. Elliptical and box-shaped trust 
regions may also be used.The model 𝑚𝑘  in (2.9) is usually defined to be a 
quadratic function of the form 

                                     𝑚𝑘 𝑥𝑘 + 𝑝 = 𝑓𝑘 + 𝑝𝑇∇𝑓𝑘 +
1

2
𝑝𝑇𝐵𝑘𝑝                          (2.10) 

where 𝑓𝑘 , 𝛻𝑓𝑘 , and 𝐵𝑘  are a scalar, vector, and matrix, respectively. 
As the notation indicates, 𝑓𝑘  and 𝛻𝑓𝑘  are chosen to be the function and 
gradient values at the point 𝑥𝑘  , so that 𝑚𝑘and 𝑓 are in agreement to first 
order at the current iterate 𝑥𝑘  . The matrix 𝐵𝑘  is either the Hessian 𝛻2𝑓𝑘or 
some approximation to it. 
Example 2.1:Suppose that the objective function is given by 
𝑓 𝑥 = 10(𝑥2 − 𝑥2

1 )2 + (1 − 𝑥1)2. at the point 𝑥𝑘 = (0, 1) 
It's gradient and Hessian are 

∇𝑓𝑘 =  
−2
20

  ,     ∇2𝑓𝑘 =  
−38 0

0 20
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Figure 2.3  Two Possible Trust Regions (Circles) and their 

Corresponding Steps 𝒑𝒌. 
The solid lines are contours of the model function 𝑚𝑘  .The contour lines of 
the quadratic model (2.10) with 𝐵𝑘 =  𝛻2𝑓𝑘  are depicted in Figure 
2.3,which also illustrates the contours of the objective function 𝑓 and the 
trust region. We have indicated contour lines where the model 𝑚𝑘  has 
values 1 and 12. Note from Figure 2.3 that each time we decrease the size of 
the trust region after failure of a candidate iterate,the step from 𝑥𝑘  to the 
new candidate will be shorter, and it usually points in a different direction 
from the previous candidate. The trust-region strategy differs in this 
respect from line search, which stays with a single search direction. In a 
sense, the line search and trust-region approaches differ in the order in 
which they choose the direction and distance of the move to the next 
iterate. Line search starts by fixing the direction 𝑝𝑘  and then identifying an 
appropriate distance, namely the step length 𝛼𝑘 . In trust region, we first 
choose a maximum distance—the trust-region radius ∆𝑘—and then seek a 
direction and step that attain the best improvement possible subject to this 
distance constraint. If this step proves to be unsatisfactory, we reduce the 
distance measure ∆𝑘  and try again. 
2.4 Line Search Methods: 
Each iteration of a line search method computes a search direction 𝑝𝑘  and 
then decides how far to move along that direction. The iteration is given by 
                                                     𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘                                               (2.11) 
where the positive scalar 𝛼𝑘  is called the step length. The success of a line 
search method depends on effective choices of both the direction 𝑝𝑘  and 
the step length 𝛼𝑘  .Most line search algorithms require 𝑝𝑘  to be a descent 
direction one for which  𝑝𝑘

𝑇𝛻𝑓𝑘 < 0  because this property guarantees that 
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the function 𝑓 can be reduced along this direction. Moreover, the search 
direction often has the form 
                                               𝑝𝑘 = −𝐵𝑘

−1𝛻𝑓𝑘                                                         (2.12) 
Where 𝐵𝑘  is a symmetric and nonsingular matrix. In the steepest descent 
method, 𝐵𝑘  is simply the identity matrix  , while in Newton's method, 𝐵𝑘  is 
the exact Hessian 𝛻2𝑓𝑘 . In quasi-Newton methods, 𝐵𝑘  is an approximation 
to the Hessian that is updated at every iteration by means of a low-rank 
formula. When 𝑝𝑘  is defined by (2.12) and 𝐵𝑘  is positive definite, we have 
                                      𝑝𝑘

𝑇𝛻𝑓𝑘 = −𝛻𝑓𝑘
𝑇𝐵𝑘

−1𝛻𝑓𝑘 < 0                                           (2.13) 
and therefore  𝑝𝑘  is a descent direction.In this chapter, we discuss how to 
choose αk  and pk  to promote convergence from remote starting points. 
Since the pure Newton iteration is not guaranteed to produce descent 
directions when the current iterate is not close to a solution. We now give 
careful consideration to the choice of the step-length parameter 𝛼𝑘  . 
2.5 Step Length:  
In computing the step length 𝛼𝑘  , we face a tradeoff. We would like to 
choose 𝛼𝑘  to give a substantial reduction of  𝑓 , but at the same time we do 
not want to spend too much time making the choice. The ideal choice would 
be the global minimizer of the univariate function ∅(・) defined by 
                                         ∅ 𝛼 = 𝑓 𝑥𝑘 + 𝛼𝑝𝑘 , 𝛼 > 0                                      (2.14) 
But in general, it is too expensive to identify this value (see Figure 2.4). To 
find even a local minimizer of ∅ to moderate precision generally requires 
too many evaluations of the objective function 𝑓 and possibly the gradient  . 
More practical strategies perform an inexact line search to identify a step 
length that achieves adequate reductions in 𝑓 at minimal cost.Typical line 
search algorithms try out a sequence of candidate values for 𝛼, stopping to 
accept one of these values when certain conditions are satisfied. The line 
search is done in two stages: A bracketing phase finds an interval 
containing desirable step lengths, and a bisectionor interpolation phase 
computes a good step length within this interval. Sophisticated linesearch 
algorithms can be quite complicated. 
 

 
Figure 2.4  The Ideal Step Length is the Global Minimizer. 

We now discuss various termination conditions for line search algorithms 
and show that effective step lengths need not lie near minimizers of the 
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univariate function ∅(𝛼) defined in (2.14).A simple condition we could 
impose on 𝛼𝑘  is to require a reduction in 𝑓 , that is, 𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘) <
 𝑓 (𝑥𝑘  ). That this requirement is not enough to produce convergence to 𝑥∗ 
is illustrated in Figure 2.5, for which the minimum function value is 

𝑓 ∗ = −1, but a sequence of iterates {𝑥𝑘} for which 𝑓 𝑥𝑘 =
5

𝑘
, 𝑘 =  0,1, . .. 

yields a decrease at each iteration but has a limiting function value of zero. 
The insufficient reduction in 𝑓 at each step causes it to fail to converge to 
the minimizer of this convex function. To avoid this behavior we need to 
enforce a sufficient decrease condition, a concept we discuss next. 

 
Figure 2.5   Insufficient Reduction in f . 

The Wolfe Conditions: 
A popular inexact line search condition stipulates that 𝛼𝑘  should first of all 
give sufficient decrease in the objective function 𝑓 , as measured by the 
following inequality: 

                              𝑓 𝑥𝑘 + 𝛼𝑝𝑘 ≤ 𝑓 𝑥𝑘 + 𝑐1𝛼𝛻𝑓𝑘
𝑇𝑝𝑘                                     (2.15) 

for some constant 𝑐1 ∈ (0, 1). In other words, the reduction in 𝑓 should be 
proportional to both the step length 𝛼𝑘  and the directional derivative 
∇𝑓𝑘

𝑇𝑝𝑘 . Inequality (2.15) is sometimes called the Armijo condition.The 
sufficient decrease condition is illustrated in Figure 2.6. The right-hand-
side of (2.15), which is a linear function, can be denoted by 𝑙(𝛼). The 
function 𝑙(∙) has negative slope 𝑐1∇𝑓𝑘

𝑇𝑝𝑘 , but because 𝑐1 ∈ (0, 1), it lies 
above the graph of  ∅ for small positive values of 𝛼. The sufficient decrease 
condition states that 𝛼 is acceptable only if ∅(𝛼) ≤ 𝑙(𝛼). The intervals on 
which this condition is satisfied are shown in Figure 2.6 In practice,  𝑐1 is 
chosen to be quite small, say  𝑐1 = 10−4 .The sufficient decrease condition is 
not enough by itself to ensure that the algorithm makes reasonable 
progress because, as we see from Figure 2.6, it is satisfied for all sufficiently 
small values of 𝛼. To rule out unacceptably short steps we introduce a 
second requirement, called the curvature condition, which requires 𝛼𝑘  to 
satisfy 
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                                   ∇𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 𝑇𝑝𝑘 ≥ 𝑐2∇𝑓𝑘
𝑇𝑝𝑘                                         (2.16) 

for some constant 𝑐2 ∈ ( 𝑐1, 1), where  𝑐1 is the constant from (2.15). Note 
that the left-hand side is simply the derivative ∅′ (𝛼𝑘  ), so the curvature 
condition ensures that the slope of ∅ at𝛼𝑘  is greater than 𝑐2 times the initial 
slope ∅′ (0). This makes sense because if the slope ∅′ (𝛼) 

 
 

Figure 2.6   Sufficient Decrease Condition. 

 
Figure  2.7   The Curvature Condition. 

is strongly negative, we have an indication that we can reduce 
𝑓 significantly by moving further along the chosen direction. On the other 
hand, if ∅′ (𝛼𝑘  ) is only slightly negative or even positive, it is a sign that we 
cannot expect much more decrease in 𝑓 in this direction, so it makes sense 
to terminate the line search. The curvature condition is illustrated in Figure 
2.7. Typical values of 𝑐2 are 0.9 when the search direction 𝑝𝑘  is chosen by a 
Newton or quasi-Newton method, and 0.1 when 𝑝𝑘 is obtained from a 
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nonlinear conjugate gradient method. The sufficient decrease and 
curvature conditions are known collectively as the Wolfe conditions.We 
illustrate them in Figure 2.8 and restate them here for future reference: 
                           𝑓  𝑥𝑘 + 𝛼𝑘𝑝𝑘 ≤ 𝑓 (𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘

𝑇𝑝𝑘                                 (2.17a) 
                                       𝛻𝑓  𝑥𝑘 + 𝛼𝑘𝑝𝑘 𝑇𝑝𝑘 ≥ 𝑐2∇𝑓𝑘

𝑇𝑝𝑘                                 (2.17b) 
With 0 < 𝑐1 < 𝑐2 < 1 .A step length may satisfy the Wolfe conditions 
without being particularly close to a minimizer of  ∅, as we show in 
Figure2.8.We can, however, modify the curvature condition to force 𝛼𝑘 to lie 
in at least a broad neighborhood of a local minimizer or stationary point of 
∅. The strong Wolfe conditions require 𝛼𝑘 to satisfy 
                  𝑓  𝑥𝑘 + 𝛼𝑘𝑝𝑘 ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘

𝑇𝑝𝑘                                           (2.18a) 

                   𝛻𝑓  𝑥𝑘 + 𝛼𝑘𝑝𝑘 𝑇𝑝𝑘  ≤ 𝑐2 ∇𝑓𝑘
𝑇𝑝𝑘                                                  (2.18b) 

With 0 < 𝑐1 < 𝑐2 < 1. The only difference with the Wolfe conditions is that 
we no longer allow the derivative ∅′ (𝛼𝑘  )to be too positive. Hence, we 
exclude points that are far from stationary points of ∅. 

 
Figure  2.8  Step Lengths Satisfying the wolfe Conditions. 

It is not difficult to prove that there exist step lengths that satisfy the Wolfe 
conditions for every function 𝑓 that is smooth and bounded below. 
The Goldstein Conditions: 
Like the Wolfe conditions, the Goldstein conditions ensure that the step 
length 𝛼 achieves sufficient decrease but is not too short. The Goldstein 
conditions can also be stated as a pair of inequalities, in the following way: 
𝑓 𝑥𝑘 +  1 − 𝑐 𝛼𝑘∇𝑓𝑘

𝑇𝑝𝑘 ≤ 𝑓  𝑥𝑘 + 𝛼𝑘𝑝𝑘 ≤ 𝑓 𝑥𝑘 + 𝑐𝛼𝑘∇𝑓𝑘
𝑇𝑝𝑘           (2.19) 

with 0 < 𝑐 < 1/2. The second inequality is the sufficient decrease condition 
(2.15), where as the first inequality is introduced to control the step length 
from below; see Figure 2.8 A disadvantage of the Goldstein conditions vis-
`a-vis the Wolfe conditions is that the first inequality in (2.19) may exclude 
all minimizers of ∅. However, the Goldstein and Wolfe conditions have 
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much in common, and their convergence theories are quite similar. The 
Goldstein conditions are often used in Newton-type methods but are not 
well suited for Quasi-Newton methods that maintain a positive definite 
Hessian approximation. 

 
Figure 2.9  The Goldstein conditions. 

Sufficient Decrease and Backtracking:  
We have mentioned that the sufficient decrease condition (2.17a) alone is 
not sufficient to ensure that the algorithm makes reasonable progress 
along the given search direction. However, if the line search algorithm 
chooses its candidate step lengths appropriately, by using a so-called 
backtracking approach, we can dispense with the extra condition (2.17b) 
and use just the sufficient decrease condition to terminate the line search 
procedure. In its most basic form, backtracking proceeds as follows. 
Algorithm 2.1 (Backtracking Line Search). 
Choose  𝛼 > 0, 𝜌 ∈ (0, 1), 𝑐 ∈ (0, 1); 
Set 𝛼 ← 𝛼 ; 

repeat until   𝑓  𝑥𝑘 + 𝛼𝑝𝑘 ≤ 𝑓 (𝑥𝑘) + 𝑐𝛼𝛻𝑓𝑘
𝑇𝑝𝑘  

𝛼 ← 𝜌𝛼; 
end (repeat) 
Terminate with  𝛼𝑘 =  𝛼. 
In this procedure, the initial step length  𝛼  is chosen to be 1 in Newton and 
quasi-Newton methods, but can have different values in other algorithms 
such as steepest descent or conjugate gradient. An acceptable step length 
will be found after a finite number of trials, because αk  will eventually 
become small enough that the sufficient decrease condition holds (see 
Figure 2.6). In practice, the contraction factor 𝜌 is often allowed to vary at 
each iteration of the line search.  
We need ensure only that at each iteration we have 𝜌 ∈ [𝜌𝑙𝑜 , 𝜌𝑕𝑖], for some 
fixed constants 0 < 𝜌𝑙𝑜 < 𝜌𝑕𝑖 < 1 .The backtracking approach ensures 
either that the selected step length 𝛼𝑘  is some fixed value (the initial choice 
𝛼 ), or else that it is short enough to satisfy the sufficient decrease condition 
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but not too short. The latter claim holds because the accepted value  𝛼𝑘  is 
within a factor 𝜌 of the previous trial value, 𝛼𝑘/𝜌, which was rejected for 
violating the sufficient decrease condition, that is, for being too long. 
This simple and popular strategy for terminating a line search is well suited 
for Newton methods but is less appropriate for Quasi-Newton and 
conjugate gradient methods. 
2.6 Convexity: 
There is one important case where global solutions can be found, the case 
where the objective function is a convex function and the feasible region is 
a convex set. Let us first talk about the feasible region. A set 𝑆 is convex if, 
for any elements 𝑥 and 𝑦 of  𝑆, 
𝛼𝑥 + (1 −  𝛼)𝑦 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝛼 ≤ 1. 
In other words, if 𝑥 and 𝑦 are in 𝑆, then the line segment connecting 𝑥 and 𝑦 
is also in 𝑆.Examples of convex and nonconvex sets are given in Figure 2.9. 
More generally, every set defined by a system of linear constraints is a 
convex set;.A function 𝑓 is convex on a convex set 𝑆 if it satisfies 

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) 
for all 0 ≤  𝛼 ≤ 1 and for all 𝑥, 𝑦 ∈ 𝑆. This definition says that the line 
segment connecting the points (𝑥, 𝑓(𝑥)) and (𝑦, 𝑓 (𝑦)) lies on or above the 
graph of the function; see Figure2.5. Intuitively, the graph of the function is 
bowl shaped.  
Analogously, a function is concave on S if it satisfies  

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≥ 𝛼𝑓 (𝑥) + (1 − 𝛼)𝑓(𝑦) 
 

For all 0 ≤ 𝛼 ≤ 1 and for all 𝑥, 𝑦 ∈  𝑆.

 
Figure  2.10.  Convex and Nonconvex Sets. 

 
Figure 2.11.  Convex function. 

 
Linear functions are both convex and concave. 
We say that a function is strictly convex if 
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𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) < 𝛼𝑓(𝑥) +  1 − 𝛼 𝑓 𝑦  for all 𝑥 ≠ 𝑦 and 0 < 𝛼 < 1 
where  𝑥, 𝑦 ∈ 𝑆. 
Theorem 2.6: 
Let 𝑥∗ be a local minimizer of a convex optimization problem. Then 𝑥∗is 
also a global minimizer. If the objective function is strictly convex, then 𝑥∗is 
the unique global minimizer. 
Proof. 
The proof is by contradiction. Let 𝑥∗ be a local minimizer and suppose, by 
contradiction,that it is not a global minimizer. Then there exists some point 
𝑦 ∈ 𝑆 satisfying 
𝑓(𝑦) < 𝑓(𝑥∗). 𝐼𝑓 0 < 𝛼 < 1,then 
𝑓 (𝛼𝑥∗ + (1 − 𝛼)𝑦) ≤ 𝛼𝑓 (𝑥∗) + (1 − 𝛼)𝑓(𝑦) < 𝛼𝑓(𝑥∗) + (1 − 𝛼)𝑓(𝑥∗) =
𝑓(𝑥∗). 
This shows that there are points arbitrarily close to 𝑥∗ (i.e., when 𝛼 is 
arbitrarily close to 1) whose function values are strictly less than 𝑓 (𝑥∗). 
These points are in 𝑆 because 𝑆 is convex. This contradicts the definition of 
a local minimizer. Hence a point such as 𝑦 cannot exist, and 𝑥∗ must be a 
global minimizer. 
If the objective function is strictly convex, then a similar argument can be 
used to show that  𝑥∗ is the unique global minimize. 
For general problems it may be as difficult to determine if the function 𝑓 
and the region S are convex as it is to find a global solution, so this result is 
not always useful.However, there are important practical problems, such as 
linear programs, where convexity can be guaranteed [1,12]. 
2.7 Derivatives and Convexity : 
If a one-dimensional function 𝑓 has two continuous derivatives, then an 
alternative definition of convexity can be given that is often easier to check. 
Such a function is convex if and only if   𝑓 ′′  𝑥 ≥ 0 for all  𝑥 ∈ 𝑆; 
For example, the function 𝑓(𝑥) =  𝑥4 is convex on the entire real line 
because 𝑓(𝑥) =  12𝑥2 ≥  0 for all 𝑥. The function 𝑓 (𝑥) = 𝑠𝑖𝑛𝑥 is neither 
convex nor concave on the real line because 𝑓(𝑥) = −𝑠𝑖𝑛𝑥  can be both 
positive and negative. In the multidimensional case the Hessian matrix of 
second derivatives must be positive semidefinite; that is, at every point 
𝑥 ∈ 𝑆. 
𝑦𝑇∇2𝑓 𝑥 𝑦 ≥ 0  for all 𝑦 ; 
Notice that the vector 𝑦 is not restricted to lie in the set S. The quadratic 
function  𝑓 𝑥1, 𝑥2 = 4𝑥1

2 + 12𝑥1𝑥2 + 9𝑥2
2 

is convex over any subset of 𝑅2 since 

𝑦𝑇∇2𝑓 𝑥 𝑦 =  𝑦1 , 𝑦2  
8 12

12 18
  

𝑦1

𝑦2
 = 8𝑦2

1
+ 24𝑦1𝑦2 + 18𝑦2

2
 

= 2(2𝑦1 + 3𝑦2)2 ≥ 0. 
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Alternatively, it would have been possible to show that the eigenvalues of 
the Hessian matrix were all greater than or equal to zero. In the one-
dimensional case, if a function satisfies 
𝑓 ′′ (𝑥) ≥ 0    for all  𝑥 ∈ 𝑆; 
Then it is strictly convex on 𝑆. In the multidimensional case, if the Hessian 
matrix ∇2𝑓(𝑥) is positive definite for all 𝑥 ∈ 𝑆, then the function is strictly 
convex on 𝑆. This is not an “if and only if ” condition, since the Hessian of a 
strictly convex function need not be positive definite every where. 
Now we consider another characterization of convexity that can be applied 
to functions that have one continuous derivative. In this case a function 𝑓 is 
convex over a convex set 𝑆 if and only if it satisfies 

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇(𝑦 − 𝑥) 
for all 𝑥, 𝑦 ∈ 𝑆. This property states that the function is on or above any of 
its tangents. (See Figure 2.11) To prove this property, note that if 𝑓 is 
convex, then for any 𝑥 and 𝑦 in 𝑆 and for any 0 <  𝛼 ≤  1, 
𝑓 (𝛼𝑦 + (1 − 𝛼)𝑥) ≤ 𝛼𝑓(𝑦) + (1 − 𝛼)𝑓(𝑥), 
so that 
𝑓  (𝑥  + 𝛼(𝑦  − 𝑥)) − 𝑓  (𝑥)

𝛼
≤  𝑓 (𝑦)  −  𝑓 (𝑥). 

If we let 𝛼 approach 0 from above, we can conclude that  
𝑓(𝑦) ≥ 𝑓 (𝑥) + 𝛻𝑓 (𝑥)𝑇(𝑦 −  𝑥). 

 
Figure 2.12.  Convex  Function with Continuous First Derivative. 

Conversely, suppose that  the function 𝑓 satisfies 
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓  𝑥 𝑇 𝑦 − 𝑥   for all 𝑥 and 𝑦 in S. 𝐿𝑒𝑡 𝑡 = 𝛼𝑥 + (1 − 𝛼)𝑦. 
Then 𝑡 is also in the set  𝑆, so 

𝑓(𝑥) ≥ 𝑓 (𝑡) + 𝛻𝑓 (𝑡)𝑇(𝑥 − 𝑡) 
and 

𝑓(𝑦) ≥ 𝑓(𝑡) + 𝛻𝑓(𝑡)𝑇(𝑦 −  𝑡). 
 
Multiplying the two inequalities by 𝛼 and 1 −  𝛼, respectively, and then 
adding  yields the desired result[1,12].  
 



 
19 

 

2.8 Taylor Series: 
The Taylor series is a tool for approximating a function 𝑓 near a specified 
point  𝑥0. The approximation obtained is a polynomial, i.e., a function that is 
easy to manipulate. The Taylor series is a general tool it can be applied 
when ever the function has derivatives and it has many uses: 
 It allows you to estimate the value of the function near the given point 

(when the function is difficult to evaluate directly). 
 The derivatives and integral of the approximation can be used to 

estimate the derivatives and integral of the original function. 
 It is used to derive many algorithms for finding zeroes of functions (see 

below), for minimizing functions, etc. 
Since many problems are difficult to solve exactly, and an approximate 
solution is often adequate (the data for the problem may be in accurate), 
the Taylor series is widely used, both theoretically and practically. Even if 
the data are exact, an approximate solution may be adequate, and in any 
case it is all we can hope for under most circumstances. How does it work? 
We first consider the case of a one-dimensional function 𝑓  with n 
continuous derivatives. Let x0 be a specified point (say x0 = 17.5 or x0 =
0). Then the nth order Taylor series approximation is 

        𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′  𝑥0 +

1

3!
𝑝3𝑓 ′′′  𝑥0 + ⋯ +

1

𝑛 !
𝑝𝑛𝑓(𝑛) 𝑥0                                                                                                             (2.20) 

Here 𝑓(𝑛) 𝑥0  is the nth  derivative of 𝑓  at the point x0 ,and n! =
n n − 1  n − 2 · · ·  3 ·  2 ·  1 . In this formula, p is a variable; we will 
decide later what values  𝑝 will take. The approximation will normally only 
be accurate for small values of  𝑝 [1,13]. 

Example 2.2: (Taylor Series). Let 𝑓  𝑥 =  𝑥 and let  𝑥0 =  1. Then 

𝑓 𝑥0 =  𝑥0 =  1 = 1  

𝑓 ′ 𝑥0 =
1

2
𝑥0

−
1
2 =

1

2
 

𝑓 ′′  𝑥0 = −
1

4
𝑥0

−
3
2 = −

1

4
 

𝑓 ′′′  𝑥0 =
3

8
𝑥0

−
5
2 =

3

8
 

⋮ 
Hence, substituting into the formula for the Taylor series, 

𝑓 𝑥0 + 𝑝 ≈ 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′  𝑥0 +

1

3!
𝑝3𝑓 ′′′  𝑥0 + ⋯

+
1

𝑛!
𝑝𝑛𝑓(𝑛) 𝑥0  

= 1 +
1

2
𝑝 +

1

2
𝑝2  −

1

4
 +

1

6
𝑝3(

3

8
) 
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How do we use this? Suppose we want to approximate 𝑓(1.6). Then 
𝑥0 + 𝑝 = 
1 + 𝑝 = 1.6, and so 𝑝 = 0.6: 

 1.6 =  1 + 0.6 ≈ 1 +
1

2
(0.6) +

1

2
 0.6 2  −

1

4
 +

1

6
 0.6 3(

3

8
) ≈ 1.2685 

The true value is 1.264911 . .. ; the approximation is accurate to three digits. 
The first two terms of the Taylor series give us the formula for the tangent 
line for the function 𝑓 at the point 𝑥0. We commonly define the tangent line 
in terms of a general point 𝑥, and not in terms of  𝑝. Since 𝑥0 + 𝑝 = 𝑥, we 
can rearrange to get 𝑝 = 𝑥 − 𝑥0. Substitute this into the first two terms of 
the series to get the tangent line: 
𝑦 = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓 ′ (𝑥0). 

 
 

Figure  2.13.  Taylor Series Approximation. 
For the example above we get 

𝑦 =  1 +  𝑥 − 1 
1

2
 or 𝑦 =  

1

2
(𝑥 +  1). 

The first three terms of the Taylor series give a quadratic approximation to 
the function 𝑓 at the point 𝑥0. This is illustrated in Figure 2.13. So far we 
have only considered a Taylor series for a function of one variable. The 
Taylor series can also be derived for real-valued functions of many 
variables. If we use matrix and vector notation, then there is an obvious 
analogy between the two cases: 

-1 variable: 𝑓 (𝑥0 +  𝑝) = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′  𝑥0  

n-variables: 𝑓 (𝑥0 + 𝑝) = 𝑓 𝑥0 + 𝑝𝑇𝛻𝑓(𝑥0) + 
1

2
𝑝𝑇𝛻2𝑓 (𝑥0)𝑝 +· · · . 

In the second line above 𝑥0 and 𝑝 are both vectors. The notation 𝛻𝑓(𝑥0) 
refers to the gradient of the function 𝑓 at the point  𝑥 =  𝑥0. The notation 
𝛻2𝑓 (𝑥0) represents the Hessian of 𝑓 at the point  𝑥 =  𝑥0.  
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Example 2.3: Consider the function 
𝑓 𝑥1, 𝑥2 = 𝑥1

3 + 5𝑥1
2𝑥2 + 7𝑥1𝑥2

2 + 2𝑥3
2 at the point  𝑥0 = (−2,3)𝑇  

The gradient of this function is 

𝛻𝑓 𝑥 =  
3𝑥1

2 + 10𝑥1𝑥2 + 7𝑥2
2

5𝑥1
2 + 14𝑥1𝑥2 + 6𝑥2

2
 

  

and the  Hessian matrix is 

𝛻2𝑓 =  
6𝑥1 + 10𝑥2 10𝑥1 + 14𝑥2

10𝑥1 + 14𝑥2 14𝑥1 + 12𝑥2
  

at the point  𝑥0 = (−2,3)𝑇 these become 

𝛻𝑓 𝑥0 =  
15

−10
  , 𝛻2𝑓 𝑥0 =  

18 22
22 8

  

If  𝑝 = (𝑝1, 𝑝2)T =  (0.1, 0.2)𝑇 , then 
𝑓 (−1.9, 3.2)  = 𝑓(−2 + 0.1, 3 + 0.2) 

=  𝑓 (𝑥0  +  𝑝) 

≈  𝑓 (𝑥0)  + 𝑝𝑇𝛻𝑓 (𝑥0) +
1

2
𝑝𝑇𝛻2𝑓(𝑥0)𝑝 

=  −20 +    0.1  0.2   
15

−10
 +

1

2
  0.1  0.2   

18 22
22 8

  
0.1
0.2

  

=  −20 − 0.5 + 0.69 =  −19.81. 
The true value is 𝑓 (−1.9, 3.2)  =  −19.755 , so the approximation is 
accurate to three digits. 
The Taylor series for multidimensional problems can also be derived using 
summations rather than matrix-vector notation: 

𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 +  𝑝𝑖

𝑛

𝑖=1

 𝜕𝑓(𝑥)

𝜕𝑥𝑖
 
𝑥=𝑥0

+
1

2
  𝑝𝑖

𝑛

𝑗 =1

𝑝𝑗

 

𝑛

𝑖=1

 𝜕
2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
 
𝑥=𝑥0

+ ⋯ 

The formula is the same as before; only the notation has changed. 
There is an alternate form of the Taylor series that is often used, called the 
remainder form. If three terms are used it looks like 

1-variable: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′  𝜉  

n-variables: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑇𝛻𝑓(𝑥0) + 
1

2
𝑝𝑇𝛻2𝑓 (𝜉)𝑝. 

The point 𝜉 is an unknown point lying between 𝑥0 and 𝑥0 + 𝑝. In this form 
the series is exact, but it involves an unknown point, so it cannot be 
evaluated. This form of the series is often used for theoretical purposes, or 
to derive bounds on the accuracy of the series.The accuracy of the series 
can be analyzed by establishing bounds on the final “remainder”term. 
If the remainder form of the series is used, but with only two terms, then 
we obtain 
1-variable: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝜉  
n-variables: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑇𝛻𝑓(𝜉). 
This result is known as the mean-value theorem [1,12]. 
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2.9 Rates of Convergence: 

Many of the algorithms discussed do not find a solution in a finite number 
of steps. Instead these algorithms compute a sequence of approximate 
solutions that we hope get closer and closer to a solution. When discussing 
such an algorithm, the following two questions are often asked: 
 Does it converge? 
 How fast does it converge? 
It is the second question that is the topic of this section. If an algorithm 
converges in a finite number of steps, the cost of that algorithm is often 
measured by counting the number of steps required, or by counting the 
number of arithmetic operations required. For example, if Gaussian 
elimination is applied to a system of n linear equations, then it will require 
about 𝑛3  operations. This cost is referred to as the computational 
complexity of the algorithm. For many optimization methods, the number 
of operations or steps required to find an exact solution will be infinite, so 
some other measure of efficiency must be used. The rate of convergence is 
one such measure. It describes how quickly the estimates of the solution 
approach the exact solution. 
Let us assume that we have a sequence of points 𝑥𝑘  converging to a 
solution 𝑥∗. We define the sequence of errors to be 

𝑒𝑘 = 𝑥𝑘 − 𝑥∗ 
Note that          

lim
𝑘→∞

𝑒𝑘 = 0 

We say that the sequence {𝑥𝑘} converges to 𝑥∗ with rate 𝑟 and rate constant 
C if 

lim
𝑘→∞

 𝑒𝑘+1 

 𝑒𝑘 𝑟
= 𝐶 

and 𝐶 < ∞. To understand this idea better, let us look at some examples. 
Initially let us assume that we have ideal convergence behavior 
 𝑒𝑘+1 = 𝐶 𝑒𝑘 𝑟  for all 𝑘, 
so that we can avoid having to deal with limits. When r = 1 this is referred 
to as linear convergence: 
 𝑒𝑘+1 = 𝐶 𝑒𝑘 .  
If 0 < 𝐶 < 1, then the norm of the error is reduced by a constant factor at 
every iteration. 
If 𝐶 > 1, then the sequence diverges. (What can happen when C = 1?) If we 
choose  𝐶 = 0.1 = 10−1 and 𝑒0 = 1, then the norms of the errors are 
1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 



 
23 

 

and seven-digit  accuracy is obtained in seven iterations, a good result. On 
the other hand, if 𝐶 = 0.99, then the norms of the errors take on the values 

1, 0.99, 0.9801, 0.9703, 0.9606, 0.9510, 0.9415, 0.9321, . . . , 
and it would take about 1600 iterations to reduce the error to 10−7, a less 
impressive result. 
If 𝑟 = 1 and  𝐶 = 0, the convergence is called superlinear. Superlinear 
convergence includes all cases where 𝑟 > 1 since if 

lim
𝑘→∞

 𝑒𝑘+1 

 𝑒𝑘 𝑟
= 𝐶 < ∞ 

Then 

lim
𝑘→∞

 𝑒𝑘+1 

 𝑒𝑘 
= lim

𝑘→∞

 𝑒𝑘+1 

 𝑒𝑘 𝑟
 𝑒𝑘 𝑟−1 = 𝐶 × lim

𝑘→∞
 𝑒𝑘 𝑟−1 = 0 

When 𝑟 = 2, the convergence is called quadratic. As an example, let 
𝑟 = 2, 𝐶 = 1, and  𝑒0 = 10−1. Then the sequence of error norms is 
10−1, 10−2,10−4, 10−8, 
and so three iterations are sufficient to achieve seven-digit accuracy. 
In this form of quadratic convergence the error is squared at each iteration. 
Another way of saying this is that the number of correct digits in 𝑥𝑘  doubles 
at every iteration. Of course, if the constant 𝐶 = 1, then this is not an 
accurate statement, but it gives an intuitive sense of the attractions of a 
quadratic convergence rate.For optimization algorithms there is one other 
important case, and that is when 1 < 𝑟 < 2.This is another special case of 
superlinear convergence. This case is important  because (a) it is 
qualitatively similar to quadratic convergence for the precision of common 
computer calculations, and (b) it can be achieved by algorithms that only 
compute first derivatives, where as to achieve quadratic convergence it is 
often necessary to compute second derivatives as well. To get a sense of 
what this form of superlinear convergence looks like, let r = 1.5, C = 1, and 
 e0 = 10−1. Then the sequence of error norms is 
1×10−1, 3×10−2, 6×10−3, 4×10−4, 9×10−6, 3×10−8, 
and five iterations are required to achieve single-precision accuracy[1,12]. 
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Chapter 3 

Trust-Region Methods 

3.1  Introduction: 

Line search methods and trust-region methods both generate steps with 
the help of a quadratic model of the objective function, but they use this 
model in different ways. Line search methods use it to generate a search 
direction, and then focus their efforts on finding a suitable step length 𝛼  
along this direction.  

  Trust-region methods define a region around the current iterate within 
which they trust the model to be an adequate representation of the 
objective function, and then choose the step to be the approximate 
minimizer of the model in this region. In effect, they choose the direction 
and length of the step simultaneously. If a step is not acceptable, they 
reduce the size of the region and find a new minimizer. In general, the 
direction of the step changes whenever the size of the trust region is 
altered. The size of the trust region is critical to the effectiveness of each 
step. If the region is too small, the algorithm misses an opportunity to take 
a substantial step that will move it much closer to the minimizer of the 
objective function. If too large, the minimizer of the model may be far from 
the minimizer of the objective function in the region, so we may have to 
reduce the size of the region and try again. In practical algorithms, we 
choose the size of the region according to the performance of the algorithm 
during previous iterations. If the model is consistently reliable, producing 
good steps and accurately predicting the behavior of the objective function 
along these steps, the size of the trust region may be increased to allow 
longer, more ambitious, steps to be taken. A failed step is an indication that 
our model is an inadequate representation of the objective function over 
the current trust region. After such a step, we reduce the size of the region 
and try again. The trust-region approach on a function 𝑓 of two variables in 
which the current point 𝑥𝑘  and the minimize 𝑥∗ lie at opposite ends of a 
curved valley. The quadratic model function 𝑚𝑘 , whose elliptical contours 
are shown as dashed lines, is constructed from function and derivative 
information at 𝑥𝑘  and possibly also on information accumulated from 
previous iterations and steps. A line search method based on this model 
searches along the step to the minimizer of  𝑚𝑘  (shown), but this direction 
will yield at most a small reduction in 𝑓, even if the optimal step length is 
used. The trust-region method steps to the minimizer of 𝑚𝑘  within the 
dotted circle (shown), yielding a more significant reduction in 𝑓 and better 
progress toward the solution. In this chapter, we will assume that the 
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model function 𝑚𝑘  that is used at each iterate 𝑚𝑘  is quadratic. Moreover, 
𝑚𝑘  is based on the Taylor-series expansion of 𝑓 around 𝑥𝑘 , which is 

 

 

Figure 3.1  Trust-region and line search steps. 

                      𝑓 𝑥𝑘 + 𝑝 = 𝑓𝑘 + 𝑔𝑘
𝑇𝑝 +

1

2
𝑝𝑇∇2𝑓 𝑥𝑘 + 𝑡𝑝 𝑝                               (3.1) 

where𝑓𝑘 = 𝑓 𝑥𝑘 , and 𝑔𝑘 = ∇𝑓(𝑥𝑘) and 𝑡  is some scalar in the interval 
 0,1 .  By using an approximation 𝐵𝑘  to the Hessian in the second-order 
term, 𝑚𝑘   is defined as follows 

                                       𝑚𝑘 𝑝 = 𝑓𝑘 + 𝑔𝑘
𝑇𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝                                         (3.2) 

Where 𝐵𝑘  is some symmetric matrix. The difference between 𝑚𝑘(𝑝) and 
𝑓(𝑥𝑘 + 𝑝)is 𝑜 𝑝 2 , which is small when 𝑝 is small.  

            When 𝐵𝑘  is equal to the true Hessian ∇2𝑓 𝑥𝑘 , the approximation 
error in the model function𝑚𝑘 is 𝑜 𝑝 3, so this model is especially accurate 
when  𝑝  is small. This choice 𝐵𝑘 = ∇2𝑓(𝑥𝑘) leads to the trust-region 
Newton method. We emphasize the generality of the trust-region approach 
by assuming little about 𝐵𝑘  except symmetry and uniform boundedness. To 
obtain each step, we seek a solution of the sub-problem      

                        min𝑝∈𝐼𝑅𝑛 (𝑚𝑘 𝑝 ) = 𝑓𝑘 + 𝑔𝑘
𝑇𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝                                   (3.3) 

Where ∆𝑘> 0 is the trust-region radius. In most of our discussions, we 
define  ·  to be the Euclidean norm, so that the solution 𝑝𝑘

∗  of (3.3) is the 
minimizer of 𝑚𝑘  in the ball of radius ∆𝑘 . Thus, the trust-region approach 
requires us to solve a sequence of sub-problems (3.3) in which the 
objective function and constraint (which can be written as 𝑝𝑇𝑝 ≤ ∆𝑘

2 ) are 

both quadratic. When 𝐵𝑘  is positive definite and  𝐵𝑘
−1𝑔𝑘 ≤ ∆𝑘 ,  the 
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solution of (3.3) is easy to identify it is simply the unconstrained minimum 
𝑝𝑘

𝐵 = −𝐵𝑘
−1𝑔𝑘  of the quadratic 𝑚𝑘 𝑝 . In this case, we call 𝑝𝑘

𝐵  the full step 
see [1]. The solution of (3.3) is not so obvious in other cases, but it can 
usually be found without too much computational expense. In any case, as 
described below, we need only an approximate solution to obtain 
convergence and good practical behavior . 

3.2 Outline of the Trust-Region Approach : 

            One of the key ingredients in a trust-region algorithm is the strategy 
for choosing the trust-region radius ∆𝑘  at each iteration. We base this 
choice on the agreement between the model function 𝑚𝑘  and the objective 
function 𝑓 at previous iterations. Given a step 𝑝𝑘  we define the ratio 

                                           𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)
                                                         (3.4) 

             The numerator is called the actual reduction, and the denominator is 
the predicted reduction (that is, the reduction in 𝑓 predicted by the model 
function). Note that since the step 𝑝𝑘  is obtained by minimizing the model 
𝑚𝑘  over a region that includes  𝑝 = 0, the predicted reduction will always 
be non-negative. Hence, if 𝜌𝑘  is negative, the new objective value 
𝑓 𝑥𝑘 + 𝑝𝑘  is greater than the current value 𝑓 𝑥𝑘 , so the step must be 
rejected.  On the other hand, if  𝜌𝑘  is close to 1, there is good agreement 
between the model 𝑚𝑘  and the function 𝑓 over this step, so it is safe to 
expand the trust region for the next iteration. If 𝜌𝑘  is positive but 
significantly smaller than 1, we do not alter the trust region, but if it is close 
to zero or negative, we shrink the trust region by reducing  ∆𝑘  at the next 
iteration see [1,12,41]. 

The following algorithm describes the process. 

Algorithm 3.1  (A Model Trust Region Algorithm) 

Given ∆ > 0 , ∆0∈  0, ∆   𝑎𝑛𝑑 𝜂 ∈  0,
1

4
 : 

For 𝑘 = 0,1,2, … ..  
Obtain 𝑝𝑘by (approximately) solving (3.3); 
Obtaine 𝜌𝑘  by (3.4) 

if 𝜌𝑘 <
1

4
 

∆𝑘+1=
1

4
∆𝑘  

else 

if 𝜌𝑘 >
3

4
 𝑎𝑛𝑑  𝑝𝑘 = ∆𝑘  

∆𝑘+1= 𝑚𝑖𝑛(2∆𝑘 , ∆ ) 
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else 
∆𝑘+1= ∆𝑘  

If 𝜌𝑘 < 𝜂 
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘  

else 
𝑥𝑘+1 = 𝑥𝑘  

end(for) 
              We need to focus on solving the trust-region sub-problem (3.3). In 
discussing this matter, we sometimes drop the iteration subscript 𝑘 and 
restate the problem (2-1) as follows 

              min𝑝∈𝐼𝑅𝑛 𝑚  𝑝 ≝ 𝑓 + 𝑔𝑇𝑝 +
1

2
𝑝𝑇𝐵𝑝      𝑠. 𝑡.   𝑝 ≤ ∆                     (3.5) 

A first step to characterizing exact solutions of (3.5) is given by the 
following theorem (due to [ [1]), which shows that the solution 𝑝∗of (3.5) 
satisfies 

                             𝐵 + 𝜆𝐼 𝑝∗ = −𝑔                                                                           (3.6) 

                            for some 𝜆 ≥ 0. 

Theorem 3.1 : 

           The vector 𝑝∗ is a global solution of the trust-region problem 

               min𝑝∈𝐼𝑅𝑛 𝑚  𝑝 = 𝑓 + 𝑔𝑇𝑝 +
1

2
𝑝𝑇𝐵𝑝      𝑠. 𝑡.   𝑝 ≤ ∆,                    (3.7) 

if and only if 𝑝∗ is feasible and there is a scalar 𝜆 ≥ 0 such that the following 
conditions are satisfied: 

                                          𝐵 + 𝜆𝐼 𝑝∗ = −𝑔,                                                          (3.8a) 

                                      𝜆 ∆ −  𝑝∗  = 0,                                                              (3.8b) 

                       𝐵 + 𝜆𝐼 is positive semi-definite.                                                (3.8c) 

             We delay the proof of this result until Section (3.3), and instead 
discuss just its key features here with the help of Figure (3.2). The 
condition (3.8b) is a complementarily condition that states that at least one 
of the nonnegative quantities 𝜆 and (∆ −  𝑝∗ ) must be zero. Hence, when 
the solution lies strictly inside the trust region (as it does when ∆= ∆1 in 
Figure (3.2), we must have 𝜆 = 0 and so 𝐵𝑝∗ = −𝑔 with 𝐵 positive semi-
definite, from (3.8a) and (3.8c), respectively.  In the other cases ∆= ∆2 and 
∆= ∆3, we have  𝑝∗ = ∆, and so 𝜆 is all owed to take a positive value. Note 
from (3.8a) that   
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𝜆𝑝∗ = −𝐵𝑝∗ − 𝑔 = −∇𝑚 𝑝∗ . 

 

Figure 3.2 Solution of trust-region sub-problem for different radius  ∆𝟏, ∆𝟐, ∆𝟑 

thus, when  𝜆 > 0, the solution 𝑝∗ is collinear with the negative gradient of 
𝑚 and normal to its contours. These properties can be seen in Figure (3.2). 
In this Section, we describe two strategies for finding approximate 
solutions of the sub-problem (3.3), which achieve at least as much 
reduction in 𝑚𝑘  as the reduction achieved by the so-called iterative method 
is used to identify the value of 𝜆 for which (3.6) is satisfied by the solution 
of the sub-problem. The second strategy truncated Newton Method. 
3.3 Iterative Solution of  the Sub-problem : 

            In this section, we describe a technique that uses the characterization 
(3.6) of the sub-problem solution, applying Newton’s method to find the 
value of 𝜆 which matches the given trust-region radius ∆ in (3.5). We also 
prove the key result Theorem (3.1) concerning the characterization of 
solutions of (3.7). The characterization of Theorem (3.1) suggests an 
algorithm for finding the solution 𝑝 of (3.7).Either 𝜆 = 0 satisfies (3.8a) 
and (3.8c) with  𝑝 ≤ ∆, or else we define 

𝑝 𝜆 = − 𝐵 + 𝜆𝐼 −1𝑔 

For 𝜆 sufficiently large that 𝐵 + 𝜆𝐼 is positive definite and seek a value 
𝜆 > 0 such that 

                                                      𝑝 𝜆  = Δ.                                                            (3.9) 

           This problem is a one-dimensional root-finding problem in the 
variable 𝜆. To see that a value of 𝜆 with all the desired properties exists, we 
appeal to the eigen-de-composition of 𝐵 and use it to study the properties 
of  𝑝(𝜆) .Since𝐵 is symmetric, there is an orthogonal matrix  𝑄 and a 
diagonal matrix Λ such that 𝐵 = 𝑄Λ𝑄𝑇 , where 
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Λ = 𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, … , 𝜆𝑛 , 

and𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛  are the eigen-values of 𝐵. Clearly,  

𝐵 + 𝜆𝐼 = 𝑄 Λ + 𝜆𝐼 𝑄𝑇 , 

and for 𝜆 ≠ 𝜆𝑗 ,we have 

                   𝑝 𝜆 = −𝑄(Λ + 𝜆𝐼)−1𝑄𝑇𝑔 = −  
𝑞𝑗

𝑇𝑔

𝜆𝑗 +𝜆
𝑞𝑗 ,𝑛

𝑗=1                               (3.10) 

where𝑞𝑗  denotes the 𝑗𝑡𝑕  column of 𝑄.  Therefore, by orthogonality of 

𝑞1, 𝑞2, … , 𝑞𝑛 , we have 

                                                      𝑝(𝜆) 2 =  
 𝑞𝑗

𝑇𝑔 
2

 𝜆𝑗 +𝜆 
2 .𝑛

𝑗=1                                    (3.11) 

 

Figure 3.3    𝒑(𝝀)  as a function of 𝝀 

This expression tells us a lot about 𝑝 𝜆 .If𝜆 > −𝜆1, we have 𝜆𝑗 + 𝜆 > 0 for 

all 𝑗 = 1,2, … , 𝑛, and so  𝑝(𝜆)  is a continuous, non-increasing function of 
𝜆 on the interval  −𝜆1, ∞ . In fact, we have that 

                                             lim𝜆→∞ 𝑝(𝜆) = 0.                                                   (3.12) 

Moreover, we have when 𝑞𝑗
𝑇𝑔 ≠ 0q that 

                                               lim𝜆→−𝜆𝑗
 𝑝(𝜆) = ∞.                                             (3.13) 

Figure (3.3) plots  𝑝(𝜆)  against 𝜆 in a case in which 𝑞1
𝑇𝑔, 𝑞2

𝑇𝑔, and 𝑞3
𝑇𝑔 are 

all nonzero. Note that the properties (3.12) and (3.13) hold and that 
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 𝑝(𝜆)  is a non-increasing function of 𝜆 on  −𝜆1, ∞ . In particular, as is 
always the case when 𝑞1

𝑇𝑔 ≠ 0, that there is a unique value 𝜆∗ ∈ (−𝜆1, ∞) 
such that  𝑝(𝜆∗) = ∆. (There may be other, smaller values of 𝜆 for which 
 𝑝(𝜆) = ∆, but these will fail to satisfy (3.8c). We now sketch a procedure 
for identifying the 𝜆∗ ∈ (−𝜆1, ∞) for which      𝑝(𝜆∗ = ∆, which works 
when 𝑞1

𝑇𝑔 ≠ 0. (We discuss the case of 𝑞1
𝑇𝑔 = 0 later.) First, note that when 

𝐵 positive definite and  𝐵−1𝑔 ≤ ∆, the value 𝜆 = 0  satisfies (3.8), so the 
procedure can be terminated immediately with 𝜆∗ = 0. Otherwise, we could 
use the root-finding Newton’s method to find the value of 𝜆 > −𝜆1 that 
solves 

                                           ∅1 𝜆 =  𝑝(𝜆) − ∆= 0.                                           (3.14) 

           The disadvantage of this approach can be seen by considering the 
form of  𝑝(𝜆)  when 𝜆 is greater than, but close to, −𝜆1.For such 𝜆, we can 
approximate ∅1  by a rational function, as follows 

∅1 𝜆 ≈
𝐶1

𝜆 + 𝜆1
+ 𝐶2, 

where 𝐶1 > 0  and 𝐶2  are constants. Clearly this approximation (and 
hence ∅1) is highly nonlinear, so the root-finding Newton’s method will be 
unreliable or slow. Better results will be obtained if we reformulate the 
problem (3.14) so that it is nearly linear near the optimal 𝜆.By defining 

∅2 𝜆 =
1

∆
−

1

 𝑝(𝜆) 
, 

It can be shown using (3.11) that for 𝜆 slightly greater than −𝜆1, we have 

∅2 𝜆 ≈
1

∆
−

𝜆 + 𝜆1

𝐶3
 

for some 𝐶3 > 0. Hence, ∅2 is nearly linear near −𝜆1(see Figure (3.4), and 
the root-finding 

 

Figure  3.4   𝟏/ 𝒑(𝝀)  as a function of  𝝀. 
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Newton’s method will perform well, provided that it maintains 𝜆 >
−𝜆1.The root-finding Newton’s method applied to ∅2 generates a sequence 
of iterates 𝜆(𝑙) by setting 

                                         𝜆(𝑙+1) = 𝜆(𝑙) −
∅2(𝜆(𝑙))

∅2
′ (𝜆(𝑙))

.                                                   (3.15) 

After some elementary manipulation, this updating formula can be 
implemented in the following practical way see [1]. 

Algorithm (3.2) (Trust Region Sub-problem)  

𝐺𝑖𝑣𝑒𝑛 𝜆(0), Δ > 0: 

𝑓𝑜𝑟 ℓ = 0,1,2, … 

𝐹𝑎𝑐𝑡𝑜𝑟 𝐵 + 𝜆(ℓ)𝐼 = 𝑅𝑇𝑅; 

𝑆𝑜𝑙𝑣𝑒 𝑅𝑇𝑅𝑝ℓ = −𝑔, 𝑅𝑇𝑞ℓ = 𝑝ℓ; 

𝑆𝑒𝑡 

                               𝜆(ℓ+1) = 𝜆(ℓ) +  
 𝑝ℓ 

 𝑞ℓ 
 

2

 
 𝑝ℓ −∆

∆
 ;                                        (3.16) 

𝑒𝑛𝑑  𝑓𝑜𝑟 . 

Safeguards must be added to this algorithm to make it practical for 
instance, when 𝜆(𝑙) < −𝜆1the Cholesky factorization  

𝐵 + −𝜆𝑙𝐼 = 𝑅𝑇𝑅 

will not exist. A slightly enhance version of this algorithm does, however, 
converge to a solution of (3.9) in most cases. The main work in each 
iteration of this method is, of course, the Cholesky factorization of 
𝐵 + −𝜆𝑙𝐼.  Practical versions of this algorithm do not iterate until 
convergence to the optimal 𝜆 is obtained with high accuracy, but are 
content with an approximate solution that can be obtained in two or three 
iterations see [71]. 

Example 3.1:  

Consider 𝑓: 𝐼𝑅𝑛  → 𝐼𝑅 defined by 𝑓 𝑥 = 𝑥1
3 + 3𝑥1𝑥2

2 

and let 𝑥 = (0,0)𝑇 and 𝑝 = (1,2)𝑇  

𝑓 𝑥 + 𝑝 = 𝑓 𝑥 + ∇𝑓(𝑥 + 𝛼𝑝)𝑇𝑝 

𝑓 𝑥 + 𝑝 = (𝑥1 + 𝑝1)3 + 3 𝑥1 + 𝑝1 (𝑥2 + 𝑝2)2                              (∗) 
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by substituting  𝑥 𝑎𝑛𝑑 𝑝  in   (∗) 

𝑓 𝑥 + 𝑝 = (0 + 1)3 + 3 0 + 1  0 + 2 2 = 1 + 3 × 4 = 13         

𝑓 𝑥 + 𝛼𝑝 = (𝑥1 + 𝛼𝑝1)3 + 3 𝑥1 + 𝛼𝑝1  𝑥2 + 𝛼𝑝2 2 

∇𝑓 𝑥 + 𝛼𝑝 =

 
 
 
 
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2 
 
 
 

=  
3 𝑥1 + 𝛼𝑝1 2 + 3(𝑥2 + 𝛼𝑝2)2

6 𝑥1 + 𝛼𝑝1 (𝑥2 + 𝛼𝑝2)
  

=  
3 0 + 𝛼 × 1 2 + 3(0 + 𝛼 × 2)2

6 0 + 𝛼 × 1 (0 + 𝛼 × 2)
 =  15𝛼2

12𝛼2  

∇𝑓(𝑥 + 𝛼𝑝)𝑇𝑝 =  15𝛼2 12𝛼2  
1
2
 =  15𝛼2 + 24𝛼2 =  39𝛼2  

𝑓 𝑥 + 𝑝 = 𝑓 𝑥 + ∇𝑓(𝑥 + 𝑝)𝑇𝑝 

13 = 0 + 39𝛼2 ⇒ 𝛼2 =
13

39
⇒ 𝛼2 =

1

3
⇒ 𝛼 =

1

 3
 

Example 3.2: 

Find ∇𝑓 𝑥  and ∇2𝑓 𝑥       , If 𝑥 = (1,1)𝑇 

𝑓 𝑥 = 100 𝑥2 − 𝑥1
2 2 + (1 − 𝑥1)2 

Solution  

𝑓 𝑥 = 100 𝑥2
2 − 2𝑥2𝑥1

2 + 𝑥1
4 +  1 − 2𝑥1 + 𝑥1

2  

= 100𝑥2
2 − 200𝑥2𝑥1

2 + 100𝑥1
4 + 1 − 2𝑥1 + 𝑥1

2 

100𝑥1
4 + 𝑥1

2 − 2𝑥1 + 100𝑥2
2 − 200𝑥2𝑥1

2 + 1 

𝜕𝑓

𝜕𝑥1
= 400𝑥1

3 + 2𝑥1 − 2 − 400𝑥2𝑥1 

𝜕𝑓

𝜕𝑥2
= 200𝑥2 − 200𝑥1

2 

∇𝑓 𝑥 =

 
 
 
 
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2 
 
 
 

=  
400𝑥1

3 + 2𝑥1 − 2 − 400𝑥2𝑥1

200𝑥2 − 200𝑥1
2  =  

400 + 2 − 2 − 400
200 − 200

 

=  
0
0
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𝜕2𝑓

𝜕𝑥1
2 = 1200𝑥1

2 + 2 − 400𝑥2 

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
= −400𝑥1

𝜕2𝑓

𝜕𝑥2𝜕𝑥1
= −400𝑥1 

𝜕2𝑓

𝜕𝑥2
2 = 200 

∇2𝑓 𝑥 =

 
 
 
 
 

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2  

 
 
 
 

=  
1200𝑥1

2 + 2 − 400𝑥2 −400𝑥1

−400𝑥1 200
  

=  
1200 + 2 − 400 −400

−400 200
 =  

802 −400
−400 200

  

3.4 Truncated Newton Method:  
In this section, we study truncated Newton method (modified Newton  CG), 
which is assumed to be the solution of the trust region subproblem(3.3). 
This algorithm, due to Steihaug [1], is specified below as Algorithm 3.3. A 
complete algorithm for minimizing 𝑓 is obtained by using Algorithm 3.3 to 
generate the step pkrequired by Algorithm 3.1, for some choice of tolerance 
ϵk  at each iteration. we use dj  to denote the search directions of this 

modified CG iteration and zj  to denote the sequence of iterates that it 

generates[1,12]. 
Algorithm 3.3 (CG-Steihaug) 
Given tolerance  𝜖k > 0 ; 
Set 𝑧0 = 0, 𝑟0 = ∇𝑓𝑘 , 𝑑0 = −𝑟0 = −∇𝑓𝑘 ; 
If  𝑟0 < 𝜖k  
Return 𝑝𝑘 = 𝑧0 = 0; 
For 𝑗 = 0,1,2, … .. 
If 𝑑𝑗

𝑇𝐵𝑘𝑑𝑗 ≤ 0 

Find 𝜏 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗   minimizes 𝑚𝑘 𝑝𝑘  in Algorithm 3.1 and 

satisfies  𝑝𝑘 ≤ ∆𝑘  
Return 𝑝𝑘 ; 
Set  𝛼𝑗 = 𝑟𝑗

𝑇𝑟𝑗 𝑑𝑗
𝑇𝐵𝑘𝑑𝑗  ; 

Set  𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 ; 

If  𝑧𝑗+1 ≥ ∆𝑘  

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗  satisfies  𝑝𝑘 = ∆𝑘 ; 

Return 𝑝𝑘  ; 
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Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗 𝐵𝑘𝑑𝑗 ; 

If  𝑟𝑗+1 < 𝜖k  

Return 𝑝𝑘 = 𝑧𝑗 +1; 

Set  𝛽𝑗+1 = 𝑟𝑗+1
𝑇 𝑟𝑗+1 𝑟𝑗

𝑇𝑟𝑗 ; 

Set 𝑑𝑗+1 = −𝑟𝑗 +1 + 𝛽𝑗 +1𝑑𝑗 ; 

End(for) 
The initialization of 𝑧0 to zero in Algorithm 3.3 is a crucial feature of the 
algorithm. Provided  𝛻𝑓𝑘 2 ≥  ϵk  , Algorithm 3.3 terminates at a point pk  
for which 𝑚𝑘(𝑝𝑘) ≤ 𝑚𝑘(𝑝𝑘

𝑐
 
), that is, when the reduction in model function 

equals or exceeds that of the Cauchy point. To demonstrate this fact, we 
consider several cases. First, if 𝑑0

𝑇𝐵𝑘𝑑0 = (𝛻𝑓𝑘)𝑇𝐵𝑘𝛻𝑓𝑘  ≤ 0 , then the 
condition in the first if statement is satisfied, and the algorithm returns the 
Cauchy point 𝑝 = −∆𝑘(𝛻𝑓𝑘  )/ 𝛻𝑓𝑘   . Otherwise, Algorithm 3.3 defines 𝑧1 as 
follows: 

𝑧1 =  𝛼0𝑑0 =  𝑟0
𝑇𝑟0 𝑑0

𝑇𝐵𝑘𝑑0  𝑑0 = −
(𝛻𝑓𝑘)𝑇𝛻𝑓𝑘

(𝛻𝑓𝑘)𝑇𝐵𝑘𝛻𝑓𝑘
𝛻𝑓𝑘 . 

If  𝑧1 < ∆𝑘  , then 𝑧1 is exactly the Cauchy point. Subsequent steps of 
Algorithm 3.3 ensure that the final pksatisfies 𝑚𝑘(𝑝𝑘) ≤ 𝑚𝑘(𝑧1) . 
 When  z1 ≥ ∆k , on the other hand, the second if statement is activated, 
and Algorithm 3.3 terminates at the Cauchy point, proving our claim. This 
property is important for global convergence: Since each step is at least as 
good as the Cauchy point in reducing the model mk  , Algorithm 3.3 is 
globally convergent. Another crucial property of the method is that each 
iterate 𝑧𝑗  is larger in norm than its predecessor. This property is another 

consequence of the initialization z0 = 0. Its main implication is that it is 
acceptable to stop iterating as soon as the trust-region boundary is 
reached, because no further iterates giving a lower value of the model 
function 𝑚𝑘  will lie inside the trust region. 
 
Theorem 3.2. 
The sequence of vectors {zj  } generated by Algorithm 3.3 satisfies 

0 =  z0 2 < ⋯  zj 2
<  zj+1 

2
< ⋯ pk 2 ≤ ∆k  . 

PROOF. We first show that the sequences of vectors generated by 
Algorithm 3.3 satisfy 𝑧𝑗

𝑇𝑟𝑗 = 0  for 𝑗 ≥  0 and 𝑧𝑗
𝑇𝑑𝑗 > 0 for 𝑗 ≥ 1. Algorithm 

3.3 computes 𝑧𝑗+1 recursively in terms of 𝑧𝑗  ; but when all the terms of this 

recursion are written explicitly, we see that 

 𝑧𝑗 = 𝑧0 +  𝛼𝑖
𝑗−1
𝑖=0 𝑑𝑖 =  𝛼𝑖

𝑗−1
𝑖=0 𝑑𝑖  

since 𝑧0 = 0 .Multiplying by 𝑟𝑗  and applying the expanding subspace 

property of conjugate gradients 

                                            𝑧𝑗
𝑇𝑟𝑗 =  𝛼𝑖

𝑗−1
𝑖=0 𝑑𝑖

𝑇𝑟𝑗 = 0                                            (3.17) 
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An induction proof establishes the relation 𝑧𝑗
𝑇𝑑𝑗 > 0. By applying the 

expanding subspace property again, we obtain 
𝑧1

𝑇𝑑1 =  𝛼0𝑑0 𝑇 −𝑟1 + 𝛽1𝑑0 = 𝛼0𝛽1𝑑0
𝑇𝑑0 > 0. 

We now make the inductive hypothesis that  𝑧𝑗
𝑇𝑑𝑗 > 0 and deduce that 

 𝑧𝑗+1
𝑇 𝑑𝑗+1 > 0. From (3.17), we have  𝑧𝑗+1

𝑇 𝑟𝑗 +1 = 0, and therefore 

 𝑧𝑗+1
𝑇 𝑑𝑗+1 =  𝑧𝑗+1

𝑇 (−𝑟𝑗 +1 + 𝛽𝑗+1𝑑𝑗 ) 

𝛽𝑗+1 𝑧𝑗+1
𝑇 𝑑𝑗 = 𝛽𝑗+1(𝑧𝑗 + 𝛼𝑗 𝑑𝑗 )𝑇𝑑𝑗  

𝛽𝑗+1𝑧𝑗
𝑇𝑑𝑗 + 𝛼𝑗 𝛽𝑗+1𝑑𝑗

𝑇𝑑𝑗  

Because of the inductive hypothesis and positivity of 𝛽𝑗 +1and 𝛼𝑗  , the last 

expression is positive. We now prove the theorem. If Algorithm 3.3 

terminates because 𝑑𝑗
𝑇𝐵𝑘𝑑𝑗 ≤ 0 or 𝑧𝑗+1 

2
≥ ∆𝑘 , then the final point 𝑝𝑘  is 

chosen to make  𝑝𝑘 2 = ∆𝑘  , which is the largest possible length. To cover 
all other possibilities in the algorithm, we must show that 

 𝑧𝑗  2
<  𝑧𝑗+1 

2
when𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗  and 𝑗 ≥ 1. Observe that 

 𝑧𝑗+1 
2

2
=  𝑧𝑗 + 𝛼𝑗 𝑑𝑗  

𝑇
 𝑧𝑗 + 𝛼𝑗 𝑑𝑗  =  𝑧𝑗  2

2
+ 2𝛼𝑗 𝑧𝑗

𝑇𝑑𝑗 + 𝛼𝑗
2 𝑑𝑗  2

2
 

It follows from this expression and our intermediate result that 

 𝑧𝑗  2
<  𝑧𝑗+1 

2
, so our proof is complete. 
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Chapter 4 

Quasi-Newton Methods 

4.1  Introduction : 
In the mid 1950s, W.C. Davidon, a physicist working at Argonne National 
Laboratory, was using the coordinate descent method to perform a long 
optimization calculation. At that time computers were not very stable, and 
to Davidon’s frustration, the computer system would always crash before 
the calculation was finished. So Davidon decided to find a way of 
accelerating the iteration. The algorithm he developed—the first quasi-
Newton algorithm—turned out to be one of the most creative ideas in 
nonlinear optimization. It was soon demonstrated by Fletcher and Powell 
that the new algorithm was much faster and more reliable than the other 
existing methods, and this dramatic advance transformed nonlinear 
optimization overnight. 
During the following twenty years, numerous variants were proposed and 
hundreds of papers were devoted to their study. An interesting historical 
irony is that Davidon’s paper [110] was not accepted for publication; it 
remained as a technical report for more than thirty years until it appeared 
in the first issue of the SIAM Journal on Optimization in 1991 [111]. 
Quasi-Newton methods, like steepest descent, require only the gradient of 
the objective function to be supplied at each iterate. By measuring the 
changes in gradients, they construct a model of the objective function that 
is good enough to produce superliner convergence. 
Moreover, since second derivatives are not required, Quasi-Newton 
methods are sometimes more efficient than Newton’s method[1,12]. 
4.2 The BFGS Method:  
The most popular Quasi-Newton algorithm is the BFGS method, named for 
its discoverers  Broyden, Fletcher, Goldfarb, and Shanno. 
We begin the derivation by forming the following quadratic model of the 
objective function at the current iterate 𝑥𝑘  : 

                          𝑚𝑘 𝑝 = 𝑓𝑘 + ∇𝑓𝑇
𝑘
𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝.                                                (4.1) 

Here 𝐵𝑘  is an 𝑛 × 𝑛 symmetric positive definite matrix that will be revised 
or updated at every iteration. Note that the function value and gradient of 
this model at  𝑝 = 0 match 𝑓𝑘and ∇𝑓𝑘  , respectively. The minimize  𝑝𝑘  of this 
convex quadratic model, which we can write explicitly as 
                                           𝑝𝑘 = −𝐵−1

𝑘∇𝑓𝑘                                                               (4.2) 
is used as the search direction, and the new iterate is 
                                           𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘                                                           (4.3) 
where the step length 𝛼𝑘  is chosen to satisfy the Wolfe conditions (2.15). 
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Instead of computing  𝐵𝑘  a fresh at every iteration, Davidon proposed to 
update it in a simple manner to account for the curvature measured during 
the most recent step. Suppose that we have generated a new iterate 𝑥𝑘+1 
and wish to construct a new quadratic model, of the form 

𝑚𝑘+1 𝑝 = 𝑓𝑘+1 + ∇𝑓𝑇
𝑘+1

𝑝 +
1

2
𝑝𝑇𝐵𝑘+1𝑝. 

What requirements should we impose on 𝐵𝑘+1, based on the knowledge 
gained during the latest step? One reasonable requirement is that the 
gradient of  𝑚𝑘+1 should match the gradient of the objective function 𝑓 at 
the latest two iterates 𝑥𝑘  and  𝑥𝑘+1. Since ∇𝑚𝑘+1 0   is precisely 𝛻𝑓𝑘+1, the 
second of these conditions is satisfied automatically. The first condition can 
be written mathematically as 

∇𝑚𝑘+1 −𝛼𝑘𝑝𝑘 = 𝛻𝑓𝑘+1 − 𝛼𝑘𝐵𝑘+1𝑝𝑘 = 𝛻𝑓𝑘  
By rearranging, we obtain 
                            𝐵𝑘+1𝛼𝑘𝑝𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘 .                                                          (4.4) 
To simplify the notation it is useful to define the vectors 
                         𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 = 𝛼𝑘𝑝𝑘 ,  𝑦𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘                              (4.5) 
so that (4.4) becomes 
                                                         𝐵𝑘+1𝑠𝑘 = 𝑦𝑘                                                        (4.6) 
We refer to this formula as the secant equation. 
Given the displacement 𝑠𝑘  and the change of gradients  𝑦𝑘  , the secant 
equation requires that the symmetric positive definite matrix 𝐵𝑘+1 map  𝑠𝑘  
into 𝑦𝑘  . This will be possible only if  𝑠𝑘  and 𝑦𝑘  satisfy the curvature 
condition 
                                                       𝑠𝑘

𝑇𝑦𝑘 > 0                                                               (4.7) 
as is easily seen by premultiplying (4.6) by 𝑠𝑘

𝑇  .When 𝑓 is strongly convex, 
the inequality (4.7) will be satisfied for any two points 𝑥𝑘  and 𝑥𝑘+1 
.However, this condition will not always hold for nonconvex functions, and 
in this case we need to enforce (4.7) explicitly, by imposing restrictions on 
the line search procedure that chooses the step length 𝜶. In fact, the 
condition (4.7) is guaranteed to hold if we impose the Wolfe (2.15) on the 
line search. To verify this claim, we note from (4.5) that  𝛻𝑓𝑘+1

𝑇  𝑠𝑘 ≥
𝑐2𝛻𝑓𝑘

𝑇  𝑠𝑘 , and therefore 
                                  𝑦𝑘

𝑇𝑠𝑘 ≥ (𝑐2 − 1)𝛻𝑓𝑘
𝑇  𝑝𝑘                                                          (4.8) 

Since 𝑐2 < 1 and since  𝑝𝑘  is a descent direction, the term on the right is 
positive, and the curvature condition (4.7) holds. When the curvature 
condition is satisfied, the secant equation (4.6) always has a solution 𝐵𝑘+1. 

In fact, it admits an infinite number of solutions, since the  
𝑛(𝑛  + 1)

2
 degrees 

of freedom in a symmetric positive definite matrix exceed the  𝑛 conditions 
imposed by the secant equation. The requirement of positive definiteness 
imposes 𝑛 additional inequalities (all principal minors must be positive)but 
these conditions do not absorb the remaining degrees of freedom. To 
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determine 𝐵𝑘+1 uniquely, we impose the additional condition that among 
all symmetric matrices satisfying the secant equation, 𝐵𝑘+1is, in some 
sense, closest to the current matrix  𝐵𝑘  . In other words, we solve the 
problem 
                                                    min𝐵 𝐵 − 𝐵𝑘                                                      (4.9a) 
                                           Subject to 𝐵 = 𝐵𝑇 , 𝐵𝑠𝑘 = 𝑦𝑘                                     (4.9b) 
Where 𝑠𝑘  and 𝑦𝑘  satisfy (4.7) and 𝐵𝑘  is symmetric and positive definite. 
Different matrix norms can be used in (4.9a), and each norm gives rise to a 
different quasi-Newton method. A norm that allows easy solution of the 
minimization problem (4.9) and gives rise to a scale-invariant optimization 
method is the weighted Frobenius norm 

                                𝐴 𝑊 ≡  𝑊1 2 𝐴𝑊1 2  
𝐹

,                                                     (4.10) 

The weight matrix 𝑊 can be chosen as Many matrix satisfying the relation 
𝑦𝑘  =  𝑠𝑘  .With this weighting matrix and this norm, the unique solution of 
(4.9) is 
            (DFP)𝐵𝑘+1 =  𝐼 − 𝜌𝑘𝑦𝑘  𝑠𝑘

𝑇
 
 𝐵𝑘 𝐼 − 𝜌𝑘𝑠𝑘  𝑦𝑘

𝑇
 
 + 𝜌𝑘𝑦𝑘  𝑦𝑘

𝑇
 
             (4.11) 

With  

                                                       𝜌𝑘 =
1

𝑦𝑘
𝑇𝑠𝑘  

                                                           (4.12) 

This formula is called the DFP updating formula, since it is the one 
originally proposed by Davidon in 1959, and subsequently studied, 
implemented, and popularized by Fletcher and Powell. The inverse of 𝐵𝑘 , 
which we denote by 

𝐻𝑘 = 𝐵𝑘
−1 

is useful in the implementation of the method, since it allows the search 
direction (4.2) to be calculated by means of a simple matrix–vector 
multiplication. Using the Sherman–Morrison–Woodbury formula we can 
derive the following expression for the update of the inverse Hessian 
approximation 𝐻𝑘  that corresponds to the DFP update of 𝐵𝑘 in (4.11): 

                         DFP   𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝑦𝑘  𝑦𝑘

𝑇𝐻𝑘

𝑦𝑘
𝑇𝐻𝑘𝑦𝑘  

−
𝑠𝑘  𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘  

                                        (4.13) 

The DFP updating formula is quite effective, but it was soon superseded by 
the BFGS formula, which is presently considered to be the most effective of 
all Quasi-Newton Updating formulae. BFGS updating can be derived by 
making a simple change in the argument that led to (4.11). Instead of 
imposing conditions on the Hessian approximations 𝐵𝑘 , we impose similar 
conditions on their inverses  𝐻𝑘  . The updated approximation 𝐻𝑘+1  must be 
symmetric and positive definite, and must satisfy the secant equation (4.6), 
now written as 

𝐻𝑘+1𝑦𝑘  = 𝑠𝑘   
The condition of closeness to 𝐻𝑘  is now specified by the following analogue 
of (4.9): 
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                                            min𝐵 𝐻 − 𝐻𝑘                                                           (4.14a) 
                                        Subject to 𝐻 = 𝐻𝑇 , 𝐻𝑦𝑘 = 𝑠𝑦𝑘                                  (4.14b) 
The norm is again the weighted Frobenius norm described above, where 
the weight matrix 𝑊 is now any matrix satisfying 𝑠𝑘  =  𝑦𝑘   . 
The unique solution 𝐻𝑘+1  to (4.14) is given by 

  (BFGS)          𝐻𝑘+1 =  𝐼 − 𝜌𝑘𝑠𝑘  𝑦𝑘
𝑇

 
 𝐻𝑘 𝐼 − 𝜌𝑘𝑦𝑘  𝑠𝑘

𝑇
 
 + 𝜌𝑘𝑠𝑘  𝑠𝑘

𝑇
 
            (4.15) 

With 𝜌𝑘  defined by (4.12). 
Just one issue has to be resolved before we can define a complete BFGS 
algorithm: How should we choose the initial approximation 𝐻0 ? 
Unfortunately, there is no magic formula that works well in all cases. We 
can use specific information about the problem, for instance by setting it to 
the inverse of an approximate Hessian calculated by finite differences at 𝑥0 
. Otherwise, we can simply set it to be the identity matrix, or a multiple of 
the identity matrix, where the multiple is chosen to reflect the scaling of the 
variables [1]. 
Algorithm 4.1  (BFGS Method). 
Given starting point  𝑥0, convergence tolerance 𝜖 > 0, inverse Hessian 
approximation  𝐻0; 
𝑘 ←  0; 
While   𝛻𝑓𝑘 > 𝜖 ; 
Compute search direction 
                    𝑝𝑘 = −𝐻𝑘𝛻𝑓𝑘  ;                                                                                     (4.16) 
Set  𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘𝑝𝑘   where 𝛼𝑘  is computed from a line search 
procedure to satisfy the Wolfe conditions ; 
Define 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘  and  𝑦𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘  ; 
                Compute 𝐻𝑘+1 by means of                                                               (4.15); 
𝑘 ← 𝑘 + 1; 
end (while) 
The algorithm is robust, and its rate of convergence is superlinear,which is 
fast enough for most practical purposes. 
Implementation: 
A few details and enhancements need to be added to Algorithm 3.4 to 
produce an efficient implementation. The line search, which should satisfy 

either the Wolfe conditions, should always try the step length 𝛼𝑘 = 1 first, 
because this step length will eventually always be accepted (under certain 
conditions), there by producing superlinear convergence of the overall 
algorithm. The values  𝑐1 = 10−4  and 𝑐2 = 0.9  are commonly used. 
As mentioned earlier, the initial matrix 𝐻0 often is set to some multiple  𝛽𝐼 
of the identity, but there is no good general strategy for choosing the 
multiple 𝛽. We change the provisional value 𝐻0 = 𝐼 by setting 

                                                      𝐻0 ←
𝑦𝑘

𝑇𝑠𝑘  

𝑦𝑘
𝑇𝑦𝑘  

𝐼                                                        (4.17) 
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before applying the update (4.12) , (4.15) to obtain 𝐻0.  
4.3 The SR1 Method: 
In the BFGS and DFP updating formulae, the updated matrix 𝐵𝑘+1 (or 𝐻𝑘+1) 
differs from its predecessor 𝐵𝑘  (or 𝐻𝑘) by a rank-2 matrix. In fact, as we 
now show, there is a simpler rank-1 update that maintains symmetry of the 
matrix and allows it to satisfy the secant equation. 
Unlike the rank-two update formulae, this symmetric-rank-1, or SR1, 
update does not guarantee that the updated matrix maintains positive 
definiteness. Good numerical results have been obtained with algorithms 
based on SR1, so we derive it here and investigate its properties. 
The symmetric rank-1 update has the general form  

𝐵𝑘+1 = 𝐵𝑘 + 𝜎𝑣𝑣𝑇  
Where 𝜎 is either +1 𝑜𝑟 − 1, and 𝜎 and 𝑣 are chosen so that 𝐵𝑘+1satisfies 
the secant equation (4.5) that is, 𝐵𝑘+1𝑠𝑘 = 𝑦𝑘 . By substituting into this 
equation, we obtain 
                                            𝑦𝑘 = 𝐵𝑘𝑠𝑘 + [𝜎𝑣𝑇𝑠𝑘]𝑣.                                             (4.18) 
Since the term in brackets is a scalar, we deduce that 𝑣 must be a multiple 
of 𝑦𝑘 − 𝐵𝑘𝑠𝑘  , that is, 𝑣 = 𝛿(𝑦𝑘 − 𝐵𝑘𝑠𝑘) for some scalar 𝛿. By substituting 
this form of 𝑣 into (4.18), we obtain 
                      𝑦𝑘 − 𝐵𝑘𝑠𝑘 = 𝜎𝛿2[𝑠𝑘

𝑇
 
(𝑦𝑘 − 𝐵𝑘𝑠𝑘)] 𝑦𝑘 − 𝐵𝑘𝑠𝑘                      (4.19) 

and it is clear that this equation is satisfied if (and only if) we choose the 
parameters 𝛿 and 𝜎 to be 

𝜎 = 𝑠𝑖𝑔𝑛 𝑠𝑘
𝑇

 
 𝑦𝑘 − 𝐵𝑘𝑠𝑘  , 𝛿 = ± 𝑠𝑘

𝑇
 
 𝑦𝑘 − 𝐵𝑘𝑠𝑘  

−
1
2 

Hence, we have shown that the only symmetric rank-1 updating formula 
that satisfies the secant equation is given by 

                  (SR1)                  𝐵𝑘+1 = 𝐵𝑘 +
 𝑦𝑘−𝐵𝑘𝑠𝑘  𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇

 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇𝑠𝑘
                          (4.20) 

By applying the Sherman–Morrison formula, we obtain the corresponding 
update formula for the inverse Hessian approximation 𝐻𝑘  : 

                   (SR1)                  𝐻𝑘+1 = 𝐻𝑘 +
 𝑠𝑘−𝐻𝑘𝑦𝑘  𝑠𝑘−𝐻𝑘𝑦𝑘 𝑇

 𝑠𝑘−𝐻𝑘𝑦𝑘 𝑇𝑦𝑘
                        (4.21) 

This derivation is so simple that the SR1 formula has been rediscovered a 
number of times. It is easy to see that even if 𝐵𝑘  is positive definite, 𝐵𝑘+1 
may not have the same property. (The same is, of course, true of 𝐻𝑘  .) This 
observation was considered a major drawback in the early days of 
nonlinear optimization when only line search iterations were used. 
However, with the advent of trust-region methods, the SR1 updating 
formula has proved to be quite useful, and its ability to generate indefinite 
Hessian approximations can actually be regarded as one of its chief 
advantages. The main drawback of SR1 updating is that the denominator in 
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(4.20) or (4.21) can vanish. In fact, even when the objective function is a 
convex quadratic, there may be steps on which there is no symmetric   
rank-1 update that satisfies the secant equation. It pays to reexamine the 
derivation above in the light of this observation. By reasoning in terms of 
𝐵𝑘  (similar arguments can be applied to 𝐻𝑘  ), we see that there are three 
cases: 
1. If  𝑦𝑘 − 𝐵𝑘𝑠𝑘 𝑇𝑠𝑘 ≠ 0 ,then the arguments above show that there is a 

unique rank-one updating formula satisfying the secant equation (4.6), 
and that it is given by (4.20). 

2. If 𝑦𝑘 = 𝐵𝑘𝑠𝑘  , then the only updating formula satisfying the secant 
equation is simply 𝐵𝑘+1 = 𝐵𝑘  

3. If 𝑦𝑘 ≠ 𝐵𝑘𝑠𝑘and  𝑦𝑘 − 𝐵𝑘𝑠𝑘 𝑇𝑠𝑘 = 0 ,then (4.19) shows that there is no 
symmetric rank-one updating formula satisfying the secant equation. 

The last case clouds an otherwise simple and elegant derivation, and 
suggests that numerical instabilities and even breakdown of the method 
can occur. It suggests that rank-one updating does not provide enough 
freedom to develop a matrix with all the desired characteristics, and that a 
rank-two correction is required. This reasoning leads us back to the BFGS 
method, in which positive definiteness (and thus nonsingularity) of all 
Hessian approximations is guaranteed. We are interested in the SR1 
formula for the following reasons. 
(i) A simple safeguard seems to adequately prevent the breakdown of the 
method and the occurrence of numerical instabilities. 
(ii) The matrices generated by the SR1 formula tend to be good 
approximations to the true Hessian matrix—often better than the BFGS 
approximations. 
We now introduce a strategy to prevent the SR1 method from breaking 
down. It has been observed in practice that SR1 performs well simply by 
skipping the update if the denominator is small. More specifically, the 
update (4.20) is applied only if 

                          𝑠𝑘
𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘  ≥ 𝑟 𝑠𝑘  𝑦𝑘 − 𝐵𝑘𝑠𝑘 ,                                   (4.22) 

Where  𝑟 ∈ (0, 1) is a small number, say 𝑟 = 10−8. If (4.22) does not hold, 
we set  𝐵𝑘+1 = 𝐵𝑘  . Most implementations of the SR1 method use a skipping 
rule of this kind. We now give a formal description of an SR1 method using 
a trust-region framework, which we prefer over a line search framework 
because it can accommodate indefinite Hessian approximations more 
easily[1,2]. 
Algorithm 4.2  (SR1 Trust-Region Method). 
Given starting point 𝑥0 , initial Hessian approximation 𝐵0 , trust-region 
radius ∆0 , convergence tolerance  𝜖 > 0 , parameters 𝜂 ∈ (0, 10−3)  and 
𝑟 ∈ (0, 1); 
𝑘 ←  0; 
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while 𝛻𝑓𝑘 > 𝜖 ; 
Compute 𝑝𝑘  by solving the trust region  sub-problem find 𝑝𝑘 ; 
Compute 
𝑦𝑘 = 𝛻𝑓 (𝑥𝑘  +  𝑝𝑘) − 𝛻𝑓𝑘  , 

𝜌𝑘 =
𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝑝𝑘)

𝑚𝑘 0 − 𝑚𝑘(𝑝𝑘)
 

if  𝜌𝑘 > 𝜂 
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ; 
else 
𝑥𝑘+1 = 𝑥𝑘  ; 
end (if) 
if  𝜌𝑘 > 0.75 
if    𝑝𝑘 ≤ 0.8∆𝑘  
∆𝑘+1= ∆𝑘 ; 
else 
∆𝑘+1= 2∆𝑘 ; 
end (if) 
else if 0.1 ≤ 𝜌𝑘 ≤ 0.75 
∆𝑘+1= ∆𝑘  ; 
else 
∆𝑘+1= 0.5∆𝑘 ; 
end (if) 

if   𝑠𝑘
𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘  ≥ 𝑟 𝑠𝑘  𝑦𝑘 − 𝐵𝑘𝑠𝑘  

Use (4.20) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘  ); 
else 
𝐵𝑘+1 ← 𝐵𝑘  ; 
end (if) 
𝑘 ← 𝑘 + 1; 
end (while) 
Properties of  SR1 Updating: 
One of the main advantages of SR1 updating is its ability to generate good 
Hessian approximations. We demonstrate this property by first examining 
a quadratic function. For functions of this type, the choice of step length 
does not affect the update, so to examine the effect of the updates, we can 
assume for simplicity a uniform step length of 1, that is, 
                                    𝑝𝑘 = −𝐻𝑘𝛻𝑓𝑘  ,     𝑥𝑘+1 =  𝑥𝑘 + 𝑝𝑘  .                                (4.23) 
It follows that  𝑝𝑘 = 𝑠𝑘  . 
Theorem 4.1. 
Suppose that 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅  is the strongly convex quadratic function 

𝑓 𝑥 = 𝑏𝑇𝑥 +
1

2
𝑥𝑇𝐴𝑥  , where 𝐴 is symmetric positive definite. Then for any 

starting point 𝑥0 and any symmetric starting matrix 𝐻0, the iterates {𝑥𝑘} 
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generated by the SR1 method (4.21), (4.23) converge to the minimizer in 
at most 𝒏 steps, provided that (𝑠𝑘 − 𝐻𝑘𝑦𝑘)𝑇 𝑦𝑘  ≠ 0 for all 𝑘. 
Moreover, if 𝑛 steps are performed, and if the search directions 𝑝𝑖  are 
linearly independent, then 𝐻𝑛 = 𝐴−1. 
Theorem 4.2. 
Suppose that 𝑓 is twice continuously differentiable, and that its Hessian is 
bounded and Lipschitz continuous in a neighborhood of a point  𝑥∗. Let {𝑥𝑘} 
be any sequence of iterates such that 𝑥𝑘  →  𝑥∗for some 𝑥∗ ∈ 𝐼𝑅𝑛 . Suppose 
in addition that the inequality (4.22) holds for all 𝑘, for some  𝑟 ∈ (0, 1), 
and that the steps 𝑠𝑘  are uniformly linearly independent. Then the matrices 
𝐵𝑘  generated by the SR1 updating formula satisfy 

lim
𝑘→∞

 𝐵𝑘 − ∇2𝑓(𝑥∗) = 0 

The term “uniformly linearly independent steps” means, roughly speaking, 
that the steps do not tend to fall in a subspace of dimension less than 𝑛. 
This assumption is usually, but not  always, satisfied in practice[1,12]. 
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Chapter 5 

Available Methods for Derivative Free Optimization 

5.1  Introduction :   

          Derivative free optimization methods have a long history, see 

([37],[36]) and [32] for extensive discussions and references. These 

methods come essentially in different classes, a classification strongly 

influenced see [75],[15]. 

        The first class contains algorithms which use finite-difference 

approximation of the objective function's derivatives in the context of a 

gradient based method, such as nonlinear conjugate gradients or quasi-

Newton methods (see, [12],[75]). The methods in the second class are often 

referred to as pattern search methods, because they are based on the 

exploration of the variable space using a well-specified geometric pattern, 

typically a simplex. The algorithm described see [112] is still the most 

popular minimization technique in use today in this context. The methods 

of the third class are, for example, based on the progressive building and 

updating of a model of the objective function. Design of Experiment and 

interpolation models are proposed see ([70],[ 15]). Response surface 

methodology is described see [31]. Trust-region methods also belong to 

this class, see ([12],[15],[75]). 

5.2 Finite-Difference Derivative Estimates: 
Finite differencing refers to the estimation of 𝑓 ′ (𝑥) using values of 𝑓(𝑥). 
The simplest formulas just use the difference of two function values which 
gives the technique its name. Finite differencing can also be applied to the 
calculation of 𝛻𝑓(𝑥) for multidimensional problems, as well as to the 
computation of  𝑓 ′′ (𝑥) and the Hessian matrix 𝛻2𝑓(𝑥). For a problem with 
𝑛  variables, computing  𝛻𝑓(𝑥)  will be about 𝑛  times as expensive as 
computing 𝑓(𝑥),  and computing 𝛻2𝑓 (𝑥)  will be about 𝑛2  times as 
expensive as 𝑓(𝑥). Hence, even though this technique relieves the burden of 
deriving and programming derivative formulas, it is expensive 
computationally. In addition, finite differencing only produces derivative 
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estimates, not exact values.  Finite-difference estimates can be derived 
from the Taylor series. In one dimension, 

𝑓 𝑥 + 𝑕 = 𝑓 𝑥 + 𝑕𝑓 ′ 𝑥 +
1

2
𝑕2𝑓 ′′ (𝜉) 

A simple rearrangement gives   

𝑓 ′ 𝑥 =
𝑓 𝑥 + 𝑕 − 𝑓(𝑥)

𝑕
−

1

2
𝑕𝑓 ′′ (𝜉) 

leading to the approximation 

                                         𝑓 ′ 𝑥 =
𝑓 𝑥+𝑕 −𝑓(𝑥)

𝑕
                                                          (5.1) 

This is the most commonly used finite-difference formula. It is sometimes 
called the forward difference formula because 𝑥 +  𝑕 is a shift “forward” 
from the point  x. This formula could also have been derived from the 
definition of the derivative as a limit, 

𝑓 ′ 𝑥 = 𝑙𝑖𝑚𝑕→0
𝑓 𝑥+𝑕 −𝑓(𝑥)

𝑕
; 

but this would not have provided an estimate of the error in the formula. 

Example 3.3:  Consider the function 
𝑓  𝑥 = 𝑠𝑖𝑛 𝑥  

with derivative 𝑓 ′ (𝑥) = 𝑐𝑜𝑠(𝑥). The results of using the finite-difference 

formula  𝑓 ′ (𝑥) ≈    
𝑠𝑖𝑛 (𝑥  + 𝑕)−𝑠𝑖𝑛 (𝑥)

𝑕
 

for x =  2 and for various values of 𝑕 are given in Table 5.1. 
The derivation of the finite-difference formula indicates that the error will 

be equal to   
1

2
𝑕𝑓 ′′ (𝜉). Since ξ is between 𝑥 and 𝑥 +  𝑕, 

error≈  
1

2
𝑕𝑓′′ (𝜉) =  

1

2
𝑕(−𝑠𝑖𝑛⁡(𝑥)) =  

1

2
𝑕(−𝑠𝑖𝑛⁡(2)) ≈  

1

2
𝑕(−0.91) = 0.455𝑕 . 

This corresponds to the results in the table for h between 100and 10−8, but 
after that the error starts to increase, until eventually the finite-difference 
calculation estimates that the derivative is equal to zero. This phenomenon 
will be explained below by examining the errors that result when finite 
differencing is used. We now estimate the error in finite differencing when 
the calculations are performed on a computer. Part of the error is due to 
the inaccuracies in the formula itself; this is called the truncation error: 

truncation error =
1

2
𝑕 𝑓 ′′ (𝜉)   In addition there are rounding errors from 

the evaluation of the formula (𝑓(𝑥 + 𝑕) − 𝑓 (𝑥))/𝑕 on a computer that 
depend on ϵmach , the precision of the computer calculations . There are 
rounding errors  from the evaluations of the function 𝑓 in the numerator: 

(rounding error)1 ≈  |𝑓 (𝑥)|𝜖𝑚𝑎𝑐 𝑕  
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Table 5.1.  Finite differencing. 
which are then magnified and augmented by the division by h: 

(rounding error)1 ≈  
|𝑓 (𝑥)|𝜖𝑚𝑎𝑐 𝑕

𝑕
+ |𝑓 ′  (𝑥)|𝜖𝑚𝑎𝑐 𝑕  

  
 (the first rounding error is magnified by 1/h and then there is an 
additional rounding error from the division that is proportional to the 
result 𝑓 ′ (𝑥)). Under typical circumstances, when h is small and 𝑓(𝑥) is not 
overly large, the first term will dominate, leading to the estimate 

rounding error ≈  
|𝑓  (𝑥)|𝜖𝑚𝑎𝑐 𝑕

𝑕
. The total error is the combination of the 

truncation error and the rounding error 

error ≈  
1

2
𝑕 𝑓 ′′ (𝜉) + 

|𝑓  (𝑥)|𝜖𝑚𝑎𝑐 𝑕

𝑕
. 

For fixed 𝑥 and for almost fixed ξ (ξ is between 𝑥 and 𝑥 +  𝑕, and h will be 
small), this formula can be analyzed as a function of  𝑕 alone. 
To determine the “best” value of 𝑕 we minimize the estimate of the error as 
a function of  𝑕. Differentiating with respect to 𝑕 and setting the derivative 
to zero gives 
1

2
𝑕 𝑓 ′′ (𝜉) −  

|𝑓  (𝑥)|𝜖𝑚𝑎𝑐 𝑕

𝑕2
= 0, 

which can be rearranged to give 

𝑕 =  
2|𝑓 (𝑥)|𝜖𝑚𝑎𝑐 𝑕

 𝑓 ′′ (𝜉) 
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In cases where 𝑓(𝑥) and 𝑓 ′′ (𝜉) are neither especially large nor small, the 
simpler approximation 

𝑕 =  𝜖𝑚𝑎𝑐 𝑕  

can be used. If the more elaborate formula for h is substituted into the 
approximate formula for the error, then the result can be simplified to 

error ≈  2𝜖𝑚𝑎𝑐 𝑕  𝑓 𝑥 . 𝑓 ′′ (𝜉) , 

or more concisely to the result that the error is O( ϵmach ). 

In the example above, ϵmach  ≈  10−16  and the simplified formula for h 

yields 𝑕 ≈  𝜖𝑚𝑎𝑐 𝑕 ≈  10−8 . This value of h  gives the most accurate 

derivative estimate in the example.The more elaborate formula for 𝑕 yields 
𝑕 ≈ 2.1 ×  10−8, almost the same value. The error with this value of 𝑕 is 
about 1.4 × 10−8, slightly worse than the value given by the simpler 
formula. This does not indicate that the derivation is invalid; rather it only 
emphasizes that the terms used in the derivation are estimates of the 
various errors. As expected, the errors in this example are approximately 

equal to ϵmach . 

In practical settings the value of 𝑓 ′′ (𝜉) will be unknown (even the value of 
𝑓(𝑥) will be unknown) and so the more elaborate formula for 𝑕 cannot be 

used. Some software packages just use 𝑕 =  𝜖𝑚𝑎𝑐 𝑕 . or some simple 

modification of this formula (for example, taking into account 
|𝑥| 𝑜𝑟 |𝑓 (𝑥)|). An alternative is to perform extra calculations for one value 
of 𝑥, perhaps the initial guess for the optimization algorithm, to obtain an 
estimate for 𝑓 ′′ (𝜉) and then use this to obtain a better value for h that will 
be used for subsequent finite-difference calculations. 
An additional complication can arise if |x| is large. If 𝑕 < 𝜖𝑚𝑎𝑐 𝑕 |𝑥|, then the 
computed value of 𝑥 + 𝑕  will be equal to 𝑥  and the finite-difference 
estimate will be zero. Thus, in the general case the choice of h will depend 
on 𝜖𝑚𝑎𝑐 𝑕 , |𝑥|, and the values of  𝑓 ′′  .  
If higher accuracy in the derivative estimates is required, then there are 
two things that can be done. One choice is to use higher-precision 
arithmetic (arithmetic with a smaller value of ϵmach ). This might just mean 
switching from single to double precision, a change that can sometimes be 
made with an instruction to the compiler without any changes to the 
program. If the program is already in double precision, then on some 
computers it is possible to use quadruple precision, but quadruple 
precision arithmetic can be much slower than double precision since the 
instructions for it are not normally built into the computer hardware. 
The other choice is to use a more accurate finite-difference formula. The 
simplest of these is the central-difference formula 

𝑓 ′ 𝑥 =
𝑓 𝑥+𝑕 −𝑓(𝑥−𝑕)

2𝑕
−

1

2
𝑕2[𝑓 ′′′  𝜉1 + 𝑓 ′′′  𝜉2 ]. 
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It can be derived using the Taylor series for 𝑓(𝑥 + 𝑕) and 𝑓(𝑥 − 𝑕) about 
the point 𝑕. Higher derivatives can also be obtained by finite differencing. 
For example, the formula 

        𝑓 ′′  𝑥 =
𝑓 𝑥+𝑕 −2𝑓 𝑥 +𝑓(𝑥−𝑕)

𝑕2
−

1

24
𝑕2[𝑓(4) 𝜉1 + 𝑓(4) 𝜉2 ].                    (5.2) 

can be derived from the Taylor series for 𝑓(𝑥 + 𝑕) and 𝑓(𝑥 − 𝑕) about the 
point 𝑥. The derivatives of multidimensional functions can be estimated by 
applying the finite difference formulas to each component of the gradient 
or Hessian matrix. If we define the vector 

ej  =  ( 0 · · ·  0   1   0 · · ·  0 )T  

having a one in the 𝑗𝑡𝑕 component and zeroes elsewhere, then 

                                              [𝛻𝑓 (𝑥)]𝑗  ≈  
𝑓  (𝑥  + 𝑕𝑒𝑗  ) − 𝑓  (𝑥)

𝑕
                                    (5.3) 

If the gradient is known, then the Hessian can be approximated via 

                              [𝛻2𝑓(𝑥)]𝑗𝑘 =
𝜕2𝑓(𝑥)

𝜕𝑥𝑗 𝜕𝑥𝑘
≈

[𝑓   𝑥  + 𝑕𝑒𝑘 − 𝑓   𝑥 ]𝑗

𝑕
.                              (5.4) 

If it is feasible to use complex arithmetic to evaluate 𝑓(𝑥), then an 
alternative way to estimate 𝑓 ′ (𝑥) is to use 
𝑓 ′ 𝑥 ≈ ℑ 𝑓 𝑥 + 𝑖𝑕  /𝑕, 

where  i =  −1and  ℑ [f ] is the imaginary part of the function 𝑓 . This 
formula is capable of producing more accurate estimates of the derivative 
(sometimes up to full machine accuracy) with only one additional function 
evaluation, for a broad range of values of   𝑕 [1,12]. 
5.3  Derivative-Free Trust-Region Method for Solving Large-Scale 
Optimization Problems Using Truncated Newton Method and Iterative 
Method 
In this chapter we present,  a derivative-free trust-region algorithm for 
large-scale unconstrained optimization which are arise in many aspects of 
science ,engineering, and economics. In proposed method we using 
symmetric-rank1(SR1) discussed in chapter 4 to approximate the  Hessian 
,and using central finite-difference approximation to the gradient of the 
function  .We are solving the  trust-region  sub-problem by two methods  
truncated Newton method discussed in section (3.4)and   Iterative Method 
discussed in section (3.3).Its performance is tested on some problems. 
Consider the general unconstrained optimization problem 
                                                𝑚𝑖𝑛𝑥∈𝑅𝑛 𝑓(𝑥)                                                               (5.5) 
Where 𝑓(𝑥) is a continuously differentiable function defined in 𝑅𝑛 .  
Many applications give rise to unconstrained optimization problems with 
thousands or millions of variables. Problems of this size can be solved 
efficiently only if the storage and computational costs of the optimization 
algorithm can be kept at a tolerable level. A diverse collection of large-scale 
optimization methods has been developed to achieve this goal, each being 
particularly effective for certain problem types [1],[10],[12]. 
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Trust region methods for the unconstrained optimization problem (5.5) 
compute a trial step in each iteration. Trust-region methods make explicit 
reference to a “model” of the objective function. For Newton’s method this 
model is a quadratic model derived from the Taylor series for 𝑓 about the 
point 𝑥𝑘 : 

               𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)𝑝                                   (5.6)                               

the method will only “trust” this model within a limited neighborhood of 
the point 𝑥𝑘 , defined by the constraint 
                                                       𝑝 ≤ ∆𝑘                                                                (5.7) 
this will serve to limit the size of the step taken from 𝑥𝑘  to 𝑥𝑘+1 . The value 
of 𝑘 is adjusted based on the agreement between the model 𝑞𝑘(𝑝) and the 
objective function 𝑓(𝑥𝑘 + 𝑝).If the agreement is good, then the model can 
be trusted and 𝑘  increased. If not, then  𝑘  will be decreased.(In the 
discussion here we assume that  .  =  .  2 that is, we use the Euclidean 
norm. At iteration 𝑘 of a trust-region method, the following sub-problem is 
solved to determine the step: 

               𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑝𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)                 (5.8) 

                       Subject to       
 𝑝 ≤ ∆𝑘  

The following is a description of a model trust region algorithm for 
unconstrained optimization. 
Algorithm 5.1 (A Model Trust Region Algorithm) 

Given ∆ > 0 , ∆0∈  0, ∆   𝑎𝑛𝑑 𝜂 ∈  0,
1

4
 : 

For 𝑘 = 0,1,2, … ..  
Obtain 𝑝𝑘by (approximately) solving (5.6); 

Obtain  𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)
 

if𝜌𝑘 <
1

4
 

∆𝑘+1=
1

4
∆𝑘  

else 

if𝜌𝑘 >
3

4
 𝑎𝑛𝑑  𝑝𝑘 = ∆𝑘  

∆𝑘+1= 𝑚𝑖𝑛(2∆𝑘 , ∆ ) 
else 

∆𝑘+1= ∆𝑘  
If 𝜌𝑘 < 𝜂 

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘  
else 

𝑥𝑘+1 = 𝑥𝑘  
end(for) 
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In this chapter , we study the case when the matrix  𝐵𝑘 = ∇2𝑓 is updated by 
the symmetric-rank-1(SR1) discussed in section(3.8).  When the number of 
variables is very large, it could be very costly to solve Equation (5.8) 
exactly. Therefore, various methods for calculating an approximate solution 
of  Equation (5.8) have been developed, such as the dogleg [1] and double 
dogleg techniques [1], the truncated Newton Method [1,14] and subspace-
iterated methods[1], etc. in this chapter we use truncated Newton Method 
and Iterative Method .  
Truncated Newton Method:  
We study truncated Newton method (modified Newton  CG), which is 
assumed to be the solution of the trust region sub-problem (5.6). This 
algorithm, due to Steihaug [1], is specified below as Algorithm 5.2. A 
complete algorithm for minimizing f is obtained by using Algorithm 5.2 to 
generate the step 𝑝𝑘  required by Algorithm 5.1, for some choice of 
tolerance ϵk  at each iteration. we use dj  to denote the search directions of 

this modified CG iteration and 𝑧𝑗  to denote the sequence of iterates that it 

generates[1,12,13,52,109]. 
Algorithm 5.2 (CG-Steihaug) 
Given tolerance  𝜖k > 0 ; 
Set 𝑧0 = 0, 𝑟0 = ∇𝑓𝑘 , 𝑑0 = −𝑟0 = −∇𝑓𝑘 ; 
If  𝑟0 < 𝜖k  
Return 𝑝𝑘 = 𝑧0 = 0; 
For 𝑗 = 0,1,2, … .. 
If 𝑑𝑗

𝑇𝐵𝑘𝑑𝑗 ≤ 0 

Find 𝜏 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗   minimizes 𝑚𝑘 𝑝𝑘  in Algorithm 5.1 and 

satisfies   𝑝𝑘 ≤ ∆𝑘  
Return  𝑝𝑘 ; 
Set  𝛼𝑗 = 𝑟𝑗

𝑇𝑟𝑗 𝑑𝑗
𝑇𝐵𝑘𝑑𝑗  ; 

Set  𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 ; 

If  𝑧𝑗+1 ≥ ∆𝑘  

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 satisfies  𝑝𝑘 = ∆𝑘 ; 

Return 𝑝𝑘  ; 
Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗 𝐵𝑘𝑑𝑗 ; 

If  𝑟𝑗+1 < 𝜖k  

Return 𝑝𝑘 = 𝑧𝑗 +1; 

Set  𝛽𝑗+1 = 𝑟𝑗+1
𝑇 𝑟𝑗+1 𝑟𝑗

𝑇𝑟𝑗 ; 

Set 𝑑𝑗+1 = −𝑟𝑗 +1 + 𝛽𝑗 +1𝑑𝑗 ; 

End(for). 
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Iterative Solution of the Sub-Problem : 
We study Iterative Solution, which is assumed to be the solution of the trust 
region sub-problem. A complete algorithm for minimizing 𝑓 is obtained by 
using Algorithm 5.3 to generate the step 𝑝𝑘required by Algorithm 5.1, for 
some choice of tolerance 𝜖k  at each iteration. More details in Chapter3. 
Algorithm (5.3) (Trust Region Sub-problem)  
𝐺𝑖𝑣𝑒𝑛 𝜆(0), Δ > 0: 

𝑓𝑜𝑟 ℓ = 0,1,2, … 

𝐹𝑎𝑐𝑡𝑜𝑟 𝐵 + 𝜆(ℓ)𝐼 = 𝑅𝑇𝑅; 

𝑆𝑜𝑙𝑣𝑒 𝑅𝑇𝑅𝑝ℓ = −𝑔, 𝑅𝑇𝑞ℓ = 𝑝ℓ; 

𝑆𝑒𝑡 

                                                        𝜆(ℓ+1) = 𝜆(ℓ) +  
 𝑝ℓ 

 𝑞ℓ 
 

2

 
 𝑝ℓ −∆

∆
 ;                   (5.9) 

𝑒𝑛𝑑  𝑓𝑜𝑟 . 
Gradient Estimation via Central Finite Differences 
Finite differencing refers to the estimation of 𝑓 ′ (𝑥) using values of 𝑓(𝑥).  
central finite differences (CFD) based on the sample set 
 𝑋 = {𝑥 + 𝜎𝑒𝑖}𝑖=1

𝑛 ∪ {𝑥 − 𝜎𝑒𝑖}𝑖=1
𝑛  , and is computed as 

      [𝑔(𝑥)]𝑖 = 𝛻 𝑓 𝑥 =
𝑓 𝑥+𝜎𝑒𝑖 −𝑓(𝑥−𝜎𝑒𝑖)

2𝜎
,    for 𝑖 = 1, 2 , …… , 𝑛                  (5.10) 

CFD approximations require 2𝑛 functions evaluations. More details in 
section 5.2 [1][12]. 
The Symmetric-Rank-1(SR1) Method 
We have shown that the only symmetric rank-1 updating formula that 
satisfies the secant equation is given by (4.20) the SR1 updating formula 
has proved to be quite useful, and its ability to generate indefinite Hessian 
approximations can actually be regarded as one of its chief advantages 
[1,12], more details in Chapter3. 
 
 The algorithm 1 
 
The algorithm proposed using truncated Newton method to solve trust 

region sub-problem and using symmetric-rank-1 to find approximation to 

Hessian and using Central Finite Difference to approximate the Gradient. 
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Algorithm 5.4 (SR1 Trust-Region Method) 
Given starting point 𝑥0 , initial Hessian approximation 𝐵0 , trust-region 
radius ∆0 , convergence tolerance  𝜖 > 0 , parameters 𝜂 ∈ (0, 10−3)  and 
𝑟 ∈ (0, 1); 
𝑘 ←  0; 
Compute 𝑔𝑘 = 𝛻𝑓𝑘  using finite differences eqs(5.10) 
While  𝛻𝑓𝑘 > 𝜖 ; 
Compute 𝑝𝑘  by solving the subproblem using  Algorithm 5.2 find 𝑝𝑘 ; 
Compute 
𝑦𝑘 = 𝛻𝑓 (𝑥𝑘  +  𝑝𝑘) − 𝛻𝑓𝑘  , 

𝜌𝑘 =
𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝑝𝑘)

𝑚𝑘 0 − 𝑚𝑘(𝑝𝑘)
 

if 𝜌𝑘 > 𝜂 
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ; 
else 
𝑥𝑘+1 = 𝑥𝑘  ; 
end (if) 
if 𝜌𝑘 > 0.75 
if  𝑝𝑘 ≤ 0.8∆𝑘  
∆𝑘+1= ∆𝑘 ; 
else 
∆𝑘+1= 2∆𝑘 ; 
end (if) 
else if 0.1 ≤ 𝜌𝑘 ≤ 0.75 
∆𝑘+1= ∆𝑘  ; 
else 
∆𝑘+1= 0.5∆𝑘 ; 
end (if) 
if  𝑠𝑘

𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘  ≥ 𝑟 𝑠𝑘  𝑦𝑘 − 𝐵𝑘𝑠𝑘  

Use (4.20) to compute 𝐵𝑘+1  (even if 𝑥𝑘+1 = 𝑥𝑘  ); 
else 
𝐵𝑘+1 ← 𝐵𝑘  ; 
end (if) 
𝑘 ← 𝑘 + 1; 
end (while) 
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The algorithm 2 
The algorithm proposed using Iterative Solution method to solve trust 
region sub problem and using symmetric-rank-1 to find approximation to 
Hessian and using Central Finite Difference to approximate the Gradient. 
Algorithm 5.5 (SR1 Trust-Region Method) 
Given starting point 𝑥0 , initial Hessian approximation 𝐵0, trust-region radius ∆0, 
convergence tolerance 𝜖 > 0, parameters 𝜂 ∈ (0, 10−3) and 𝑟 ∈ (0, 1); 
𝑘 ←  0; 
Compute 𝑔𝑘 = 𝛻𝑓𝑘  using finite differences eqs(5.10) 
While  𝛻𝑓𝑘 > 𝜖 ; 
Compute 𝑝𝑘  by solving the sub-problem using  Algorithm5.3 find 𝑝𝑘 ; 
Compute 
𝑦𝑘 = 𝛻𝑓 (𝑥𝑘  +  𝑝𝑘) − 𝛻𝑓𝑘  , 

𝜌𝑘 =
𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝑝𝑘)

𝑚𝑘 0 − 𝑚𝑘(𝑝𝑘)
 

if 𝜌𝑘 > 𝜂 
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ; 
else 
𝑥𝑘+1 = 𝑥𝑘  ; 
end (if) 
if 𝜌𝑘 > 0.75 
if  𝑝𝑘 ≤ 0.8∆𝑘  
∆𝑘+1= ∆𝑘 ; 
else 
∆𝑘+1= 2∆𝑘 ; 
end (if) 
else if 0.1 ≤ 𝜌𝑘 ≤ 0.75 
∆𝑘+1= ∆𝑘  ; 
else 
∆𝑘+1= 0.5∆𝑘 ; 
end (if) 
if 𝑠𝑘

𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘  ≥ 𝑟 𝑠𝑘  𝑦𝑘 − 𝐵𝑘𝑠𝑘  
Use (4.20) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘  ); 
else 
𝐵𝑘+1 ← 𝐵𝑘  ; 
end (if) 
𝑘 ← 𝑘 + 1; 
end (while) 
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5.4 Numerical results: 
1. 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙𝟏 − 𝒙𝟐)𝟔 + 𝟏𝟎(𝒙𝟑 − 𝟏)𝟖+(𝒙𝟏 − 𝟒)𝟒  the optimal solution 

𝒙∗ =  𝟒 𝟒 𝟏  
 

 With 𝒙𝟎 =  
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 
Method 

Derivative free Trust-region method 

using truncated Newton method 

𝝐 = 𝟏𝟎−𝟔 

Derivative free Trust-region 

method using Iterative 

Solution 

𝝐 = 𝟏𝟎−𝟔 

iteration k  1000 60 

The optimal  

point 𝒙∗
 

 

𝟑. 𝟒𝟖𝟖𝟕
𝟒. 𝟒𝟕𝟐𝟑
𝟎. 𝟗𝟖𝟏𝟐

 
𝟑. 𝟗𝟗𝟖𝟔
𝟑. 𝟗𝟖𝟕𝟖
𝟏. 𝟎𝟏𝟗𝟏

 

 
 
 

 Using 𝒙𝟎 =  𝟎 𝟎 𝟎   , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟓𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 =
𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 
Method 

Derivative free Trust-region method 

using truncated Newton method 

𝝐 = 𝟏𝟎−𝟏𝟐 

Derivative free Trust-region 

method using Iterative 

Solution 

𝝐 = 𝟏𝟎−𝟏𝟐 

iteration k  50000 1556 

The optimal  

point 𝒙∗
 

 

4.0081 

4.1612 

1.0038 

4.0000 

4.0003 

0.9998 
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 𝒙𝟎 =  
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 
Method 

Derivative free Trust-region method 

using truncated Newton method 

𝝐 = 𝟏𝟎−𝟔 

Derivative free Trust-region 

method using Iterative 

Solution 

𝝐 = 𝟏𝟎−𝟔 

iteration k  2594 60 

The optimal  

point 𝒙∗
 

 

𝟒. 𝟎𝟔𝟑𝟐
𝟒. 𝟎𝟐𝟎𝟖
𝟎. 𝟗𝟖𝟏𝟐

 
𝟑. 𝟗𝟗𝟖𝟔
𝟑. 𝟗𝟖𝟕𝟖
𝟏. 𝟎𝟏𝟗𝟏

 

 

 𝒙𝟎 =  
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 =

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏 
 
Method 

Derivative free Trust-region method 

using truncated Newton method 

𝝐 = 𝟏𝟎−𝟏𝟐 

Derivative free Trust-region 

method using Iterative 

Solution 

𝝐 = 𝟏𝟎−𝟏𝟐 

iteration k  100000 177 

The o 

ptimal 

point 𝒙∗
 

 

𝟒. 𝟎𝟗𝟒𝟓
𝟑. 𝟖𝟕𝟓𝟎
𝟏. 𝟎𝟎𝟏𝟗

 
4.0000
4.0000
1.0140
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2.  (𝒊 − 𝒙𝒊)
𝟒𝟏𝟎

𝒊=𝟏  the optimal solution 
𝒙∗ =  𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎  

 Using x0 =  0 0 0 0 0 0 0 0 0 0  

 

 

Method 

Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−12  

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−12  

iteration k  10000 127 

 

The optimal  

 

point x∗ 

 

1.0094 

2.0015 

3.0006 

3.9886 

5.0005 

5.9993 

7.0984 

7.9871 

8.6187 

10.0007 

1.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

9.0000 

10.0000 
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 Using x0 =  0 0 0 0 0 0 0 0 0 0  

 

Method 

Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−9 

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−9 

iteration k 10000 101 

 

The optimal 

 

point x∗ 

 

𝟏. 𝟎𝟎𝟗𝟒
𝟐. 𝟎𝟎𝟏𝟓
𝟑. 𝟎𝟎𝟎𝟔
𝟑. 𝟗𝟖𝟖𝟔
𝟓. 𝟎𝟎𝟎𝟓
𝟓. 𝟗𝟗𝟗𝟑
𝟕. 𝟎𝟗𝟖𝟒
𝟕. 𝟗𝟖𝟕𝟏
𝟖. 𝟔𝟏𝟖𝟕
𝟏𝟎. 𝟎𝟎𝟎𝟕

 

𝟏.𝟎𝟎𝟎𝟐
𝟐.𝟎𝟎𝟎𝟐
𝟑.𝟎𝟎𝟎𝟐
𝟒.𝟎𝟎𝟎𝟐
𝟓.𝟎𝟎𝟎𝟐
𝟔.𝟎𝟎𝟎𝟐
𝟕.𝟎𝟎𝟎𝟐
𝟖.𝟎𝟎𝟎𝟐
𝟖.𝟗𝟗𝟗𝟗
𝟗.𝟗𝟗𝟗𝟖

 

 

3. 𝑓 𝑥 =  (i − xi)
420

i=1  

With 

x0 =  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 , delta =

1 , iteration = 1000, erorr ϵ =0.00000000000001 

The optimal solution 

x∗ =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20  
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Method 

Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−14  

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−14  

iteration k  1000 139 

 

The optimal  

 

point x∗ 

 

1.0000 

2.0067 

2.9997 

3.9996 

5.0067 

6.0000 

6.9996 

8.0000 

9.0003 

10.0067 

11.0067 

11.9999 

12.9997 

14.0000 

15.0067 

16.1593 

17.0004 

18.0000 

19.2186 

20.0000 

     1.0000 

    2.0000 

    3.0000 

    4.0000 

    5.0000 

    6.0000 

    7.0000 

    8.0000 

    9.0000 

   10.0000 

   11.0000 

   12.0000 

   13.0000 

   14.0000 

   15.0000 

   16.0000 

   17.0000 

   18.0000 

   19.0000 

   20.0000 
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 Conclusion 

              In this study a practical algorithm has been developed based on 

Trust Region frame work. Centered Finite Difference are used to 

approximate gradient of the Function, and Symmetric Rank-1 is used to 

approximation Hessian matrix in Trust Region frame work. The Truncated 

Newton method and Iterative method were used to solve the trust-region 

sub-problem. The results obtained from the practical implementation 

showed the adequacy of these methods .The method use iterative solution 

to solve the trust region sub-problem is more efficiency than the truncated 

Newton method. The work did not include constrained problems. It was 

limited to unconstrained Optimization problems. For further study, we 

suggest developing methods for constrained problems. 
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Appendix:  MATLAB Implementation :  
(i) The function lowsys()is a auxiliary function to solve the lower 

triangular system 𝐴𝑥 = 𝑏 

function x=lowsys(A,b) 

n=length(b); 

fori=1:n 

x(i)=b(i); 

for j=1:i-1 

x(i)=x(i)-A(i,j)*x(j); 

end 

x(i)=x(i)/A(i,i); 

end 

x=x'; 

(ii)  The function uppsys() is a auxiliary function to solve the upper 

triangular system 𝐴𝑥 = 𝑏 

function x=uppsys(A,b) 

n=length(b); 

fori=n:-1:1 

x(i)=b(i); 

for j=i+1:n 

x(i)=x(i)-A(i,j)*x(j); 

end 

x(i)=x(i)/A(i,i); 

end 

x=x'; 

(iii) The function chky()obtains the choleki  function 𝐿 of a given positive 

definite matrix (𝐴 + 𝑑𝐼) or returns 𝑝 = 0 if 𝐴 is not positive definite 

(it uses the function lowsys())  
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function [L,p]=chky(A,d) 

[n,n]=size(A); 

A=A+d*eye(n); 

L=[]; 

p=1; 

if A(1,1)<=0 

    p=0; 

else 

L(1,1)=sqrt(A(1,1)); 

end 

k=1; 

while and(k<=n-1,p==1) 

    z=lowsys(L(1:k,1:k),A(k+1,1:k)); 

L(k+1,1:k)=z'; 

    c=A(k+1,k+1)-L(k+1,1:k)*L(k+1,1:k)'; 

if c>0 

L(k+1,k+1)=sqrt(c); 

else 

       p=0; 

end 

    k=k+1; 

end 

(iv) The function cgahmed()is the mean function that obtains the best 

direction 𝑝 at minimizing the approximating quadratic function in the 

region of radius delta (using truncated Newton method (modified 

Newton  CG)).  

[p  status ] = cgahmed(n, fk2, gk, Hk, delta,zax) 

eps = 1e-10; 
z = zeros(n,1); 
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r = gk; 
d = -r; 
if (norm(r) <eps)  
    p = z; 
status = 'Stopping criteria'; 
return 

end 

fori=1:zax 

if (d'*Hk*d <= 0) 

status = 'Negative curvature'; 
tau = roots([d'*d, 2*(d'*z), z'*z - delta^2]); 
       p1 = z + tau(1)*d; % first candidate 

       p2 = z + tau(2)*d; % second candidate 

% Check which is largest 

       m1 = fk2 + gk'*p1 + (p1'*Hk*p1)/2; 
       m2 = fk2 + gk'*p2 + (p2'*Hk*p2)/2; 
if (m1 < m2) 

           p = p1; 
return 

else 

           p = p2; 
return 

end 

end 

   a = (r'*d) / (d'*Hk*d); 
zo = z; 
   z = z + a*d; 
if (norm(z) >= delta) 

tau = max(roots([d'*d, d'*zo, zo'*zo - delta^2])); 
assert (tau >= 0) % A positive solution should exist 

       p = zo + tau*d; 
status = 'Trust-region boundary'; 
return 

end 

ro = r; 
   r = r + a*Hk*d; 
if (norm(r) <eps) 

       p = z; 
status = 'Stopping criteria'; 
return 

end 

   b = (r'*r) / (ro'*ro); 
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   d = -r + b*d; 
 

end 

end 
 

(v) The function tsubprobahmed()is the mean function that obtains the 

best direction 𝑝 at minimizing the approximating quadratic function 

in the region of radius delta (using Iterative Solution).  

p=tsubprobahmed(G,g,delta) 

np=2*delta; 
[L,r]=chy(G,0); 
if r==1 

    y=lowsys(L,-g); 
    p=uppsys(L',y); 
np=norm(p); 
end 

ifnp>delta 

   d=10; 
   [L,r]=chy(G,d); 
while r==0 

      d=2*d; 
      [L,r]=chy(G,d); 
end 

for l=1:10  
       y=lowsys(L,-g); 
       p=uppsys(L',y); 
       q=lowsys(L,p); 
       d=d+((norm(p)/norm(q))^2)*((norm(p)-delta)/delta); 
       [L,r]=chy(G,d); 
while r==0 

           d=d+1; 
           [L,r]=chy(G,d); 
end 

end 

end 
(vi) The function finitedifferenceCD()is the function that obtains the  

Gradient using centered finite difference that using  in the main 

symmetric rank-1 SR1 method .  

function g=finitedifferenceCD(x) 
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n=length(x); 
H=eye(n); 
al=0.001; 
hcd=3^1/3*al^1/3; 
fori=1:n 

    d=H(i,:);  
g(:,i)=(f(x+hcd*d')-f(x-hcd*d'))/(2*hcd); 
end 

  g=g';  
end 

(vii) The function SR1TrustRegionnewton() input initial point 𝑥0, initial 

delta, and the iterates 𝑚𝑎𝑥. (It uses all function above to give  

minimizing of quadratic function without using derivative.  

[x k] = SR1TrustRegion(x0,max,delta) 

%find the mimmm of the function using SRI trstregion 

d=delta; 
r=10^-8; 
new=10^-3; 
x=x0; 
n=length(x); 
B0=eye(n); 
g=finitedifferenceCD(x); 
[s  status ] = cgahmed(n, fk2, g, B0, d,max); 
for k=1:max 

while (norm(g) <=0.00000000001) 

return 

end 

last_g=g; 
last_x=x; 
    x=x+s; 
    g=finitedifferenceCD(x); 
     y=g-last_g; 
ared=(f(last_x)-f(x)); 
pred=-(((last_g)'*s)+((0.5*s')*(B0*s))); 
if (ared/pred)>new 

         x=x+s; 
else 

         x=last_x; 
end 

if((ared/pred)>0.75)&& ((norm(s))<=0.8*d) 
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delta=d; 
else 

delta=2*d; 
end 

if ((ared/pred)>0.1)&& ((ared/pred)<=0.75) 

delta=d; 
else 

delta=0.5*d; 
end 

      m=B0*s; 
      m1=y-m; 
      m2=norm(s); 
      m3=norm(m1); 
      m4=m1'*s; 
if (abs(s'*m1)>=r*(m2*m3)) 

         H=(m1*m1')/m4; 
         B=H+B0; 
     [s  status ] = cgahmed(n, fk2, g, B, delta,max); 
         x=x+s; 
end 

end 

end 

the above function using truncated Newton method (modified Newton  

CG)) to solve trust region subproblem . 

(viii) The function SR1TrustRegioniterative() input initial point 𝑥0, initial 

delta, and the iterates 𝑚𝑎𝑥. (It uses all function above to give  

minimizing of quadratic function without using derivative.  

[x k] = SR1TrustRegioniterative(x0,max,delta) 

d=delta; 
r=10^-8; 
new=10^-3; 
x=x0; 
n=length(x); 
B0=eye(n); 
g=finitedifferenceCD(x); 
s=tsubprobmarim(B0,g,d); 
for k=1:max 

while (norm(g) <=0.00000000001) 

return 
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end 

last_g=g; 
last_x=x; 
    x=x+s; 
    g=finitedifferenceCD(x); 
     y=g-last_g; 
ared=(f(last_x)-f(x)); 
pred=-(((last_g)'*s)+((0.5*s')*(B0*s))); 
if (ared/pred)>new 

         x=x+s; 
else 

         x=last_x; 
end 

if((ared/pred)>0.75)&& ((norm(s))<=0.8*d) 

delta=d; 
else 

delta=2*d; 
end 

if ((ared/pred)>0.1)&& ((ared/pred)<=0.75) 

delta=d; 
else 

delta=0.5*d; 
end 

      m=B0*s; 
      m1=y-m; 
      m2=norm(s); 
      m3=norm(m1); 
      m4=m1'*s; 
if (abs(s'*m1)>=r*(m2*m3)) 

         H=(m1*m1')/m4; 
         B=H+B0; 
s=tsubprobmarim(B0,g,d); 
         x=x+s; 
end 

end 

end 

the above function using using Iterative Solution method to solve trust 

region subproblem . 
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Abstract 
 
In this work we present a derivative-free trust-region algorithm for large-scale 

unconstrained optimization, using symmetric-rank1(SR1)to approximate the  Hessian 

and using central finite-difference approximation to the gradient of the function . The 

truncated Newton method algorithm is used for solving the  trust-region  sub problem. 

Its performance is tested on some problems. 

 

Keywords: Unconstrained optimization, derivative-free optimization, trust-region 

methods, symmetric-rank-1(SR1), Finite-difference. 

 

1. Introduction : 
The general unconstrained optimization problem  is stated as : 

                                         𝑚𝑖𝑛𝑥∈𝑅𝑛 𝑓(𝑥)                                                                          (1) 

where 𝑓(𝑥) is a continuously differentiable function defined in 𝑅𝑛 .  

Many applications give rise to unconstrained optimization problems with 

thousands or millions of variables. Problems of this size can be solved 

efficiently only if the storage and computational costs of the optimization 

algorithm can be kept at a tolerable level. A diverse collection of large-scale 

optimization methods has been developed to achieve this goal, each being 

particularly effective for certain problem types [1],[10],[13].  

Trust region methods for the unconstrained optimization problem (1) 

compute a trial step in each iteration. Trust-region methods make explicit 

reference to a “model” of the objective function. For Newton’s method this 
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model is a quadratic model derived from the Taylor series for 𝑓 about the 

point 𝑥𝑘 : 

               𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)𝑝                                        (2)                               

the method will only “trust” this model within a limited neighborhood of 

the point 𝑥𝑘 , defined by the constraint 

                                                𝑝 ≤ ∆𝑘                                                                            (3) 

this will serve to limit the size of the step taken from 𝑥𝑘  to 𝑥𝑘+1 . The value 

of 𝑘 is adjusted based on the agreement between the model 𝑞𝑘(𝑝) and the 

objective function 𝑓(𝑥𝑘 + 𝑝).If the agreement is good, then the model can 

be trusted and 𝑘 increased. If not, then  𝑘  will be decreased.(In the 

discussion here we assume that  .  =  .  2that is, we use the Euclidean 

norm. 

At iteration 𝑘 of a trust-region method, the following subproblem is solved 

to determine the step: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑝     𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)𝑝                              (4) 

Subject to       

 𝑝 ≤ ∆𝑘  

The following is adscription of a model trust region algorithm for 

unconstrained optimization. 

 

Algorithm 1 (A Model Trust Region Algorithm) 

Given ∆ > 0 , ∆0∈  0, ∆   𝑎𝑛𝑑 𝜂 ∈  0,
1

4
 : 

For 𝑘 = 0,1,2, … ..  

Obtain 𝑝𝑘  by (approximately) solving (2); 

Obtained   𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)
 

if 𝜌𝑘 <
1

4
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                ∆𝑘+1=
1

4
∆𝑘  

else  

if 𝜌𝑘 >
3

4
 𝑎𝑛𝑑  𝑝𝑘 = ∆𝑘  

               ∆𝑘+1= 𝑚𝑖𝑛(2∆𝑘 , ∆ ) 

else  

             ∆𝑘+1= ∆𝑘  

If 𝜌𝑘 < 𝜂 

            𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘  

else 

            𝑥𝑘+1 = 𝑥𝑘  

end(for) 

In this paper, we study the case when the matrix 𝐵𝑘 = ∇2𝑓 is updated by 

the symmetric-rank-1(SR1). The symmetric rank-1 update has the general 

form 

                                               𝐵𝑘+1 = 𝐵𝑘 + 𝜎𝑣𝑣𝑇                                                          (5) 

where 𝜎 is either +1 𝑜𝑟 − 1, and 𝜎 and 𝑣 are chosen so that 𝐵𝑘+1 satisfies 

the (secant equation), that is, 

                                                           𝑦𝑘 = 𝐵𝑘+1𝑠𝑘                                                          (6) 

When the number of variables is very large, it could be very costly to solve 

Eqs.(4) exactly. Therefore, various methods for calculating an approximate 

solution of  Eqs. (4) have been developed, such as the dogleg and double 

dogleg techniques [1], the truncated CG method[1,14] and subspace-

iterated methods [1], to name few. 
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2.  Modified Newton CG Algorithm:  
In this section, we study truncated Newton method (modified Newton  

CG), which is assumed to be the solution of the trust region sub problem 

(4). This algorithm, due to Steihaug [1], is specified below as Algorithm 2. 

A complete algorithm for minimizing 𝑓 is obtained by using Algorithm 2 to 

generate the step 𝑝𝑘  required by Algorithm 1, for some choice of tolerance 

𝜖k  at each iteration. we use 𝑑𝑗  to denote the search directions of this 

modified CG iteration and 𝑧𝑗  to denote the sequence of iterates that it 

generates[1,14]. 

Algorithm 2 (CG-Steihaug) 

Given tolerance  𝜖k > 0 ; 

Set 𝑧0 = 0, 𝑟0 = ∇𝑓𝑘 , 𝑑0 = −𝑟0 = −∇𝑓𝑘 ; 

If  𝑟0 < 𝜖k   

Return 𝑝𝑘 = 𝑧0 = 0; 

For 𝑗 = 0,1,2, … ..  

If 𝑑𝑇
𝑗𝐵𝑘𝑑𝑗 ≤ 0 

Find 𝜏  such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗   minimizes 𝑚𝑘 𝑝𝑘  in Algorithm 1 and 

satisfies  𝑝𝑘 ≤ ∆𝑘  

Return 𝑝𝑘 ; 

Set 𝛼𝑗 = 𝑟𝑇
𝑗 𝑟𝑗 𝑑𝑇

𝑗 𝐵𝑘𝑑𝑗  ; 

Set  𝑧𝑗 +1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 ; 

If  𝑧𝑗+1 ≥ ∆𝑘  

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗  satisfies  𝑝𝑘 = ∆𝑘 ; 

Return 𝑝𝑘  ; 

Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗 𝐵𝑘𝑑𝑗 ; 

If  𝑟𝑗+1 < 𝜖k  

Return 𝑝𝑘 = 𝑧𝑗 +1; 

Set 𝛽𝑗+1 = 𝑟𝑇
𝑗+1𝑟𝑗 +1 𝑟𝑇

𝑗 𝑟𝑗 ; 

Set 𝑑𝑗+1 = −𝑟𝑗 +1 + 𝛽𝑗 +1𝑑𝑗 ; 

End(for) 
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3. Gradient Estimation Via Central Finite Differences 
 

Finite differencing refers to the estimation of 𝑓 ′(𝑥) using values of 𝑓(𝑥).  

central finite differences (CFD) based on the sample set 𝑋 = {𝑥 +

𝜎𝑒𝑖}𝑖=1𝑛∪{𝑥−𝜎𝑒𝑖}𝑖=1𝑛n , and is computed as 

          [𝑔(𝑥)]𝑖 = 𝛻 𝑓 𝑥 =
𝑓 𝑥+𝜎𝑒𝑖 −𝑓(𝑥−𝜎𝑒𝑖)

2𝜎
, for 𝑖 = 1, 2 , … …… , 𝑛                   (7) 

CFD approximations require 2𝑛 functions evaluations[1][12][13]. 

 

4. the symmetric-rank-1(SR1) method 
 

The symmetric rank-1 update has the general form 

                                           𝐵𝑘+1 = 𝐵𝑘 + 𝜎𝑣𝑣𝑇                                                              (8) 

where 𝜎 is either +1 𝑜𝑟 − 1, and 𝜎 and 𝑣 are chosen so that 𝐵𝑘+1 satisfies 

the eqs(6) . By substituting into this equation, we obtain  

                                       𝑦𝑘 = 𝐵𝑘𝑠𝑘 + [𝜎𝑣𝑇𝑠𝑘]𝑣.                                                         (9) 

Since the term in brackets is a scalar, we deduce that 𝑣 must be a multiple 

of 𝑦𝑘 − 𝐵𝑘𝑠𝑘  , that is, 𝑣 = 𝛿(𝑦𝑘 − 𝐵𝑘𝑠𝑘) for some scalar 𝛿. By substituting 

this form of 𝑣 into (7), we obtain 

                     𝑦𝑘 − 𝐵𝑘𝑠𝑘 = 𝜎𝛿2 𝑠𝑇
𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘   𝑦𝑘 − 𝐵𝑘𝑠𝑘 ,                        (10) 

and it is clear that this equation is satisfied if (and only if) we choose the 

parameters 𝛿 and 𝜎 to be 

      𝜎 = 𝑠𝑖𝑔𝑛 𝑠𝑇
𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘   , 𝛿 = ± 𝑠𝑇

𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘  −1 2                          (11) 

Hence ,we have shown that the only symmetric rank-1 updating formula 

that satisfies the secant equation is given by  

                      𝐵𝑘+1 = 𝐵𝑘 +
 𝑦𝑘−𝐵𝑘𝑠𝑘  𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇

 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇𝑠𝑘
                                               (12) 

the SR1 updating formula has proved to be quite useful, and its ability to 

generate indefinite Hessian approximations can actually be regarded as 
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one of its chief advantages. give a formal description of an SR1 method 

using a trust-region framework[1,13,] 

5. The Algorithm  
 

Due to the truncated Newton method (modified Newton  CG)properties 

studied in the section2, and central Finite difference (CFD) studied in 

section3, and the symmetric-rank-1(SR1) method studied in section3,  we 

can construct trust region algorithms based on the traditional trust region 

philosophy. 

The algorithm proposed using truncated Newton method to solve trust 

region subproblem and using symmetric-rank-1 to find approximation to 

Hessian and using finite difference to approximate the Gradient . 

 

Algorithm 4 (SR1 Trust-Region Method) 

 
Given starting point 𝑥0 , initial Hessian approximation 𝐵0 , trust-region 

radius ∆0 , convergence tolerance  𝜖 > 0 , parameters 𝜂 ∈ (0, 10−3)  and 

𝑟 ∈ (0, 1); 

𝑘 ←  0; 

Compute 𝑔𝑘 = 𝛻𝑓𝑘  using finite differences eqs(7) 

while   𝛻𝑓𝑘 > 𝜖  ; 

Compute 𝑝𝑘  by solving the subproblem using  Algorithm 2 find 𝑝𝑘 ; 

Compute 

𝑦𝑘 = 𝛻𝑓 (𝑥𝑘  +  𝑝𝑘) − 𝛻𝑓𝑘  , 

                𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)
      

if 𝜌𝑘 > 𝜂 

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘  ; 

else 

𝑥𝑘+1 = 𝑥𝑘  ; 

end (if) 

if 𝜌𝑘 > 0.75  

if  𝑝𝑘 ≤ 0.8∆𝑘  

∆𝑘+1= ∆𝑘 ; 
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else 

∆𝑘+1= 2∆𝑘 ; 

end (if) 

else if 0.1 ≤ 𝜌𝑘 ≤ 0.75 

∆𝑘+1= ∆𝑘  ; 

else 

∆𝑘+1= 0.5∆𝑘 ; 

end (if) 

if     𝑠𝑇
𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘  ≥ 𝑟 𝑠𝑘   𝑦𝑘 − 𝐵𝑘𝑠𝑘  

Use (12) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘  ); 

else 

𝐵𝑘+1 ← 𝐵𝑘  ; 

end (if) 

𝑘 ← 𝑘 + 1; 

end (while) 

 
6. Numerical Results 

 
4. 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙𝟏 − 𝒙𝟐)𝟔 + 𝟏𝟎(𝒙𝟑 − 𝟏)𝟖+(𝒙𝟏 − 𝟒)𝟒  optimal solution 

𝒙∗ =  𝟒 𝟒 𝟏  

 With 𝒙𝟎 =  
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 

𝒙 =  
𝟑. 𝟒𝟖𝟖𝟕
𝟒. 𝟒𝟕𝟐𝟑
𝟎. 𝟗𝟖𝟏𝟐

   , 𝒌 = 𝟏𝟎𝟎𝟎 

 With 𝒙𝟎 =  
𝟐

𝟐

𝟎

 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 

𝒙 =  
𝟒. 𝟎𝟔𝟑𝟐
𝟒. 𝟎𝟐𝟎𝟖
𝟎. 𝟗𝟖𝟏𝟐

   , 𝒌 = 𝟐𝟓𝟗𝟒 

 

 𝒙𝟎 =  
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 
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𝒙 =  
𝟒. 𝟎𝟏𝟕𝟎
𝟑. 𝟗𝟔𝟎𝟖
𝟏. 𝟎𝟕𝟓𝟔

   , 𝒌 = 𝟏𝟔𝟒 

 
 
 
5.    (𝒊 − 𝒙𝒊)

𝟒𝟏𝟎
𝒊=𝟏  the optimal solution 

𝒙∗ =  𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎  
 

 With 𝒙𝟎 =

 
 
 
 
 
 
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎 
 
 
 
 
 
 
 
 
 

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 

 

𝒙 =

 
 
 
 
 
 
 
 
 
 
𝟏. 𝟎𝟎𝟏𝟕
𝟐. 𝟎𝟎𝟏𝟑
𝟑. 𝟑𝟕𝟐𝟐
𝟑. 𝟗𝟗𝟓𝟕
𝟓. 𝟎𝟎𝟑𝟑
𝟔. 𝟎𝟎𝟏𝟖
𝟕. 𝟎𝟎𝟐𝟑
𝟖. 𝟎𝟎𝟏𝟗
𝟗. 𝟎𝟎𝟎𝟖
𝟗. 𝟗𝟗𝟗𝟖 

 
 
 
 
 
 
 
 
 

  , 𝒌 = 𝟔𝟒 

 

 With 𝒙𝟎 =

 
 
 
 
 
 
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎 
 
 
 
 
 
 
 
 
 

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 
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𝒙 =

 
 
 
 
 
 
 
 
 
 
𝟎. 𝟗𝟗𝟓𝟒
𝟏. 𝟗𝟗𝟐𝟑
𝟑. 𝟐𝟏𝟖𝟓
𝟑. 𝟖𝟕𝟒𝟖
𝟓. 𝟐𝟒𝟗𝟑
𝟓. 𝟗𝟗𝟔𝟑
𝟕. 𝟎𝟎𝟎𝟎
𝟕. 𝟗𝟗𝟖𝟏
𝟖. 𝟗𝟗𝟓𝟔
𝟏𝟎. 𝟎𝟎𝟎𝟐 

 
 
 
 
 
 
 
 
 

  , 𝒌 = 𝟖𝟐 

 

 

 With 𝒙𝟎 =

 
 
 
 
 
 
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎 
 
 
 
 
 
 
 
 
 

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 

 𝒙 =

 
 
 
 
 
 
 
 
 
 
𝟏. 𝟎𝟐𝟗𝟑
𝟐. 𝟎𝟓𝟗𝟐
𝟐. 𝟗𝟕𝟗𝟓
𝟑. 𝟔𝟗𝟗𝟗
𝟒. 𝟗𝟗𝟑𝟐
𝟓. 𝟗𝟐𝟖𝟐
𝟔. 𝟗𝟗𝟑𝟕
𝟖. 𝟎𝟕𝟏𝟑
𝟗. 𝟎𝟑𝟎𝟏
𝟗. 𝟗𝟓𝟕𝟐 

 
 
 
 
 
 
 
 
 

  , 𝒌 = 𝟒𝟔𝟓 

 

  

 With 𝒙𝟎 =

 
 
 
 
 
 
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎 
 
 
 
 
 
 
 
 
 

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏 

 Solution with SR1TrustRegionnewton() 
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𝒙 =

 
 
 
 
 
 
 
 
 
 
𝟏. 𝟎𝟎𝟗𝟒
𝟐. 𝟎𝟎𝟏𝟓
𝟑. 𝟎𝟎𝟎𝟔
𝟑. 𝟗𝟖𝟖𝟔
𝟓. 𝟎𝟎𝟎𝟓
𝟓. 𝟗𝟗𝟗𝟑
𝟕. 𝟎𝟗𝟖𝟒
𝟕. 𝟗𝟖𝟕𝟏
𝟖. 𝟔𝟏𝟖𝟕
𝟏𝟎. 𝟎𝟎𝟎𝟕 

 
 
 
 
 
 
 
 
 

  , 𝒌 = 𝟏𝟎𝟎𝟎𝟎 

7.  Conclusion 

In this paper we have presented a derivative-free trust-region algorithm for 

large-scale unconstrained optimization. The algorithm using symmetric-

rank1(SR1)to approximation Hessian and using centered finite-difference 

approximation to the gradient of function , and using the truncated Newton 

method algorithm for solving the  trust-region  sub problem

Numerical experiments on several functions show the good performances 

of the proposed method. 
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Mathematics, Alnajeeb177@Gmail.com 

4. Department of Applied Mathematics, Faculty of Mathematical Sciences, University 
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Abstract 

        In this paper, we present a derivative-free trust-region algorithm for 

large-scale unconstrained optimization, using symmetric-rank1(SR1)to 

approximate the Hessian. The centeral finite-differences are used to 

approximate the gradient of the function. An Iterative Solution Method is 

used for solving the trust-region sub-problem. Its performance is tested on 

some problems and Compared to the Truncated Newton Method for solving 

trust-region sub-problem. 

Keywords : Unconstrained Optimization, Derivative-Free Optimization, Trust-Region 

Methods, Symmetric-Rank-1(SR1), Finite-Differences. 
 

1. Introduction  
The general unconstrained optimization problem is stated as  

 

                                         minx∈Rn f(x)                                                                          (1) 

Where f(x) is a continuously differentiable function defined in Rn .  

large-scale optimization methods has been developed to solve 

unconstrained   optimization problems with thousands or millions of 

variables which arise in many applications . Problems of this size can be 

solved efficiently only if the storage and computational costs of the 

optimization algorithm can be kept at a tolerable level. To achieve this goal 

collection of large-scale optimization methods has been developed, each 

being particularly effective for certain problem types[1][10][13]. 

mailto:Alnajeeb177@Gmail.com
mailto:mhahashim61@gmail.com
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Trust region methods for the unconstrained optimization problem (1) 

compute a trial step in each iteration by solving the following sub-problem  

minimizep     qk xk = f xk + ∇f(xk)Tp +
1

2
pT∇2f(xk)p                                   (2) 

Subject to       

 p ≤ ∆k  

The following is a description of a model trust region algorithm for 

unconstrained optimization. 

Algorithm 1 (A Model Trust Region Algorithm) 

Given ∆ > 0 , ∆0∈  0, ∆   and η ∈  0,
1

4
 : 

For k = 0,1,2, … ..  

Obtain pk  by approximately  solving (2); 

Obtain   ρk =
f xk  −f(xk +pk )

mk  0 −mk (pk )
 

If ρk <
1

4
  

                ∆k+1=
1

4
∆k  

else  

if ρk >
3

4
 and  pk = ∆k  

               ∆k+1= min(2∆k , ∆ ) 

else  

             ∆k+1= ∆k  

If ρk < 𝜂 

            xk+1 = xk + pk  

else 

            xk+1 = xk  

end(for) 
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In this paper, we study the case when the matrix Bk = ∇2f is updated by the 

symmetric-rank-1(SR1) method at each iteration . The symmetric rank-1 

update has the general form 

                                      Bk+1 = Bk + σvvT                                                                    (3) 

where σ is either +1 or − 1, and σ and v are chosen so that Bk+1 satisfies 

the (secant equation), that is, 

                                                 yk = Bk+1sk                                                                    (4) 

When the number of variables is very large, it could be very costly to solve 

Eqs(2) exactly. Therefore, various methods for calculating an approximate 

solution of  Eqs(2) have been developed, such as the dogleg and double 

dogleg techniques ,the truncated CG method[1,14] and subspace-iterated 

methods [1], to name few. 

2. Iterative Solution Of The Sub-problem 

In this section, we study Iterative Solution, The  technique that uses the 

characterization          

                            B + λI p∗ = −g                                                                                (5) 

                                      for some λ ≥ 0. 

of the sub-problem solution, applying Newton’s method to find the value of 

λ which matches the given trust-region radius ∆ in (2).  

We Define 

p λ = − B + λI −1g 

For λ sufficiently large that B + λI is positive definite and seek a value λ > 0 

such that 

                                                        p λ  = Δ                                                               (6) 

    This problem is a one-dimensional root-finding problem in the variable λ. 

The method  is assumed to be the solution of the trust region sub-problem 

(2). A complete algorithm for minimizing f is obtained by using Algorithm 1 



 
90 

 

to generate the step pk  required by Algorithm1, for some choice of 

tolerance ϵk  at each iteration.  

 

 

Algorithm 2 (Trust Region Sub-Problem)  

Given λ(0), Δ > 0: 

 for ℓ = 0,1,2, … 

                 Factor B + λ(ℓ)I = RTR; 

Solve RTRpℓ = −g, RTqℓ = pℓ; 

                             Set 

                          λ(ℓ+1) = λ(ℓ) +  
 pℓ 

 qℓ 
 

2

 
 pℓ −∆

∆
 ;                                                    (7) 

end  for .                                             

3. Gradient Estimation Via Central Finite Differences 

Finite differencing refers to the estimation of f ′ (x) using values of f(x).  

central finite differences (CFD) based on the sample set X = {x + σei}i=1
n ∪

{x − σei}i=1
nn , and is computed as 

          [g(x)]i = ∇ f x =
f x+σei −f(x−σei )

2σ
, for i = 1, 2 , ……… , n                        (8) 

CFD approximations require 2n functions evaluations[1][12][13]. 

4. The Symmetric-Rank-1(SR1) Method 

The symmetric rank-1 update has the general form 

                                               Bk+1 = Bk + σvvT                                                           (9) 

where σ is either +1 or − 1, and σ and v are chosen so that Bk+1 satisfies 

the eqs(4) . By substituting into this equation, we obtain  

                                              yk = Bksk + [σvTsk]v                                                  (10) 

Since the term in brackets is a scalar, we deduce that v must be a multiple 

of yk − Bksk  , that is, v = δ(yk − Bksk) for some scalar δ. By substituting 

this form of v into (7), we obtain 
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                     yk − Bksk = σδ
2 sT

k yk − Bksk   yk − Bksk ,                        (11) 

and it is clear that this equation is satisfied if (and only if) we choose the 

parameters δ and σ to be 

      σ = sign sT
k yk − Bksk   , δ = ± sT

k yk − Bksk  
−1 2 

                            (12) 

Hence ,we have shown that the only symmetric rank-1 updating formula 

that satisfies the secant equation is given by  

                      Bk+1 = Bk +
 yk −Bk sk   yk −Bk sk  T

 yk −Bk sk  T sk
                                                        (13) 

the SR1 updating formula has proved to be quite useful, and its ability to 

generate indefinite Hessian approximations can actually be regarded as 

one of its chief advantages. give a formal description of an SR1 method 

using a trust-region framework[1,13,] 

5. The Algorithm  

Due to the Iterative method properties studied in the section2, and central 

Finite difference (CFD) studied in section3, and the symmetric-rank-1(SR1) 

method studied in section4,  we can construct trust region algorithms 

based on the traditional trust region philosophy. The algorithm proposed 

using Iterative method to solve trust region sub-problem and using 

symmetric-rank-1 to update   Hessian matrix at each iteration and using 

finite difference to approximate the Gradient of the function .  

Algorithm 3 (SR1 Trust-Region Method) 

Given starting point x0 , initial Hessian approximation B0 , trust-region 

radius ∆0 , convergence tolerance  ϵ > 0 , parameters η ∈ (0, 10−3)  and 

r ∈ (0, 1); 

k ←  0; 

Compute gk = ∇fk  using finite differences eqs(8) 

while   ∇fk > 𝜖  ; 

Compute pk  by solving the subproblem using  Algorithm 2 find pk ; 
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Compute 

yk = ∇f (xk  +  pk) − ∇fk  , 

                ρk =
f xk  −f(xk +pk )

mk  0 −mk (pk )
      

if ρk > η 

xk+1 = xk + pk  ; 

else 

xk+1 = xk  ; 

end (if) 

if ρk > 0.75  

if  pk ≤ 0.8∆k  

∆k+1= ∆k ; 

else 

∆k+1= 2∆k ; 

end (if) 

else if 0.1 ≤ ρk ≤ 0.75 

∆k+1= ∆k  ; 

else 

∆k+1= 0.5∆k ; 

end (if) 

if     sT
k yk − Bksk  ≥ r sk   yk − Bksk  

Use (13) to compute Bk+1 (even if xk+1 = xk  ); 

else 

Bk+1 ← Bk  ; 

end (if) 

k ← k + 1; 

end (while) 

6. Numerical Results: 
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1- 𝒇 𝒙 =  (𝒊 − 𝒙𝒊)
𝟒𝟏𝟎

𝒊=𝟏  the optimal solution 

𝒙∗ =  𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎   , 𝒆𝒓𝒐𝒓𝒓  𝝐 = 𝟏𝟎−𝟏𝟐 

 

Using x0 =  0 0 0 0 0 0 0 0 0 0  

 

 

Method 

Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−12  

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−12  

iteration k  10000 127 

 

The optimal  

 

point x∗  

 

1.0094 

2.0015 

3.0006 

3.9886 

5.0005 

5.9993 

7.0984 

7.9871 

8.6187 

10.0007 

1.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

7.0000 

8.0000 

9.0000 

10.0000 

2- 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙𝟏 − 𝒙𝟐)𝟔 + 𝟏𝟎(𝒙𝟑 − 𝟏)𝟖+(𝒙𝟏 − 𝟒)𝟒 the optimal solution 

𝒙∗ =  𝟒 𝟒 𝟏    , 𝒆𝒓𝒐𝒓𝒓  𝝐 = 𝟏𝟎−𝟏𝟐   

Using x0 =  0 0 0  , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  = 10000 
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Method 

 Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−12  

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−12  

iteration k  10000 610 

 

The optimal  

point x∗  

 

4.1286 

4.3041 

1.0038 

4.0000 

3.9994 

0.9897 

 

 Using x0 =  0 0 0  , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  = 50000 

 

Method 

 Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−12  

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−12  

iteration k  50000 1556 

 

The optimal  

point x∗  

 

4.0081 

4.1612 

1.0038 

4.0000 

4.0003 

0.9998 

 

3- 𝑓 𝑥 =  (i − xi)
420

i=1  

With 

x0 =  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 , delta =

1 , iteration = 1000, erorr ϵ =0.00000000000001 

The optimal solution 

x∗ =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  18 19 20  
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Method 

Derivative free Trust-region 

method using truncated Newton 

method 

ϵ = 10−14  

Derivative free Trust-

region method using 

Iterative Solution 

ϵ = 10−14  

iteration k  1000 139 

 

The optimal  

 

point x∗  

 

1.0000 

2.0067 

2.9997 

3.9996 

5.0067 

6.0000 

6.9996 

8.0000 

9.0003 

10.0067 

11.0067 

11.9999 

12.9997 

14.0000 

     1.0000 

    2.0000 

    3.0000 

    4.0000 

    5.0000 

    6.0000 

    7.0000 

    8.0000 

    9.0000 

   10.0000 

   11.0000 

   12.0000 

   13.0000 

   14.0000 
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15.0067 

16.1593 

17.0004 

18.0000 

19.2186 

20.0000 

   15.0000 

   16.0000 

   17.0000 

   18.0000 

   19.0000 

   20.0000 

 

 

 

7. Conclusions 

In this paper we have presented derivative-free trust-region algorithm for 

large-scale unconstrained optimization. The algorithm using symmetric-

rank1(SR1)to approximation Hessian and using centeral finite-difference 

approximation to the gradient of function. The Iterative method is used for 

solving the  trust-region  sub-problem ,and the results is compared with 

Truncated Newton method.  Numerical experiments on several functions 

show the good performance of the proposed method. For further study, we 

suggest developing methods for constrained problems.  
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