Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/27714
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohamed, Rugia Eltayeb
dc.contributor.authorSupervisor, - Shawgy Hussein AbdAlla
dc.date.accessioned2022-10-23T08:09:45Z
dc.date.available2022-10-23T08:09:45Z
dc.date.issued2022-01-01
dc.identifier.citationMohamed, Rugia Eltayeb.Bishop-Phelps-Bollobás Theorem and Properties for Operators and Approximate Hyperplane Series\Rugia Eltayeb Mohamed;Shawgy Hussein AbdAlla.-Khartoum:Sudan University of Science & Technology,College of Science,2022.-268p.:ill.;28cm.-Ph.D.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/27714
dc.descriptionThesisen_US
dc.description.abstractThe Lindelöf property and Bishop-Phelps-Bollobás moduli in Banach spaces are studied. The Bishop-Phelps-Bollobás theorem for operators from c_0 to uniformly convex spaces, for bilinear forms and for uniform algebras are established. We characterize the Bishop-Phelps-Bollobás property for numerical radius in l_1 (C) operators on C(K), for certain spaces of operators and for numerical radius of operators on L_1 (μ). Asplund operators, Γ-flatness and Bishop–Phelps–Bollobás type theorems for operators, version of Lindenstrauss properties A and B and approximation hyperplane series properties are considered.en_US
dc.description.sponsorshipSudan University of Science & Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science & Technologyen_US
dc.subjectBishop-Phelps-Bollobásen_US
dc.subjectHyperplane Seriesen_US
dc.subjectBanach spacesen_US
dc.subjectMathematics
dc.titleBishop-Phelps-Bollobás Theorem and Properties for Operators and Approximate Hyperplane Seriesen_US
dc.title.alternativeمبرهنات بيشوب – فيلبس – بولوباس والخصائص للمؤثرات ومتسلسلة المستوي المفرط التقريبيen_US
dc.typeThesisen_US
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Bishop-Phelps-Bollobás.........pdfResearch2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.