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Abstract
The Lindelof property and Bishop-Phelps-Bollobas moduli in Banach spaces are

studied. The Bishop-Phelps-Bollobas theorem for operators from ¢, to uniformly convex
spaces, for bilinear forms and for uniform algebras are established. We characterize the
Bishop-Phelps-Bollobas property for numerical radius in €4 (C) operators on C(K), for
certain spaces of operators and for numerical radius of operators on L;(u). Asplund
operators, I'-flatness and Bishop—Phelps—Bollobas type theorems for operators, version
of Lindenstrauss properties A and B and approximation hyperplane series properties are

considered.
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Introduction

We show that topological space (T, T) is said to be fragmented by a metric d on T if each
non-empty subset of T has non-empty relatively open subsets of arbitrarily small d-diameter.
We devoted to applications of the basic theorem. A compact Hausdorff space K is Radon-
Nikodym compact if, and only if, there is a bounded subset D of C(K) separating the points of
K such that (K, y(D)) is Lindelof. If X is a Banach space and H is a weak™® -compact subset of

the dual X* which is weakly Lindeldf, then (H, weak )N is Lindelof. We deal with a
strengthening of the Bishop-Phelps property for operators that in the literature is called the
Bishop-Phelps-Bollobas property. Let X be a Banach space and L a locally compact Hausdorff
space. We prove that if T: X — Cy(L) is an Asplund operator and ||T (x)ll =II T Il for some
lxoll = 1, then there is a norm attaining Asplund operator S: X — Cy(L) and [[uyll = 1 with
ISCuo)ll =Nl S II=Il T |l such that uy = xo and S = T.

We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-
Bollobas type theorem for numerical radius whenever X is #4(C) or cy(C). Guirao and
Kozhushkina introduced the Bishop-Phelps-Bollobas property says that if we have a state and
an operator that almost attains it numerical radius at this state, then there exist another state
close to the original state and another operator close to the original operator, such that the new
operator attains its numerical radius at this new state. We provide a version for operators of the
Bishop-Phelps-Bollobas theorem when the domain space is the complex space Cy(L).

We show that the pair of Banach spaces (¢, Y) has the Bishop-PhelpsBollobas property
when Y is uniformly convex. Further, when Y is strictly convex, if (cq,Y) has the Bishop-
Phelps-Bollobas property then Y is uniformly convex for the case of real Banach spaces. We
provide versions of the Bishop-Phelps-Bollobas Theorem for bilinear forms. Indeed we prove
the first positive result of this kind by assuming uniform convexity on the Banach spaces. A
characterization of the Banach space Y satisfying a version of the Bishop-Phelps-Bollobas
Theorem for bilinear forms on #; XY is also obtained. As a consequence of this
characterization, we obtain positive results for finite-dimensional normed spaces, uniformly
smooth spaces, the space C(K) of continuous functions on a compact Hausdorff topological
space K and the space K (H) of compact operators on a Hilbert space H.

We devoted to showing that Asplund operators with range in a uniform Banach algebra
have the Bishop-Phelps-Bollobas property, i.e., they are approximated by norm attaining
Asplund operators at the same time that a point where the approximated operator almost attains
its norm is approximated by a point at which the approximating operator attains it. We
characterize the Banach spaces Y for which certain subspaces of operators from L, () into Y
have the Bishop-Phelps-Bollobas property in terms of a geometric property of Y, namely AHSP.
This characterization applies to the spaces of compact and weakly compact operators. The
Bishop-Phelps-Bollobas property deals with simultaneous approximation of an operator T and
a vector x at which T nearly attains its norm by an operator T, and a vector x,, respectively,
such that T, attains its norm at x,. We extend the already known results about the Bishop-
Phelps-Bollobas property for Asplund operators to a wider class of Banach spaces and to a wider
class of operators. Instead of proving a BPB-type theorem for each space separately we isolate
two main notions: I'-flat operators and Banach spaces with ACK,, structure.



We study the Bishop-Phelps-Bollobas property for numerical radius (in short, BPBp-nu)
and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results,
we show that L, (u)-spaces have this property for every measure u. We introduce two Bishop-
Phelps-Bollobas moduli of a Banach space which measure, for a given Banach space, what is
the best possible Bishop-Phelps-Bollobas theorem in this space. We show that there is a
common upper bound for these moduli for all Banach spaces and we present an example
showing that this bound is sharp. We prove the continuity of these moduli and an inequality
with respect to duality. We introduce the notion of the Bishop-Phelps-Bollobas property for
numerical radius (BPBp-v) for a subclass of the space of bounded linear operators. Then, we
show that certain subspaces of L(Ll(u)) have the BPBp-v for every finite measure pu.

We study a Bishop-Phelps-Bollobéas version of Lindenstrauss properties A and B. For
domain spaces, we study Banach spaces X such that (X,Y) has the Bishop-Phelps-Bollobas
property (BPBp) for every Banach space Y. We show that in this case, there exists a universal
function nX(€) such that for every Y, the pair (X,Y) has the BPBp with this function. This
allows us to show some necessary isometric conditions for X to have the property. We also show
that if X has this property in every equivalent norm, then X is one-dimensional. We show the
Bishop-Phelps-Bollobas theorem for operators from an arbitrary Banach space X into a Banach
space Y whenever the range space has property f of Lindenstrauss. We also characterize those
Banach spaces Y for which the Bishop-Phelps-Bollobéas theorem holds for operators from £,
into Y. Several examples of classes of such spaces are provided. We study the Bishop-Phelps-
Bollobas property for operators between Banach spaces. Sufficient conditions are given for
generalized direct sums of Banach spaces with respect to a uniformly monotone Banach
sequence lattice to have the approximate hyperplane series property.
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Chapter 1
Banach Spaces and Bishop-Phelps-Bollobas Theorem

We show that under certain condition || span(H) || and co(H)w™ are weakly Lindelof. We
answer a question by Talagrand. Finally we apply the basic theorem to certain classes of Banach
spaces including weakly compactly generated ones and the duals of Asplund spaces. We obtain:
(A) if T is weakly compact, then S can also be taken to be weakly compact; (B) if X is Asplund
(for instance, X = c,), the pair (X, Cy(L)) has the Bishop-Phelps-Bollobas property for all L;
(C)if L is scattered, the pair (X, Cy(L)) has the Bishop-Phelps-Bollobas property for all Banach
spaces X.

Section (1.1): The Lindelof Property:

The starting point of the present investigation is a theorem by [26], namely that a Banach
space X is an Asplund space if and only if its dual X* is Lindelof with respect to the topology of
uniform convergence on bounded countable subsets of X, the y-topology. We show that this
result is a special case of a much more general theorem on function spaces and that it has
interesting consequences including a solution to a question by Talagrand.

The basic theorem and its important corollary are stated and proved. A new
characterization of Radon-Nikodym compact spaces by the Lindelof property relative to the y-
topology is derived from the basic theorem. It will be shown that Meyer's characterization of
compact scattered spaces [24] by the Lindelof property with respect the Gg-topology is also a
consequence of the basic theorem.

We use the Lindelof property relative to the y-topology to study the weakly Lindelof
property of sets in dual Banach spaces. We show, that the weak *-closed convex hull of a
weak *-compact subset which is weakly Lindel6f in a dual Banach space is again weakly
Lindelof. This solves a problem of Talagrand in [33].

The theme is further expanded where it is proved, in particular, that the norm-closed linear
span of a weak *-compact subset in a dual Banach space that is weakly Lindelof is a WLD
Banach space, as defined. It should be noted here that each WLD Banach space is weakly
Lindel6f and more. We approach depends on the existence of "projectional generators" shown.
The results on projectional generators also give a unified approach to the existence of
projectional resolutions of the identity for both weakly compactly generated Banach spaces and
duals of Asplund spaces.

We present several examples that illustrate the results .

For the notation and terminology see Engelking and Kelley, [11] and [21]. Given a
topological space Z we let C(Z) (resp. Cp(Z) ) denote the space of real continuous (resp. real
continuous uniformly bounded) functions defined on Z. For a Banach space X, By denotes its
closed unit ball and X* denotes its dual space. When F is a subset of X*, we write o(X, F) to
denote the locally convex topology (maybe non-Hausdorff) on X of pointwise convergence on
F;o(X,X") is the weak topology of X and o(X*, X) is the weak topology of X*. We consider
Cp(Z) as a Banach space endowed with the supremum norm.

We first gather definitions of the terms and notation necessary for stating the main
theorem, Theorem (1.1.2). Recall that a topological space is said to be Lindelof if each open
cover of the space admits a countable subcover. The following definition is due to Jayne and
Rogers [20].



Definition (1.1.1)[1]: Let (Z, t) be a topological space and ¢ a metric on Z. We say that (Z, 1)
is fragmented by g (or o-fragmented) if for each non-empty subset C of Z and for each € > 0
there exists a non-empty t-open subset U of Z suchthat UNC # @ and p — diam(UNC) < ¢

It is easily checked that for (Z, 7) to be go-fragmented, it is sufficient that each 7-closed
non-empty subset of X has non-empty relatively T-open subsets of arbitrarily small p-diameter.

Fort (M, ¢) be a metric space and let D be an arbitrary set. We shall write 7,,(D) to denote
the product topology of the space MP. Assume henceforth that g is bounded, which can always
be done without altering the uniformity of M. For any set S € D we define the pseudo-metric
dg on MP by the formula

ds(x,y) = sup{o(x(t),y(t)):t € S} forx,y € MP. (1)
The metric dj, will be simply denoted by d; the topology associated to d in MP is the topology
of uniform convergence on I. Let y(I) denote the uniform topology on MP generated by the
family of pseudo-metrics {d4: A € D, A countable}, i.e. the topology of uniform convergence on
the family of countable subsets of D.

Let 2N be the space of all sequences of 0's and 1's and let 2™ be the set of all finite
sequences of 0's and 1's. For a given t € 2| let || denote the length of t; for 0 € 2N and n €
N, we write o | n = (a(1), ...,a(n)) € 2V,

Theorem (1.1.2)[1]: Let (M, ¢) and D be as above, and let K be a compact subset of (MD , Tp).
Then the following conditions are equivalent:

(a) The space (K , Tp) is fragmented by d.

(b) For each countable subset A of D, (K, d,) is separable.

(c) The space (K,y(D)) is Lindelof.
Proof. (a) = (b). By Lemma 2.1 of [25],(K|A,Tp(A)) is fragmented by d4. Since M4 is
metrizable, (K |4 Tp (A)) is compact metrizable; hence it has a countable base. If (K, d,) is not
separable, then there is an uncountable subset Q of K|4 and € > 0 such that d,(p,q) > ¢
whenever p,q € Q and p # q. We may assume that no point of @ is 7,-isolated in Q since
(K| 4 Tp (A)) has a countable base. Since (K| 4 Tp (4)) is fragmented by dy, there is a T, (A)-
open subset U of K|, such that UNQ # @ and dy — diam(U N Q) < . Hence UNQ is a
singleton, contradicting the fact that no point of Q is 7,(A)-isolated in Q. Hence (K,d,) is
separable.

(b) = (a). Suppose that (K ) Tp) is not fragmented by d. Then, for some non-empty 7,,-
closed subset C of K and € > 0, each non-empty 7,,-open subset of C has d-diameter greater
that €. By induction on n = |s|,s € 2, we construct a family {US: S E Z(N)} of non-empty

relatively 7,-open subsets of C and a family {tS:S € Z(N)} of points of D, satisfying the
following conditions:

(a) U@ =C.

(B) U_:g U ﬁ;f c U, for each s.

) o(x(ts), y(ts)) > & foreach x € lj_:g and y € lj_:f.

(@) starts the induction from n = 0. Next, for some n > 0, assume that {Us: |s| < n} and
{ts:|s| < n — 1} have been constructed. Fix an s € 2N with |s| = n — 1. By hypothesis, there
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are x,y € Ug with d(x,y) > e€.Hence for some t; €D, Q(x(ts),y(ts)) > ¢e. By the 7p-
continuity of the map

(', y") & o(x' (ts), ¥ (ts))
there are relatively 7,,-open neighborhoods Uy and U, of x and y, respectively, so that () and
(y) are satisfied. This completes the construction. Note that (y) implies that (j_:g N (j_:f = @ for
eachs € 2N,

For each o € 2N, choose x, € N, lj;’l’n. Ifo,0' € 2N are two different sequences, then
for some n € {0}UN,gln=0¢'|n and o|(n+ 1) #d'|(n+1). Then by (y) we have
0 (xd(tdln);xa’(taln)) > ¢. Letting A = {ts:s € Z(N)} we have d,(xz, x,) > €. Since 2V is
uncountable, (K, d,) is not separable, and therefore (b) does not hold.

(c) = (b). This is clear because the topology associated to d4 is weaker than y(D)
whenever A is a countable subset of D.

(a)&(b) = (c). Let U = {Uj:j € ]} be a y(D)-open cover of K and let C = {A:Ac D
and A is countable }. Without loss of generality we may assume that each U; is of the form

Ui = U(xj,Aj, sj): = {y EK: dAj(xj,y) < sj},
where x; € K, A; € C and €; > 0. For each A € C, define

U(A) = {Uj:j €],Aj € A} and U(4) = U {Uj:U; e U(A)}
Then we have

U= U (U(A):A €C) and K = U (U(A):A € ¢} )

Also if A c A" then U(A) c U(A').

We claim that K = U(A) for some A € C. Suppose for a moment this is true. Then since
each member of U(A) is d4-open and since (K, dy) is separable by (b), there is a countable
subfamily of U(A) (hence of U) that covers K, which completes the proof.

The proof of the claim is by contradiction. So assume that U(A) # K for each A € C. For each
A € C, let

C(A)=K\U(A) and C = ﬂ {CA)™:A€c}
We note that C(A) D C(A’) whenever A c A’. By compactness of (K, Tp), C + @, and now (a)

tells us that (C , Tp) is fragmented by d. So by Lemma 1.1 of [25], there is a point y € C where

the identity map (C ) Tp) - (C,d) is continuous. The second equality in (2) ensures us that y €
U(B) for some B € C. Since U(B) is dg-open, for some € > 0,y € U(y,B,¢) € U(B). Then
for each x € C(B) =K\ U(B),x € U(y,B, ¢) and so for some t € B, o(x(t),y(t)) = 2¢/3.
Foreacht € B, let

Ve = {x € C(B): Q(x(t),y(t)) > %} (3)

Then from the above, C(B) = U{D;:t € B}.
Let V be a T,-open neighborhood of y in K such that —diam(V® N C) < &/2. Then we
claim that, for some t € B,D; NV N C(A) # @ for each A € C. For, otherwise, for each t € B
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there is an A, € C such that D, NV N C(A;) = @. Since B is countable, the set E:= B U
U{A;:t € B} is also countable, and D, NV N C(E) = @ forall t € B. Hence

0= (U (Dt € BY)nVNCET) =CB) NV NCET) =V nCE,

contradicting y € C < C(E)T,,.
Now fixat € Bsothat D, NV N C(A) # @ for each A € C, and let

A= ﬂ {D, NV NnC(A)"»: A € C}.

Then z € V% N C, and so
5
d(z,y) < E (4)

On the other hand, since z € D, ?, it follows by (3) that o(z(t),y(t)) = 2¢/3, which
contradicts (4). This completes the proof of both the claim and the theorem.

It 1s well known that the product of two Lindelof spaces is not in general Lindel6f again:
indeed, let Z = R and endow it with the topology for which a basis is given by all the intervals
[x,7), where x,r € R,x < r and r is a rational number; then Z is a separable first-countable
space that is Lindelof and is not second-countable; moreover Z X Z is not normal and therefore
not Lindelof (see [11, pp. 248-249]).

Fortunately the Lindelof property for the spaces (K,y(D)) in Theorem (1.1.2) is
preserved under the countable power.

Corollary (1.1.3)[1]: Let K, M,D be as in Theorem (1.1.2). If K satisfies one of the three
conditions of the theorem, then (K, y (D)) is Lindelof. In particular, (K, y(I)))" is Lindeldf for
eachn € N.

Proof. We may assume that the metric o of the space M is bounded by 1. Let ¢: (M?)N —
(MM)P be the map defined by (&) (t)(j) = E(j)(¢) forall § € (MP)N,t € D,j € N. Clearly ¢
is a homeomorphism when the product topology is used throughout. Now the space MY is
metrizable, and we use the metric 0o, (M7, 71): = Y ey 277 o(ml(j), mn'(j)) form,mn’ € MN.
Let do, be the metric on (MN)P given by

doo(,x"): =5 {06 (x(t),x'(t)):t € D} for x,x’ € (MN)P,

We now show that if K is fragmented by d then @(KN) is fragmented by d,. Let € > 0, let C
be a non-empty subset of KN and let ;: KN — K be the i-th projection. Then by induction we
can construct a decreasing sequence V; D V, D -+ of non-empty relatively open subsets of C

such that d-diam (n](V])) < g/2 for each j € N. Choose k € N so that 27% < £/2, and let
£, €V,. Then foreacht € D,

@O, 0N <D 2TENOENDW) + ). 27

j<k jzk+1
, & & &
—J . . ! — — —_ =
<Z; 271d (m (), mE)) +5 < s+ =
j=<

Thus ¢ (V}) is a non-empty relatively open subset of ¢ (C) with d-diameter not greater than .

Hence by Theorem (1.1.2), ¢ (KN) is y(D)-Lindeldf. So we finish the proof by showing
that gmaps(M?,y(D))N homeomorphically onto ((MN)?,y(D)). Let 7,7, be the topologies
of these two spaces respectively. Then a net £, in (MP)Nt,-converges to & € (MP)N ifand only
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if: (i) for each j € N and for each countable set A < D, 0(&,(j)(t),$(j)(t)) = 0 uniformly in
t € A. On the other hand, the net @(&,)T,-converges to (&) if and only if: (ii) for each
countable A € D

Qe (9§D (), (E)(1)) = Z 2770(&(N@®, (@) = 0
JEN
uniformly in t € A. The equivalence of statements (1) and (i1) can be seen by an easy calculation
similar to the one given above. Hence ¢ is a T — T, homeomorphism.
We obtain the following theorem, whose first part was mentioned. It has been stated in
[26] as Theorems B and C. The original proof'is quite different and depends on the technique of
projections in Banach spaces.

Theorem (1.1.4)[1]: (]26]). A Banach space X is an Asplund space if and only if (X 5 y(BX))
is Lindelof. If this is the case, then (X * y(BX))n is Lindelof for eachn € N.

Proof. Note that (X * y(BX))n is Lindel6f if and only if (BX*, y(BX))n is Lindelof, and X is an
Asplund space if and only if (By-, weak* ) is frag- mented by the norm. Therefore the theorem
follows by regarding (By-, weak*) as a compact subspace of ([—1,1]3 , Tp).

Let K be a compact Hausdorff space and let D be a uniformly bounded subset of C(K)
and A € D. Then we define the pseudo-metric on K by

dy(x,x") =sup{lf(x) — f(x")|: f € A} forx,x' €K

We again write y(D) to denote the uniform topology on K generated by the family of
pseudo-metrics {d4: A € D, A countable}. Observe that when D separates the points of K, then
K embeds in [-m,m]? for some m > 0. Hence the topology ¥ (D) now defined is the one
already given through the embedding K < [-m,m]P, and y(D) is stronger than the original
topology of K. In particular the equivalences we have seen in Theorem (1.1.2) and Corollary
(1.1.3) remain true.
Theorem (1.1.5)[1]: Let K be a compact Hausdorff space and let D be a uniformly bounded
subset of C(K). Then the following statements are equivalent:

(i) The space (K, d,) is separable for each countable A € D.

(i1) The space (K,y (D)) is Lindel6f.

(iii) The space (K, y(D))Y is Lindeldf.
Proof. From the remark above, the theorem is clear in case D separates the points of K. The
general case can be reduced to this as follows. Let m = sup{ll f Il: f € D} and let ¢: K —
[-m, m]P be the map given by ¢ (x)(f) = f(x) forall x € K and f € D. Then K': = ¢(K) is
a compact Hausdorff space. For each f € D, let f € C(K') be the map given by f(¢@(x)) =
f(x), and, for each A c D, let A = {f: f € A}. Then clearly f = f is a one-to-one map of D
onto D and d4(x,y) = dz(e(x), ¢(y)) for all x,y € K. It follows that (K,d,) is separable if,
and only if, (K',dj) is separable. The last equality also implies that, for each € K,{y € K :
da(x,y) < e} =@ 1({z € K':dz(¢(x),z) < £}). Hence a subset U of K is y(D)-open if and
only if U = ¢~1(U’) for some y(D)-open subset U’ of K'. From this it is straightforward to
check that (K,y(D))(resp.(K,y(D))N) is Lindelof if, and only if, (K',y(D))

(resp.(K ’,y(ﬁ))N) is Lindeldf. Since D separates the points of K', the conclusion of the

theorem is true for D and K'. Hence the theorem is proved in general.
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A compact Hausdorff space is said to be Radon-Nikodym compact (or RN-compact) if it

1s homeomorphic to a weak*-compact subset of the dual of an Asplund space, 1.e. a dual Banach
space with the RNP. It is shown in [25] that a compact Hausdorff space is RN-compact if, and
only if, it is fragmented by a lower semicontinuous metric on the space. When (M, g) is a metric
space (with ¢ bounded) the metric d in Theorem (1.1.2) is clearly 7,, lower semicontinuous.
Therefore, Theorem (1.1.2) provides the following characterization of RN-compact spaces.
Proposition (1.1.6)[1]: A compact Hausdorff space is RN-compact if, and only if, it is
homeomorphic to a pointwise compact subset K of [—1,1]° for some set D such that (K, y (D))
1s Lindelof.
Proof. By Theorem 3.6 of [25] a compact space is RN-compact if, and only if, K is
homeomorphic to a pointwise compact subset K of [—1,1]P for some set D such that (K, d,) is
separable for each countable subset A of D. An application of Theorem (1.1.2) finishes the proof
of the proposition.

In terms of spaces of continuous functions the proposition above can be restated as
follows.

Corollary (1.1.7)[1]: A compact Hausdorff space K is RN-compact if, and only if, there is a
bounded subset D of C(K) separating points of K such that (K,y (D)) is Lindelof. If this is the
case, then (K, y(D))YN is Lindelsf.

Proof. Assume K is RN-compact. By Proposition (1.1.6), we may assume that K is a subspace
of([—l,l]D, Tp) for a certain set D with (K,y(D)) Lindeldf; for every d € D let my: [—1,1]° -
[—1,1] be the projection defined by m(x) = x(d),x € [-1,1]P. If we let D = {m;:d € D},
then D is a uniformly bounded subset of C (K) separating the points of K and such that (K, y (D))
is Lindelof. The last part follows from Theorem (1.1.5). A similar argument proves the converse.

For weakly compact subsets of C(K), we have the following.

Corollary (1.1.8)[1]: Let K be a compact Hausdorff space and let H ¢ C(K) be a weakly
compact (i.e. bounded and 7,-compact) set. Then (K, y (H NN is Lindelof.

Proof. For a countable set A € H,A™ c C(K) is T, (K)-metrizable and thus the space
(C(A™),d zp) is separable. Hence, (K | i, dA'Tp) is separable and so is (K,d,). In view of
Theorem (1.1.5), the proof is complete.

We need the following easy lemma that appears in [6].

Lemma (1.1.9)[1]: Let Z be a Lindelof space, and let H € C(Z) be equicontinuous. Then
(H Tp(Z )) 1s metrizable.
Proof. Let dy be the pseudo-metric on Z given by

dy(z,z') = min {1, ilellli{)lh(z) — h(z’)l}

Since H is equicontinuous, the dy-topology is weaker than the given one on Z. So (Z,dy) is
Lindelof and hence separable. Let I) be a countable dj;- dense subset of Z. Then since H is d -
equicontinuous, on H the topologies of pointwise convergence on D and on Z coincide.

Therefore (H Tp(Z )) 1s metrizable.
Given a subset D of RE, let

F(D) = U {A%: A4 c D, A countable }.
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Note that if B is a countable subset of F'(D) then there is a countable subset A of D such that
B®™ c A% c H'(D). In particular, F'(F'(D)) = F(D)

Recall that a topological space Z is said to be countably tight (resp. to be a Fréchet-
Urysohn space) if for each set S € Z and each point x € S there is a countable set A C S (resp.
sequence (x,), in S ) such that x € A (resp. (x,), converges to x); see [3, pp. 5 and 7]. In
applying the results, the following theorem of Arkhangel'skil ([3, Theorem II.1.1]) is very
useful.

Theorem (1.1.10)[1]: Let T be a topological space such that T™ is Lindelof for each n € N.
Then (C (T), 7 (T)) is countably tight.
Corollary (1.1.11)[1]: Let K be a compact space and let D be a bounded subset of C(K) such
that (K,y (D)) is Lindel6f. Then the following properties hold:

(a) For any countable set A € D, A™ (closure taken in R¥X) is y(D) equicontinuous and Tp-

metrizable.

(b)F'(D) = C(K,y(D)) n D™, where the closure is taken in R¥ .

() (F'(D), Tp) is a Fréchet-Urysohn space.
Proof. (a) easily follows from the previous lemma: if A € D is countable then A is y(D)-
equicontinuous; its T,-closure A* in RX is again y(D) equicontinuous and therefore Tp-
metrizable by Lemma (1.1.9). This proves (a).

For (b), we first note that (a) implies F(D) c C(K,y(D)) N D. Next we note that
(K,y(D))" is Lindelof for each mn € N by Theorem (1.1.5). This fact implies that
(C (K,v(D)), Tp) is countably tight according to Theorem (1.1.10). Therefore if f €
C(K,y(I)) N Dt, then there is a countable subset A of D) such that f € A*». Hence f € F'(D),
which proves (b).

The proof of (c) is similar: Suppose that S € F'(D) and f € S n H'(D). Then by the
countable tightness, there is a countable subset B of S such that f € B™. Then as noted above,
there is a countable subset A of D such that B c A™. In particular BT, is T,-metrizable by
(a). Therefore there is a sequence in B (hence in ) that 7,,-converges to f. This proves (c).
Recall that a topological space T is said to be scattered if each non-empty subset of T has an
isolated point, or equivalently T is fragmented by the (necessarily lower semicontinuous) trivial
metric o, where o(t,s) =0 for t =s and g(t,s) =1 for t # 5. It can be shown (cf. [30,
Theorem 8.5.4]) that a compact Hausdorff space K is scattered if and only if there is no
continuous map from K onto [0,1]. We remark that in the corollary above if B¢y © F'(D) then
K is scattered. For then, (BC(K), Tp) is a FréchetUrysohn space; on the other hand, (BC [0,1], Tp)
is not Fréchet-Urysohn (see [3, Lemma I1.3.5]), and consequently K cannot be continuously
mapped onto [0,1].

Given a topological space (Z,T), the Gg-topology associated to T is the topology on Z
whose basis is the family of Gs-sets, {N,,U,: U,, € T}; when no confusion is likely we simply
write Z for the topological space and then refer to its GS-topology.

Lemma (1.1.12)[1]: Let K be a compact Hausdorff space. Then the G §-topology for K is
identical with y(BC(K)) on K.
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Proof. Clearly the Gs-topology is stronger than y(BC(K)). Let a € K, and let G be a Gg-set
containing a. Then G = N;~, U, where each U, is open in K. For each n, let f,, be a continuous
function f;,: K — [0,1] such that £, (a) = 0, and f;,|\y, = 1. Write A = {f;;:n € N}. Then A is
a countable subset of B¢ k), and x € G whenever dy(a,x) < 1, i.e.
a €{x €EK:dy(a,x) <1} cG.

This shows that y(BC(K)) is stronger than the G5-topology and we are done.
Corollary (1.1.13)[1]: (Meyer, [24]). For a compact Hausdorff space K, let 5 denote its Gg-
topology. Then the following statements are equivalent:

(a) K is scattered.

(b) (K, ts) is Lindelof.

(c) (Bcb (K, t5), Tp) is a Fréchet-Urysohn space.
Proof. For (a) & (b), regarding K as a subset of ([—1,1]3 C (K),Tp), we apply Theorem
(1.1.2). In this case the metric d is twice the trivial metric and the topology y(BC(K)) is the G-
topology for K by the lemma above. (a) & (b) now follows. Next assume (b), and we apply
Corollary (1.1.11) to our K and D: = B¢ (k). The hypotheses are satisfied by (b). Since the 7,,-
closure of D is [—1,1]%, ( b) of Corollary (1.1.11) says that F (D) = B¢, (ky(0)) = Bey (k75 and
(c) of the same corollary says that (Bcb (K, t5), Tp) is a Fréchet-Urysohn space. This is (c). If
(c) holds, then (BC(K), Tp) is also a Fréchet-Urysohn space. But as remarked above, this implies
(a).

We should comment here that topological spaces for which Gé&-sets are again open are
called P-spaces. It is a very easy exercise to prove that if Z is a Lindelof P-space then Z™ is
Lindelof for n € N and so (C (Z),Tp) has countable tightness; it also follows from Lemma
(1.1.9) that for such a Z the separable subsets of (C 2), Tp) are metrizable, and hence (C (2), Tp)
is Fréchet-Urysohn; see also [3]. Our argument also shows that, for K compact and scattered,
the space of all continuous functions on K endowed with its G5-topology is B; (K), the space of
T,,-limits of sequences in C(K), and that all classes of Baire functions on K are the same [23].

Let D be a dense subset of a compact Hausdorff space K and let H be a bounded 7,,(D)-
compact subset of C(K). We investigate the 7,,(K)-Lindelof property of H by means of the
v (D)-topology of the earlier sections. As application we prove the results mentioned.

The following simple proposition enables us to extract information on (H Tp(K )) from
that on (H,y(D)).

Proposition (1.1.14)[1]: Let K be a compact Hausdorff space, D a dense subset of K and H a
subset C(K). If H is 7,,(K)-Lindelof, then y(D) is stronger than 7,,(K) on H.
Proof. Let f € H,e > 0,x € K, and
U=1{g€H:|glx)—flx)]<e}.

Then U is a 7, (K)-open neighborhood of f in H, and it is sufficient to show that U is a y(I)-
neighborhood of f in H. For each d € D, let

Dy ={g € H:|g(d) — f(d)| = £/2}
If g € N{D,:d € D}, then |g(x) — f(x)| < &/2 since x € D, and therefore g € U. It follows
that N{)4:d € D} c U. Since each Dy is 7,(K)-closed and H is 7, (K)-Lindeldf, there is a
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countable subset A of D such that already N{D,:d € A} c U, i.e. {g € H:supgea|g(d) —
f(d)| < &/2} c U. Hence U is a y(D)-neighborhood of f in H and the proof is finished.
Corollary (1.1.15)[1]: Let K be a compact Hausdorff space, D a dense subset of K and H a

bounded 7, (D)-compact subset of C(K). If (H , Tp(K )) is Lindel6f, then (H ,Tp(K ))N is
Lindelof.

Proof. If H is 7,,(D)-compact and 7, (K)-Lindelof, then by [5, Theorem B], H is fragmented by
the supremum norm of C(K), i.e. as a compact subset H of [—m,rn]P for a suitable m, H is
fragmented by d in the notation of Theorem (1.1.2). According to Theorem (1.1.2) and Corollary
(1.1.3), (H,y(L))N is Lindeldf. By Proposition (1.1.14), (D) is stronger than T,(K) on H and

therefore (H , Tp(K ))N is Lindelof because it is a continuous image of the Lindelof space
(H,y(D)"

In[3, Problem IV.11.11] Arkhangel'skiY asks the following question. Let K be a compact
Hausdorff space. If there exists a 7,,-Lindelof subset H of C(K) that separates the points of K,
is K countably tight? The next corollary is an answer to this question under a rather strong
restriction on H.

Corollary (1.1.16)[1]: Let K be a compact Hausdorff space, and H a 7,,(K) Lindelof bounded
subset of C(K) separating the points of K. If H is 7,,(D) compact for some dense subset D K,
then K is countably tight.

Proof. An application of Corollary (1.1.15) allows us to conclude that (H ,Tp(K ))n 1s Lindelof
for n € N. Hence the space (C (H , Tp(K )), T,(H )) is countably tight by Theorem (1.1.10). The

space K is homeomorphic to a subset of C (H , Tp(K )) because H separates the points of K, and
so the proof is done.

If X is a Banach space, then By« is always assumed to have the weak* topology
(= o(X™, X *)) unless other topology is specified. Also X and By are considered as
subspace/subset of X** and By, respectively, by means of the canonical embedding. Thus (X,
weak ) is a subspace of (Cy+), Tp(BX)) and (X*, weak ) is a subspace of (C(B ), Tp(B ))
For a subset S of X*, the weak and weak * closures of S are respectively denoted by S and SV.
A particular case of Corollary (1.1.15) is the following:
Corollary (1.1.17)[1]: Let X be a Banach space and let H be a weak*-compact subset of X*
which is weakly Lindelof. Then (H, weak )N is Lindelof.

The next result gives an affirmative answer to a question posed by Talagrand that appears
in [33] as Probleme 4.5.
Theorem (1.1.18)[1]: Let X be a Banach space and let H be a weak*-compact subset of X*
which is weakly Lindelof. Then:

(a) co(H)w™ = co(H) Ill.
(b)co(H)w"™ is weakly Lindelof.

Proof. If H is a weak -compact subset of X* which is also weakly Lindelof, then (H weak *) is
fragmented by the dual norm by Corollary E in [5]. The equality in item (a) now follows from
Theorem 2.3 in [25].

Let us prove (b). As noted in the proof of (a), (H, weak *) is fragmented by the norm.
Therefore if we let W = co(H)w", then W is weak *-compact and (W, weak *) is fragmented
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by the norm by [25, Theorem 2.5]. By embedding W into [—rr,r7]B% for a suitable rr > 0, we
see that (W,y(By)) is Lindeldf by Theorem (1.1.2). Therefore the proof is finished once we
show that y(By) is stronger than the weak topology on W, or equivalently each member x** of
By~ is continuous on (W,y(By)). So fix an element x** in By,. By Corollary
(1.1.17), (H, weak )N is Lindeldf, and therefore, by Theorem A, (C(H, weak), T,(H )) is
countably tight. Since By |y is T, (H)-dense in By,.|y © C(H, weak ), there is a countable subset
A c By such that x™*| is in the 7, (H)-closure of A|y. Let G be the convex hull of H. Then by
the linearity, x|y is in the 7,,(G)-closure of Ay, By (a), G is norm-dense in W and By |W 1s

an equicontinuous family of functions on (W, |lll). Hence 7,,(W) and 7,,(G) coincide on By.. |y,
and so x**|y is in the 7, (W)-closure of Aly,. Finally, Aly, is an equicontinuous family on

(W, y(BX)) and hence x™*|, being in the pointwise closure of A|y,, is y(By)-continuous on
w.

Corollary (1.1.19)[1]: Let X be a Banach space, H a weak*-compact subset of X* and W its
weak*-closed convex hull. The following statements are equivalent:

(a) (H,weak) is Lindelof.

(b) (H, weak)VN is Lindelof.

(c) (W, weak) is Lindelof.

(d) (W, weak)VN is Lindelof.

Proof. The implications (a) = (b) and (c) = (d) both follow from Corollary (1.1.17). The
implications (b) = (a),(d) = (c¢) and (c) = (a) are obvious. And finally, the implication
(@) = (c) is Theorem (1.1.18).

If X is either a weakly compactly generated Banach space or the dual of an Asplund space,
then X is generated by an RN-compact subset in the weak or the weak * topology. We shall deal
in this section with the class of Banach spaces generated by RN-compact subsets with respect to
a topology weaker than the weak topology. To be more concrete, our framework is the
following: for a Banach space (X, Illl) we consider a norming subset F < X* (also called 1-
norming subset) for X, that is, a Q-linear set H' satisfying

Il xlI=s {[{x, f)|: f € F' N Bx.}. (5)
If a bounded set H < X is o (X, F)-compact and fragmented by the norm, then (H,a (X, H")) is
an RN-compact set since the norm is (X, F')-lower semicontinuous, and we will study the
space generated by it, that is, the space Y = span(H) [l|l. The Banach space Y thus obtained will
be called a Banach space generated by an RN-compact subset. We exhibit several examples of
such Banach spaces. In order to show the main properties of spaces generated this way we shall
first see that these spaces admit projectional generators as defined below. See [12]. If A is a non-
empty subset of a Banach space X, then A+ denotes the subset {f € X*: f(x) = 0 for all x € A}
of X*.
Definition (1.1.20)[1]: Let X be a Banach space. A projectional generator on X is a countable-
valued map ¢@: F — 2% on a norming subset F © X* such that whenever B  F is a Q-linear set,
we have
¢(B)* nB N By-w" = {0} (6)
According to the method developed in [28], [26] and [12], the existence of a projectional
generator leads to the existence of a projectional resolution of identity (PRI for short) in the
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sense that follows. Given a Banach space X, the density character of X (denoted by dens X) is
defined to be the least cardinality of a dense subset of X. Let u be the least ordinal such that
|| = dens X, where |u| denotes the cardinality of the ordinal u. A PRI on X is a transfinite
sequence {P,: wy < a < u} of linear projections in X satisfying the following conditions, where
a and B are arbitrary ordinals in [w, 1] :

@) IRl = 1.

(b)dens P, (X) < |a

(c) Papﬁ = PBPa = Pmin{a,ﬁ}

(d)For each x € X and each limit ordinal @, Pg(x) — F,(x) in the normas 8 T a.

The next proposition gathers the main properties of spaces with a projectional generator.
In what follows, "LUR norm" stands for "locally uniformly rotund (or convex) norm".
Theorem (1.1.21)[1]: Let X be a Banach space with a projectional generator ¢: F — 2%. Then
the following statements hold:

(a) X admits a PRI{P,: w, < a < pu} such that P,(X) has a projectional generator for each
Wy < a < U

(b) X admits an equivalent LUR norm.

(c) There is a linear continuous one-to-one operator T': X — ¢, (I") for some set I'. (d) The
Banach space X is y(X, F)-Lindelof, where y(X, F) is the topology on X of uniform
convergence on bounded countable subsets of F .

Proof. (a) With the projectional generator ¢ in X, a PRI {P,: wy < @ < u} can be constructed,
based on pairs (4,, B,) of Q-linear subsets, A, € X and B, c F' with ¢(B,) € A, and B,
norming for A, (see Proposition 6.1.7 and Remark 6.1.8 of [12]); so, we have B, N By« w* N
AL = {0} and P, is the projection from X onto A, [lwith kernel BL. The space P; (X*) = BY is
identified with the dual of P, (X) = Alland therefore P,(X) also has a projectional generator
defined on B, by ¢, (f) = P,(¢(f)), f € B,. These observations complete the proof of (a).

(b) and (c). Here we use the induction argument encapsulated in [8, Theorem VII.1.8].
Let P be the class of Banach spaces that admit a projectional generator. Then (a) shows that the
hypothesis on P in [8, Theorem VII.1.8] is satisfied. Therefore each member X of P admits an
equivalent LUR norm. If; in the proof of [8, Theorem VII.1.8], one uses [12, Proposition 6.2.2]
instead of Proposition VII.1.6 of [8], then one can also conclude that each member X of PP has
property (c).

(d) The proof of Theorem A in [26] gives us this result.

What remains is devoted to proving that a Banach space generated by an RN-compact
subset has a projectional generator and therefore enjoys the properties listed in Theorem
(1.1.21).

First we recall Simons' lemma [31].

Lemma (1.1.22)[1]: Let (z,), be a uniformly bounded sequence in £*°(C) and let W be its
convex hull. If B is a subset of C such that for every sequence (4,),, of positive numbers with
Yn=1Ay, = 1there is b € B such that

sup {Z Muzn(y):y € c} = Az (), )

then
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sup {lim supzn(b)} > inf{supw: w € W}. (8)
beEB n—oo C
A subset of X is said to be total if its linear span is weak*-dense in X*. Clearly a norming subset

for X is a total subset of X*.
Definition (1.1.23)[1]: Let X be a normed space, C € X a set and F a total subset in X*. A subset
B c C is said to be an F-boundary for C if for every f in F there is a b € B such that f(b) =
sup{f (x):x € C}.

In what follows, when F' is a total norm-closed subspace of X* we consider the norm
associated to F given by

pr(x) = sup{[{x, /)|: f € F' N By+},

for x € X. Then the unit ball of (X, pr)* is the set F N By« w* and (X, pg)* is the subspace H =
Up=1n(F N By+) of X*. Clearly F c H.
Proposition (1.1.24)[1]: Let X be a normed space and let F be a total normclosed subspace of
X*. Let C be abounded subset of X and B < C an F'boundary for C such that (B, pg) is separable.
Then

co(B)pg = co(C)o(X,F)
Proof. The proof is based on the ideas in [14] (see also [13]). As we remarked, the dual of
(X, pr) is the subspace H = Us_,nG" of X*, where G = By- N F, and F c H. Hence
co(B)pr € co(C)pr = co(C)a(X,H) c co(C)o(X,F).
Assume that the conclusion of the proposition is false. Then there exists an element x, €
co(C)a(X,F) \ co(B)pr. Then by the separation theorem, there is a functional f € H =
(X, pr)” such that

f(xo) > a > sup{f(b):b € B}.

By scaling we may assume that f € GV . Let U = {g € X*: g(x,) > a}. Then U is convex weak
-open and f € GV NUcGNUY. Now GV is equicontinuous on (X,pr) and B contains a
countable pp-dense subset D. Therefore in GV the topology of pointwise convergence on B is
identical with the topology of pointwise convergence on D, and the latter is pseudometrizable.
It follows that there is a sequence {z,:n € N} in G N U such that lim,, z,,(b) = f(b) for each
b € B. Our assumption of F being norm-closed and B being an F-boundary of C implies that
the sequence (z,,),, satisfies the hypothesis of Lemma (1.1.22). Hence by (8),

a > supf(b) = inf{supw(c): w E co({zn})}
bEB ceC

It follows that a > sup,w for some w € co({z,}) € G NU. In particular, since w €
U,w(xy) > a > supsw. On the other hand, since x5 € co(C)a(X,F) and, being in F,w is
o(X, F')-continuous, w(x,) < sup.w, contradicting the previous inequality. This proves the
proposition.

The pointwise limit of a sequence of real-valued continuous functions is called a function
of the first Baire class. More generally a function f from a topological space M into a normed
space X is said to be of the first Baire class if there is a sequence of continuous functions f,,: M —
X such that (f;,),, converges to f in (X M Tp). A multi-valued map ¢ from the topological space
M to the space of subsets of a topological space T is said to be usco if ¢(m) is a compact non-
empty subset of T for each m € M and if ¢ is upper semicontinuous in the sense that, whenever
U is an open subset of T, {m € M: p(m) < U} is open in M.
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Ideas in [15] (see also [30]) allow us to modify Jayne-Rogers' selection theorem, [20], to
our situation below.

Theorem (1.1.25)[1]: Let M be a metric space, X a normed space and H' a total norm-closed
subspace of X*. Let H be a norm-bounded (X, F')-compact subset of X which is fragmented
by the norm pg. If ¢ is an usco map from M to subsets of (H, a(X, F)), then 1 has a first Baire
class selector f from M into (X, pg).

Proof. If we identify (X,pr) with a subspace of £*(F N By-) and H with a weak -compact
subset there, then we can apply Remark 17 in [19] to obtain a selector f of ¥y which is o-
discrete and of the first Borel class from F’ to £*°(B N By+ ) (see Corollary 7 in [19]). Such a
selector as a map from F into (X, pr) is also o-discrete of the first Borel class, and by Theorems
1 and 2 of [30], f is of the first Baire class from F' into (X, pg) (see also [15] [30]).

We prove one of the main properties of the selectors obtained above: the result that
follows is a counterpart to the one stated as Theorem 26 in [19], and it is in the setting of
topologies of pointwise convergence on total sets.

Theorem (1.1.26)[1]: Let X be a normed space and let F' be a total norm-closed subspace of
X*. Let H be anorm-bounded o (X, F)-compact subset of X. Let : F — 2 be the multi-valued
map given by
Yu(F) = {x € H:f () = supf |
Then Yy has a selector of the first Baire class from (F,|ll) into (X,pr) if, and only if,
(H,o(X,H")) is fragmented by pg. Moreover, if f: H' — H is such a selector of 1, then
co(H)o(X,F) = cos(f(F’)) Dr- (10)

Proof. The arguments here are similar to the ones in [19, Theorem 26]. First it is easy to check
that ¥y is an usco map from (F, [|Il) into compact subsets of (H, o(X, H’)). If (H, o(X, F’)) is
fragmented by pg, then, by Theorem (1.1.25), 3y has a first Baire class selector f: (F, || ||) —
(X, pr). Conversely assume that such a selector f exists. Let S be a || ||-closed and || ||-separable
subspace of F, and consider the quotient normed space (X/S%,lllls). Recall that the dual of
(X/St, llll5) is isometric with S* and hence S is a norm-closed total subspace of (X/S4, llll5)*.
Let g: X — X /S* be the canonical quotient map and let pg be the norm on X /S* given by

ps(ms(x)) = ps(x): = sup{|g(x)|: g € S N Bx+} (11)
for each x € X. Then mg(H) is a lllig-bounded, o(X/S*,S)-compact subset of X/S*, and

s(f(S)) is an S-boundary for mg(H). Now let fi,: H' = X be a sequence of ||—pp continuous
maps such that for each g € F, f;,(g) = f(g) in pg. For each subset A of F, let

o) =| | fty
k=1

Then f(Al) € ®(A)py and ®(A) is countable whenever A is. If D is a || || dense countable
subset of S, then £(S) = f(D ') ¢ ®(D)pg. Hence f(S) is pp-separable and so 7 (£(S)) is
ps-separable. It follows from Proposition (1.1.24) that

co(ms(f ()))ps = co(ms(H))a(X/S+,S). (12)
This shows in particular that, whenever S is a || ||-separable || ||-closed subspace of H', mg(H) is
ps-separable and hence H is pg-separable. Regarding H as a T,,-compact subset of [—-m, m]FNBx*
with an appropriate m > 0, we see from Theorem (1.1.2) that (H, (X, F)) is fragmented by pr.
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We show that (10) is a consequence of (12). For this it is sufficient to prove that for each
u € X, there is a || ||-separable || ||-closed subspace S of F such that
ps — dist(ms (), co(ms (£ (5)))) = pr — dist(w, co(f (S))) (13)
For ifu € co(H)o (X, F) and if § is chosen as above, then since
s (u) € ms(co(H))a(X/5+,S)
we have, by (12),0 = ps-dist (mg(w),co(s(f(S))) = pg-dist (u,co(f(S))). Hence u €
co(f(S))pr C Co(;)%ﬂ)pp. This shows that the left side of (10) is contained in the right side.

The reverse inclusion is obvious.
To prove (13), let u € X. For each countable subset M of X, let a(M) be a countable
subset of F' N By, such that, for each x € M,
pr(u —x) = sup{|g(u — x)|: g € a(M)}.
Inductively we define a sequence A; € A, C --- of countable subsets of F as follows: let g, be

an arbitrary non-zero element of F' and let A; = {qg, : ¢ € Q}. Assuming that A,, has been
defined, let

Apyq1 = spang (a (co Q(CD(An))) V] An),
where spang(C) (resp. cog(C )) denotes the set of all linear (resp. convex) combinations of

elements of C with rational coefficients. Let S = Up—1 4, Il
Before showing this S satisfies (13), we note that if y € COQ(CD(An)) then pr(u —y) =

sup{lg(u—y)|: g € a(cog(®(A4n)))} < Ps(u—y) Spr(u—y). Hence pp(u—y)=
Ps(u — y). Now by the definition of ®.

Let x € co(f(S)) and & > 0 be arbitrary. Then there is a y € co Q(®,(4,)) for some n
such that ps(x — y) < pr(x —y) < €. Then

ps(ms(w) —ms(x)) =ps(u—x) Zps(u—y)—e=pr(u—y)—¢
> pr(u —x) — 2e = pp — dist(u, co(f(S))) — 2¢

Since x € f(S) and € > 0 are arbitrary, we obtain (13).
Theorem (1.1.27)[1]: Let X be a Banach space, F' a norming subset of X*, and let H be a
bounded o (X, F)-compact subset of X fragmented by the norm of X. Then the Banach space
Y = span(H) || has a projectional generator.
Proof. We first prove the case X = Y. Since H is bounded, (X, H') and 6(X, F' ||) coincide on
H. Hence we may assume that F' is a |||l closed norming subspace. Let 1,: F — 2F be the set-
valued map given by Yy (g) = {x € H: g(x) = supyg} for each g € H. Then by Theorem
(1.1.26), Yy admits a selector f: F — H of the first Baire class from (F, [[II) into (X, llll). Let
{fix} be a sequence of continuous maps (F, |lIl) = (X, llll) such that f;,(g) = f(g) in the norm
for each g € F, and we define the countable-valued map ¢: F' - 2% by ¢ (9) = {f(9): k € N}.
We prove that ¢ is a projectional generator (cf. Definition (1.1.20)). So let B be a Q-linear subset
of F, and let g € @(B)* N B N By-. We must show that g = 0.

Let S =B |lllc F, let mg: X — X/S* be the quotient map and let pg be the norm defined
on X/S+ by (11). Since g € S N By-w*, g defines a pg-continuous linear functional § on X/S*
by the formula g(ms(x)) = g(x) for each x € X. Now by the definition of ¢, f(S) =
f(B" lc ¢(B) Illl. Since g vanishes on ¢(B), it also vanishes on f(S), and hence g vanishes
on s (f(S)). By the remark following the last theorem, (12) is valid for S and hence ng(H) C
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co(ms(f(S"))ps. Therefore by continuity g vanishes on mg(H), i.e. g vanishes on H. Since X is
the norm-closed span of H, g = 0.

co(f(S)) < co c1><U An>

PF

%) — PF %)
C cogq <U d)(An)) = U cog(®(4n))™".

The general case is proved by applying the special case above to the Banach space Y and the
norming subspace Fy for Y. Note that H is a (Y, Hy|y)-compact subset of Y and it is fragmented
by the norm of Y.
Corollary (1.1.28)[1]: Let X be a Banach space, F' a norming subset of X*, H a bounded subset
of X which is o (X, F))-compact and fragmented by the norm of X, and let Y = span(H) Illl. Then
(a) (Y,y(X,F)) is Lindelof.
(b) Y has a PRI
(c) Y has an equivalent LUR norm.
Proof. This is a straightforward consequence of Theorems (1.1.23) and (1.1.27).

Another property of spaces generated by RN-compact sets is the following. For this, we
need one more definition. Let (Z, T) be a topological space and ¢ a metric on Z. Then (Z, 1) is
said to be o-fragmented by o if for each € > 0, Z can be written as Z = U{Z,;: n € N} with each
Z, having the property that, whenever C is a non-empty subset of Z,,, there exists a T-open
subset U of Z such that U N C is non-empty and of g-diameter less than &

Theorem (1.1.29)[1]: Let X be a Banach space, F a norming subset of X*, H a bounded subset
of X which is (X, F)-compact fragmented by the norm of X, and let Y = span(H) Illl. Then
(Y,0(X,F)) is o-fragmented by the norm.

Proof. The proof is analogous to the one given for weakly compactly generated spaces in [15],
[17]. Indeed, W: = co(H)a (X, F) = co(H) llllis 6 (X, F") compact and fragmented by the norm
[7,4.1,5.2 and 5.3]. Lemmas 2.1 and 2.2 of [25] entail that W — W is again o(X, F')-compact

and fragmented by the norm. We now have Y = U,_, n(W — W) I and because F 1s norming,

the norm in Y is (X, F)-lower semicontinuous and Lemma 2.3 in [16] gives us the conclusion.
We have obtained so far in the following:

Theorem (1.1.30)[1]: Let X be a Banach space, F’ a norming subset of X*, H a bounded subset

of X which is a(X, F)-compact, and let Y = span(H) llll. The following statements are

equivalent:

(a) (H,0(X,F")) is fragmented by the norm.
(b) (Y,0(X, F)) is o-fragmented by the norm.
(¢) (H,y(X,H")) is Lindeldf.
(d) (Y,y(X,F")) is Lindeldf.
Theorem (1.1.31)[1]: Let K c [-1,1]° c #°(D) be a T,-compact set. The following
statements are equivalent:
(a) (K ) Tp) is fragmented by the norm.
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(b) (span(K ) I, Tp) is o-fragmented by the norm.

(c) (K,y(D)) is Lindelof.

(d) (span(K) Illl, (L)) is Lindelof.

We study Banach spaces which are Lindelof in the weak topology. Main tools are again the
projectional generators. Beyond Theorem (1.1.33) below, which gives quite a general way of
deciding when a Banach space is weakly Lindelof, here we take advantage of the scope of the
results and the main results in [5] to prove that a Banach space X generated by a weakly Lindelof
subset which is a(X, F)-compact with respect to some norming subspace F € X* is weakly
Lindel6f. We need the following definition. For each set I, let Z(T") be the subspace of £%°(I)
consisting of all u € £°(I") with {y: u(y) # 0} at most countable. A compact Hausdorff space
K is said to be Corson if, for some I', K can be embedded in £(I") as a pointwise compact subset.
Definition (1.1.32)[1]: ([2]). A Banach space X is said to be weakly Lindelof determined (WLD
for short) if there is a bounded one-to-one linear map T: X™* — £ (I"), for some set I', which is
o(X*, X)-pointwise continuous and such that T(X*) < Y (")

It was established in [27] that a Banach space is WLD if, and only if, its dual unit ball
with the weak™ topology is Corson compact. Note that WCG Banach spaces and hence separable
Banach spaces are WLD. It is known that a WLD Banach space is y(By+)-Lindelof ([26]) and
renormable by a LUR norm ([35] and [22]). A Banach space X, or more generally a convex
subset M of X, is said to have property C (after Corson) if each collection of relatively closed
convex subsets of M with empty intersection has a countable subcollection with empty
intersection. If ( M, weak) is Lindelof, then M has property C since closed convex sets in X are
also weak-closed. It is shown in [29] that the Banach space X has the property C if and only if,
whenever A € X* and f € A", there is a countable subset C of A such that f € €6(C)" . This
fact 1s crucial in the proof of the next theorem.

Theorem (1.1.33)[1]: Let X be a Banach space with a projectional generator. If X has property
C, then X is WLD, i.e. (Bx+, weak *) is Corson compact.

Proof. Let ¢: H' — 2% be a projectional generator on X, where F' is a norming subspace for X.
Then X admits a PRI constructed as we have recalled in Theorem (1.1.21). Let {P,: wy < a < u}
be this PRI. Since property C is stable under taking closed subspaces, each P, (X) has property
C and a projectional generator. Now, by a standard induction process on the density character
of the Banach space, we may assume that X admits a PRI {P,: wy < a < u}, with p a limit
ordinal, such that, for each wy < a < u, P,(X) is WLD; that is, there is a one-to-one norm one
operator

T Pi(X*) > £°(T,) with T,(P;(X")) Z (Ty)

which is weak *-pointwise continuous. Assume that {T: wg < a < p} is a disjoint family. Then
we define

=T,V U {Tpe1:wo < a < u}
and T: X* - €% (") by the formulas
IR = Lo, (P5,(H) () ifn €T, =N,
THW) = Tas1(Para(H) =R (D) ify €Tgrq, 00 < @ <.
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Clearly T is bounded linear and weak *-pointwise continuous. We claim that Y'(X*) < Y (T).
To prove it, we will see that the set {a € [wg, ): Py+1(f) — Py (f) # 0} is at most countable
for each f € X™. Assume on the contrary that this is not the case and take f € X™ so that this set
is uncountable. Recall that the family {B,: a < u} is a long sequence of increasing Q linear
subsets of F with P;(X*) = BY for each @ < p. Also for each limit ordinal 8 < p and f € X*,
weak - glimg Py (f) = Pp(f),and B =1d. Let A = {a € [wq, 1): Pay1(f) — By (f) # 0}. Then
A is an uncountable subset of [wg, ) which is well-ordered under the inherited ordering.
Therefore there is an order-isomorphism ¢ from [0, w;) onto an initial segment of A. Let n =
supg([0, w,)) < p. Then Py (f) = weak * —lim1,, Py, (f) and therefore

A%
O RN
y<w,
Since X has property C, there is a sequence y; < ¥, < -+ in [0, w;) such that

W

R ecol | Py

Let & = @(sup;¥;) € A. Then & < n < p. Since for each i, P, (f) € E("f"gyi) c Eé"’*, we have
B/(f) € Eé"’*. It follows that By (f) is a fixed point of F; for all @ = ¢. Hence if ¢ < a <1, then
By (f) = Bz B (f) = B;(f) by the property of PRIL: P, By = Pyin{n, a}. In particular, Pz, (f) =
By (f) = P (f), contradicting § € A. Hence I'(X™) < ¥(I).

To see that 'T is one-to-one, let '(f) =0 for an f € X*. Then Pj (f) =0, and
P,.1(f) =P;(f) =0 for all « € [wy, u). Then by a straightforward (transfinite) induction,
Py(f) = 0 forall @ € [wg, 1), and hence f = weak " limg, Py (f) = 0.

Corollary (1.1.34)[1]: Let X be a Banach space, F' a norming subset of X*, H a bounded subset
of X which is o (X, F)-compact fragmented by the norm of X, and let Y = span(H) Illl. If Y has
property C, then Y is WLD.

As mentioned earlier, a WLD Banach space is weakly Lindelof, but the converse is not
true; cf. [22, p. 514]. In [22, p. 521], Mercourakis and Negrepontis have asked if this converse
is true in dual Banach spaces. The affirmative answer to this question is contained in [26] where
it is shown that if X is an Asplund space then X* is weakly Lindelof if and only if (By+-, weak*)
is Corson compact, i.e. X* is WLD. Recall that Edgar had observed earlier [10] that X is an
Asplund space whenever X* is weakly Lindelof. The next two corollaries are generalizations of
the result in [26] just mentioned. The first one is a special case of the previous corollary.
Corollary (1.1.35)[1]: Let X be an Asplund space, H a subset of X* which is weak*-compact,
and let Y = span(H) |lll. If Y has property C then Y is WLD. In particular, if X is an Asplund
space, then X* is WLD if and only if it has property C.

A combination of most of the results and the main result in [5] finally allows us to prove:
Corollary (1.1.36)[1]: Let X be a Banach space, and let H be a subset of X* which is weak*-
compact and weakly Lindelof. Then the space generated by H,Y = span(H) llll, is WLD. In
particular, Y is weakly Lindelof.
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Proof. By the remark following Theorem (1.1.18), we know that the weak™ closed absolute
convex hull of H, say W, is also weakly Lindel6f. Hence by Corollary E of [4], (W, weak) is
fragmented by the norm. Furthermore, Y = span(W) llll= U,_,nW |l has property C by
Proposition 2 in [29]. Hence by Corollary (1.1.34),Y is WLD, and since a closed subspace of a
WLD Banach space is again WLD ([22]), the corollary follows.

We know from the above that x**|, is y(X*, X)-continuous. This means that for each £ >

0 there is a y(X™, X) open neighborhood U < X™* of the origin such that

|lx**(g)| <& foreachgeUNnZ (14)
Now U is also || -open and therefore U N Z! ||= U N'Y ||II> UY. Therefore the |ll|-continuity of
x™ and (14) imply that |x™(f)| < € for every f € UNY. This means that x** is y(X*, X)-
continuous on Y, which concludes the proof.

As mentioned, we give several examples of Banach spaces generated by an RN-compact
subset. By Theorem (1.1.27), these spaces share all the properties stated in Theorem (1.1.21).
Also, by Corollary (1.1.34), for these spaces being WLD is equivalent to having property C
Example (1.1.37)[1]: Spaces with 1-norming Markushevich basis. Let us recall that a
Markushevich basis, or M-basis, of a Banach space X is a subset {(x;, f;):i € I} of X X X* such
that

(a)span{x,:1 € I} lllI= X.
(b) N;¢; Kernel(f;) = {0}.
(C)f}(xl) = 6ij' l,] €l

We consider the subspace F': = span{f;}, which is a total subspace in X* by condition
(b). If K: = {x;: i € I} U {0} then it is easy to see that K is a o(X, F)-compact set fragmented by
the norm. Indeed, {x;:i € I} is a o (X, F')-discrete set with 0 as its unique limit point. When F
is norming, the M-basis is called a norming M-basis. Therefore any Banach space with a
norming M-basis is generated by an RN-compact subset. The o fragmentability of spaces with
a norming M-basis was first proved in [18]; here, it is a consequence of Theorem (1.1.30).
Example (1.1.38)[1]: Spaces of continuous functions. Let K be a compact space and D a dense
subset of K. If H < C(K) is 7,,(L)-compact, uniformly bounded, fragmented by the supremum
norm and separates the points of K, then C(K) is generated by an N-compact set. Indeed, in this
case the norming subspace of C(K)* is F' = span{d,: x € L) and we observe that for every n =
1,2,..theset H*: = {f; - ... fu: fi EH,i =1, ...,n} is a(C(K), F)-compact and fragmented by
the norm in view of Lemmas 2.1 and 2.2 in [25]. Now, W = U;-;(1/n)H™ U {0} is also
o0(C(K), F) compact and o-fragmented by the norm, hence fragmented [17, Theorem 4.1]. On
the other hand, the Stone-Weierstrass theorem gives us the equality span(W) |lll= C(K) and so
C(K) is generated by a 0 (C(K), F)-compact subset fragmented by the norm.

Example (1.1.39)[1]: Spaces of continuous functions defined on solid compact spaces and on
compact spaces defined through adequate families of sets. Let I be a set and consider the cube
[0,1] with the product topology. Given x € [0,1]” let us write
supp(x) :={i € I:x(i) # 0},
F) :={x €[0,1]): supp(x) is finite }.
We claim that if K < [0,1]! is a compact subset such that K N F(I) is dense in K (i.e. K is a
special type of Valdivia compact space), then C(K) is generated by an RN-compact subset.
Indeed, write D = K N F(I) and let m;: [0,1]7 — [0,1] denote the canonical projection onto the
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i-th coordinate, for each i € I. Without loss of generality we can, and do, assume that for each
[ € I there is x € K such that r; (x) # 0, because otherwise we can remove from the index set
I the element i that is not needed for embedding K in [0,1]’. Observe that {m;:i € I} is T,(D)-
discrete and that each 7,(D) neighborhood of 0 must contain all but at most finitely many
{m;:i € I}; therefore {m;:i € I} U {0} is 7,(D)-compact, || |[,-fragmented and separates the
points of K. We now use Example (1.1.38) to conclude that C(K) is generated by an RN-
compact subset.

A compact space K < [0,1]" is said to be solid if whenever x € K and y € [0,1]! are such
that either y; = x; or y; = 0, forevery i € I, then y € K. Obviously, if K < [0,1]” is solid, then
K NnF(I) is dense in K and therefore C(K) is generated by an RN-compact set in view of our
former reasoning.

A particular situation to which we can apply the above is when we deal with compact
spaces defined through adequate families of sets. Following Talagrand [34], if I is a non-empty
set, a family A of subsets of [ is called adequate if it has the following properties:

(a)If Ae Aand B c A, then B € A.
(b){i} € A foreveryi € I.
(c)If A c I and every finite subset of A belongs to A, then A € A. If A is an adequate family

inl,then K:={y,:A € A}
is a solid compact space. Then C(K) is also generated by an RN-compact subset. Talagrand
produced in [34, Théoreme 4.3] an example of a compact space K defined through an adequate
family of sets that is not Eberlein compact; the corresponding C(K) then does not contain a
T, (K )-compact subset separating the points of K, even though it contains a 7, (I)-compact (for
a certain dense ) € K) |lll,-fragmented subset separating the points of K.

Example (1.1.40)[1]: Spaces of Bochner integrable functions. Let (X, [ll) be a Banach space
and H' € X* a norming subspace. It was stated in [7, Corollary 4.3] that if o (X, F)-separable
compact subsets of X are || ||-separable then o (X, F)-compact (norm-bounded) subsets H of X
are || ||-fragmented. This is indeed a consequence of the equivalence between the first two
statements in Theorem (1.1.2): write D = F' N By« and consider H c [—1,1]?; for A ¢ D)
countable the set H|, © [—1,1]4 is compact and metrizable, therefore separable; then there is a
o (X, F)-compact and separable S € H such that S|, = H|4; the restriction map [—1,1]° —
[—1,1]4 is continuous for the corresponding uniform metrics and therefore H| , is d-separable,
because S is dp-separable (S is || ||-separable).

The above observation is useful in finding more compact spaces "living" in Banach spaces and
fragmented by the norm without being necessarily weakly compact.

Given a probability space (Q, X, u) we will denote by LP (u, X),1 < p < oo, the Banach
space of u-strongly measurable X-valued p-Bochner integrable functions f: {1 — X normed by

1/p
||f||p=<j Ilfllpdu> .
Q

The dual LP(u,X)* of LP(u,X) is a space of weak -measurable functions and the space
L9(u,X*),1 =1/p + 1/q, which can be isometrically identified with a subspace of LP (u, X)*,
is a norming subspace. So o’ = a(LP (u, X), L9 (, X*)) is a Hausdorff topology which is weaker
than the weak topology of LP (u, X); these two topologies coincide if, and only if, X* has the
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RNP [9, IV.1.1]. It was shown in [7, Example E] that every ¢'-separable compact subset of
LP (u, X) is norm-separable. Therefore, every o'-compact subset of LP (i, X) is fragmented by
the norm. Thus we can apply the results to state for instance that if H < LP (u, X) is o’-compact
then the space Y = span(H) llll,, has a PRI. This result is related to the main result of [4], which

asserts the existence of a bounded one-to-one operator from span(H)c' into some ¢y (I") which
is o’-pointwise continuous.
Section (1.2): Asplund Operators:

We are concerned with the study of simultaneously approximating both operators and the

points at which they almost attain their norms by norm attaining operators and the points at
which they attain their norms. We study what in recent literature has been called the Bishop-
Phelps-Bollobas property. This property is defined as:
Definition (1.2.1)[36]: (Acosta, Aron, Garcia and Maestre, [37]). A pair of Banach spaces
(X,Y) is said to have the Bishop-Phelps-Bollobas property (BPBP) if for any € > 0 there are
n(e) > 0 and B(g) > 0 with lim,_,8(t) = 0, such that for all T € S, (xy), if X, € Sx is such
that IT (xo)ll > 1 — 1(g), then there are uy € Sy and S € Sy (x y) satisfying

ISu)ll =1, llxg —upll < B(e)and IT—S lI<e.
The above BPBP was motivated by the following result of Bollobas:

Theorem (1.2.2)[36]: (Bollobas, [41]). Given% >e>0,ifxy € Sy and x* € Sg- are such that

E2

|1 - x*(xO)l < ?)

then there are u, € Sy and y* € S+ such that

Y (uo) = 1,llxo — ol < & + &2 and [lx* — y*|| < .
Bollobas' result is indeed an observation about the classical Bishop-Phelps' theorem, [40], that
"sharpen Bishop-Phelps' theorem and is applied to some problems about the numerical range of
operators." Using Definition (1.2.1), Bollobas' Theorem (1.2.2) can be rephrased by saying that
for every Banach space X the pair (X, R) has BPBP.

[37] described a number of cases of pairs (X,Y) with BPBP. For instance, they proved
that if Y has property (f), see [54], then (X,Y) has BPBP for every Banach space X. Also,
(£1,Y) has BPBP for Y in a large class of Banach spaces that includes the finite dimensional
Banach spaces, uniformly convex Banach spaces, spaces L;(u) for a o-finite measure y and
spaces C(K). Although some particular results can be found in [37] for pairs of the form (¢;,,Y)
(for instance, Y uniformly convex), [37] comment that their methods do not work for pairs of
the form (cy, Y). We devise a method to study the Bishop-Phelps-Bollobas property that in
particular addresses this question when Y = Cy(L), L a locally compact Hausdorff space.

We recall the notions of Asplund space and Asplund operator. We also prove a central
technical result (Lemma (1.2.4)) that will be used to prove our main result Theorem (1.2.5).
Theorem (1.2.5) establishes that if T: X — Cy(L) is an Asplund operator and [|T (xo)[l =l T Il
for some [|xy|| = 1, then there is a norm attaining Asplund operator S: X — Cy(L) and |[uyll = 1
with [[S(ug)ll =l S I=II T |l such that uy = xyand S = T

Three consequences follow:

(A) If T is weakly compact, then S can also be taken being weakly compact (see Corollary

(1.2.6))
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(B) If X is Asplund, then the pair (X, Cy(L)) has the BPBP for all L (see Corollary (1.2.7)).

(C) If L is scattered, then the pair (X, Cy(L)) has the BPBP for all X (see Corollary (1.2.8)).

We note that in Corollary (1.2.6) even the part of the density of norm attaining weakly
compact operators from X to Cy(L) in the family of weakly compact operators W (X, Cy(L))
seems to be new. Corollary (1.2.7) strengthens a result in [47] and Corollary (1.2.8) can be
alternatively proved using a result in [37].

All vector spaces are assumed to be real. By X and Y we always denote Banach spaces. By
and Sy are the closed unit ball and the unit sphere of X, respectively. X™ (resp. X™* ) stands for
the topological dual (resp. bidual) of X. The weak topology is denoted w and w™ is the weak *
topology in the dual. L(X,Y) denotes the spaces of bounded linear operators from X to Y
endowed with its usual norm.

The letters K and L are reserved to denote compact and locally compact Hausdorff spaces
respectively. C(K) (resp. Cy(L)) denotes the space of real valued continuous functions (resp.
continuous functions vanishing at infinity) on K (resp. on L) endowed with the standard sup
norm, that is simply denoted by || f Il: = sup{|f (s)|:s € K}. As usual, given s € L we denote
by 85: Cy(L) — R the Dirac measure at s given by 8,(f) = f(s), f € Cy(L).

The Banach space X is called an Asplund space if, whenever f is a convex continuous
function defined on an open convex subset U of X, the set of all points of U where f is Fréchet
differentiable is a dense Gg-subset of U. This definition is due to Asplund [39] under the name
strong differentiability space. Asplund spaces have been used profusely since they were
introduced. The versatility of this concept is in part explained by its multiple characterizations
via topology or measure theory, as for instance in the following:

Theorem (1.2.3)[36]: Let X be a Banach space. Then the following conditions are equivalent:

(1) X 1s an Asplund space;

(ii) every w*-compact subset of (X*,w*) is fragmented by the norm;

(111) each separable subspace of X has separable dual;

(iv) X* has the Radon-Nikodym property.
For the notion of Radon-Nikodym property see [42],[44]. The equivalence (ii1) © (iv) is due to
Stegall [56], (1) & (i1) = (ii1) can be found by Namioka and Phelps [50] and, (ii1) = (i1) is due
again to Stegall [57]. Recall that a subset C of (X*,w™) is said to be fragmented by the norm if
for each non-empty subset A of C and for each € > 0 there exists a non-empty w*-open subset
UofX*suchthatU N A # @ and |I-|| — diam(U N A) < &, [49]. We note that if C is w*-compact
convex, then C is fragmented by the norm if, and only if, C has the Radon-Nikodym property,
see [42].

Anoperator T € L(X,Y) is said to be an Asplund operator if it factors through an Asplund
space, i.e., there are an Asplund space Z and operators T; € L(X,Z),T, € L(Z,Y) suchthat T =
T, o Ty, see [46],[58]. Note that every weakly compact operator T € W(X,Y) factors through a
reflexive Banach space, see [43], and hence T is an Asplund operator.

Lemma (1.2.4) isolates the technicalities that we need to prove our main result, Theorem
(1.2.5). In the proof of the lemma, we use that Theorem (1.2.2) easily yields the following result.

Lemma (1.2.4)[36]: Let T: X — Y be an Asplund operator with || T [[= 1, let % > ¢ >0 and
choose x, € Sy such that
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2

£
IT )l > 1 — 7

For any given 1 -norming set B C By~ if we write M: = T*(B) then there are:
(a) a w™-open set U € X* with U N M # @ and (b) points y* € Sy+ and u, € Sy with
|y*(ug)| = 1 such that
lxo — uoll < €and |Iz* — y*|| < 3¢ forevery z* € U N M.
Proof. Observe first that if T is an Asplund operator, then its adjoint 7™ sends the unit ball of Y~
into a w*-compact subset of (X*,w") that is norm fragmented. Indeed, if T =T, T; is a

factorization through the Asplund space Z for T, then its adjoint T* factors through Z*

v ik X+

Z*

Since T, is w* — w™ continuous, T, (By+) is a w*-compact subset of Z*, and we can now
appeal to Theorem (1.2.3) to conclude that T; (By+)  (Z*,w™) is fragmented by the norm of
Z*. On the other hand, T;: Z* = X™ is norm-to-norm and w* — w™ continuous and, therefore it
sends the fragmented w*-compact set T, (By+) < (Z*,w™) onto the w*-compact set T*(By+) C
(X*,w”) that is fragmented by the norm of X*, see [49], and our observation is proved.
(Alternatively, the observation can be proved using [58] and [42].)

Now we really start the proof of the lemma. Use that B € By~ is 1 -norming and pick by €
B such that

2

by(T(xe))| > 1 - %

1T (bg) (x0)| =
2
Defining U; = {x* EX":|x"(xp)| >1— %}, we have that
Since T*(By~) is fragmented and U; N M is non-empty, there exists a w*-open set U, € X* such
that (U; N M) N U, # @ and

Il — diam((U; N M) N U,) < e. (15)

Let U:= U; N U, and fix x5 € U N M. We have
2

€
12 lIxoll = lxg(xp)| > 1 ——.

4
If we normalize we still have
|2cg ()| g?
> —— > |xs(xp)| =1 ——. 16
"xoll o\A0 4 ( )
Then we obtain y* € Sy« and u, € Sy with |y*(ugy)| = 1 such that
x*
lxo — uoll < €and |—— — y*|| < €. (17)
lIxl
Let z* € U N M be an arbitrary element. Then,
Iz =yl <l gl e — ol 4 |y
z -y <lz"—Xx Xo — 7 —— Y
° °lixgl lIxl
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(15),(17)
< e+ lxl

(16)
+ e < 3¢

T
[l l

and the proof'is over.

Theorem (1.2.5)[36]: Let T: X = Cy(L) be an Asplund operator with || T |[= 1. Suppose that

1
5> E> 0 and x, € Sy are such that
2

€
IT el > 1 — 7

Then there are u, € Sy and an Asplund operator S € Sy (x ¢, (1)) satistying
1S(udll = 1,1Ixg —upll < eand I T =S II< 3e.

Proof. The natural embedding é: L — Cy(L)* given by &(s): = §g, for s € L, is continuous for
the topology of L and the w*-topology in Cy(L)*. Hence the composition ¢p:=T* o &: L - X~
is continuous for the w* topology in X*.

Apply now Lemma (1.2.4) for Y: = Co(L), B: = {85: s € L} < Bc,(z,)+, our given operator
T, and €. We produce the w*-open set U and the functional y* € Sy~ satisfying properties (a)
and (b) in the aforesaid lemma. Note that we have ¢p(L) = M. Since U N M # @ we can pick
So € L such that ¢(sy) € U. The w*-continuity of ¢ ensures that the set W = {s € L: ¢p(s) €
U} is an open neighborhood of s,. By Urysohn's lemma, [53], we can find a continuous function
f:L — [0,1] with compact support, satisfying:

f(sp) = 1 and supp(f) c W. (18)
Define now the linear operator S: X — Cy(L) by the formula
S@)(s) =f(s) -y (x) + (A = f(s)) - T(x)(s). (19)

It is easily checked that S is well-defined and that || S < 1. On the other hand, 1 = |y*(uy)| =
1S (ug)(sp)| < IS(up)|l < 1 and therefore S attains the norm at the point u, € Sy for which we
had llug — x,ll < €.

Now, bearing in mind (18), (19), Lemma (1.2.4) and the definition of W we conclude that

IT—-S1I = squ | Tx — Sx |I= squ suLpf(S)lT(x)(s) -y (x)]
= sup supf(s)|¢(s)(x) — y*(x)| < supsup |p(s)(x) = y"(x)]
XEBx SEW SEW x€EBy
= sgwgllqb(s) —y*|l < 3e.

To finish we prove that S is also an Asplund operator. This is based on the fact that the
family of Asplund operators between Banach spaces is an operator ideal, see [58]. Observe that
S appears as the sum of a rank one operator and the operator = (1 — )T (x); the latter is the
composition of a bounded operator from Cy(L) into itself with T. Therefore S is an Asplund
operator and the proof is over.

Recall that an operator ideal J is a way of assigning to each pair of Banach spaces (X,Y)
a linear subspace J(X,Y) c L(X,Y) that contains all finite rank operators from X to Y and
satisfies the following property: T, o T o T; € J(Z,V) whenever T € J(X,Y), T; € L(Z,X), and
T, € L(Y,V), see [45],[52].

If we denote by A the ideal of Asplund operators between Banach spaces, the above
theorem applies as well to any sub-ideal 7 C A.
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Corollary (1.2.6)[36]: Let 7 © A be an operator ideal. Let T € 7(X, Co(L)) with || T lI= 1, % >

€ > 0, and x, € Sy be such that
2

€
IT el > 1 — 7

Then there are uy € Sy and S € J(X, Co(L)) with || S |I= 1 satisfying
1S(udll = 1,1Ixg —upll < eand I T =S II< 3e.
We should stress that because W C A, see [43], the above corollary applies in particular to the
ideals of finite rank operators F, compact operators K, p-summing operators II,, and of course
to the weakly compact operators W themselves. Results in this vein can be found for weakly
compact operators but, with spaces of continuous functions as domain spaces and only for the
so-called Bishop-Phelps property: Schachermayer proved, see [55], that any T € W(C(K), X)
can be approximated by norm attaining operators. This result was generalized later for operators
T € W(Cy(L),X), see [38]). With spaces of continuous functions in the range, Johnson and
Wolfe, see [47], proved that any T € K (X,C(K)) can be approximated by finite rank norm
attaining operators. Note then, that our Corollary (1.2.6) adds several new versions of the vector-
valued Bishop-Phelps theorem. Moreover, these cases provide the Bollobas part of
approximation of points at which the norm is attained.
Standard € — § tricks suffice to prove that for a pair of Banach spaces (X, Y) the following
are equivalent:
(1) (X,Y) has BPBP according to Definition (1.2.1);
(i1) there are functions 71: (0, +o) — (0,1),8,y:(0,+o) = (0, +00) with lim,_,B(t) =
lim;_oy(t) = 0, such that given € > 0, for all T € S;(xy), if xo € Sy is such that
IT (xo)ll > 1 —n(e), then there exist a point uy € Sy and S € Sy, y) satisfying

ISl = 1, llxg — upll < B(e) and I T — S < y(e).
Once again, in (ii) above we can always take [ (t) = y(t) = t, but of course changing n if
needed!. Consequently we arrive to the following straightforward consequence of Theorem
(1.2.5):
Corollary (1.2.7)[36]: For any Asplund space X and any locally compact Hausdorff topological
space L the pair (X, Co(L)) has the BPBP.

Note that this corollary extends and strengthens Theorem 2 in [47]; we stress also that we
can take as X any cq(I") ( I" arbitrary set), or more generally any C,(S) where S is a scattered
locally compact Hausdorff space (see, [51] for scattered or dispersed spaces). Indeed for a
locally compact space S, the space Cy(S) is Asplund if, and only if, S is scattered. This can be
proved in the following way:

(a) It is known that for K compact, C(K) is Asplund if, and only if, K is scattered, combine

[51] with Theorem (1.2.3) or alternatively see [50].

(b)It 1s easy to check that if S is locally compact, then S is scattered if, and only if] its

Alexandroff compactification S U {oo} is scattered,

(c) Use now that Asplundness is a three space property, see ([50], Theorems 11,12 and 14),
and conclude that C,(S) is Asplund if, and only, if C (S U {o0}) is Asplund.
(d) Summarizing, Cy(S) is Asplund if, and only if, S is scattered.

Note that whereas the hypothesis of X being Asplund in the above corollary is an

isomorphic property, for the range space we have to use the sup norm in Cy(L). Indeed,
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Lindenstrauss [48] established that if (cg, lI-ll) is a strictly convex renorming of ¢, then id: ¢, —
(co, lIIl) cannot be approximated by norm attaining operators. Notice also, that Corollary (1.2.7)
may fail when X is not Asplund: Schachermayer [55] gave an example of an operator T €
L(L*[0,1],€[0,1]) that cannot be approximated by norm attaining operators.

With our comments above together with Theorem (1.2.5) we have:

Corollary (1.2.8)[36]: For any Banach space X and any scattered locally compact Hausdorff
topological space L the pair (X, Cy(L)) has the BPBP.

An alternative proof for this corollary can be obtained using the fact that for such L the
space Y = Cy(L) has property (f3), see [54], and for spaces Y with property (f), every pair (X,Y)
has BPBP, see [37].

We point out that Lindenstrauss proved in [48] that every operator T € L(X,Y) can be
approximated by operators S € L(X,Y) such that $** € L(X**,Y*") attains the norm on By+. In
[37] it is established that the counterpart of the above Lindenstrauss' result is not longer valid
for the corresponding natural Bishop-Phelps-Bollobas with bi-adjoints operators. The example
again uses ¢, as a domain space. Replacing Y** by C(By+, w*), we state our last result.

Corollary (1.2.9)[36]: Let T: X — Y be an Asplund operator with || T [I= 1, %> >0 and

Xy € Sy be such that ,

b5
IT (xp)ll > 1 - R
Then there are u, € Sy and an Asplund operator S € S L(X c(8 )) satisfying
’ Y*

ISl = 1, llxg —upll < eand [[ioT —S |I< 3¢,
where i:Y & C(By-) is the natural embedding.
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Chapter 2
The Bishop-Phelps-Bollobas Property
We provide two constructive versions of the classical Bishop-Phelps-Bollobas theorem
for £,(C). We study the Bishop-Phelps-Bollobas property for numerical radius of the Banach
space of Lebesgue integrable functions over the real line. We show that the pair (Cy(L),Y) will
satisfy the Bishop-Phelps-Bollobas property for operators for every Hausdorff locally compact
space L and any C-uniformly convex space.

Section (2.1): Numerical Radius in £,(C):

The Bishop-Phelps theorem states that norm attaining functionals on a Banach space X
are dense in its dual space X*. In 1970, B. Bollobas extended this result in a quantitative way in
order to work on problems related to the numerical range of an operator [68]. One of the versions
of his extension is presented below:

Theorem (2.1.1)[59]: Let X be a Banach space. Given € > 0, if x € X, x* € X* with || x ||=

2
lx*l =1 and x*(x) =1 — %, then there exist elements x, € X and x5 € X™ such that ||x| =

lIxgll = x5(x0) =1

lx — xoll < eand [lx* —xjll < ¢
However, the known proofs of this fact have an existence nature — they are based on Hahn-
Banach extension theorem, the FEkeland wvariational principle or Brendsted-Rockafellar
principle. We construct, as a necessary tool for our main results, explicit expressions of the
approximating pair (x,, xy3) when X = £,(C) — see Theorem (2.1.6) and Theorem (2.1.8).

Paralleling the research of norm attaining operators initiated by Lindenstrauss in [74], B.
Sims raised the question of the norm denseness of the set of numerical radius attaining operators
— see [76]. Partial positive results have been proved. We emphasize for their importance the
results of M. Acosta [62], where a systematic study of the problem was initiated, the renorming
result in [63], and joint findings of this with R. Paya [64, 65]. Prior to them, I. Berg and B. Sims
in [69] gave a positive answer for uniformly convex spaces and C. S. Cardassi obtained positive
answers for £, cy, C(K), Li(u), and uniformly smooth spaces [70, 71, 72].

Using a renorming of ¢y, R. Paya provided an example of a Banach space X such that the
set of numerical radius attaining operators on X is not norm dense, answering in the negative
Sims' question-see [75]. M. Acosta, F. Aguirre, and R. Paya in [6]1] gave another
counterexample: X = ¢, @, G, where G is the Gowers space.

M. Acosta et al. studied in [60] a new property, called the Bishop-Phelps-Bollobas
property for operators, BPBp for short. A pair of Banach spaces (X,Y) has the BPBp if a
"Bishop-Phelps-Bollobas" type theorem can be proved for the set of operators from X to Y. This
property implies, in particular, that the norm attaining operators from X to Y are dense in the
whole space of continuous linear operators £(X, Y). However, as shown in [60], the converse is
not true. Consequently, the BPB property is more than a quantitative tool for studying the density
of norm attaining operators.

We investigate here an analogue of the Bishop-Phelps-Bollobas property for operators
but in relation with numerical radius attaining operators. We call it the Bishop-Phelps-Bollobas
property for numerical radius, BPBp-v for short. The relation between norm attaining and
numerical radius attaining operators is far from being clear, although the existence of an
interconnection is evident. Accordingly, We define this new property -see Definition (2.1.2)
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below- and to show that €4 (C) and cy(C) satisfy it -see Theorem (2.1.9) and Theorem (2.1.12).
This brings an extension as well as a quantitative version of C. S. Cardassi's results in [71].

Observe that the counterexamples provided in [61] and [75] imply, in particular, that there
exist Banach spaces failing the Bishop-Phelps-Bollobas property for numerical radius.

Given a Banach space (X, II-ll), we denote as usual by Sy and By, respectively, the unit
sphere and the unit ball of X. By X* we represent its dual, endowed with its standard norm
llx*Il = supyeg, {1x*(x)[} and by I1(X) the set

MX) = {(x,x") € Sy X Sy-:x"(x) = 1}.
Given x € Sy and x™ € Sy-, we set
m(x*):={x € Sy:x"(x) = 1}.
By £(X) we mean the Banach space of all linear and continuous operators from X into X
endowed with its natural norm || T ll= supyeg, {ll Tx II}. For a given T € £(X), its numerical
radius v(T) is defined by
v(T) =s {[x*(Tx)]: (x,x*) € I(X)}.
It is well known that the numerical radius of a Banach space X is a continuous seminorm on X
which is, in fact, an equivalent norm when X is complex. In general, there exists a constant
n(X), called the numerical index of X, such that
nX)ITI<Sv(T) <ITI,forall T € £(X).
The interest is in spaces of numerical index 1,n(X) = 1, where the norm and the numerical
radius coincide. For background in numerical radius see [66, 67] and in numerical index see
[73].

We say that T € £(X) attains its numerical radius if there exists (x, x*) € II(X) such that
|x*(Tx)| = v(T). The set of numerical radius attaining operators will be denoted by NRA(X) <
2(X).

Definition (2.1.2)[59]: (BPBp-v). A Banach space X is said to have the Bishop-PhelpsBollobas
property for numerical radius if for every 0 < € < 1, there exists § > 0 such that for a given
T € &(X) withv(T) = 1 and a pair (x, x*) € I1(X) satisfying |[x*(Tx)| = 1 — §, there exist S €
L£(X) with v(S) = 1, and a pair (y,y*) € II(X) such that

V(T =S)<egllx—yl<elx"—y*ll < eand [y*(Sy)| = 1. (1)
Observe that if X is a Banach space with n(X) = 1, then the seminorm v(-) can be replaced by
II-1l in the definition above. Note that all the spaces studied have numerical index 1.

The arg(-) stands for the function which sends a non zero complex number z to the unique
arg(z) € [0,2m) such that z = |z|e?8®)*, For convenience we extend the function to C by
writing arg(0) = 0. Let Re(z) and Im(z) be, respectively, the real and imaginary part of the
complex number z € C.

The spaces ¢4, ¥, and ¢, stand respectively for £;(C), £, (C), and cy(C). The standard
basis of #; is denoted by {e,, },,en, and its biorthogonal functionals by {e;, },,en. Given a sequence
¢ = (E j)jeN € CN and a complex function f:C — C we write f(§) meaning the sequence

(f (E ])) " The following sets will be of help in the formulation of the results and proofs.
jE€
Given x = (xj)jeN €Ly, = ((pj)jeN € ¥, we define

Nxp) = U € Nigjx; = |x5]}, (2)
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supp(x) = {j € N: |x]| * 0}.

For r > 0 we consider

Ay(r) ={jeN|g;|=1-7}, (3)

?(x,(p)(r) = {j € supp(x): Re(fpjxj) > (1- r)|xj|}. 4)
Observe that P (1) © A, (r) and that if x; = 0 for all j € N-we describe this situation
saying that x is positive- then
?(x,(p)(r) = {j € supp(x): Re(fpj) > (1- r)}.

For a given set I', a subset A c I' and K € {RR, C}, we denote by 1, the characteristic function of
A, that is, the element in KT such that (1), = 1ify € A and (1), = 0 otherwise.

We present two constructive versions of Theorem (2.1.1), which are the main tools in the
proofs of Theorem (2.1.9) and Theorem (2.1.15).
Lemma (2.1.3)[59]: Let (x, ) € Sp, X Sp_ . Then x € my(¢) if and only if N, ) = N.

Proof. Given a pair (x,9) € Sy X S, satisfying Ny o) = N, one can compute ¢(x) =

(2) C .
DjeNPjXj = ZjeN|xj| =|l x l= 1, which implies that (x, ¢) € I1(¢;)
Conversely, let us assume that (x, @) € I1(#;) then,

JEN JEN JEN
which implies that Re(fpjxj) = |(pjxj| = |x]| for j € N. Therefore, p;x; = |x]| foreveryj € N,
which finishes the proof.

Lemma (2.1.3) provides the essential insight into the properties of I1(#;) that we need for
the proofs of Theorem (2.1.6) and Theorem (2.1.8). A glance at Lemma (2.1.3) gives the
following easy result regarding the norm attaining functionals on €, NA(¢,).

Corollary (2.1.4)[59]: NA(#;) = {p € £4:3In € N with |@,| =Il ¢ II}.

The following lemma is an adaptation of [60, Lemma 3.3].

Lemma (2.1.5)[59]: Let (x,¢) € B, X B, and 0 <4 <1 such that Re(p(x)) =1 - 6.

Then, for every § < r < 1 we have ||Re(earg("’)ix) : ﬂ?(x(p)(r)" >1-—(6/r).
Proof. By assumption, we have that

1—36 <Re(px)) = Z Re(g;x;) = Z |<pj|Re(earg("’f)ixj

jEN JjEN
< Z Re(earg("’f)ixj) +(1-7) Z |%|
Py NP (4,0 (1)
<r Z IRe(e2"8(@D)ix )| + (1 — 1),
Pxe)m
which implies that
[Re(es@ix)ip, ol = D [Re(e®e@iz)| = 1 (5/1),
JEP (x,0) (1)

as we wanted to show.
Observe that the previous lemma implies, in particular, that
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e gy = 1= /).

We present next the two constructive versions of the Bishop-Phelps-Bollobas theorem.
3

Theorem (2.1.6)[59]: Given (x, ¢) € By, X By and 0 < & < 1 such that Re(¢(x)) = 1 - %.

Then, there exists (xg, @o) € I1(¥;) such that |lx — x,ll < &, llo — @ll < &. Moreover, we can
take

-1
xo = "x ’ ﬂ?(x,(p)(gz/z)" "X ﬂ?(x,(p)(gz/z)' (5)
Proof. Set P: = Py (£2/2)-see (4). Applying Lemma (2.1.5) with § = €2/2 and r = ¢ gives
that
M:=|lx-1pll = 1— (g/2). (6)
Let us define _
Po: =@ - Iy\p + e 28 1, € Sy (7)
and
xO:=M_1X']1P ESfl. (8)

On one hand, we can compute

® -1 -1
lx = xoll = llx =M~ x-1pll = (M7 = Dllx - Lpll + [lx - Typ|

llxll<1 (6)
(1—M)+||x Inwel < 2-2M < ¢

and, since the support of x; is included in P-this is a consequence of (8), we deduce that

®o(xo) = Z (90)j(x0) 2 Z arg(xl)l(x )j © Z |(x0) | = llxoll = 1,

jEP jEP JEP
which is equivalently expressed as (X, @) € I(£4).
On the other hand, using that

|z— 1| < /2(1 — Re(2)) for every z € C such that |z| < 1, 9

we deduce

(7) (7)
lo — @oll = s_lelg{lfp,- — (@o);|} = sup{lfp — emare(x;)i|}
]

= sup{|earg(xf)i<pj — 1|} S sup {\/2 — 2Re(earg(xf)i<pj)}
jep jep
<J2-2(1-¢%2/2)=¢

which finishes the proof.
An immediate consequence of Theorem (2.1.6) is the following version of the Bishop-
Phelps-Bollobas theorem for £, (C).

Corollary (2.1.7)[59]: Let 0 < ¢ < 1 and (x, ¢) € By, X B, suchthat [p(x)| =1 — %. Then,
there exists (xq, 9o) € Sp, X Sp, such that [lx — xoll < &, lo — @oll < & and |@q(xp)| = 1.
Proof. Apply Theorem (2.1.6) to the pair (e'arg(‘p(x))ix, (p) obtaining (z,, ¢,) belonging to
M(#;) such that [|e~28@Eixy — z || < e and |l@ — @,ll < . Therefore, if we set xp:=
e8P (M)iz  the pair (xo, o) satisfies the conclusions of the corollary.

Given a pair (x,¢) and 0 < ¢ < 1, Theorem (2.1.6) ensures the existence of a pair
(xg, @o)-defined by (8) and (7)satisfying the conclusions of the Bishop-Phelps-Bollobas
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theorem. However, ¢, depends on x, in fact, on arg(x). In order to prove Theorem (2.1.9) we
will need a functional ¢, depending only on the given € and ¢. So, we present the following

result.
3

Theorem (2.1.8)[59]: Let (x, p) € By, X B;_ and 0 < & < 1 be such that Re(¢(x)) =1 — 5

Then there exists (xg, @) € I1(£1) such that ||[x — x|l < &, [l9 — @ll < . Moreover, the
functional ¢, can be defined as

Po = @ - I\, (e2/20) T g8l L4, (e2/20)- (10)
Proof. Let us consider the isometry S: £; — £, defined by

(ej*,Sy) = earg("’f)iyj, fory € £, andj € N. (11)
Set ¥ =Sx and @ = @ oS~ L. Then, it is clear that the pair (¥, @) is in B, X By, that

3
Re(p(X)) =1 - % and that ¢ = (|(p i |)] is positive. Denote by A and P respectively the sets

A (r) and Pz ) (r)-see definitions (3) and (4), where r: = — Let us define

(ﬁ: (p HN\A + ]1A € Sfoo (12)
and

Ri= M 1Re(®) -1, € Se, (13)

where M: = ||[Re(%) - 1p|l. Applying Lemma (2.1.5) with § = £3/60 and r, gives that M > 1 —
g. In particular, this means that P, and thus A, are non-empty.

We can compute that
(12) B ~ (12
Ig—ol= Sup{|(Pj_(pj|} = sur>{|<ﬂ, —1[}
(3)
= sup{(l — (p])} <r<g (14)

and, since by (4) and (13) the support of X is P © A-which, in particular, implies that X; > 0 for

J € P, we deduce that
= E Qjx; = E X = E |x]| =1, (15)

jEP jEP jEP
which is equivalently written as (X, $) € I1(£,).
In order to show that || X — X ||< &, let us observe first that

1% - 1pll = Z |%| = Z |Re(%)| =M =1 —g, (16)

jepP jepP
from which
U € &) B _ - - - _ -
I =% II'= [I¥ =M 'Re(X) - 1pll = |X - Iy\p || + (X = M~ Re(%)) - 1pl
(16) ¢
< 3 + [[( — M~'Re(%)) - 1p]l. (17)

We need a bit more care to estimate the last term in (17). From the very definition of P, we
know that for every j € P it holds

%] < (1 —1)7'g;Re(%)). (18)
Therefore,
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I —Re@) 1ol = > |5 —Re(%)] = ) [m(%)]

jep jep
= Z \/|fj|2 —Re(%)’
jep
(18)
< ) [Re(®)NA-n7 -1
jep
62
=20
<NzlJA-r"2-1 < = (19)

3)
which implies that
1% = M~'Re(®)) - 1pll < I(X —Re(®)) - Lpll + (1 — M~ HRe(%) - Lpll

(19) ¢
=3t (M~' = DIRe(X) - 1pll
€ 2¢&
=§+(1—M)S?. (20)
Putting together (17) and (20), one obtains
g
1% -2l 5 +1(&-M 7 Re(®) -l < ¢, (21
which finishes the core of the proof.
Now, we define
Xo:=S"1% and @y =S*(P)=Po S, (22)

which by (15) gives that ¢,(x,) = @(X) = 1. Since S and S* are isometries, we deduce from
(14), (21), (22) and the definition of X and @ that

Ix = xoll < & 1l — @oll < e.
Therefore, (xq, @) is the pair in I1(#;) we were looking for.
Bearing in mind (22), one computes

(22) _ (11) \: N
(90); = 0o()) = 9(S¢)) = 9(e™e0)ie)) = eel@)ig,
which together with (12) implies that ¢o = @ - Ty 4 + e3'8(#)t . 1, Finally, noting that A =
Ay (r) = Ay(r), the validity of (10) has been shown.
As a consequence of Theorem (2.1.6) and Theorem (2.1.8) we show that £, has the

Bishop-Phelps-Bollobas property for numerical radius.
Theorem (2.1.9)[59]: Let T € Sg(p,),0 < e <1 and (x, ) € I1(£;) such that p(Tx) = 1 —

(£/9)°/2. Then there exist T € Se(e,) and (xg, @o) € I1(£1) such that
IT —Toll < & llx — x5l < €1l — @oll < €and @y(Tyxy) = 1. (23)
Proof. First of all, fix u:=/€3/240. Using a suitable isometry, we can assume that x is
positive. In particular, by Lemma (2.1.3) and the definition of Ny , in (2), we can assume that
@; =1 for j € supp(x). Since u®/4 = (¢/9)%?, Theorem (2.1.6) can be applied to the pair
(x,T"@) € By, X By, and p instead of & giving xo € my(¢) such that [|x —xll S pu < e.
Moreover, by (5) we know that
xo = llx - 1pll ™ - x - 1p, (24)
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where the non-empty set P is defined by

P:= P (U?/2) = {j € supp(x):Re (T*0(g;) ) = 1 — pu?/2}. (25)
In particular, x is positive.
3

Since p?/2 = (82 ? , for each j € P we can apply Theorem (2.1.8) to the pair

<e—arg(<ﬁ(Tej))iTej, (p) and €/2 to find (zj, (po) € I1(#¢,) such that
ITe; — ajzi|l < €/2, llp — @oll < /2

and I1; (@) < I1; (o), where a; = earg(‘p(Tef))i. Observe that ¢, can be chosen independently
on j € P and by (10) explicitly written as

Po = @ - Ina,e2/80) T € arg(@)t . L4, (e2/80)- (26)
Let us define T, as the unique operator in £(£;) such that Toe; = Te; for i ¢ P and Tpe; = z;
for j € P. Equivalently,

Tox = Typ\p - Tx + Z e; (x)z;, forx € £;. (27)

JjEP
It is clear from (27) that
IToll = sup{lIToe,ll} = max {sup{"Tej"}, sup{||zj||} = 1.
jepP jepr

neN
Given j € P, the identity (25) ensures that Re ((p (Tej)) > 1 — p?/2. Using again the general

fact (9), we deduce that |aj — 1| <u<seg/2
Therefore,

neN

IT —Toll = sup{liTe, — Toenll} = sup{||Te; — z}
jep
< sup{||Te; — a;z|} + sup{lla;z; — z|}
JEP JEP

<4 sup{|a; — 1|} < e.
2 jep

Since x, € 11 (¢) and 7, (@) < m;(¢y), we deduce that (x,, @,) belongs to I1(£;). It remains
to show that ¢, (Tyx,) = 1 to prove the validity of (23). But, since X, is positive, we obtain that

©o(Toxo) 2 Z (%0)j00(z) + Z (x0)po(Te;)

JEP JE&P

(24)

= )y =) |Gl = Il = 1,
jep jep

and the proof'is over.

Corollary (2.1.10)[59]: The Banach space ¢; has the Bishop-Phelps-Bollobas property for

numerical radius.

Proof. Let us consider T € (#;) with v(T) =1 and 0 < € < 1. Let us take a pair (x, @) €
9 9

[1(#,) such that |@(Tx)| =1 — (¢/9)2. In fact, we can assume that @ (Tx) =1 — (g/9)z;
otherwise, we proceed with T = e =28 (T¥DiT Then Theorem (2.1.9) gives the existence of an
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operator Ty € Sg(p,) and a pair (xo, @) € [1(£1) that satisfy conditions in (23), which are
precisely the requirements (1) in Definition (2.1.2).
Corollary (2.1.11)[59]: ([71]). The set NRA(#,) is dense in £(¢;).

Theorem (2.1.9) allows us to show that c, has the Bishop-Phelps-Bollobas property for
numerical radius as well. Indeed, we rely on the fact that our constructions in £, can be dualized.
Theorem (2.1.12)[59]: Let T € Sg(c,), 0 < € <1 and (x, ¢) € [1(cy) such that |p(Tx)| = 1 —
(£/9)°/2. Then there exist S € St(cy) and (xq, @) € I(cy), such that

IT=S1I<é&llx —xll < &Ml — @oll < eand |@(Sxe)| = 1.

Throughout this proof we identify the elements in ¢, with their image in €, through the

natural embedding ¢, = €. The adjoint operator of T, T™*: #; — ¥ satisfies

x(T*" Q)| = IT*(@) ()] = lo(Tx)| = 1 = (/9)”/%.
Without loss of generality, we can assume that x(T*¢@) = 1 — (£/9)%/2. Otherwise, employing
techniques from the proof of Corollary (2.1.10), define the operator T = e~ arg(x(T"))iT+ and
proceed with the proof for x(T @) = |x(T*@)|.
By Theorem (2.1.9), there exists Ty € £(£4), IToll = 1 and (@, x¢) € M(#;) such that

IT* —Toll <& llo —@oll <& llx —x0ll < ¢

and x,(Ty,) = 1.

We assert that (x,, @) is the pair we are looking for. To show this, we will reexamine
the proof of Theorem (2.1.9) to establish how x, ¢, and T, are defined. Indeed, from (25), (24),
(26) and (27) we have respectively

P =P(,rx(e*/480),

9o =g 1pl7" @ 1p,
Xo =% Tya,e2/s0) T €89 - 1y (c2/50),
Tox =Tywp -Tx+ Z e; (x)z;, for x € ¢4, (28)
jepP

where {7}, © (o).
Note that A, (¢2/80) = {j € N:|x;| = 1 — £2/80} and that x € c,. Thus, A, (%/80) is
finite which, by (28), implies that x, € c.
We shall show that T}, is an adjoint operator and thus that there exists S € £(c,) such that
§* =Ty. It will be enough to show that Tg |, < co. Set t;; = (ei, T(ej)) fori,j € N.Fixi € N,
then for j € N
. ti ifj &P,
(Ej,To (ei)) = (Zj)l. lf] cp
Since x € ¢, T x belongs to ¢y, which implies that P is finite. Accordingly, only finitely many
terms of the form (ej,Ta‘ (el-)) differ from the corresponding t;;. On the other hand, since T
belongs to £(cy), it holds that lim; |tji| = 0. Therefore, we deduce that |(ej, Ty (ei))| — 0 when
Jj — oo. This implies that Tge; € cq and, since i € N is arbitrarily chosen, we deduce that Tg |,
Co-
Hence we obtain the operator S = Tg |, € £(co) and the pair (xo, 9o) € I1(c,) satisfying:
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Po(Sx0) = S"Po(x0) = x0(S7Pg) = x0(Topo) =1,
and
IS=TI=UE =T N=15" =T =Ty =TIl < e,
which finishes the proof.

Theorem (2.1.12) implies the following two corollaries.

Corollary (2.1.13)[59]: The Banach space ¢, has the Bishop-Phelps-Bollobas property for
numerical radius.
Corollary (2.1.14)[59]: ([71]). The set NRA(cy) is dense in £(cg).

All the results that have been presented were stated and proved for the Banach spaces
£1(C) or ¢y(C). However, a glance at their proofs suffices to convince oneself of their validity
for £;(R) and cy(R)-shorter proofs and better estimates can be obtained in this case. More
generally, given a non-empty set I' and K € {R, C}, these results are, after suitable adjustments,
still valid for ¢, (I, K) and ¢y (I, K). The spaces #, (I, K) and ¢, (T, K) are, respectively, the €;-
sum and the cy-sum of ' copies of the field K. Note that in particular £; (N, K) = £, (K).

The Banach space ¢y (I, K) is a predual of ¢4 (T, K). Observe that both spaces ¢y (T, K)
and 44 (T, K) have numerical index 1 . Previous considerations imply that both of them also have
the BPB property for numerical radius. The w™ topology of £, (I, K) stands here for the topology
induced on ¢4 (T, K) by pointwise convergence on elements of ¢, (T, K).

On the other hand, the proof of Theorem (2.1.12) shows that in Theorem (2.1.9) we
proved more than was stated. Indeed, putting together Theorem (2.1.9), the ideas on duality in
the proof of Theorem (2.1.12) and considerations above, one easily proves the following
theorem.

Theorem (2.1.15)[59]: Let T € Sgr, k), 0 <e<1 and (x,¢) € II(#1(T,K)) such that

lo(Tx)| = 1 — (g/9)%2. Then there exist Ty € Se(e, Ky and (xq, 9o) € (£ (T, K)) such that

IT — Toll <& llx —x0ll < &1l — @oll < gand |g(Toxo)| = 1.
Moreover, if T is w* - w*-continuous and ¢ is w*-continuous, then T, and ¢, will be w* — w*-
continuous and w*-continuous, respectively.
Below are two consequences of Theorem (2.1.15).
Theorem (2.1.16)[59]: The Banach space ¢4 (', K) has the BPB property for numerical radius.
Theorem (2.1.17)[59]: The Banach space ¢, (T, K) has the BPB property for numerical radius.
Proof. Fix 0<e< 1,8 <(g/9)%?TE€ Secorxy and (x,x*) € I(co(T, K)) such that
|x*(Tx)| = 1— 4. Applying Theorem (2.1.15) to the w* - w*-continuous operator T* €
Se(e,(rK))» the pair (x*,x) and €, gives a new Ty € Sy, (rk) and a new pair (xg,x5") €
(¢4 (T, K)) satisfying
IT* = T4l < & llx — x5"ll < & lIx* — x5l < eand |xg" (Tgx3)| = 1. (29)
Moreover, x5* is w*-continuous, so we can identify it with some x, € S¢_(r ). Therefore,
conditions in (29) become
IT —Toll < & llx — x0ll < &, llx* — x5l < €and |x5(Toxy)| = 1.
which are the requirements (1) in Definition (2.1.2). Consequently, cy([, K) has the Bishop-
Phelps-Bollobas property for numerical radius.
Section (2.2): Numerical Radius on Lq:
The Bishop-Phelps theorem states that for every Banach space the set of linear and
continuous functionals that attain their norm is norm-dense in its dual space. In 1970, B.
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Bollobas, motivated by problems related to numerical radius, made a refinement of the Bishop-
Phelps theorem, giving a quantitative version of this result as follows:

Theorem (2.2.1)[77]: (See Bollobas [80].) Given% >e€>0,ifx € X and x* € X* with ||x|| =

llx*|l = 1 are such that
2

-2l <>
then there are y € X and y* € X™ such that
Iyll=ly =y =1 lly—xl<e+e® and lx* -y’ <e

Many extensions of Bishop-Phelps and Bollobéas results to more general settings, such as
linear operators, multilinear maps or polynomials between Banach spaces have been done (see
e.g. [78,79,81,82]). In particular, the space of Lebesgue integrable functions over the real line
has received much attention in connection with the extension of Bollobas results to more general
cases.

Given a Banach space X, if we denote by II(X):={(x,x"):x € X, x* € X" |l x =
lx*Il = x*(x) = 1}, we can interpret the Bollobas theorem, asserting that any ordered pair that
"almost belongs" to [1(X) can be approximated in the product norm by elements of I1(X). Given
an operator T € L(X), the numerical radius of T is defined by v(T) = {|f(T(x))|: (x,f) €
[1(X)}. Usually every pair of elements (x, f) is called a state. Notice that the numerical radius
of a Banach space X is a continuous seminorm on X bounded by the natural norm on £L(X). We
say that the Banach space X has numerical index 1 if || T ll= v(T) for all operators T. We say
that T € L(X) attains its numerical radius if there exists (x, f) € I1(X) such that |f (T (x))| =
v(T).

In [83] Guirao and Kozhushkina study the Bishop-Phelps-Bollobas property for
numerical radius described in Definition (2.2.4) below, having as its main point of interest the
natural extension of Bollobas result to the numerical radius on Banach spaces of numerical index
1. The main result is Theorem (2.2.8) where we prove that the Banach space of Lebesgue real-
valued integrable functions over the real line, that we will denote by L4, has the Bishop-Phelps-
Bollobés property for numerical radius.

From now on, X will denote a Banach space and X*, By and Sy the strong dual, closed
unit ball and unit sphere of X respectively. If X and Y are Banach spaces we will denote by
L(X,Y) the space of all linear and continuous operators from X into Y endowed with its natural
norm || T lI= sup,ep{ll T(x) lI} and in the particular case of Y = X we will write L(X) for
L(X,X).

We recall that in 2008, M. Acosta et al. introduced the following property generalizing
the Bollobas theorem to operators between Banach spaces, called the Bishop-Phelps-Bollobas
property for operators, BPBp for short.

Definition (2.2.2)[77]: (BPBp). (See [78].) Let X and Y be real or complex Banach spaces. We
say that the pair (X,Y) satisfies the Bishop-Phelps-Bollobas property for operators (or that the
Bishop-Phelps-Bollobas theorem holds for all bounded operators from X to Y) if given € > 0,
there are §(€) > 0 and B(€) > 0 with lim;_,o8(t) = 0 such that for all T € Sy(x vy, if x € Sy

with || T(x) I> 1 — §(€), then there exist a point y € Sy and an operator G € Sy (x vy that satisfy
the following conditions:
TGy I=1, ly—xlI<p(e) and I G—T <€
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[78] showed that a necessary and sufficient condition on Y for the pair (I;,Y) to satisfy
the BPBp is for Y to have the (AHSP).
Definition (2.2.3)[77]: (AHSP). (See [78].) A real Banach space X is said to have the AHSP if
for every € > 0 there exists 0 < y < € such that for every sequence (xj) S Sy and for every

convex series Y.y, @y with
(0.0)

k=1
there exist a subset A € N, a subset {y;: k € A} C Sy, and a certain g € Sy~ satisfying:

* Yready >1—€

o |lx, —yill <eforall k € A.

e g(y,) =1forallk € A.

In 2012, Aron et al. showed in [79] that an extension of the Bishop-Phelps-Bollobas
theorem holds for all bounded linear operators from L, () into L [0,1], where u is a o-finite
measure. The same year Choi and Kim [81], motivated by the characterization of the BPBp in
terms of the AHSP for £, tried to extend this characterization to the space L;. They showed that
if the pair (L,(u),Y) has the BPBp then Y has the AHSP, and if Y has the Radon-Nikodym
property then the AHSP is also a sufficient condition. However the AHSP onY is not a sufficient
condition for the pair (L,(¢),Y) to have the BPBp, as Schachermayer showed using the space
of continuous functions on the interval [0,1] [84], and the Radon-Nikodym property for Y is not
always necessary as can be shown by using the space of L, and the result of Aron et al. [79].

Guirao and Kozhushkina [83] started a new line of research, focusing on approximating
operators and states using the numerical radius of the operator instead of the operator norm.
Definition (2.2.4)[77]: (BPBp-v). (See [83].) A Banach space X is said to have the Bishop-
Phelps-Bollobas property for numerical radius, BPBp — v for short, if given € > 0, there is
5(€) > 0 such that for all T € L(X) of norm one, if (x,x*) € I1(X) is such that [x* (T (x))| >
1 — &(€), then there exist G € L(X), with v(G) = 1 and a pair(y,y*) € I1(X) such that

IT-GIl<e Ix—yl<ellx"—y*lI<e and [y" (G| =1
From now on we will focus on the case where Y is the space L. In [78], Acosta et al. proved
that L, has the AHSP. However, we know that in general L; does not have the Radon-Nikodym
property, and so we cannot apply the techniques of Choi and Kim to obtain that the pair (L4, L)
has the BPBp. However in [82], Choi et al. have proved that the pair (L4, L;) has the BPBp. An
alternative proof of this result for L;(R) can be done by modifying the proof presented in
Theorem (2.2.8).

Even though Choi et al. have shown that the pair (L4, L,) has the BPBp, there is no known
relation between the pair (X, X) having the BPBp and the space X having the BPBp -v. Our
focus from now on will be to prove that the Banach space of Lebesgue integrable functions over
the real line has the Bishop-Phelps-Bollobas property for numerical radius.

For the proof of our main Theorem (2.2.8), we need some necessary technical lemmas.
The proofs of Lemma (2.2.5) and Lemma (2.2.6) are omitted.

Lemma (2.2.5)[77]: Let A € R be a measurable set. The operator R from L(L;) to L(L,)

defined, for every operator T € L(Ly), by R(T)(f) = T(fxa — fXa)Xa = T(fXa — fXac) X
is an isometry, i.e. || T I=Il R(T) |l for all operators T € L(L,).

>1—y
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Also for every point x € L and every linear form f € L, if we denote by r(f) = f x4 —
fxac and by r(x) = x)x4 — X)4c, then

(r(),r(f) = f) = fo(t)f(t)dt

and
(R(T)(r(x)),r(f)) =(T(x), f) = fR (TCo)(@)f (D)dt

Lemma (2.2.6)[77]: Given a pair (x, f) € I1(L,) with f(t) > 0 forallt e R,let A ={t ER:
x(t) > 0}. Then u({t € R:x(t) < 0}) = 0and u({t € A: f(t) < 1}) = 0. Also, for every point
yeEL iffteRy(t) >0} Aand u({t € R:y(t) < 0}) =0, then(y,f) =l y I.

Before presenting our main result we need to prove the last technical lemma that will be
used to modify the operator in Theorem (2.2.8).
Lemma (2.2.7)[77]: Given two measurable sets I and S and an operator T € L(L;), for any
finite number of pairwise disjoint measurable sets Iy, ..., I; of finite measure, with [ = U{zlll

J

(T(XI)X{tE]R{:T()(I)(t)>O}nS)(t) < Z <T(Xli)X{te]R{:T(XIi)(t)>O}nS> ()

i=1
almost everywhere. Also "Z{:lT(Xli)x{teR:T(X,.)(t)>0}ns <IT 1l
Proof. Since T(y;) = {le()(,i) there is no loss of generality in assuming that equality also

holds for the measurable functions after taking representatives of the equivalence class, i.e. we
assume that T () (t) = {le()(,i)(t) for all real number t in S.

Notice that (T()(,l.))(s)(t) < T(Xli)x{te]R{:T(xl.)(t)>0}nS(t) for i =1,...,j. Hence, if
T(x;)(t) < 0, by the linearity of T the required inequality holds and if T (x;)(t) > 0,
J

T )X tterr G (0)>03ns (E) = Z (T(Xli)XS)(t)
=1y
< Z T(XIi)X{tE]R{:T()(Ii)(t)>O}nS(t)
i=1
<II T Il llx,ll we only have to notice that

To see that ||Z{:1T(Xli)X{te]R;T(Xli)(t)>0}nS
j

Z T(Xli)X{tE]R{:T()(I.)(t)>0}ﬂS

i=1

f{ T(x;,)(t)dt

tE]RT X, (t)>0 ns

T(x;)@®)dt + T(x, ) (®)|dt
<j tE]R{T )a (t)>o}ns (Xll) j{tE]R{:T()(Ii)(t)<0}nS| (XI‘) | )

i

&II

i=
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j Jj
= > IrCaxsl < ) TGl
i=1 i=1

j)
< T =0T 1l
i=1

We can now prove the main result.
Theorem (2.2.8)[77]: The Banach space L, satisfies the BPBp — v.
Proof. Consider x € By, f € B = By with || x lI=Il f II= 1 and (x, f) = 1. Consider also an

operator T € L(L,),II T l= 1 and assume

5
(T, f)>1-7 (30)

with0 < § <1/4
From now on, we fix a representative of the equivalence classes of x € L; and f € L,.
That is, two measurable functions in the equivalence classes and we denote the representatives
in the same way as x and f
First we do the proof assuming f(t) > 0 for all real number ¢.
Since the norm of f is || f [= supess;er |f (t)| we can assume that 0 < f(t) < 1 for all
real number t. Denote by
B={teR:f(t) >1-68Y*} (31)
Consider the measurable set S: = {t € R: x(t) > 0}. There exists a function z € L, of norm one
with | x — z II< 8/2, where z = 3V | a; Xp;ns With D; being mutually disjoint dyadic segments
with u(D; nS) >0and a; > 0 fori =1, ..., N. Therefore
(T(2),f) 2T, /H-llx=zI>1-46.
By Lemma (2.2.6) f attains its norm on z, i.e. (z, f) € I1(L;). Denote by

N
D, = U D;NS and g = xp + f1se. (32)
i=1
It is easy to see that
I f—gli<st/s (33)
Now, for every natural number i = 1, ..., N and for n € N, consider
Fpit= {I € Ay: (T(meins)»f) <(1- ‘/E)HXmDinS"}- (34)

Put D! =(D;NS)\ (UneN UIan,iI) which is measurable. Define D = UY., D! and since

lzxpll > 0 as we will see below, define
y =22 (35)
Izxpll
Then y has norm one and since {t € R:y(t) > 0} € Dyand {t € R:y(t) < 0} = @. By Lemma
(2.2.6) considering the set Dy and the state (z, f) € I1(L;) we obtain that (y, f) € I1(L;). Also,
by Lemma (2.2.6), u({t € Dy: f(t) < 1}) = 0 so we have f(t) = 1 for almost all t in D, hence
f(t) =1 for almost all t in D. Therefore 1 =(y,f) = fRy(t)f(t)dt = ny(t)f(t)dt =

Joy@®) = [,y®g)dt = [py®)g(t)dt = (v, g) hence (y,g) € N(Ly)
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Let's see that z and y are close and [|zyp || > 0. By the construction of D, Dy \ D is a union
of a sequence of disjoint measurable sets {I}};~,; where I is of the form RN D; N S with R a
dyadic set in some A, and D; one of the sets that appear in the definition of z. By (34) the set I},

is such that (T(x;, ), f) < (1 — V8)||x;,||. Hence using the Monotone Convergence Theorem
we obtain

N 00
1-6 <T@ f)= <T (Z aiz 0 +sz>,f>

N 00
= Z alz T(Xlk) fY+(T(zxp), f) (by linearity of T and f )

i=1 k:1

<-vs )Z alz s+ (T xo. )

=(1-vs )Ilszo\DII + (T (zxp), f) (by definition of z)
< (1 =V8)|zxp\oll + Izxpll (because T and f are of norm one)
= 1= V§|zxp,\ol
Therefore ||zxp,\p| < V& and lizpll =l z | —||Z)(D \wll > 1 —+8 > 0 as required. Also,

ot -]
Y Zxo |

<z — zxpll + ||sz "||
D

= llz—=2zxpll+1— IIZ)(DII
< 2V§
Hence | x —y I< & + 2§

Now we modify the operator T on the set D.

For simplicity denote by W; = {t € R: T (x;np)(t) > 0} for every dyadic set I in A,, for
some natural number n. For each such dyadic set [ in A,,, define the sequence of integrable
functions {h}}, by

2k—1
hi = Z T(XlinD)XWIinB (36)
i=1
where the sets {Il, w1 zk—l} are the disjoint dyadic sets of A,,,;_1 whose union is /.

Then by Lemma (2.2.7) we have a sequence of positive increasing functions almost
everywhere, so as a consequence of the Monotone Convergence Theorem the sequence of
integrable functions {h} }5_; converges to an integrable function h’!. Notice that for every natural
number  k, il < lx;l hence [IA'I < llx;ll, and [lhill = [Rhi(D)dt = [ hi(H)dt =
Jphi (g (t)dt = (h}, g). Therefore

Ihkll = (hi, g) and [IA"]l = (h', g). (37)
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Also, since the sequence of functions {h} }5_, is positive and increasing almost everywhere, by
(37) we have, forall k € N,

W =hl = [ 1= ) @lde

R

=f (h! — hD)(t)dt
R

=f h’(t)dt—j hl(t)dt
R R

=j |h’(t)|dt—j IR (t)|dt
R R

= |l = Il
= (h', g) — (hk, 9)
= (h' = hy, g)
Hence
Ih" = hicll = (h" = hy, g)- (38)

By (34) we have that if (I N D) > 0 then (T(x;np), f) > (1 — V&) llx;npl, but
Tr) ) = | TG @F@de < | TCuno)©OF @t

= (T(XmD)XW,;f)
So

(TCtinp)xw, £) = (1= V&)lxinpll. (39)
Therefore

(1 =VOlxinpl < ATCtap) 2w, f)
[ TG Of@de+ [ T ©f @
W;NB 1%

I InBC

<[ TGwm®de+ [ (1= 8T Cnn) (Ol
W;NB (WinB)¢

1

= ||T(XmD)XW,nB" + (1 - 51/4)"T(XmD)X(W,nB)C"
= IT Qtynp)ll — 51/4||T(X1nD)X(W,nB)C"

< Wxinpll — 51/4||T(X1nD)X(W,nB)C"
Therefore §**|T (xinp) X wynpycll < V8llxinp |, and for any dyadic interval [

1T Cernp) x sy ll < 8 *Nxinpll. (40)
Define now the operator G on the simple functions whose measurable sets are dyadic as follows:

J J
G ; By | = ; Bi(T(x1,0pc) + Rt + (Ixr,anll — IR%N)y). (41)

Notice that Z{zlﬁiT()(,in Dc) is well defined because T is linear. Also, for every dyadic set [ €
A,, if R, Q are two disjoint dyadic sets in A,,,; whose union is I, by the construction of the
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sequences {hl,}%, {hR}%.; and {h? };o::l we have forall k > 1, h}, = h¥_, + h?_,. Hence h! =
h® + h? and since [|h'|| = (h!, g), IR®]l = (hR, g) and |h?]|| = (R, g)
Wiapll = IR = (lxrapll + llXgnnll) = (R', g) (by(37))
= (Ixgapll + "XQnD") — (h® + R, g)
= ("XRnD" + "XQnD") — ((hR, g) + (9, g))
= (Ixerpll + lxgroll) = (RN + 1221 (by(37))

= (lxranll = IK%1D + (lxonnll — 1A°1)
By using induction, Y.}~ B;(h't + (|lx1,np || — IRtll)y) is well defined. Hence G is well defined
and linear. To finish, by density of the simple functions whose measurable sets are dyadic we

can extend the operator G to L
Now let's compute the norm of G and the distance between T and G. For this, it enough

to compute the norm and the distance over dyadic sets |
IGGDN < T Qerapdll + IR+ 1 apll = TR DY

< xXmpell + xinp Il = N/l
Therefore || G II< 1. On the other hand, it is easy to check that (G(f),g) = (T(fxpc), g) +

fo(t)dt. Since for any dyadic set I with u(I N D) > 0, we have {G(x;np), 9) = lx;npll, G has

norm one.
Also,

ITGe) = GOl < ITGan) — A = Ulxannll = IR Dy
< ITGrnp) = RN+ 1A = RLD + (lxranll = IR
< 8Y*xinpll + K" = Ryl + Ulxinpll = RN ( by (40))
= 8Y*lx1npll + (h' — b1, g) + Uxinpll = A1) (by (38))
= 84 x1npll + (L, @) — (hL, @) + Ulxinpll — IIATID
= 8"l xzapll + IR = IAL1+ Nxiapll = IR'I (by (37))
= 8"*lxsnpll + Ixzapll — 1ALl
= 51/4"me|| + xiapll = IT Orap) Il + "T(XmD)X(WIﬂB)C"
< 28Y*1xi0pl + Wxiapll = 1T Grrnp)I
< 251/4||X10D" + lxiapll = T Ctinp), )
< 28Y*xinpll + V8lixinp I (by (34))

soll T—G ll< 38%/*

To conclude it is easy to check that (G (v), g) = [ py(t)dt = 1, which proves the theorem

in the case f(t) > 0 for all real number ¢.

For the general case, consider the measurable set (G(v),g) = {t € R: f(t) < 0}. Then
by Lemma (2.2.5) applied to the set A, we have r(f ) (t) > 0 for all real number ¢, and r(f), r(x)
and R(T) satisfy the conditions of (r(x),r(f)) € I(L.), I R(T) I=1 and (R(T)(r(x)),
r(f)) > 1 — §/2. By the previous case we can find (y, g) € I1(L,) and G € L(L,) such that |
y—r@) IS+ 2V8, 1l g—r(f) I Y41 G — R(T) I< 36™* and 1| G = (G(y), g) = 1.
Now by Lemma (2.2.5) again we obtain that (r(y), R(G)) € II(L,) and R(G) € L(L,) are such
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that || 7(y) —x I< 8§ + 2V8, 1 R(G) — f I< 8Y*4, I R(G) — T < 36Y* and | R(G) lI=
(R(G)(r(¥)),R(G)) = 1 which concludes the proof.

The results presented can be extended to £L(L,(R™)), by using the dyadic partitions of the
n z; zi+1

space R™ on cubes defined by A,,: = { =1 z_n’z_n) Z; EL,i=1, ...,n}. In general, for every

finite dimensional real Banach space R"™, the space L;(R™) has the Bishop-Phelps-Bollobas
property for numerical radius. Clearly the same kind of argument proves that the space L;[0,1]
and actually L;(R) for any n-interval R = [[i=[a;, b;] (of positive measure) in R™ has the
BPBp —v.

Section (2.3): Operators On C(K):

Bishop-Phelps Theorem states the denseness of the subset of norm attaining functionals
in the (topological) dual of a Banach space [96]. Since the Bishop-Phelps Theorem was proved
in the sixties, some interesting provided versions of this result for operators. Related to those
results, it is worth to mention by Lindenstrauss [114], the somehow surprising result obtained
by Bourgain [99] and also results for concrete classical Banach spaces. In full generality there
is no parallel version of Bishop-Phelps Theorem for operators even if the domain space is ¢,
[114]. Lindenstrauss also provided some results of denseness of the subset of norm attaining
operators by assuming some isometric properties either on the domain or on the range space
[114]. We mention here two concrete consequences of these results. If the domain space is ¥,
or the range space is ¢, every operator can be approximated by norm attaining operators. First
Lindenstrauss [114] and later Bourgain [99] proved that certain isomorphic assumptions on the
domain space (reflexivity or even Radon-Nikodym property, respectively) implies the denseness
of the subset of norm attaining operators in the corresponding space of linear (bounded)
operators. For classical Banach spaces (see [108],[106],[117],[118],[92]) and a few containing
counterexamples (see [117],[109], [105],[90] and [86]).

Recently [87] dealt with "quantitative" versions of the Bishop-Phelps Theorem for
operators. The motivating result is known nowadays as Bishop-Phelps-Bollob4as Theorem [97],
[98] and has been a very useful tool to study numerical ranges of operators (see [98]). This result
can be stated as follows.

Let X be a Banach space and 0 < € < 1. Given x € By and x* € Sy~ with |1 — x"(x)| <

2
%, there are elements y € Sy and y* € Sy+such that y*(y) = 1,1y —x lI< e and [ly* — x*|| <

E.

Here X* denotes the (topological) dual of the Banach space X and Sy its unit sphere. We
write By to denote the closed unit ball of X.

For two Banach spaces X and Y, L(X,Y) is the space of linear bounded operators from X
into Y. We recall that the pair (X,Y) has the Bishop-PhelpsBollobas property for operators
(BPBp), if for any & > 0 there exists (&) > 0 such that for any T € Sy (x vy, if Xy € Sy is such
that [[Txoll > 1 —n(e), then there exist an element u, € Sy and an operator S € Sy(x y)
satisfying the following conditions:

ISupll =1, llug —xpll < eand I S—T II< ¢.

Acosta et all proved that for any space Y satisfying the property [ of Lindenstrauss, the
pair (X,Y) has the BPBp for operators for every Banach space X [87]. For the domain space,
there is no a reasonably general property implying a positive result. However there are some
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positive results in concrete cases. There is a characterization of the spaces Y such that the pair
(¢4,Y) satisfies the BPBp [87] As a consequence of this result, it is known that this condition is
satisfied by finite-dimensional spaces, uniformly convex spaces, C(K)(K is some compact
topological space) and L;(u) (any measure p). Aron et all showed that the pair
(L1(u), Lo ([0,1])) has also the BPBp for every o-finite measure u [94]. This result has been
extended recently by Choi et all (see [102]). Some related results for operators whose domain is
L, (u) can be also found in [101], [89] and [102].

Now we point out results stating that the pair (X, Y) has the BPBp in case that the domain
space is Cy(L) (space of continuous functions on a locally compact Hausdorff space L vanishing
at infinity). Kim proved that in the real case the pair (cy, Y) has the BPBp for operators whenever
Y is uniformly convex [111]. [88] contains also a positive result for the pair (C(K), C(S)) in the
real case (K and S are compact Hausdorff spaces). Let us point out that in the complex case it
is not known yet if the subset of norm attaining operators from C(K) to C(S) is dense in
L(C(K),C(S)). Very recently Kim, Lee and Lin [113] proved that the pair (Lo, (@), Y) has the
BPBp whenever Y is a uniformly convex space and u is any positive measure. Analogous result
in complex case for the pairs (cq,Y) and (L, (1), Y)(u is any positive measure) whenever Y is
a C-uniformly convex space. It also holds that the pair (C(K),Y) has the BPB in the real case
for any uniformly convex space [112].

We show that the subspace of weakly compact operators from C,(L) into Y satisfies the
Bishop-Phelps-Bollobas property for operators in the complex case, for every locally compact
Hausdorff space L and for any C-uniformly convex (complex) space. Let us notice that this is
an extension of the result in [113] for the complex case in two ways. First we consider any space
C(K) instead of L, (1) as the domain space and also we consider a strictly more general property
on the range space, namely C_ uniform convexity instead of uniform convexity. Our result
extends [87] in a satisfactory way and the recent result in [113] for the case that the domain
space is Lo, (). As a consequence, in the complex case the pair (C(K), L;(¢)) has the BPBp for
every compact Hausdorff space K and any measure p.

The spaces C(K) and C(S) is dense in L(C(K), C(S)). However a positive result for real
C (K) spaces was proved [108].

We notice that in case that the range space is C(K) or more generally a uniform algebra,
[93] and [100] provides positive results for the BPBp for the class of Asplund operators.

For a complex Banach space Y, recall that the C-modulus of convexity § is defined for
every € > 0 by

5(&)=i{s {llx+Ayll —-1:2€C, |1 =1}:x,y € Sy}.
Recall that the Banach space Y is C-uniformly convex if §(¢) > 0 for every € > 0 [104]. Every
uniformly convex complex space is C-uniformly convex and the converse is not true. Globevnik
proved that the complex space L, () is C-uniformly convex [104].

We will denote by D (0,1) the closed unit disc in C. Let us notice that for 0 < s < t it is
satisfied that sup{ll x + Asy Il: 1 € D(0,1)} < sup{ll x + Aty : 1 € D(0,1)}. Hence & is an
increasing function and §(t) < t for every t > 0.

L will be a locally compact Hausdorff topological space and Cy(L) will be the space of
continuous complex valued functions on L vanishing at infinity.

We recall the following definition.
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Definition (2.2.1)[85]: ([89] Definition 1.3) Let X and Y be both real or complex Banach spaces
and M a subspace of L(X,Y). We say that M satisfies the Bishop-Phelps-Bollobas property if
given € > 0, there is n(g) > 0 such that for any T € Sy, if x, € Sy satisfies that [|Txg|| > 1 —
n(e), then there exist a point uy, € Sy and an operator S € S, satisfying the following
conditions:
ISugll = 1, llug —xpll < eand | ST lI< e.

We recall some elementary results.

Lemma (2.2.2)[85]: Assume that ,,w € D(0,1),t €]0,1[ and RewA > 1 — t. Then |w — 1| <

V2t.
The proof is straightforward.

For a locally compact Hausdorff topological space L, we denote by B(L) the space of
Borel measurable and bounded complex valued functions defined on L, endowed with the sup
norm. If B C L is a Borel measurable set, denote by Py the projection Py : B(L) — B(L) given
by Pg(f) = fxp for any f € B(L). Of course, in view of Riesz Theorem, the space B(L) can
be identified in a natural way as a subspace of Cy(L)*. As a consequence, for an operator T €
L(Cy(L),Y) and a Borel set B < L, the composition T**Pg makes sense.

The symbol WC(X,Y) denotes the subspace of weakly compact operators from X to Y
for any Banach spaces X and Y.
Lemma (2.2.3)[85]: Let Y be a C-uniformly convex space with modulus of C-convexity §. Let
L be a locally compact Haussdorf topological space and A a Borel set of L. Assume that for

some 0 <&<1 and T € Sye,ayy it is satisfied IT*P4ll > 1 -~ Then |T* (I —

1+68(e)’
P A)" <¢
Proof. Assume that T satisfies the assumptions of the result. Since T is a weakly compact
operator, then T**(Cy(L))™* < Y and we consider the subspace B(K) < Cy(L)**. We write n =

1f§()8). By the assumption, there exists f € Sp(;) such that f = Py(f) and [T™(f)Il > 1—n >

0. For every g € Bg(, it is satisfied that [[f + (I —Py)(g)l <1 and so [T™(f +
A =Py gl < 1 forevery 2 € D(0,1). That is, for any 1 € D(0,1) we have

T (f) +/1T**(1 — P (9) < 1
T ()l T (O TGO
1
< m =14+ 5(8)

As a consequence |[T*™*(I — P)(I < ellT™ ()l < eand so IT**(I — Pyl < e.

As we already mentioned, the subset of norm attaining operators between two Banach
spaces is not always dense in the corresponding space of operators in case that the domain space
is Cy(L). Schachermayer proved a Bishop-Phelps result in the real case for the subspace of
weakly compact operators from any space Cy(L) into any Banach space [117]. Alaminos et all
extended this result to the complex case [91]. We notice that there are examples of spaces Y for
which the subspace of finite-dimensional operators from the space £2 to Y does not have the
Bishop-Phelps-Bollobs property (see [87] Theorem 4.1 and Proposition 3.9 or 10. Corollary
3.3]). For those reasons restrictions are needed both on the class of operators and also on the
range space in order to obtain a BPB result in case that the domain space is Cy(L).
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Theorem (2.2.4)[85]: The space WC(Cy(L),Y) satisfies the Bishop-Phelps-Bollobas property
for any locally compact Hausdorff topological space L and any C-uniformly convex space Y.
Moreover the function 1 appearing in Definition (2.2.1) depends only on the modulus of
convexity of Y.

Proof. Fix 0 < e <1 and let §(¢) be the modulus of C-convexity of Y. We denote n =

e 2
o(3) _n@-e)et
10945(1+5(§)) 2(e%+2-122)

zand s = Assume that T € Sye(c,1),y) and fo € S¢, (1) satisfy that

ITfoll >1—s.

Our goal is to find an operator S € Syye(c,(1),y) and g € S¢, (1) such that

IS I=1, IS—TIl<eg and llg — foll < e.
We can choose y; € Sy+ such that

Reyi(Tfo) = ITfoll > 1 —s. (42)

We identify Cy(L)" with the space M (L) of Borel regular complex measures on L in view of
Riesz Theorem. We write uy; = T*(y;) € M(L). Since y; is absolutely continuous with respect
to its variation |y, |, by the Radon-Nikodym Theorem there is a Borel measurable function g, €
B(L) such that |g;| = 1 and such that

m(f) = jL fordlusl, Vf € Co(L).

2
. &
We write f =
'3 2-122

A={teL:Refy(t)g,(t) >1—- B}
By Lemma (2.2.2) we have that

1o = T xall, < V2 = . (43)

Clearly A i1s also Borel measurable and we know that

1-s  <Reyi(Tfy) =Rem(fy) =Re | fogad I 1
L

= Re j fogidlil +Re [ fogrdlum]
A L\4

< |ual(A) + (1 - Bl L\ 4)
= | [(L) — Blug (L \ A)
< 1—-Blul L\ A).
Hence
s 12 —e)122
|.u1|(L\A)—B 2+2 122

By Lusin's Theorem (see for instance [116] Theorem 2.23) and by the inner regularity of p4
there is a compact set B € A such that the restriction of g, to B is continuous, and |u;|(4 \

B) < ?and SO

(44)

+ a2 (45)

lua|(L\ B) < | |(L\ A) + [u1[(A\ B) < E >

From (42) and the previous estimate we obtain
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s &n
|.U1|(B)=|.U1|(L)_|.U1|(L\B)>1_5_5_7=1_77- (46)
Hence
IT*Pgll = |p1[(B)
>1-—n
£
o, 36)
5
1+6 (6)
By applying Lemma (2.2.3) we deduce
5
1T = Pp)ll < 5 (47)

Since T is a weakly compact operator it is satisfied that T**(Co(L)**) < Y. So we can define the
operator S € WC(Cy(L),Y) by
SU) =T*(fxp) + e1yi (T (Fxp)) T @G1xs) (f € Co(L)),

1 5()

where g, = c 1+5(f)'

Let us notice that $** = §** P, and we have that
IS 121 yi (S (@ixs) |
=l y1 (T**(EXB)) +& ()’f (T**(EXB))(.V; (T**(EXB))
2| y1 (T (@xp) 11 + e1y1 (T (G1xs) |

= | [(BY(1 + & |uq|(B))
> (1 =m@+ &1 —n) (by (46))
As a consequence
1<1-n+@0-n2?<ISI<1+e, (48)
and so
| 1—=1I S||| < &. (49)
For every h € C(B), we will denote by hyp the natural extension of h to L, which is a Borel
function on L. Let be S; the operator given by

Si(h) =$"(hys) (hECBY),
which is clearly a weakly compact operator from C(B) into Y. Since $™ = §™ Pg, it is clear that
IS, =Il S II. We know that B is a compact set and S is weakly compact, by [91] there is weakly
compact operator S, € L(C(B),Y) and h; € S¢(p) satisfying that

IS 1= 1S, = 1S, (hy)Il and IS, — Syl <

We can choose y; € Sy+ such that

en

. (50)

3 (S2(hy)) = IS, . (51)
By rotating the elements h; and y; if needed we can also assume that y; (T**(hyx5)) € R{. In
view of (50), the choice of ¥ and by using that y; (T**(h,x5)) € R{we have

~ & ~
151 = =] < Rey3(81(h)) = Rey; (3 (haxs)
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= Rey;(T** (hyxp)) + e1Re yi (T (hixs))y> (T (G1xs))
< 1+ &Rey; (T (g1xs))-
Combining this inequality with the estimate (48) we deduce that
Re <)’2 (T (91)(3)) > (1-n)*— 2—81 (52)
As a consequence we obtain that

Rey; (5§ (Gixs)) = Rey; (T (@ixs)) + exRe i (T (Fixs)ys (T Gixs))
2 2
> -2 -1 2 e i® (- w2 -T2

2&4
2

> (a-n7 -T2+ aa-m) by 4o,

So

Rey; (S,(Tm)) = Rey3 (51 (g1 TB)) — IS, — S,

> Rey; ($@ixs)) — IS, = Sul

2
> (a2 area-m-% oy 6o

2((1_n)2_w

S
2¢, ) 1+e-n)- 77"22" (by (50) and (48)).

: s
Let us write R, = —=

ST and u, = R5(y;) € M(B). Let g, = % and we can assume that |g,| =
2 2

1. From the previous inequality, in view of (50) and (48) we have that
2 _n2+e)
A-m" -7 (1+€1(1—77))_E
INA 2

(a-n? -2F D araa-m

1+ & 2
2n + ne S
217—2172+€1(1—(1—n)3)+'72—81"+'77(2+€1—n)

Rey; (R, @) =

=

=1—

1+¢&
>1—6n—2€1—£n. (53)

1
We consider the measurable set C of L given by

C = {t € B:Re(g1(t) + h1(t))g2(t) > 2 — B}.
In view of (51) and (53) we have that

n _
2—6n—2€——£n<Reu2(h1+g1|B)
1

- j Re(hy + g1)gadlial + j Re(hy + g7)g2d it |
c B\C

< 2[ux|(C) + 2 = P)luz[(B\ ©)

55



= 2|uz[(B) — Blu2l(B\ C)
< 2—Bluz|(B\ O).

Hence
6n + 2 el +é&n
lu2l(B\ C) < ﬁl : (54)
On the other hand, in view of Lemma (2.2.2) we have that
1091 = 90l <326 =5 and Iy = Gxcl, V2B =15 (55)

From the previous inequality and (43) it follows that

10t = fodxelly < 10 = G2xcl + 1Tz = el + 1FT — fodxel,, < 5 (56)
By the inner regularity of p, there is a compact set K; < C such that
kal(C\ K <2 (57)
Let us notice that
IR3" P, I| =N ¥3R5" Py, || = |pal (K1)
= |p2l(B) = [uzl(B\ €) — [uz](C \ Kq)
> Rey;(R2(g1 1B)) = li21(B\ €) = |121(C \ K2)

> Re y3(R; (3 TB)) — 2l B\ €) = - (by (57))

n
617+2E +é&n ne

>1—6n—2-0—ep— 1 by (57) and (54))
&1 B 2
n
6n +2—+e¢en
>1-2 5 1
B 2

(5)
o3
Hence K; + @

In view of Lemma (2.2.3) we obtain

IR (P — Pi, )l <
We denote by T, the element in L(Cy(L),Y) defined by

T,(f) = Ra(fip) (f € Co(L)).
Clearly it is satisfied that [|[T5*(I — Pg, )|l = |R5*(Ps — P, )|l and since T;*(Pg — Pg,) =
T5*(I — Pk, )Pp in view of (58) we obtain

>1-— >0

. (58)

O| m

I73°(Pe = Pio)ll < 5. (59)
We also write R(f) = T**(f xg) for every f € C(B) and so we have
||(T2** - T**)PB" = IR, — RIl. (60)
By the definition of S; we know that
151 — RIl < &;. (61)
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Since K; # @, let us fix t, € K;. Since K; © C, we have that |h,(ty)| >1—-8>1— g So we

can choose and open set VV in B such that t, € V C {t € B:|hi(t)| >1— g} and a function v €

C (B) satisfying v(B) < [0,1],v(ty) = 1 and supp v c V. So there are functions h; € C(B)(i =
2,3) such that

h,(t)
hy(t) = hy(t) + v(©)(1 — [h (D] (0] (t € B). (62)
and
hy(t) = h h (1)
3(6) = hy(t) —v(©)(1 — [ (D] O] (t € B). (63)

It is clear that h; € B¢ gy for i = 2,3 and hy = %(hz + h3). By using that the operator R, attains
its norm at h; we clearly have that

IR,(h)ll = 1 and |hy(tp)| = 1. (64)
Since suppv c V {t € B:|hy(t)| >1— g} we obtain for t € V that
£

lho (1) = (O] < 1= [ (O] < 5. (65)

Fort € B\ V,h,(t) = hy(t) so llhy, — b4l < g In view of (56) we obtain that

lhy = foicll < llhy — hall + 1Ay — forcll
- g N g
2 4
B 3¢e 66
- 4' ( )

Since B C L is a compact subset, there is a function f, € Cy(L) such that it extends the function
h, to L (see for instance [107], Corollary 9.15 and Theorem 12.4 and [110], Theorems 17 and
[103]). Since the function ®: C — C given by ®(z) = zif |z| £ 1 and D (2) = Iz_l if |z| > 1is
continuous, by using @ o f, instead of f, if needed, and the fact that h, € S¢(z) we can also
assume that f, € S¢ (). Since f; is an extension of h,, by using (66) there is an open set G < L
such that K; c G and satisfying also that

7€
I(fz2 — foxell, < rh (67)
By Urysohn's Lemma there is a function u € Cy(L) such that u(L) < [0,1],u;¢, = 1 and supp
u C G. We define the function f5 by

fr=ufz +(1-uwfy

that clearly belongs to B¢, (1,
Notice also that

f3(0) = fo(t) = ha (D) VE € Ky, f3(t) = fo()VE EL\ G (68)

113(6) = fo(O = u®)|f2(0) — fo(DI, Vt € G\ Ky (69)
In view of (67) we obtain that
Ifs = foll <. (70)

and
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We write A, = h,(t,) and we know that |1,| = 1. Define the operator S € L(Cy(L),Y) given
by

S = Ry ((Fxx,) ) + Aof (6IRS (oo, ) (f € Co(L))
Since R, is weakly compact, S is well-defined and it is also weakly compact. For every f €
Bc, (1) we have that [1of(to)| < 1 and so

||(fXK1)|B + Aof (to)haXp\k, "oo <1
Since [IRz |l < 1, then

1SC) 1= ||Rs* (F2x,) 18 + Aof (tod R, )| < 1
We checked that S € Bye(c,1),v)- It is also satisfied that

S(f3) =R ((f3XK1) | B) + /10f3(t0)R§*(h2XB\K1)

= R;"(h2) (by (68))

= R,(hy)
and in view of (64) we obtain [|S(f3) [l = IR;(hy)Il = 1. Hence S € Sye(c,(1)y) and it attains

its norm at f3. We also know that ||f3 — fyll < & by inequality (70). It suffices to check that S is

close to T. Indeed we obtain the following estimate
IS=TI <IS™—=T"Pgll+ 1T — Pp)ll

%k %k %k g
< |1y Pg, — T**Pg|| + [|IR; (Pg _PK1)|| +§ (by (47)

2¢
= (73" = T™)Psll + |IT3*(Ps — Py, )| + 5 (by (58)
&
< (T3 = T™)Psll + 3 (by (59)
&
= IR, = Rll + 3 (by (60))

&E
< IRy — Szl + 1Sz =S4l + 11S; — Rl + 3

3
ne g
< |1 - 1S, T tety (by (50) and (61)
& &
< 2& + % + 3 < ¢ (by (49) and (50).

Since any operator from Cy(L) into Ly, (i) is weakly compact (1 < p < o) and the complex
spaces L, (u)(1 < p < ) are C-uniformly convex we obtain the following result:
Corollary (2.2.5)[85]: In the complex case the pair (C o(L), Ly (,u)) does have the BishopPhelps-

Bollobas property for operators for every Hausdorff locally compact space L, every positive
measure 4 and 1 < p < oo [113].
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Chapter 3
The Bishop-Phelps-Bollobas Theorem

We show that the Bishop-Phelps-Bollobas theorem holds for all bounded operators from
L;(p) into L, [0,1], where p is a o-finite measure. We show that the Bishop-Phelps-Bollobas
theorem holds for bilinear forms on ¢y X €,(1 < p < ). On the other hand, the Bishop-
Phelps-Bollobas Theorem for bilinear forms on #; X L;(u) fails for any infinite-dimensional
L1 (u), a result that was known only when L, (¢) = #;.

Section (3.1): L(L;(1), L[0,1]):

In 1961, Bishop and Phelps [124] proved the celebrated Bishop-Phelps theorem, which
shows that for every Banach space X, every element in its dual space X can be approximated
by ones that attain their norms. Since then, this theorem has been extended to linear operators
between Banach spaces [126],[130],[132],[133],[135], and also to nonlinear mappings
[120],[123],[121],[127],[131]. On the other hand, Bollobas [125] sharpened it to apply a
problem about the numerical range of an operator, now known as Bishop-Phelps-Bollobas
theorem. We denote the unit sphere of a Banach space X by Sy, the closed unit ball by By, as
usual.

Theorem (3.1.1)[119]: (Bishop-Phelps-Bollobds theorem). Suppose x € Sy, f € Sy- and

If(x) — 1| <€?/2(0<e< Z . Then there exist y € Sy and g € Sy, suchthat g(y) = 1, f —
2

gl<eand|lx —y lI< € + €2

Recently, Acosta, Aron, Garcia and Maestre [122] defined the Bishop-Phelps-Bollobas
property for a pair of Banach spaces. A pair of Banach spaces (X, Y) is said to have the Bishop-
PhelpsBollobas property for operators (BPBP) if for every € > 0 there are n(e) > 0 and
B(€) > 0 with lim._,of(€) = 0 such that for all T € S,y y) and x, € Sy satistying [IT (xo)ll >
1 —n(e), there exist a point uy, € Sy and an operator S € S;(xyy that satisfy the following
conditions:

ISugll = 1, llug —x0ll < B(€), and IS—-T lI<e€
This property is a uniform one in nature.

Let (Q, A, u) be a o-finite measure space and (I, X, m) be the Lebesgue measure space,
where [ = [0,1]. Finet and Payé [129] showed that the set of all norm attaining operators is
dense in the space L(L;(u), Lo (m)). Further, we will show that the pair (L (1), Lo, (m)) has
the BPBP

It is well known that the space L(L; (1), L, (m)) is isometrically isomorphic to the space
Lo(u @ m), where u @ m denotes the product measure on () X [. The operator h
corresponding to an essentially bounded function h is given by

[A(H1(®) = fﬂ h(w, t)f (w)du(w)

for m-almost every t € I and for all f € L;(u) (see [128]).
We recall the Lebesgue density theorem: given a measurable set E C R, we have
m(EAS(E)) = 0, where §(E) is the set of points y € R of density of E, that is,
. m(EN[y—hy+h])
6(E) —{yER.’lll_r% o = 1}
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and EAS (E) is the symmetric difference of the sets E and 6 (E). In addition, the closed unit ball
of Ly(m) is the closed absolutely convex hull of the set {m( 3 :BeX0<m(B)< 00}

equivalently,

1
I g o= s {ngdm‘:BeZ,0<m(3)<oo}

for every g € L, (m). For a measurable subset M of QA X I, let M,, ={y €1 : (x,y) € M} for
eachx € Qand MY ={x € Q: (x,y) € M} foreachy €.
Lemma (3.1.2)[119]: Let M be a measurable subset of 0 X I with positive measure, 0 < € < 1,

XA; . . . .-
and f, = Z}":laj TA]j) € 51, (u)> Where each 4; is a measurable subset of () with finite positive

measure, Ay N A; =@,k # [, and a; is a positive real number for every j = 1,..,m with
Yizia; = LI Xy (fo)ll, > 1 — €, then there exists a simple function go € Sy, () such that

4e
1CEm + @)(go)ll,, = 1 and lIfy — goll; < 1—¢

for any simple function ¢ in L, (¢ @ m) such that || ¢ ll,< 1 and ¢ vanishes on M.
Proof. Since || 2 (fo)ll, > 1 — €, there is a measurable subset B of I such that 0 < m(B) and

<XM(fo) m(B)
Foreachj=1,..,mweput M; = M N (Aj X B) and let
= {(x,y):x EA,yES ((Mf)x)}'

As in the proof of Proposition 5 in [134], H; 's are disjoint measurable subsets of 1 X I and (u &
m)(H) > 0, where H = U/, H;. Then there is y € I such that u(H”) > 0. We also note that
foreach j = 1,...,m we have H; € A; X §(B) and (u ® m)(M AHj) = 0. Let

J0) = u(H)) > 01<j<m}.
For y € §(B) with J(y) # @ we define g, € S () by

HY
x”g /)

Hj
gy= Z Bj ’

JEJY)

>1—e€.

where f; = a;/(Zkej) )-

We first claim that ), + ¢ attains its norm at g,, for every y with u(H”) > 0.

Fix such y and let B, = [y — ¥y, ¥ + ¥nl, where (y;,) is a sequence of positive numbers
converging to 0 . Note that for every x € ij we have (x,y) € H;, which implies that

~ m((M;), nB,)
lim
n—co m(Bn)
The Lebesgue dominated convergence and Fubini theorems show that for each j € J(y)

. 1 m ((Mj)x n Bn) . w®m (Mj N (H x Bn))
g () j TR (B)mBy

=1.
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On the other hand, since the simple function ¢ is assumed to vanish on M and also || ,[| <1,

we have
()
IAXH]y’ XB"|| 1 j 2 @ m)
’ = m
| mG u (H Y m(B,) Y5, Pa
J j
(t ® m) ((ij X By) \ Mj)
ICAEIES
4 w®m) (M, n (1) x B,)) .
(7 )m(B2) ’
asn — oo.
Therefore,
1> |CGim + @)(g )|| > lim [{(y + @) Z i XHJJ'] XB,
g M © Z nooo M ' ’
' JEI) ].U(ij) m(By)

3 g LEm (M n () = B))
JEI() H (ij) m(By)

_ 1
A D B T b, P ™

JeJ()
LI LU
i JEJ(¥) H (ij) m(B,)
B | _(u®m)(Mjﬂ(ij><Bn)) )
] 7 TR

which shows that 7, + ¢ attains its norm at g,,.
Next we claim that there exists y € §(B) such that u(H”) > 0 and
4e
lgy — foll, < 7o
For each j = 1,...,m we set B = {y € §(B):u(H") > 0}, B} = {y € 6(B): u(H;") =
0}and B® = N/Z, BY. By applying Fubini's theorem the sets B;"and B} are Lebesgue measurable

subsets of [0,1].
We note that foreachj =1, ...,m

w®m(M) = (u®m) (4 x 6(B)) n Hy)
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= w®m) ((4; x 6B)) n{(x,y) € Hzpu(H)) > 0}).

|XM(f0 < (B)>| >1-¢

¢ @em(M)
1_E<Z (W ®m)(4; x BY

Since

we have

j=1
which implies that

i em (4 x @)\ (@) € (i) > )
! (u ® m)(4; X B)

<€, (D
j=1

and

Z wem)((4xB))
2.

“ (u ® m)(4; X B)

m (,u ® m) ((4; x 8@\ (C.y) € Hy: (i) > 0})
(1 ® m)(4; X B)

j=1

j=1
which implies that

m

Z ajm(BjO) < em(B). 3
j=1
It follows from this inequality that m(B°) < em(B). Fory € §(B) \ B°,

B; @; y u(45\ ij)
Ty e

JEJ(¥) JEJ()

(1#7)  u(4\H)
= Z a+1+ Z [ M(A) M (A)

JEI(¥) JEI(W)
u(4; \ H;
=2 Z aj + Z 2617%.
JET) JET) A
Assume that there is no y € §(B) \ B° such that

Then

4e 0

TmGE\EY) <[ gy - fol dm()
§(B)\B®

1
u(4;\ HY)
) 2-[(5(3)\3(’( Z T Z () >dm(y)'

jel() JEI()
It follows from the inequalities (1)-(3) that
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m

Z a; dm(y) = j Z <“jXBj.’ ()’)> dm(y)

8(B)\B° JEJ(Y) S(B\BO J=1
m
= Z ajm(B}’) < em(B),
J=1
and
u(4\ H;')
j aj ——~ —dm(y)
SBNB® &7y u(4;)
m
- & ——~  XB dm
'IS(B)\BO Z < Tu(4) Bf(y) )
(w®@m) (4 B\ {(x,y) € H:y € B})
N % < em(B).
j=1 u(4;)
Therefore,

4e
4em(B) < :m((S(B) \ BY)

<[ llgy - foll,dm) < dem(®),
5(B)\B°

which is a contradiction.

Lemma (3.1.3)[119]: (See [122].) Let {c,} be a sequence of complex numbers with |c,| < 1
for every n, and let > 0 be such that for a convex series Y.p—; @, Re Yo @pc,, > 1 — 1. Then
for every 0 < r < 1, the set A = {i € N : Re ¢; > r} satisfies the estimate

n
>1— )
Zal/ 1—r

i€A
We recall that the set of simple functions is a dense subspace of L, (4 @ m).
Theorem (3.1.4)[119]: For the complex Banach spaces L;(u) and L, (m), let T:L,(u) —
L, (m) be abounded operator such that || T |= 1. Given 0 < € < 1/5 and f,, € S, (., satisfying

IT(fll,) 1 — €8, there exist S € L(L; (1), Lo(m)), I S I= 1 and gy € S, L(w such that

4e
"S(go)"oo =1 IT-Sl<eandlf, _go" < 2¢e* +—

1 —
Proof. Since the set of all simple functions is dense in L, (¢), we may assume
m
Xa;
fo= Z & ——~ € Si,
< J .U(Aj) 1(w)

where each A; is a measurable subset of () with finite positive measure, A, N A; = @,k # [, and
every a; is a nonzero complex number with Z}"zl |a'j| = 1. We may also assume that 0 < a; <
1 forevery j = 1, ..., m. Indeed, define W: L, (u) = L, (1) by
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m
_ ~i6;
W) = D e Eif s+ Koo, 4)
j=1
where 6; = arg(aj) foreveryj = 1, ..., m. The operator ¥ is an isometric isomorphism of L; (1)
onto Ly (i),
IT(fll,, = [[(T o l{'_1)(‘{'(]%))"00 >1—€®

and

W(fy) Z oy | 2 (A)

hence we may replace T and f by T o ¥ and Y(f,), respectively.

Let h be the element in Lo, (2 X I, u @ m), |l h ll,= 1 corresponding to T, thatis, T = h.
We can find a simple function

hg € L(Q X T, u @ m), llholl,, =

such that [|h — holl , < IT(f)ll,, — (1 — €®), hence ||iA10(f0)||oo > 1 — €8 We can write hy =
Zlecl Xp,» Where each D; is a measurable subset of () X I with positive measure, D, N D; = @,
k # L, the complex number |¢;| < 1 forevery [l = 1, ...,p, and |clo| =1 forsome 1 < [y < p.

Let B be a Lebesgue measurable subset of [ with 0 < m(B) < oo such that

<h0 (fo) ——

>1— €8,

(B)

Choose 6 € R so that

1—¢8

ho (), <B>>‘

=e'f <ho (fo)

Let

By Lemma (3.1.3) we have

(B)>
£, Y M(A) mE)
) _ 0l Xa; XB
]={1.1<1<m’Re["’0< <M(A)> 'm(B)
€ 4
“szzejzaj>1_1—(1—f4)=1_6.
_ TANREY
N E e

j=1
> 11— 64}.
8
JEJ

We define

Then we can see ||f1||1 =1,
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Ifo = fully

<

2,

j&]

J&J

<ho(f1) <B>>‘

and

>R

On the other hand, for each j € |

1—€e* <Rele

= Re

e

= Re e

p
Yj=z

where

and

’ <ﬁ <#(A )

i0

i0

)

> a

XA]'
I (A,

(A)

Z aj+(1—a])=2(1—a])<264

e* <ho(f1) (B)>]
1 i ~ XAj XB
a_jz a;Re [e o <ho <M(A.)>’m(3)>]

J€J

—Z aj(1—€e*)=1-€*
]E]

w®m) (D, n (4; % B))
u(4;)m(B)

Xa; XB

"m(B)

p

N

1=1
p

Vil

ClYj y_

=1 J

w®m) (D n (4 xB))

)

u(4;)m(B)

(u®m) (D, n (4; % B))

Vit =
We define

={l:1<

and

L]={l:1<

Foreach j € J we canseey; > 1 —

u(4;)m(B)

[<p, Re(eiecl) >1-

62
4;
62
4.

[ < p, Re(eieclyj) >1-—

e*, and by Lemma (3.1.3) again
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Hence

> > (=41 - eh
lELj
For every j € | we note that L; c L and

u®m) (D, n (4% B)) w®m) (D, (4% B))
2, >,

= u(A;)m(B) & u(A;)m(B)
— Z v > (1—4e3)(1— %)
lELj
SetD = UlELDl-
Therefore
<Xp(f1)»m(3)> B ; <a,> ; u(4;)m(B)
aj 4N _ _ _ 4
>; <a—]> (1—4e)(1 —eh) = (1 — 4e2)(1 — b

>1-5e2>1—¢ \
By Lemma (3.1.2) there is go € Sy, such that |({p + @)(go)ll,, =1 and [If; — goll < fe,

where ¢ is any simple function in L, (¢ @ m) such that || ¢ ll,< 1 and ¢ vanishes on D.

Therefore, we have
4e

1—¢€

Ifo = goll, < Ifo = full, + Ifs — goll; < 2¢* +
Define

hy =e Pyp+ Z Ci1Xp, € Loo(t @ m)

LEL
Let S be the operator in L(L; (i), Lo, (m)) corresponding to h;. Then

1S(go)ll,, = ||ﬁ1(g0)||oo =1

and
'i9| = max|ei9cl -1

ho — h = maxl|c, — e
Iho 1l lEL | ! lEL

. 2
However, Re(e'?c;) > 1 — EZ for every | € L, hence

(Im(ei‘gcl))2 <1- (Re(ei‘gcl))2
€2\’ €2 ¢t
<1_<1_Z> =7 16

elfc,—1| = \/(1 — Re(e"‘gcl))2 + (Im(ei‘gcl))2

<Je*/16 + (€2/2 — €*/16) = %

Since
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we conclude
€
lho — el , < —=,
0 1l \/E
hence
€
1T =S Neo< h = holl g, + lhg — hall, <€+ —=<e.

V2

We observe that for the real Banach spaces L, (u) and L., (m) better estimates could be obtained
by inspecting the above proof.

Theorem (3.1.5)[119]: For the real Banach spaces L;(u) and L, (m), let T be a bounded
operator from L,(u) into L, (m) such that || T = 1. Given 0 < e <1/5 and f;, € 5,
satisfying [IT(fo)ll, > 1 — €*, there exist S € L(Ly(1), Loo(m)), Il S I= 1 and go € S, such
that

20€

IS, =1, IT—SlI<eandllfy — goll, < 26* + =
Section (3.2): Operators From ¢y to Uniformly Convex Spaces:

For X be a real or complex Banach space and By (resp. Sy) be the closed unit ball (resp.
unit sphere) of X. Let L(X,Y) be the Banach space of all bounded linear operators from X into
Y. We say that an operator T € L(X,Y) attains its norm if there exists x, € Sy such that

ITC)N =T II=s {Il T(x) ll: x € B}

In 1961, Bishop and Phelps [143] showed that the set of norm-attaining functionals on a Banach
space X is dense in its dual space X, namely the BishopPhelps Theorem. There have been many
efforts to extend this theorem to bounded linear operators between Banach spaces
[145],[150],[152],[155],[156],[157], and also to non-linear mappings like multi-linear mappings
[142], [148], polynomials and holomorphic mappings [137]. This theorem was sharpened in
1970 by Bollobas [144], and we call it the Bishop-Phelps-Bollob4s Theorem.

Theorem (3.2.1)[136]: ([144]). For an arbitrary € > 0, if x* € Sy« satisfies |1 — x*(x)| < €2/4
for x € By, then there are both y € Sy and y* € Sy+ such that y*(y) =1, l y — x lI< € and
ly* —x7ll <e.

Afterwards, Acosta et al. [138] began extending this theorem to bounded linear operators
between Banach spaces and defined the Bishop-Phelps-Bollobas property ([138]). We say that
the pair (X,Y) has the BishopPhelps-Bollobas property for operators (BPBP), if given € > 0
there exist S(e) > 0 and n(e) > 0 with lim._,y+f(€) = 0 such that if there exist both T €
Scexyy and xq € Sy satisfying [Txoll > 1 — n(€), then there exist both an operator S € S,y y)
and uy € Sy such that

ISugll =1, llxg —upll <B(e) and I T —S lI<e.
They characterized the Banach spaces Y such that the pair (¢;,Y) has the BPBP. They also
proved that for a uniformly convex space Y the pair (¢%,Y) has the BPBP for every n € N, but
it remained open whether or not the pair (cy, V) has the BPBP for a uniformly convex space Y.
Our main result states that this problem has a positive answer. It seems worth mentioning that
some other results about the BPBP have appeared very recently ([140],[141],[149],[151]).

It was shown that if X is uniformly convex, a pair of Banach spaces (X, Y) has the BPBP
for every Banach space Y ([154]). We can ask a natural question that if Y is uniformly convex,
then does the pair (X,Y) have the BPBP for every Banach space? Let us note that the above
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statement does not hold in case that Y is uniformly convex. Indeed there exists a Banach space
X such that the set of norm-attaining operators is not dense in L(X , i’p) for 1 < p < oo ([153)).
However, in order to prove the main result, we use the following perturbation result for operators
from a reflexive space X into a uniformly convex space Y.

Theorem (3.2.2)[136]: Let 1 > € > 0 be given. Let X be a reflexive Banach space and Y be a
uniformly convex Banach space with modulus of convexity §(€) > 0. If T € S;(xy) and x € Sy

satisfy
=209
I Tx 11> 50(3)
then there exist S € Sy(xy) and xo € Sy such that [|Sxpll = 1,11 S — T lI< € and |Tx — Sx,ll <

€.
Proof. Assume T € S;(xyy and x € Sy satisty

€ 5 €
I Tx 1> 1 - (E)
Choose f € Sy+ such that
€ 5 €
Re f(Tx) > 1 -5 (E)
Set (x4, f1,T1) = (x, f, T), and define a sequence
(x5, fiy T)iZ1 € Sx X Sy+ X Seixyys

inductively.
If the k-th term was constructed, define

~

Ths1

o €
Tk+1x = Tkx + Wfk(TRX)Tkxk, and Tk+1 = —"
[Tkl

Choose xj 41 and f;,1 satisfying
Re fk+1(Tkxk) = |fk+1(Tkxk)|;

ad ~ € €
Re fk+1(Tk+1xk+1) > (| T4l — Sk+s 6 (2k+1)-
This implies that

€ €
Re fir1(Tis1Xks1) > ITieqqll — kA 6 (2k+1)'

We can see that
ITy — Tisall < ITk — Tegall + ITk+1 — Tl

€
< 2k+1'

Hence, (Ty) is a Cauchy sequence which converges to S € Sy (x yy satisfying [Ty, — S|l < zik
To see that (T;x;);=; is also a Cauchy sequence, we need to check the following:

N € € N
175l = 5528 (5) < fie(Tim)|
€
= |fk(Tk—1xk) + Wfk—l(’rk—lxk) S (Tr—1Xk-1)
€
< fie(Te—1x)| + F|fk—1(Tk—1xk)| Nfie(Te—1x-1)1

€
S NTk-1 1l + WRG fie(Tie—1X1-1),
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Tl = |fk—1(Tkxk—1)|
€
= |fk—1(Tk—1xk—1) + Wfk—l(’rk—lxk—l) 'fk—1(Tk—1xk—1)|

€
= <1 + Wfk—1(Tk—1xk—1)> *fie—1(Te—1Xk—1)

€
2 <1 + WRG fk—l(Tk—lxk—1)> *Re fi_1(Tk—1%k-1)

€ € € € € 2
= "Tk—lll - 2k +2 6 (2k—1) + 2k+1 "Tk—lll - 2k +2 6 (2k—1)

It follows from the above that

€ €
Re fi(Ty—1xk-1) > <||Tk—1|| ~ k2 6 (2k—1

=1- 2kE+1 g (zke—l) - %6 (zke—l) - 2_136 (zik)

>1-06(5)-

N—
N——
[\S)
[
N =
>
Ve
(&)
Tm
=
N—
[
)
o
(&)
:vl’“
N—

Hence,
Ty_1x1,_1 + Tpx Ty _1xp_1 + Trx
||k1k1 kk" 2Refk<k1k1 kk)
2 2
€ € 1 €
>1- 2k+4 g (z_k) - 56 (2k—1)
€
21—5(2k_1),

which implies that ||Tj,_ ;x5 _1 — TiXi |l < # Moreover, (Sxj )y~ is also a Cauchy sequence
and the limits of (Tyxy)r=, and (Sx;)y-, are the same. Choose a weakly convergent

(e @)

subsequence (xki) | of (x;)i2, and let x, € By be its weak limit. We can see that the limit of

i=
(TkXi)p=q 18 Sxg. Therefore [[Tx — Sx,ll < € and [ISxyll = 1. We present here some useful
lemmas, see ([138], Lemma 3.3, Lemma 5.1, Lemma 6.1).

Lemma (3.2.3)[136]: ([138], Lemma 3.3): Let {c,,} be a sequence of complex numbers with
|c,| < 1 forevery n, and let n > 0 be such that for a series of non-negative numbers Y p—; @, <

1, ReYo_ia,c, >1—mn. For every 0 <r <1, the set A = {i € N:Rec; > r} satisfies the

estimate
Y azi-g!
L= 1—7

i€A
Lemma (3.2.4)[136]: ([138], Lemma 5.1): Let 0 < € < 1 be given and Y be a uniformly convex
Banach space with modulus of convexity §(€). If T € S y) (resp. T € Spen ’y)), and A c N
(resp. A € {1, ...,n}) has the property that |[TP4|l > 1 — §(¢€), then we have that [T(I — P,)|| <
€, where P, is the canonical projection from ¢, (resp. %) to £4,.
Lemma (3.2.5)[136]: Let Y be a strictly convex Banach space T € L(X,Y), where X = €%, ¢,
or . If | Tx |I=|I T |l for some x = (x;) € Sy, then Te;, = 0 forevery k € A = {i: |x;| < 1}.
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Theorem (3.2.6)[136]: Let Y be a uniformly convex Banach space. Given 0 < € < 1, there
exists 0 < n(e) < 1suchthatif T € S;pn y) and x € Syn satisfies

| Tx 1> 1 —n(e)?,
then there exist S € Sy vy and v € Spn such that | Sv =1L, S =T lI< € and | x — v [I<

Ve + Ve? + 2¢ for everyn € N.
Proof. Let the modulus of convexity of ¥ be 0 < §(€) < 1. Given € > 0, set y(€) = 2%6 (g)

andn(e) =y <§6 (%)) Assume that T € S;(n yy and x € Syn satisty

Il T(x) II>1—n(e)>.

Choose y* € Sy- so that
Rey*T(x) = ReT*y*(x) > 1 — n(e)?.
Write T*y* = ((T*y");)i=1 € Ben,x = (x;){=1 € Spn, and for any set D c {1, ...,n} define
1, € % such that (1); =1 for i € D and (1p); = 0 for i € D€. By using an appropriate
isometry on €%, we can assume that (T*y*); = Re(T*y*); = 0foralli=1,..,n
LetA={i €{1,..,n}:Rex; >1—n(e)}. By Lemma (3.2.3), we can see that
Re D (T"y)i > 1=n(e),

i€A
which implies

ITP,(1 )Nl > 1 —n(e).
From Lemma (3.2.4) and the fact that n(e) < E(S (E), it follows that

T(I—-P d 10) d
IT( =PI <=6 (2)
Consider T4 € L(€4,Y) which is the restriction of TP, on £45. We clearly have that

Ta Ta(14)
— T n <n(e) and
Iz Ta]| = (€ and |5y
By Theorem (3.2.2) there exist T € S;(,a Y) and u € Sy such that
T,(La) 4 € (€
—Tul| <z6(=)
T4l o <39(3)

> 1—n(e).

. . €
I T =1, "T — " <= 6 and
() T4l )
This implies that
" " Ta(ls) - Ta(14)
T(1,) - T < —TA)| + —T(u ||<—6
I = T < | = T + |5 - T o)

Choose z* € Sy« so that z*Tu = Re z*Tu = 1. We may assume that u = (u;);e4 is an extreme
point of B,a by Lemma (3.2.5) which implies |u;| = 1 for all i € A. There exist series of non-

. . . _ N 2]
negative numbers );c4; satisfying Y;cq; = 1 and (Gj)jeA such that T"z" = (aje ]l)jeA'
Then, we can easily see that u; = e %! for every j such that a; = 0.

We get that

Rez a;ef = Re T2 (1,) = Re z'T(1,)
jea ) ) )
>ReT*z*(u) — ||IT(1,) — T(w)||
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2€ /€
>1-25 ()
Let us write = {j € A : Ree?’ > 1 — e and a; ;t O} By Lemma (3.2.3) we get
€
TP > Z |(T z ),-| - Z a>1— 5(3).
JjEC jEC
Hence,
. € . €
1P| >1-6 (g) and [T( — POl < 7.
Set S=TP.+T( —P.)P, € Sc(ea,y) Where By (z) = (u;z;);eq for every z € £4. Then |
S@ I=IS l=1, where ii; = u; foralli € Cand @i; = 1 foralli € A\ C.
We can easily extend S and T to operators from £% to Y by defining
S(e;)) =T(e;)) =0 foreveryi € {1,...,n}\ A.
Choose v € £}, so that v; = i; forevery i € A and v; = x; foralli € A°.

We can see that
IS—TI <IS—TP,ll+ "TPA - TII

<IS—T1 +||T— —TPA||+ TP, — Tl

IT P4l " " IT P4l

— [T = PP, — T P)||+||T I ||
a ¢ ¢ TP,
+|| TPy TP n + TP, =TI
TP, 4 4

55 (350) 0+ ((20) <<

For every j € A, we obtain
|xj — 1| < \/(1 — Rexj)2 + (Im xj)z
< \/n(e)z + (1= (Rex))")

< Vn(?+2n(e). |
Similarly, for every j € C, from the fact that Re u; = Re e %t = Ree?* we get

|1 —v;| <Ve?+ 2e.

| x—vll =Sl}p|xj—v-

Therefore,

j]
< sup (| — 1] +[1 - v)
JEA

< sup|x; — 1| + sup|1 — vj|
jeA jec

< Jn(e)? + 2n(e) + V€2 + 2¢

< Ve +e? + 2e.
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Corollary (3.2.7)[136]: Let Y be a uniformly convex Banach space. Then the pair of Banach
spaces (cg, Y) has the BPBP.
Proof. Given 0 < € < 1, let n(e) > 0 be the positive number in Theorem (3.2.6). Assume that
T € Sp(c,vyand x € S satisfy | Tx I> 1 — n(e)? and also || Tx I> 1 — §(e). Choose % € Se,
which has a finite support A such that | T |> 1 —n(e)% I TZ II>1—6(e) and Il x — % lI< €.
It follows from Lemma (3.2.4) that |[TP, — T|l < €.

Consider T4 € L(£45,Y) which is a restriction of TP, on £4. It follows from Theorem

(3.2.6) that there exist $ € Sy(pa y) and @ € Sps such that || Sz I1= 1, ||§ — —A| < 2¢ and I

IT 4l
£ —ilI<ve+Ve2 + 2e.

Define a bounded operator S:c, — Y by S(e;) = S(e;) for every i € A and S(e;) = 0 for
every i € A°. Choose u € ¢, so that u; = i; for all i € A and u; = x; for i € A€. It is easy to
see that || Su [[= 1,

IS=TI <UIS—TPI+ITPy—TI
TP, TP,
ITPAl |+ "nTPAn
<2e+n(e)?+e,

< "SPA - - TPA" + TP, =TIl

and

lu—xll=1Py(u—x)l =l &t — % II< Ve + /€2 + 2e.

In [155], Lindenstrauss proved that if Y is strictly convex and if there is a non-compact operator
from ¢, into Y, then the set of norm-attaining operators in L(c,, Y) is not dense. In the real case,
we show that if Y is strictly convex but not uniformly convex, then (cy,Y) cannot have the
BPBP. 1t is worth mentioning that if Y is strictly convex but not uniformly convex, then (£4,Y)
cannot have the BPBP [138].

Theorem (3.2.8)[136]: Let X be a real Banach space ¢ or €1, (n = 2) and let Y be a real strictly
convex space. Then (X,Y) has the BPBP if and only if Y is uniformly convex. In particular, if
the pair (£, Y) has the BPBP, then Y is uniformly convex.

Proof. We prove only the case ¢j. The other cases follow from the same argument that we will

use. Assume that Y is not uniformly convex. There exist € > 0 and sequences (x;)i2, (¥;)i=1 C
XitYi

2
Let (e;)i2; be the canonical basis of co. For every i € N, define T; € S;(, v) by

T;(e; + e;) = x;,Ti(e; —e,) =y; and T;(ex) = 0 for all k € N\ {1,2}. We can see that
lim;o, IT; (eIl = 1.

Assume that (cy,Y) has the BPBP with positive numbers 1n(€) and B(€). Choose j € N
so that || Tj(e)|| > 1 —n(e/2). Then there exist T € S;(., y) and x € S, satisfying

I Tx =1, [T —Tj|| <€/2, and llx —esll < B(e/2) < 1.

By Lemma (3.2.5) and the fact that ||x — e;|| < f(e/2) < 1, we can assume that x = e;. Hence,
it follows from the strict convexity of Y that T(e; + e,) = T(e; — e,) = T(e;), which implies
that

Sy such that lim; o, == = 1 and llx; — y;ll > €.

=il = ITy(er + €2) = Ty(er — el
= "Tj(el +ey) —T(ey + ez)" + "T(e1 —ey) — Tj(el - ez)"
<eE€.

72



This is a contradiction.
We say that the Bishop-Phelps-Bollobas theorem holds for bilinear forms on X X Y if,
given € > 0, there exist n(€) and B(€) > 0 with lim;_,o8(t) = 0 such that for all ¢ € S,z xxy,

if x € Sy, y € Sy satisfy |¢p(x,y)| > 1 —n(e), then there exist points x. € Sy, V. € Sy and a
bilinear form ¢, € S,z xy) that satisfy

|¢E(xe;ye)| =1, lx —xcll <B(€), Iy — yell < B(€), lp — pell <e.
Theorem (3.2.9)[136]: ([146]). Assume that Y is uniformly convex. Then the BishopPhelps-
Bollobas theorem holds for bilinear forms on X X Y if and only if the pair (X, Y™) has the BPBP.

In general, the Bishop-Phelps-Bollobds theorem does not hold for bilinear forms
([139],[147],[151]). However, Cheng and Dai [146] showed that the BishopPhelps-Bollobas
theorem holds for bilinear forms on ¢; X £,(1 < p < o) by obtaining Theorem (3.2.9) and
they asked whether the Bishop-Phelps-Bollobas theorem holds for bilinear forms on ¢y X
£5(1 < p < ). Using Corollary (3.2.7) and Theorem (3.2.9), we get an affirmative answer to
this question.

Corollary (3.2.10)[136]: The Bishop-Phelps-Bollobas theorem holds for bilinear forms on ¢y X
tp for1 <p < oo,
Section (3.3): The Bishop-Phelps-Bollobas Theorem for Bilinear Forms:

E. Bishop and R. Phelps in [161] proved that every continuous linear functional x* on a
Banach space X can be approximated, uniformly on the closed unit ball of X, by a continuous
linear functional y* that attains its norm. This result is called the Bishop-Phelps Theorem.
Shortly thereafter, B. Bollobas in [162] showed that this approximation can be done in such a
way that, moreover, the point at which x™ almost attains its norm is close in norm to a point at
which y* attains its norm. This is a “quantitative version” of the Bishop-Phelps Theorem, known
as the Bishop-Phelps-Bollob“as Theorem. As usual, by By and Sy we will denote the closed unit
ball and the unit sphere of a Banach space X, respectively, and X* will be the dual of X.
Theorem (3.3.1)[157]: (Bishop-Phelps-Bollobas Theorem, [163], Theorem 16.1). Let X be a

2
Banach space and 0 < € < 1. Given x € By and x* € Sy+ with |1 —x"(x)| < %, there are

elements y € Sy and y* € Sy+ such that y*(y) = 1,||ly — x|| < €and ||y* — x*|| < &.

[158] proved versions of the Bishop-Phelps-Bollobds Theorem for operators. Amongst
them is shown a characterization of the Banach spaces Y satisfying an analogous result of the
Bishop-Phelps-Bollobas Theorem for operators from £, into Y. There are also positive results
for operators from L, (1) to Ly, (v) [160] and for operators from an Asplund space to C (K) [159].
For more results on the subject, also see [164].

Choi and Song initiated the study of versions of the Bishop-Phelps-Bollobas Theorem for
bilinear forms [166], showing that this theorem does not hold for #; X £;. For two Banach
spaces X and Y, by using the natural identification of the space of the continuous bilinear forms
on X X Y and the space L(X,Y") of linear and continuous operators from X into Y™, it is clear
that the pair (X, Y™) satisfies the BPBP for operators if the pair (X, Y) has the BPBP for bilinear
forms. The converse is not true even for X =Y = £, (see [166] and [158]).

We provide classes of spaces satisfying a version of the Bishop-Phelps-Bollobas Theorem
for bilinear forms. All the Banach spaces considered will be over the scalar field K (R or C).
Except when explicitly stated, all results hold for the real and the complex cases. If A is a subset
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of a linear space, we will denote by co A and |co|A the convex hull and the absolutely convex
hull of A, respectively. For a family of Banach spaces Xj,...,X, Y we denote by
L*(X; X -+ X X,,,Y) the Banach space of all continuous n-linear mappings from X; X -+ X X,
to Y. When Y is the scalar field we remove it, i.e. we write L (X; X -+ X X;,). If n = 1 we simply
write L(X,Y) and X™ when Y is the scalar field.

In [158] the following property was introduced to study versions of the Bishop-Phelps-

Bollobas Theorem for operators. To deal with the bilinear case we need a natural modification
of this property.
Definition (3.3.2)[157]: ([158], Definition 1.1). If X and Y are Banach spaces, the pair (X,Y)
satisfies the Bishop-Phelps-Bollobas property for operators (for short, BPBP for operators) if
given € > 0, there aren(e) > 0 and B(e) > 0 withlim;_,B(t) = O such thatforallT € Sy xy),
if x, € Sy is such that [[Txy|l > 1 — n(¢€), then there exist a point u, € Sy and an operator S €
S1x,y) satisfying the following conditions:

ISull =1, lug — xoll < B(e),and | S—T II< e.
Definition (3.3.3)[157]: ([166]). For two Banach spaces X and Y, the pair (X,Y) satisfies the
Bishop-Phelps-Bollobas property for bilinear forms (for short, BPBP for bilinear forms) if for
every € > 0, there are n(¢) > 0 and B(¢) > 0 with lim;_,,5(t) = 0 such that for any A €
S12(xxy)» if (X0, ¥0) € Sx X Sy is such that [A(xq,yo)| > 1 — n(¢), then there are B € S;2(xxy)
and (ugy, vy) € Sy X Sy satisfying the following conditions:
|B(ug, vo)| = 1, llug — x0ll < B(E), lvg — ¥oll <B(e)and | B—Al< e.

In this definition we can replace (xq,Vy) € Sy X Sy by (xg, Vo) € Bx X By. Also it is not
difficult to check that lim,_,y+n(e) = 0.

We will also consider the BPBP for n-linear mappings, which is defined.

We devoted to positive results of spaces satisfying the BPBP for n-linear or bilinear
forms. Indeed if X;(1 < i < n) are uniformly convex Banach spaces, then for every Banach
space Y, the BPBP for n-linear mappings from X; X --- X X, to Y is satisfied. Up to now, this is
the only sufficient condition known that implies BPBP even for bilinear forms. As a
consequence of the previous result, one obtains the corresponding condition for operators whose
domain is uniformly convex. We already mentioned that the BPBP for bilinear forms on X X Y
implies the BPBP for operators from X into Y™, and the converse is no longer true. However, if
Y is uniformly convex, then the converse also holds, a result that has also been proved
independently by Dai [167]. As a consequence, if Y is a uniformly convex Banach space whose
dual satisfies some isometric property (called AHSP), then the pair (£,Y) satisfies the BPBP
for bilinear forms. This result can be applied for instance to any L, (u) for 1 < p < oo,

We obtain a characterization of the Banach spaces Y satisfying that the pair (£,,Y) has
the BPBP for bilinear forms. In order to do this, we introduce a geometrical property and prove
that many classical Banach spaces enjoy this property, including the finite-dimensional normed
spaces, uniformly smooth spaces, C(K) and K(H). On the other hand, the pair (¢4, L, (u)) does
not satisfy the BPBP for bilinear forms for any infinite-dimensional L (u), a result that was
known only when L, (1) = #;. Let us notice that the set of norm attaining bilinear forms is dense
in L2(£; X L1 (1)) (see [172]). For operators, the BPBP in the case (#1, Lo (1)) for every
measure u is also satisfied (see [158]).
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We recall that a Banach space X is uniformly convex if for every € > 0 there is 0 < § <
1 such that

lu+uvl
u,v € By, T>1—6=>Ilu—vll<£.
In such a case, the modulus of convexity of X is given by
_ lu+vl
6(e):=i {I—T:u,v EBy,lu—vl= s}

Given a bounded subset 4 of X, an element x* € X* and @ > 0, the slice S(4, x*, a) is the subset
of A given by

S(A,x*, a):= {z € A:Rex*(z) > supRex™(x) — a}
X€EA
The following simple lemma will be useful in the proof of the main result.

Lemma (3.3.4)[157]: If X is uniformly convex, then for every € > 0,
diam S(By, x*,8(¢)) < &, forall x* € Sy-.
Proof. Indeed if x* € Sy- and we choose x,z € S(By, x*, 6(¢)), then
|l x+zII=|x"(x+2z)| > 2(1—6()).
So we deduce || x — z |I< €. Since this holds for every pair of elements x, z in the slice, then
diam S(By, x*,6(¢)) < &, as we wanted to show.
We show that the Bishop-Phelps-Bollobas Theorem holds for n linear mappings defined
on uniformly convex Banach spaces. Given Banach spaces X;(1 < j < n) we will denote by

X=X XXXy, I'll0), Il being the supremum norm, and by S the set given by

n
S:i=1{x = (x]) € 1_[ Xj:xj € Sy, forall1<j<n
j=1
Theorem (3.3.5)[157]: Let X4, ..., X}, Y]be Banach spaces and assume that every X; is uniformly
convex with modulus of convexity §;,1 < j <n.Givene > 0,if 0 <7 < min{(Sj (6):1 <)<
n} ﬁ, then for every A € S;n(X; X -+ X X,,,Y) and every x, € S such that [|A(x,)|| > 1 — 7,
there exist a point z, € S and B € Sn(x x...xx, v) satistying the following conditions:
IB(zo)ll = 1, llzg — xoll , < €and | B-Al<e¢
Moreover, if A belongs to some linear subspace of L™ (X; X -+ X X,,,Y) containing the finite-

type n-linear mappings, then B belongs to the same subspace.
Proof. Let 0 < &€ < 1. Since every X; is uniformly convex, by Lemma (3.3.4),

diam $ (By , f;, 8;(e)) < €
for all f; € SX; and every 1 < j < n. We define a: = min{(Sj (e):1<j < n} and choose a real

number 7 such that
ae

8 + 2¢

1+Z(1—%)<(1+Z)(1—n).

0<n<

hence
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LetA € Sjn(Xy X -+ x X,,,Y) and xg = (X1, ..., Xon) € S such that [A(x,)[| > 1 — 7. For each
1 < j < n there is a functional x; € Sx: X; such that x (xo ]) 1, and we know that

diam § (BXj, xj, @) <e forall 1 <j<n. (4)
We define the mapping C € L"(X; X -+ X X,,,Y) by

n

C(x):=A(x) +Z 1_[ xj‘(xj) A(xy) (x = (x]) € X)

j=1
Clearly,
Cxo) = (1+ Z) Axy)
and thus
IcGl = (145) 4G > (1+2) @ = m. (5)
Let T be the set given by T:={1 € K:|A|=1}. Thus, if 1<j<n and z € By, \

TS (BX L X5, ) 1t 1s satisfied that

a
x-(zj)| <1 —E.

Hence, if z € By and there exists 1 < j < n with z; & TS (BX L, X ,a) we have that

IC(2) <1 + % (z)| <1 +4(1 ‘%)

From (5) and the previous inequality it follows that

a
IC(x )Nl >Il C(2) Il , forall z € By \ 1_[ TS (BXf’x;’E)

This implies that || C l|l= sup {II C(z)Il:z € ]_[] 1S (BX X ,a)}, and
- a
z € By, IC@I > (1+ )(1—n)=>ze1_[1r5(BX, ,2). (6)
j=1
It 1s also clear that

I C—Al< (7)

SR

By (5) we can choose 0 <y < i such that

ICGl = (1+2) A =m > ny. (8)
Let us consider the mapping ¢: By — R given by
P(x): =l C(x) Il (x € By),

which is continuous and bounded. Since X; is uniformly convex for every 1 < j < n, the space
X is reflexive, so it has the Radon-Nikodym property. Hence By is a Radon-Nikodym set and
we can apply [176] to obtain an element u, € By and functionals z; € X;'(1 < j < n) such that

0<|z|| <y, foralll<j<n (9)
and the function
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x = (X1, ., xp) Pl C(x) I +Z Re zj‘(xj) (x = (x]) € By)
j=1

attains its maximum at u, € By. By using that C is an n-linear mapping and the unit ball of a
Banach space is balanced, it is immediate to deduce that

Uy € SXj, Rezj‘(uoj) = zj‘(uoj) = |zj‘(u0]-)|, foralll <j<n,
and indeed it is satisfied that

leall st e i+ 17 (g)] < Ic@l + ).
j=1 j=1

As a consequence || C I [IC(u)ll + X7y |27 (uo;)
£
I 21 € Il =ny > (1+ Z) (1-1)> 0.

By now using (6) we obtain

zj‘(uoj)|, for all x = (x]) € By.

, and so by using (9) and (8) we have that

n ) p
U € 1_[ TS (BXj,xj,E). (10)
j=1
Let us write yy: = %ZZ;”, and for each 1 < j < n choose u]’-‘ €S X; such that u}‘ (uo j) = 1. Now

we define

D(x):= C(x) +

n
]:

n

()] | u;@.)\yo (x = () € By)

1 i=1
i#]

It is clear that D € L"(X; X --- X X,;,Y) and

€

T (11)

n
ID=cl< ) 7] <ny <

j=1
For any x = (x]) € By we have that

DGO <l C(x) | +Z
=1

2 ()| ]_[ uu;‘u\
i)

i#j

<l C) I +Z 7 (%)| < IC(uo)ll + Z |7 (uoy)]
j=1 J=1

Also it 1s satisfied that

1D (up)ll =

n
C(ug) + Z Zf(u0j))’0
j=1

n
= IC(uo) + Z |2} (o) |¥o
=1
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=16+ ) |77 (uo))|
=1

As a consequence D attains its norm at u,.
£

In view of (10), for every 1 < j < n there is 4; € T such that Ajuy; € S (BXj,xj ’E)' By
using (4) we deduce that
[4u0; — x| < diam § (BXj,xj‘ %) <gforalll <j<n.
If we write z,: = (Ajuo j), then z, € By, D attains its norm at z, and
Izo — x0ll,, < &. (12)
Let us notice that D — A is an n-linear mapping of finite type. Indeed it is the sum of (at most)
n + In-linear mappings of the form

X e ﬁ % (x)y (x = (x;) € X),

* * . . D
where x; € X; for every j and y € Y. By taking B: = o ve have that B € Sin(x x..xx,v) B

attains its norm at z, and
IB —All < ||B— DIl +I[D —All

< [1—IIDII[+ D —All < 2]ID — All

<2(lb = Cll + lIc = All) <€ (by (11) and (7)).
We have proved that the BPBP for n-linear mappings from X; X --- X X, to Y is satisfied.

We deduce the following immediate consequence for operators:
Corollary (3.3.6)[157]: Let X and Y be Banach spaces, and assume that X is uniformly convex.
Then given & > 0, there is n > 0 such that for every R € S;(xy) and x, € Sy such that
IR(xp)ll > 1—mn, there exist a point uy €Sy and T € S;xyy satisfying the following
conditions:
IT(we)ll =1, llug — xoll < €and |IT — R|| <.

Actually any 0 <7 < % satisfies the above condition.

In addition, if R belongs to some linear space M < L(X,Y) containing the finite-rank
operators, then T also belongs to M.

The BPBP for operators from X into Y™ is satisfied if the pair (X,Y) satisfies the BPBP
for bilinear forms and the converse is not true. We will provide a class of Banach spaces for
which the converse holds. The next result has also been proved independently by Dai [167].
Proposition (3.3.7)[157]: Let X and Y be Banach spaces and assume that Y is uniformly convex.
If the pair (X,Y™) has the Bishop-Phelps-Bollobas property for operators, then (X,Y) satisfies
the Bishop-Phelps-Bollobas property for bilinear forms.

Proof. Given g, > 0, we can see that the pair (X,Y") has the BPBP for operators for € > 0

small enough such that max{e, f(€)} < min 80,15(80) , where 6(gy) is the modulus of
3

convexity of Y. Let 0 < n < min {17 (e), % 6(80)}. Take A € S;2(xxy) and assume that (xo, yo) €

Sy X Sy is such that |A(xy, vo)| > 1 —n. By rotating A if necessary, we can assume that
|A(xy, vo)| = A(xg, yo). If T € L(X,Y™) is the operator associated to A, then we know that
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ITI=IAIl=1, and ReT(xy)(yy) = ReA(xy,yo) > 1—n.
By assumption, there are an operator S € S;(x y+) and an element z, € Sy satisfying
ISzl =1, llzg — x0ll < L), I1S—-T I<e.
As a consequence we have
Re S(zp)(y9) > ReT(z9)(yo) — € > ReT(x9) (¥o) — € — llzg — x,l
>1—n—e—B()>1-6(g).
Since Y is uniformly convex, then Y is reflexive, and so there is uy € Sy such that S(z,) (uy) =
1
Therefore we have

5(e S(zy) (uy + lug + yoll  llug + yoll
(20)<Re (0)(20 yO)SIISZOII 02)’0 < 02)’0

By using that Y is uniformly convex we deduce
lug — ¥oll < &.
Hence, if we denote by B the bilinear form associated to S, then we have that
B(zp,ug) = S(z9)(ug) =1 =l B |
I B—AIl< &g, l1Zzg — xoll < B(€) < &, llug — yoll < &

So the bilinear form B satisfies all the required conditions.

Now we will recall the isometric property that was already used in [158] to describe the
Banach spaces Y such that the pair (¥;,Y) satisfies the BPBP for operators.
Definition (3.3.8)[157]: ([158], Remark 3.2). A Banach space X is said to have the Approximate
Hyperplane Series property (for short, AHSP) if for every € > 0 there exist 0 < 1,5 < € such
that for every sequence (x;) C Sy and every convex series Y. p—q @, With

(e @)

k=1
there exist a subset A € N, a subset {z;: k € A} € Sy and x* € Sy~ satisfying
(1) Yreaar >1—6, and
(1) () llzg — x|l < e forall k € A,

(b) x*(z;,) = 1foreach k € A
Corollary (3.3.9)[157]: If Y is a uniformly convex Banach space and Y™ has the Approximate
Hyperplane Series property, then the pair (£4,Y) has the Bishop-PhelpsBollobas property for
bilinear forms.

The previous statement is a consequence of the fact that the pair (¢4,Y™) has the BPBP
for operators only when Y™ has the AHSP (see [158], Theorem 4.1) and Proposition (3.3.7).
Examples of classes of spaces having the AHSP can be found in [158] and [164]. For instance,
it is known that the finite-dimensional spaces, C(K), L, (¢) and uniform convex Banach spaces
have this property. Indeed, every almost CL-space satisfies the AHSP (see [170] for the
definitions and also [164]). Furthermore every lush space has the AHSP (see [165]). Also, spaces
whose dual norm satisfies some uniform condition of smoothness (USSD) at some boundary
have this property (see [169] and [164]).

By looking directly at the proof of the BPBP for bilinear forms on the product £; X Y (Y
a Banach space) we will obtain a more general result than the one appearing in Corollary (3.3.9).
The Banach spaces Y such that the pair (£,,Y) satisfies the BPBP for bilinear forms do have a
geometric property that we will characterize.

1—

>1-—n,
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Definition (3.3.10)[157]: For a Banach space Y we will say that the pair (Y,Y™) satisfies the
Approximate Hyperplane Series property (for short, AHSP) if for every € > 0 there are 0 <
8,1 < € satisfying that for every convex series Y., &, and for every sequence of functionals {y;}
in Sy, and y, € Sy such that Re Y., @,y (1) > 1 — 1, there are a subset C € N, {z;:k € C} c
Sy« and zy € Sy such that

Z ar>1-96, lz, —yell < e, z,(zy) =1, forallk € C and |lzy — y,ll < €.

kec
It is not difficult to check that by assuming in Definition (3.3.10) that the sequence {y,} is
contained in By, an equivalent condition is obtained. It is also clear that if the pair (Y,Y™) has
the AHSP, then Y™ has the AHSP. As we will see later, as a consequence of our results and
previous work, both properties are not equivalent (see Proposition (3.3.22)).

The following elementary result is slightly more general than [158], and the proof is
almost the same.
Lemma (3.3.11)[157]: Let {c,,} be a sequence of complex numbers with |c,| < 1 for every n,
let n > 0 and let {a,} be a sequence of nonnegative real numbers such that ¥, a, < 1.
Assume also that Re Yo, @,c, > 1 —1n. Then for every 0 < r < 1, the set A: = {i € N: Re

c; > r} satisfies the estimate
n
a; >1-—
Z l 1-—7r

i€A
The following result will be useful in order to provide examples of spaces Y satisfying that the
pair (Y, Y™) has the AHSP. It has the advantage that the use of convex series is avoided.
Proposition (3.3.12)[157]: Let Y be a Banach space. If for every € > 0 there is § > 0 satisfying
that for every finite set F and for every finite sequence of functionals {y;:i € F} c Sy~ and y, €
Sy such that Re y;(y,) > 1 — &, for every i € F there are {z,":i € F} C Sy, and z, € Sy such
that

lz; —yll <e, z(zy) =1, foralli € F, and |lzy — yyll < &,
then the pair (Y, Y™) satisfies the Approximate Hyperplane Series property.
Proof. Given € > 0 there is § > 0 satisfying the assumption and we can clearly assume § <
€ < 1. Let us consider a convex series Y., a sequence {y,;} in Sy« and y, € Sy such that

Re Z anyn o) > 1 - 62,
n=1
and choose N large enough such that Re ¥N_. a,yi(yo) > 1 — 62. Let us define
C:={neN:n<N,Rey,(y,) >1-6}
By Lemma (3.3.11) applied withn = §2 and r = 1 — §, we obtain

ap, >1-246. (13)
2,

nec
By using the assumption for the finite set C we obtain a finite set

{z;:i € C} c Sy+, and an element z;, € Sy,
satisfying
lz; —y{ll <e, z(zy) =1, foralli € C, |lzg — yoll <e¢,
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and we also know that ), cca, > 1 — §, as we wanted to show. Let us notice that the above
condition is a version of the Bishop-Phelps-Bollobds Theorem which uses any finite set of
functionals instead of one. We will see later that this change really makes a difference.
For a Banach space X and x € Sy, we will denote
D(x):={x" € Sy-:x"(x) = 1}.
The set-valued mapping D: Sy = Sy * is called the duality mapping of X. It is clear that from
Proposition (3.3.12) the following result can be deduced.
Corollary (3.3.13)[157]: Let X be a Banach space. If for every € > 0 there is § > 0 such that
for every x € Sy there is y € Sy satisfying
@lly—xl<e,
(b)if x* € Sy, satisfies Rex*(x) > 1 — 6, then dist (x*, D(y)) < ¢, then the pair (X,X")
satisfies the Approximate Hyperplane Series property.
Now, we characterize the Banach spaces Y satisfying that the pair (¢1,Y) has the BPBP
for bilinear forms. The following elementary fact will be useful for this purpose.
Lemma (3.3.14)[157]: Let z be a complex number with |[z]| < 1and 0 <r < 1.IfRez >,
then |z — 1|2 < 2(1 — 7).
Proof. It is clear that
|z— 1> = (Rez—1)? + Im? z
=Re?z+Im?z+1—2Rez<2(1—Rez)<2(1-71)
Theorem (3.3.15)[157]: Let Y be a Banach space. Then the pair (#,Y) has the BishopPhelps-
Bollobas property for bilinear forms if and only if the pair (Y,Y™) satisfies the Approximate
Hyperplane Series property.
Proof. Assume that the pair (£1,Y) has the BPBP for bilinear forms. Then for every € > 0 there
are B (&) and n(¢) satisfying the conditions of Definition (3.3.3).
Given 0 < g, < 1, we are going to show that (Y,Y™) has the AHSP for § = B(¢) +

VB (&) and n = n(¢), where € > 0 is so that

1
3J2(M() + 2B(e) + €) + (4B (€))% + € < &. (14)
Let us take a convex series Y., &y, a sequence of functionals {y,} in Sy« and y, € Sy such that
Re Y tnyn(yo) > 1 —n(e).
Now we define the bilinear form 4 on £; X Y given by

(e @)

A y) = ) xMYR) (6,Y) €€ X ¥, x = (x(n)))

n=1
It is clear that A is well defined and, moreover, A € S;2(p «y) since for every (x,y) € #; X Y it

holds that

AGe )| < Z|x(n)||yn(y)| < Z|x(n)|uyu = Ilxly liyl

and also A(eq,y) = y; (), so ||A|| > SUpyes, [y1 (y)l ly;ll = 1. Here II-ll; denotes the usual

norm and (e,,) the canonical basis in #;.
The condition Re Y., a,, v (Vo) > 1 — n(e) implies that the element x, = («,,) satisfies
|A(xg, o) > 1 —n(e). By assumption we can find elements (ug, vy) € Sp, X Sy and a bilinear

form B € §;2(4, xy) such that
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1B —All <&, llug — xoll; <B(), lvg — yoll < B(€), |B(ug, )| =1.  (15)
Since |B(ugy, vy)| = 1, there is a real number 6 € R satisfying e?® = B(uy, v,). We clearly have
that
1 = |B(ug, vp)| = e ¥ B(ug, v9) = Ree " B(uy, vy)

= Re Z |u0(n)|e_i0u0—(n)3(en; Vo)

w0 lug(n)|

0
_ uUg(n

= Z |lug(n)|Re e~ 10 () B(e,,vy)
[uo (n)

Ug(n)#0

< > lwml=1

uy(n)=0

It follows that

neNu,(n)#0 =Re <e'i9 lZZEZ;l B(e,, v0)> =1
= %B(en, Vo) = e'?, (16)

By using (15) we also have that

1—B(e) = e B (ug, vy) — B(e)

< Ree B(xy,vy) = Rez a e 9B(e,, vy).
n=1
Since we fixed ¢ at the beginning, we write r: = 1 — /f(¢) and define
H:={n € N:Ree 9B(e,, vy) > r}.
In view of Lemma (3.3.11) we obtain that
Z @, >1—/B). 17)

neH
Now we define C: = H N {n € N:uy(n) # 0}. Then we deduce that

Z anzz an — Z anzz an_"uo_xo"l

(e @)

nec neH TEE;{_O neH
>1-+/8() - Be) =1-35. (18)

Now it suffices to give the functionals {z,;: n € C} that will satisfy the condition needed in order
to prove that the pair (Y, Y™) has the AHSP. For this purpose we will consider appropriate small
perturbations of the functionals y — B(e,,y).

Let us fix n € C. Since || B II= 1 and Ree™®B(e,,vy) > 1 =1—./B(¢), by Lemma
(3.3.14) we deduce that

le=B(en,vo) — 1" < 2B (5. (19)
On the other hand, by using (15) it follows that
Ree'® = Re B(uy, vy) > Re A(uy, vy) — ||A — B
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> Re A(xo, o) — llxo — uoll, — 14 = B
> Re A(xo, o) = Ilyo = voll = I — ugll, — 1A — Bl

>1-—n(e) —2B(e) —e.
Now we can apply Lemma (3.3.14) to obtain that

e —1|* < 2(n(e) + 2B(e) + &) (20)
By again applying Lemma (3.3.14) we also deduce that
neH = |e"®B(envo) — 1| < 2JB (). 21)

Hence for every n € C, in view of (16) we obtain that

Uo(n) | Uo (1) Uo(n) Uo (1)
—1| < — B(e,,v9)| + |————B(e,, vy) — |
luo (M) lup(m)| lup(n)| weo lug(m)| > 70
=|1—B(e, vyl + |e“9 — 1|
<|1-e®|+|e? — B(en,vo)| + |1 — €%
< 22(m(e) + 2B(e) + &) + |1 — e B(e,, vo)| (by (20))
1
<2y2(n(e) +2B(e) + &) + (4B(e))* (by (21))
That is,
Uo (1) 1
T 1| <2200 + 28(0) + &) + (4B(e))3, forallneC.  (22)
0
Finally we define the functionals z,, by
( ) —7 *
zn(¥): = |u0( )| e ®B(e,,y) and v;:(y): = B(e,, y) (n € C).
0
Clearly it is satisfied that {z,;:n € C} c Sy-, and in view of (16) we know that
zp(vy) =1, foralln € C. (23)
Also we have that
(n)
Iz = yill = |2,
n T ol ))| o
Up(N —10 v — —10 * 10 * *
S BT ((n))l v = 700 |+ e v — vill + v = 3
uy(n | i
< —1|+|e7® — 1| +||B - 4]
lup () | |

1

<32(M(e) + 2B(e) + &) + (4B(£))* + & < g (by (22), (20) and (15)).

In view of (18), the above inequality, (15) and (23) we have proved that the pair (Y, Y*) has the
AHSP.

Conversely, assume that (V,Y™) satisfies the AHSP. Given 0 < € < 1, there are 0 <

o,n < 2 satisfying the conditions in Definition (3.3.10) for g Suppose that A € S;z2(, xy) and for

some pair (Xo,Yo) € Sp, X Sy it holds that [A(x,, yo)| > 1 — 1. By rotating A if necessary we
can assume that A(x,,y,) > 0. Also, by applying a convenient isometry on £; we may assume
that xo(n) = 0 for every natural number n. Hence we have that

Re Z xo(M)A(en, yo) > 1—1.

n=1
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Since || A ll= 1, the sequence of functionals {y,} given by y,, (y): = A(e,, y),n € N, is a subset
of By+. By using the AHSP for the pair (Y,Y") we can find a subset C N such that

Z Xo(n) > 1— 8,

nec
and a subset of functionals {z: k € C} c Sy, and z, € Sy such that

£ £
Iz — yell < > Zp(zp) =1, forallk € C and |lzy — yoll < >

Now we define the bilinear form B on £; X Y given by

BGoy) = ) x(m)za() + ) x()Alen ) () € £ X ¥, x = (x(n)).

nec nec
It is immediate to check that B is bounded since ||z,]l = 1 for everyn € C and || A l|I= 1. Since

C is nonempty, it is easy to deduce that B € S;2(,_ xy)- Also,
|B — All < supsup [(B — A)(en, )

n Y€EBy

= sup sup |[(B — A)(en, )|
nec yeBy

&E
=supllz, —yll <5 <¢
nec 2

YnecXo(n)ey, that satisfies uy € S, . Also,

1
Foncc %o ZC foln)en = %o

1

Let us take Ug: = m
nec+o

llug = xoll; =
1

1
< m; xo(n)ey —; xo(n)ey 1 + T; xo(n)ey
=1—Z xo(n)+z xo(n) <28 < e

nec ne¢c
Finally we have that

B, 20) = ) ug()B(en,20)

nec

1
- xo(n)z xo(M)75(20) = 1.
ne nec

Therefore (£4,Y) has the BPBP for bilinear forms.

We are going to provide many classes of Banach spaces X such that (X, X™) has the AHSP,
and so by Theorem (3.3.15) the pair (£,, X) has the BPBP for bilinear forms. We begin with the
class of uniformly smooth Banach spaces. We recall that a Banach space is uniformly smooth if
its norm is uniformly Fréchet differentiable at the points of the unit sphere.

Proposition (3.3.16)[157]: If X is a uniformly smooth Banach space, then the pair (X, X*) has
the Approximate Hyperplane Series property.

Proof. If X is uniformly smooth, then X* is uniformly convex (see for instance [171]). We will
check that the assumption of Proposition (3.3.12) is satisfied.
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Given € > 0, we take §: = 26y * (¢), where dx+(¢€) is the modulus of convexity of X,
which is a positive real number. Now assume that x* € Sy+ and x, € Sy satisfy Re x*(xy) >
1—38 =1-—26x-(¢). If x; € Sy~ satisfies x5(xy) = 1, then

x* 4+ x5 llx™ + x5l
1= 8 (&) < Re— % (xo) STO

Hence [[x* — x3ll < €. By applying Proposition (3.3.12) we obtain that the pair (X, X*) has the
AHSP.

We recall that a Banach space X is smooth if D(x) is a singleton for every x € Sy. Not
every finite-dimensional space is smooth. However, we will show that every finite-dimensional
normed space X also satisfies that (X,X*) has the AHSP. This fact is a consequence of a
refinement of [158] that we will now show. We include the proof of this result for the sake of
completeness.

Proposition (3.3.17)[157]: Every finite-dimensional normed space X satisfies that (X, X™) has
the Approximate Hyperplane Series property.

Proof. We are going to check that the hypotheses of Corollary (3.3.13) hold. We argue by
contradiction. Assume that there is some positive real number g, not satisfying those hypotheses.
Thus, for every positive § > 0 there exists x5 € Sy satisfying the following condition:

y € Sx, Iy — x5l < gp=> 3x* € Sxy-:Rex*(x5) > 1 — § and dist (x*,D(y)) = &. (24)
Hence, for every n € N, there is an element x,, € Sy satisfying (24) for § = % Since dim X <

oo we can also assume that (x,,) = x € Sy and [[x — x,,|| < &, for every natural number n.
So by using (24), for every n there is x,, € Sy satisfying

1
Rex;(x,) >1— - and dist(x;, D(x)) = &. (25)

By passing to a subsequence, if needed, we can assume that (x;;) = x* € Sy-. In view of (25)
we have that

x*(x) = 1and dist (x*,D(x)) = ¢,
which is a contradiction.

Now we will provide an important class of classical Banach spaces that are very far from

the uniformly smooth spaces but still satisty the fact that there is a version of the Bishop-Phelps-
Bollobas Theorem for bilinear forms on the product of £; and any space in this class.
Proposition (3.3.18)[157]: For every locally compact Hausdorff topological space (), the space
Y = Cy(Q)), of real or complex-valued and continuous functions on () vanishing at infinity,
satisfies that (Y, Y™) has the Approximate Hyperplane Series property.
Proof. We prove both the real and the complex cases. It suffices to check that Cy({) satisfies
the assumptions of Proposition (3.3.12). In order to do that we will use the Riesz Theorem to
identify the topological dual of C( (L) with the space M ({) of real or complex Radon measures
on (), endowed with the norm given by the total variation, i.e. given x* € Cy ()" there exists a
unique y € M (), such that

x*(f) = jﬂ fdu, forall f € Cy(L2)

and || x*|| = |u|(Q), where |u| denotes the positive measure called the total variation of u (see
e.g. [173], 6.19 Theorem). It is well known that |u| is a finite positive regular measure on (1 and
there exists a Borel measurable function h: 0 — C with |h(t)| = 1 for all t in £ so that
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x*(f) =j fhd|u|, forall f € Co(Q)

Q
(see e.g. [173]). Given 0 < e <1, we choose 0 <7 <1 such that 2n +,/2n < e. Let

{yf:j €EF}c Se,(y* be a finite set and fy € S¢_ (q) such that Re y; (fy) > 1 —n?, for every j €
F. Let {uj:j € F} C Sar(q) be such that

yi(f) = j fdu;, forall f € Co(Q2) andall j € F.
Let {hj: JEF } be the Borel mea%urable functions on () such that
|hj| = 1and y; (f) = j fhid|u;|, forall j € F and all f € Co(Q).
We are assuming that ?
jﬂ Re(fohj)d|u;| = Re <jﬂ fohjd|yj|> = Rey;(fo) >1—n? forallj €F

Now for each j € F let us consider the Borel set

B; = {t € Q:Re(fo(Hh;(t)) > 1 —n}
For every j € F we also have

1-n?< fﬂ Re(foh)d|u;| = f | Re(foh;)d|u,] +f .Re(fohj)d|#j|

BJ Q\B]
<[ dwl+a-n] dgl
Bj Q\Bj

= || (B;) + (A = m)|u;|(Q\ B;) = n|u;|(B;) + 1 -1

Hence
|l (B;) >1—n.
Since each | U j| is regular, then for each j € F there is a compact set K; C B, such that
luj|(K;)) >1—n>0,forallj €F. (26)
As a consequence,
|,uj|(Q\Kj) <, foreveryj € F. (27)

Let us take K: = UjepK;, which is a compact subset of () satisfying

K=U K]CU B c {t € Q:|fo(t)| > 1 —n}
JEF JjEF
The set U: = {t € Q:|f,(t)| > 1 — n} is open. Since every locally compact space is completely
regular, there is a function m € C,({1) that separates the closed set {1 \ U and the compact set
K,ie.,suchthat 0 <m < 1,m(K) = {1} and m(Q \ U) = {0}. So the function h, defined on

Q by
£ () |
ho(0): = Tfo] ™D HEET,
0 ifteQ\U

is continuous, and since it vanishes outside the relatively compact set U, it belongs to Cy(£1).
We take go: = hy + (1 — m)f,, which is also a continuous function on ) vanishing at infinity.
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It 1s also clear that g, satisfies
|go(®)| < m(t) + 1 —m(t) = 1, forall t € Q

and |go|(K) = {1}, s0 go € S¢,(a)
Now we will check that

g0 — foll =7 <e. (28)
Ift € U, then |fy(t)| > 1 —n,so0

| Jo(®) _
190(8) = fo(O)] = o O] m(t) — ’m(t)fo(t)| =m@®)[1 = [fo(Oll <n.

In the case that t € Q \ U we have that m(t) = 0 = hy(t), so go(t) — fo(t) = 0. Now we will
provide the new set of continuous functionals that satisfy the desired condition. For each j € F
let us define the functional

N .
7 (F): = |Mj|(Kj)ijf|f0|d|M,| (F € o).

Obviously {zj‘: jJEF } C Se, )+ and for every f € Cy(€2) we have
() =2 ()]

2
= jn\Kjfhjdwj' * f <f f|f| )hdhl]'

1 p
+<|u,-|<f<->‘ I s
<l @\ + [ [(1 ) e+ (s =1

<nlifll + j J2nlflld|us] + (1 = |u;|(K)) I£ 1l (by (27) and Lemma (3.3.14))
Kj
< +2n+Ifll = Cn+20If Il (by (26)).

Hence

ly; =zl < 2n+2n <&, forallj € F. (29)

Finally, for each j € F we have that

Z*(90)=;j 90£d|ﬂ'|= : foJo

/ |ll]|(K]) K;j |f0| J |ll]|(K]) K; |f0||f0|
In view of (28),(29) and the last equality, the proof is completed.
Corollary (3.3.19)[157]: For every Hausdorff and compact topological space K, the space Y =
C(K), of real or complex-valued and continuous functions on K, satisfies that (Y,Y™) has the
Approximate Hyperplane Series property.
Corollary (3.3.20)[157]: If X = ¢, (real or complex case), then (X, X*) has the Approximate
Hyperplane Series property.
Proposition (3.3.21)[157]: If H is a Hilbert space and X = K(H), the space of compact
operators on H, then (X, X*) has the Approximate Hyperplane Series property.

dlp;| =1
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Proof. In the finite-dimensional case it suffices to use Proposition (3.3.17). So we can assume
that H is infinite-dimensional.

We will use the standard identification of K (H)" and the space of nuclear operators on H,
endowed with the nuclear norm (see for instance [175], Theorem 1 , p. 46, [174], Theorem 5.6
or [168], Theorem 16.50). Indeed we will prove that the assumptions of Corollary (3.3.13) are
satisfied.

Given € > 0, we choose 0 <71 < % such that
2 /2n+5n < ¢
Let us fix any element Sy € Sk (y). By using the polar decomposition of S, (see for instance
[174]), there are orthonormal systems (y;,) and (x;) in H such that

So:= Z axyr & xi

n=1
where (ay) is a decreasing sequence of real numbers convergent to zero, 1 =[Syl =

max{a,:n € N} and y,(x) = (x | y,) for each k € N and x € H, where (.|.) denotes the inner
product of H. Let us take s:= 1 —n and
B:={n € N:a, > s}.
It is clear that B is finite and non-empty. So the operator T, on H, defined as
To:= Z Vie @ xp + Z Vi Q Xy,
neB neN\B
belongs to Sk ) and satisfies

ITy — Soll =max{l —a,;n€B}<1—-s=n<ec. (30)
Now take t:= 1 — n* and choose any element z* € Sk(uy+ such that Re z"(Sp) > t. By the

description of K(H)* there are a sequence (b,) € £; of nonnegative real numbers, and
orthonormal systems (f;,) and (e,;) in H such that

2°(T) = Z b, (T(ey) | £,), forall T € K(H).

n=1
Also, it is satisfied that 1 = [|z*|l = Y ;-1 by, (see for instance [175] or [174]). In such a case we
will write z* = Y21 b, fir @ e,. We have

1-n*=t<Rez’ (So)—Rez b (Solen) | £)

If we consider the set C givenby C: = {n € N: Re(SO(en) | f,) =1 —n3}, then Lemma (3.3.11)
withr: =1 — 3 gives

an>1—n>0,andso Z b, <n. (31)
nec neN\c
Now we define the element y* € K(H)" given by

1
* b *®e
Y =5 ), bufi @
nec

Then ||y*|| < 1, and in view of (31) we have that
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ly* —z*ll =

5 bnz bufii ® en - Z bufi ® en

s(ﬁ-l) D bufi@en| 4| D by @ e

nec neN\C

<2 (1 - Z bn> <21 (32)

nec
Now for eachn € C we will use the parallelogram law for the elements S, (e,,) and f;, and obtain

that

r2 + 14 2r + 1Sy(ey) — fll?
2
= (Re((so(en) + /) | fn)) + 1So(en) = foll®

< 1ISo(en) + fulI” + 1So () — foll®

= 2(IISo(e)II* + I£,lI7) < 4.
We deduce that

1So(e,) — fol> <4— (r2 +2r + 1) < 453, foralln € C.
Now by using (30) we deduce
”To(en) - fn” < ”To(en) - SO(en)” + ”So(en) - fn”
< |ITo — Soll + 2n < 3n, Yn € C. (33)

We also know that [|Sy (e, )|l = r for every n € C. Let us denote by P the orthogonal projection
on H onto the subspace Y generated by {y,: k € B}. For each n € C we have that

r2 < 1S (eI

D alen 1 yOX+ ) anlen | y0x

2

keB keN\B
< D 1@l 1701+ ) lal?(en — Ple) 1302
keB keN\B

< 1P(e)I” + s2lle, — P(e)I’

= IP(e)I* + s2(1 = IP(e)I?) = IP(e)I*(1 — 52) + 52
Hence
r2_ g2 n2(2 — n?)
)2 2 5 =] —-——>1- 0

that is,

2
llen — P(e)l” <n
As a consequence

Pl
PGl

“2 N “P(en) IP(e n)"“ tlle, — P(en)"
= 1= IP(e)NI? + lle, — P(e)II* < 2.

We just checked that
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Pl
PGl

<.2n.

Let us denote é,,: = I;Eznill for each n € C. Then we know that
ép €ESyNYand|é, —e,ll <.2n, foralln € C. (34)
Finally we take the functional x* € K(H)* given by
1
x*=—z b, To(6,) @ &,
ZnEC bnnEC niotm "
It is clear that x* € By p).. It is also clear that [IT, (&)l = 1 forevery n € C, and so
* 1 5 5 *
x*(Ty) = mZnecbn(To(en) | To(en)) =1, hence x™ € SK(H)*- (35)

Now we estimate

D ball =y = | bTo(E) @ &= ) bufy @ e

nec nec nec

D aTo(E) @ = ) baTy(En)’ ® e

nec nec

D baTo(e) @ en— ) baTolen) ® en

nec nec

1D baTolen) ®en— ) bufi ®en

nec nec

<2 Z bn"én - en" + Z bn"To(en) - fn"

nec nec

< )" bu(2/27 +3n) (by (34) and (33))

nec

IA

We have obtained that
lx* — y*Il < 24/2n + 3n.
Finally, in view of (32) we have that
Ix* =zl <Ilx*=y*ll+lly"—z"l

< 2\/2_17 +5n<e.
By (30), (35) and the previous inequality, we can apply Corollary (3.3.13), and this completes
the proof.

Choi and Song [166] proved that there is no version of the Bishop-Phelps-Bollobas
Theorem for bilinear forms. Indeed it happens for £;. Hence, by Theorem (3.3.15) the pair
(£4,%7) does not have the AHSP. Actually we will show that for every infinite-dimensional
L, (u) the pair (L (u), L1(u)*) fails the AHSP.

Proposition (3.3.22)[157]: For every infinite-dimensional space L, (1), the pair (L, (1), L1 (1))
fails the Approximate Hyperplane Series property.

Proof. Since L, (i) is infinite-dimensional, there exists a sequence (4,,),—, of pairwise disjoint
measurable sets with 0 < u(4,) < o for every n € N. Assume that the pair (L, (), L1 (1)")
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has the AHSP. Given 0 < ¢ < %, let 0 < 4,1 < € be the positive real numbers satisfying the
conditions in Definition (3.3.10). Let us choose n € N,n > 2 such that% < min{d, n} and take

n
Z (A)XA and gi = Z XA]'

Jj=1,j*i
for 1 <i < n. Itis clear that f, E SLl(u) and g; € Lo, (u) with [[g;ll , = 1 for every i, where ||
‘[l» denotes the usual norm in Lo, (u). Since 0 < M(Aj) < oo for every j, g; 1s associated to an
element in the unit sphere of L, (). We will denote by x; the element in L, (u)* corresponding
to g; for 1 < i < n. Itis satisfied that

1 n
Xt (fo) = jﬂgifodu= o j Yo dit =
j

j= 1]¢L

1

for i = 1, ...,n. Thus, the convex series Yj-, ;xi satisfies

zn:le‘ (fy=""1s1-¢
LI

i=1
Since we are assuming that the AHSP is satisfied, there exist C € {1, ...,n} and {y;:k € C} C

Si, -+ and f € §;_(,,) such that Card(c) >1-06, llyg —x;ll <e& yp(f) =1, forallk € C, and
If = foll, <&, where II-ll; denotes the usual norm in L, (u). Now let us notice that for every

function h € §;_ (., satisfying |fﬂfhdu| = 1, if for some measurable set A we have ||hyall , <
1, since

1=

fhu| < | hxAllolfidi+ | 1flde =1+ (hxall, = 1) [ 17 xAdg,
Q A Q\4 Q

then it follows that |f|x4 = 0 almost everywhere. In our case, since the support of f is a
countable union of measurable sets of finite measure and every A; has finite measure, if we take
B: = supp f U UJ_; 4;, the restriction of y to Ly (1) is represented by a function hy € Lo, (1)
for every k € C. Hence we have that

yi(f) = f fhedu =1, by, — gill, < llyg —x¢ll < ¢, forallk € C,
Q
and s0 [|hyxa, | < efork € C. Thus fx,, = 0a.e. for every k € C. As a consequence

d
I = ol j foldu = card(C) 1

>1—5>§>€,
Ukec Ak

which is a contradiction
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Chapter 4
Bishop-Phelps-Bollobas Type Theorems and Property

We use the weak *-to-norm fragmentability of weak *-compact subsets of the dual of
Asplund spaces and we need to observe a Urysohn type result producing peak complex-valued
functions in uniform algebras that are small outside a given open set and whose image is inside
a Stolz region. New examples of Banach spaces Y with AHSP are provided. We also obtain that
certain ideals of Asplund operators satisfy the Bishop-Phelps-Bollobas property. We show a
general BPB-type theorem for I'-flat operators acting to a space with ACK,, structure and show
that uniform algebras and spaces with the property f have ACK,, structure. We also study the
stability of the ACK,, structure under some natural Banach space theory operations. We discover
many new examples of spaces Y such that the Bishop-Phelps-Bollobas property for Asplund
operators is valid for all pairs of the form (X,Y).

Section (4.1): Uniform Algebras:

Mathematical optimization is associated to maximizing or minimizing real functions.
James's compactness theorem [193] and Bishop-Phelps's theorem [ 182] are two landmark results
along this line in functional analysis. The former characterizes reflexive Banach spaces X as
those for which continuous linear functionals x* € X* attain their norm in the unit sphere Sy.
The latter establishes that for any Banach space X every continuous linear functional x* € X*
can be approximated (in norm) by linear functionals that attain the norm in Sy. We concerned
with the study of a strengthening of Bishop-Phelps's theorem that mixes ideas of Bollobas [183]
see Theorem (4.1.9) here - and Lindenstrauss [196] - who initiated the study of the Bishop-
Phelps property for bounded operators between Banach spaces. Our starting point is the
following definition brought in by Acosta, Aron, Garcia and Maestre in 2008:

Definition (4.1.1)[177]: ([178]). A pair of Banach spaces (X,Y) is said to have the Bishop-
Phelps-Bollobas property (BPBp for short) if for any € > 0 there exists a §(&g) > 0, such that
forall T € Sy (xy), if o € Sy is such that [|T (xo)[| > 1 — §(¢), then there existuy € Sy and T €
Six,y) satistying

ITu)ll =1, llxg —upll <eand IT-T I<e.

A good number regarding BPBp have been written during the last years, see [180],[ 184],[185].
Very recently, a general result has been proved in [179], that in particular says that pairs of the
form (X, C(K)) do have the BPBp whenever X is an Asplund space and C(K) is the space of
continuous functions defined on a compact Hausdorff space: this result provided the first
examples of pairs of the kind (¢, Y) with BPBp for Y infinite dimensional Banach space. We
extend and sharpen the results of [179] and prove Theorem (4.1.14).

For A = C(K) the above result was proved in [179] with worse estimates. The key points
for the known proof when & = C(K) were, on one hand, the asplundness of T hidden in Lemma
2.3 of [179] that led to a suitable open set U C K and, on the other hand, the Urysohn's lemma
that applied to an arbitrary t, € U produces a function f € C(K) satistying

f(to) =l f llo=1, f(K) < [0,1] and supp(f) < U.
With all this setting, T was explicitly defined by

TGO =f©) -y )+ (1= f(®) TE(®), x EX,t €K, (1
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where y* € Sy- was chosen satisfying, amongst other things, satisfying 1 = [y*(ug)| = lluell
and [lx, — upll S €. The provisos about y* and f were used then to prove that T and T were
close and that that 1 =|| T ll= || Tu,||, but he or she will have to make use of the fact that f(K) c
[0,1]. Once this is said, it becomes clear that the arguments above cannot work for a proof of
Theorem (4.1.14) for a general uniform algebra A < C(K). Certainly, U could be too rigid (for
instance the disk algebra) to allow the construction of f € U peaking at t, and with f(K) c
[0,1]. To overcome

Fig. 1[177]. The Stolz region.
these difficulties we observe in Lemma (4.1.5) below an easy but useful statement about the
existence of peak functions f € U that are small outside an open set and with f(K) contained
in the Stolz region
St,={zeD:|z|+ (1—9)|1—2z| <1},
see Fig. 1.

Let A c C(K) be a unital uniform algebra and [, its Choquet boundary. Then, for every
open set U € K with UNTy # @ and 0 < € < 1, there exist f € A and t, € U N [}, such that
f(to) =l fllo=1,|f(t)] < e foreveryt € K\ U and f(K) c St,, i.e.

Ifl+ @A —-98)1—-f()| <1, forallt € K. (2)
With Lemma (4.1.5) in mind we can appeal at the full power of Lemma 2.3 of [179], that is also
suited for a boundary instead of K, to produce U and then modify the definition of T in (1) with
an auxiliary &' as
TGO =f©O -y ) +A-eN1-f(®) T, x€EX,tEK.  (3)
Here L is linked to €’ and U via Lemma (4.1.5). Inequality (2) allows us to prove again 1 =||
T II= ||Tu,l| and the other thesis in Lemma (4.1.5) imply | T — T II< 2.

The explanations above cover the relevant results and isolate the difficulties we have had
to overcome to prove them. We should stress that our results are proved for unital and non unital
uniform algebras, and that to the best of our knowledge these results are not known even for the
Bishop-Phelps property.

93



Then, We devoted to prove the existence of peak functions for uniform algebras with
values in St;: this is what we observe as our Urysohn type lemmas, see Lemma (4.1.5) and
Lemma (4.1.7), that are needed to establish our main result, Theorem (4.1.14). The difficulty to
prove the existence of peak functions in uniform algebras with values in our needed St; is the
same that when St, is replaced by the closure of any bounded simply connected region with
simple boundary points: for this reason we have observed these general facts too in Proposition
(4.1.8). We devoted to prove Theorem (4.1.14), its preparatives and its consequences.

By letters X and Y we always denote Banach spaces. Unless otherwise stated our Banach
spaces can be real or complex. By and Sy are the closed unit ball and the unit sphere of X. By
X" - respectively X™ - we denote the topological dual - respectively bidual of X. Given a
complex Banach space X we will write X to denote X but with its subjacent real Banach
structure. The weak topology in X is denoted by w, and w* is the weak* topology in X*. L(X,Y)
stands for the space of norm bounded linear operators from X into Y endowed with its usual
norm of uniform convergence on bounded sets of X. A subset B of the dual unit ball By~ is said
to be 1-norming if for every x € X we have || x ||= sup{|x*(x)|: x* € B}. Given a convex subset
C c X we denote by ext (C) the set of extreme points of C, i.e., those points in C that are not
midpoints of non-degenerate segments in C. Given C € X,x* € X* and ¢ > 0 we write

Sx*,C,a):= {y € C:Rex™(y) > supRex*(z) — a}.
zeC
S(x*, C,a) is called a slice of C. In particular, if C € X* and x* = x is taken in the predual X

we say that the slice S(x, C, a) is a w*-slice of C. A classical Choquet's lemma says that for a

convex and w*-compact set C C X~, given a point x* € ext((), the family of w*-slices
{S(x,C,a):a>0,x€X,x" €S(x,C,a)}

forms a neighborhood base of x* in the relative w*-topology of C-see [186].

The letters K and L are reserved to denote compact and locally compact Hausdorff spaces
respectively. C(K) stands for the space of complex-valued continuous functions defined on K
and ||-|l,, denotes the supremum norm on C(K). A uniform algebra is a ||*|| -closed subalgebra
A c C(K) equipped with the supremum norm, that separates the points of K (that is, for every
x # y in K there exists f € A such that (x) # f(y) ). Given x € K, we denote by §,: A — C the
evaluation functional at x given by 6, (f) = f(x), for f € A. The natural injection t: K — A"
defined by [(t) = 6; for t € K is a homeomorphism from K onto (t(K),w*). AsetS c K is
said to be a boundary for the uniform algebra A if for every f € A there exists x € S such that
lf ()| =l f ll. We say that the uniform algebra A € C(K) is unital if the constant function 1
belongs to A. Given x € K we denote by IV, the family of the open sets in K containing x.

In what follows D: = {z € C: |z| < 1} is the open unit disk of the complex plane, D =
{z € C:|z| < 1} is the closed unit disk and T = {z € C: |z| = 1} is the unit circle. By A(D) we
denote the disk algebra, i.e., the uniform subalgebra of C(D) made of functions whose
restrictions to D are analytic. Given z € C and r > 0, we write D(z; 1) - respectively D[z; ] -
to denote the open disk z + rID-respectively the closed disk z + rD.

See [192] for Banach space theory, [187] for Banach algebras, [200] for complex analysis
and [194] for harmonic analysis.

As we mentioned we extend [179] to any uniform algebra. As noted, this result in [179]
depends on Urysohn's lemma, that for a compact K allows us to find for a given x € K and U €
NV, a continuous real valued function of norm one, taking value 1 at x and vanishing on K \ U.
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We cannot use this lemma in the setting of a general uniform algebra A, because the resulting
function does not necessarily belong to A. Therefore, our first task here is to prove a Urysohn
type lemma for uniform algebras on which we can rely on.

Throughout this A is a unital uniform algebra on K. If

Si={x" €A% Ix*l =1,x"(1) =1}, (4)
then Ty = {t € K: 6; € ext(S)} is a boundary for A that is called the Choquet boundary of 4, see
([187], Lemma 4.3.2 and Proposition 4.3.4).

A stronger version of Lemma (4.1.2) below can be proved taking into account that in
unital uniform algebras the Choquet boundary consists exactly of the strong boundary points of
K for the algebra, see [187] (see also Proposition (4.1.8) where this result is applied). We prefer
to state Lemma (4.1.2) as follows because this is exactly what is needed to prove our main result.
On the other hand the proof that we provide makes this part self-contained and our arguments
will be later adapted when proving the corresponding result for non-unital algebras, see Lemma
(4.1.6).

Lemma (4.1.2)[177]: Let A c C(K) be as above. Then, for every open set U € K with U N
Iy # @ and § > 0, there exists f = fs € A and ty € U N T, such that || f ll,= f(t;) =1 and
|f(t)] <6 foreveryt € K\ U.

Proof. Observe first that [(U) is a w*-open set in [(K). Therefore, there exists a w*-open set
V c S such that [(U) =V nIl(K). Fix x € UNT,. Since §, is an extreme point of the w*
compact set S and §, belongs to V c S, Choquet's lemma ensures the existence of f; € A and
r € R such that the w*-slice of S, {x* € S:Re x*(f,) > r}, is included into V N S and contains
0. In particular, Re fo(x) > r and Re f,(t) <rforallt € K\ U.

Note that max,cx Re fo(t) =:m > r and consider g(t): = e/o® for t € K. It is clear that
g € A - see Lemma (4.1.3)-,g(K) c e™D and that g maps K \ U into e" D, i.e., strictly inside
of e™D. Since I is a boundary for A, there exists to € U N I, such that |g(ty)| = e™. Now,
take n € N such that e™"~™ < §. Then, the function defined by

g()
F0 = (g

n
) , fort €K,

is the one that we need.

We also need the following two lemmas that gather some basic and known results about
uniform algebras. Lemma (4.1.4) that we write down without a proof can be proved in several
different easy ways; it also appears as a very particular and straightforward consequence of some
other much stronger result, see for instance Mergelyan's theorem [200].

Lemma (4.1.3)[177]: Let A c C(K) be a uniform algebra, M c C and g: M — C a function that
is the uniform limit of a sequence of complex polynomials restricted to M. For every f € A with
f(K) € M the following statements hold true:

(i) If A is unital, thengo f € A.

(i1) If A is non-unital, 0 € M and g(0) = 0, then g o f € A.
Proof. Let us fix a sequence p,: C — C of polynomials that converges uniformly to g on M. In
case (i), pp o f € Aforn € N and g o f is the uniform limit on K of (p,, © f),,, and therefore
g e f € A. In case (ii), we define q,: = p,, — p,(0) for every n € N. Now, q, o f € Aforn €
N and g o f is the uniform limit on K of (q,, ° f),, and therefore g o f € A.
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Lemma (4.1.4)[177]: Every ¢ € A(D) is the uniform limit of a sequence of complex
polynomials on D.
As already recalled for 0 < € < 1 the Stolz region is defined by
Ster={zeC|z|+(1—-¢)|1—2z| <1}
Let us note that St, is convex, St, € D and 1 is the only point of the unit circle T that belongs
to (the boundary of) St,. Note also that e2ID < St, and therefore 0 is an interior point of St,.
Indeed, for every z € 2D we have that
IzZ| +(1—)|1—z| <2+ (1 -+ <e2+(1—-e)(1+e) =1
Theorem 14.19 of [200] implies that the Stolz region has the following property.

Finally we can prove the auxiliary lemma:

Lemma (4.1.5)[177]: Let A c C(K) be a unital uniform algebra. Then, for every open set U C
KwithUNT, # @and 0 < € < 1, thereexist f € Aand ty, € U N Iy such that f(ty) =l f o=
L|f(t)| <eforeveryt € K\ Uand f(K) c Stg, i.e.

IfO|+@A=-9)1—-f(@)| <1, forallt € K. (5)
Proof. Let ¢ € A(ID) be the function. The set ¢~ 1(2D) c D is an open neighborhood of 0.
Let § > 0 be such that 6D c ¢ 1(e2D) and let f5 be the function of norm one and t, the
corresponding point in U N [, provided by Lemma (4.1.2). Then the function f = ¢ o f is the
one that we need. Indeed, on one hand Lemma (4.1.3) and Lemma (4.1.4) assure us that f € A.
On the other hand, we have that f(K) c St, that gives us inequality (5), and also f(ty) =
¢ (f5(to)) =1 =Il f llo. Finally we have that,

fEN\U) = ¢(fs(K\U)) € $(6D) < £’D < .

Thus, |f(z)| < € for every t € K \ U and the proof is finished.

Throughout this B is a non-unital uniform algebra, that is, a closed subalgebra of C(K),
separating points and with 1 € B. Denote by A:={c1+ f:c € C, f € B} the |I-ll- closed
subalgebra generated by B U {1}. Since the natural embedding of A into the space of continuous
functions on the set of characters of A is an isometry, we can assume without loss of generality
that K is the Gelfand compactum - i.e. set of characters - of A. Consider the Choquet boundary
of A,T(A) c K. Since B is a maximal ideal of A (note that it is 1-codimensional), Gelfand-
Mazur theorem assures us that there exists v € K such that B = {f € A:§,(f) = 0}. Denote
[h =Tp(4) \ {v}. Observe that [}, is a boundary for B. For general background on Gelfand
representation theory see [190].

With a bit of extra work in the proof of Lemma (4.1.2), its non-unital version is proved
below.

Lemma (4.1.6)[177]: Let B c C(K) be as above. Then, for every open set U € K with U N
I #@and § > 0, thereis f € Band ty, € U N T suchthat |l f llo= f(ty) = 1and [f(t)| <6
foreveryt € K\ U.

Proof. Without loss of generality we can assume that v € U. We use the natural identification
of K with [(K) as we did in the proof of Lemma (4.1.2). Let us fix x € U N I. Since x is an
extreme point of S as defined in (4), by Choquet's lemma, there exists a w*-slice of S that
contains x and lies inside U. This slice that can be assumed generated by an element f, € B-
note that 1 is constant on S - is of the form {y* € S : Rey*(f;) > r} for some r € R. So,
Re fo(x) > r, and for every t € K \ U we have Re f,(t) < r and in particular 0 = Re f,(v) <
T.
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Note that max;cgxRe f,(t) =:m > r. Since [, is a boundary for B, there exists a t, €
I, N U such that Re f,(t,) = m. Define g(t) = /o) — 1,¢t € K. Then we have that g € B after
Lemma (4.1.3), g(K) c e™D — 1, and g(K \ U) c e"D — 1, i.e., strictly inside of e™D — 1.
Observe that 0 € e™D — 1 because m >r = Re fy(v) = 0. Now, consider a Mdbius

transformation h(z) = % that conformally maps e™ D — 1 onto D, the boundary of e™D — 1

onto the boundary of D and such that h(0) = 0. Since g(t,) = eofo) — 1 belongs to the
boundary of e™D — 1, its image h(g(ty)) belongs to the boundary of D. Then
()= ((h °9)®)
- \(heog)(to)
for suitable n € N, is the function that we need.

The main result reads as follows:

Lemma (4.1.7)[177]: Let B c C(K) be as in the previous lemmas. Then, for every open set
UcKwithUNnT,# @and 0 < € < 1, there exist f € B and t, € U N I, such that f(t,) =l
fllo=1,|f(t)| < eforeveryt € K\ U and

IfOl+A =81 —=f()| <1, forallt € K.

For our applications to the Bishop-Phelps-Bollobas property we just need the Lemmas
(4.1.5) and (4.1.7) as presented already. We might have realized that our previous arguments
work for arbitrary bounded simply connected region with simple boundary points. Although we
do not need it we complete with a few comments about this general case.

Recall that a boundary point § of a simply connected region ) of C is said to be a simple
boundary point of Q if 8 has the following property: to every sequence (z,), in  such that
z, — B there corresponds a curve y:[0,1] — C and a sequence (t;,),,

0<t; <ty < - <t,<thy <- witht, > 1,
such that y(t,) = z, for every n € N and y([0,1]) < Q, see [200]. All points in the boundary
of D and St, are simple boundary points.

Every bounded simply connected region () such that all points in its boundary 9Q are
simple has the property that every conformal mapping of {1 onto D extends to a homeomorphism
of Q onto D, see [200].

Proposition (4.1.8)[177]: Let A c C(K) be a unital uniform algebra, {1 € C a bounded simply
connected region such that all points in its boundary 9Q are simple. Let us fix two different
points a and b with b € 0Q, a € Q and a neighborhood V, © Q of a. Then, for every open set
U c K with U N T # @ and for every t, € U N [, there exists f € A such that

() f(K) <

(i) £(to) = b

(i) F(K \ U) < V.
Proof. According to [187] any point £, € [}, is a strong boundary point for A and therefore for
every 6 > 0 there exists a function gs € A such that gs(t,) = 1 = [lgsll, and gs(K \ U) c
oD.

n
V' ek

We distinguish two cases for the proof:
Case 1: a € Q. According to [200] we can produce a homeomorphism ¢: D — Q such
that ¢ is a conformal mapping from D onto Q with ¢ (1) = b and ¢(0) = a. Using and adequate
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gs as described above and ¢ the proof goes along the path that we followed in the proof of
Lemma (4.1.5).

Case 2: a € 9Q. Since int(V,) N Q # @ we can take a’ € Q and §’ > 0 such that
D(a’',8") €V, n Q. Now, we apply case 1 to a’, its neighborhood D(a’, §") and b. The thesis
follows.

Needless to say that in the non-unital case other results in the vein of the above proposition
with the right hypothesis could be proved too.

The result below that appears as Theorem 1 in [183] is known nowadays in the literature
as the Bishop-Phelps-Bollobas theorem:

Theorem (4.1.9)[177]: Let X be a Banach space, x5 € Sy~ and x, € Sy suchthat |1 — x5(x,)| <
€2/2 (0 < &£ < 1/2). Then there exists x* € Sy+ that attains the norm at some x € Sy such that
llxg — x*|| < eand ||xy — x|l < € + £2.

It is easily seen that in the real case, if we assume that x;(x,) = 1 — £2/4 then the points x*

and x above can be taken satisfying [|[x; — x™|| < € and [|x, — x|| < €.

Note that a direct application of Brendsted-Rockafellar variational principle, [199], gives
a better result:

Corollary (4.1.10)[177]: Let X be a real Banach space, x; € Sy~ and x, € Sy such that
x5(x0) =1 —€2/2 (0 < £ <+/2). Then there exists x* € Sy+ that attains the norm at some x €
Sx such that

lxg — x*|l < €and [[x, — x| < e.
We remark that in the previous corollary the hypothesis xg(x,) = 1 — £2/2 cannot be weakened
if we still wish to obtain the estimates (6), see [183].

Corollary (4.1.10) is easily extended to the complex case. Recall that given a complex
Banach space X, the canonical map R: X* — (Xg)* defined by Re(x*)(x): = Re x*(x), for x* €
X* and x € X, is an isometry and also an homeomorphism from (X, w*) onto ((Xg)*,w™).
Corollary (4.1.11)[177]: Let X be a Banach space, x; € Sy+ and x, € Sy such that |x5(xy)| =
1—€2/2 (0 < € < V/2). Then there exists x* € Sy~ that attains the norm at some x € Sy such
that

lxg — x*|l < €and [[x, — x|l < e. (6)
Proof. Let us take A € C such that |x3(x,)| = Ax5(x,). Then, we can apply Corollary (4.1.10)
to the norm one real functional R(x;) and the norm one vector Ax,, to obtain u* € S(xg)* and
u € Sy with u*(u) = 1 and such that

lu* — R(xI < gand |lug — Axll < &

Ifwe setx* = R~ 1(u*) and x = 17w, then x* is a norm one complex continuous functional on
X that satisfies |x*(x)| = |A71| = 1. On the other hand ||x, — x| = [[Ax, — ull < . Since R is
an isometry, we deduce that [|x; — x*|| = lIRe(xg) — u*|l < &, and the proof is over.

A complex Banach space X is said to be an Asplund space if its underlying real space Xg
is Asplund, that is, whenever Y is a convex continuous real valued function defined on an open
convex subset U of X, the set of all points of U where 1 is Fréchet differentiable is a dense G-
subset of U. This definition is due to Asplund [181] under the name strong differentiability
space. Combined efforts of Namioka, Phelps and Stegall led to Theorem (4.1.12) below that is
valid both for real and complex Banach spaces. This result already hints at the power of the
concepts involved.
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Theorem (4.1.12)[177]: ([198],[201],[202]). Let X be a Banach space. Then the following
conditions are equivalent:
(1) X is an Asplund space;
(ii)every w*-compact subset of (X*,w™) is fragmented by the norm;
(111) each separable subspace of X has separable dual,;
(iv) X* has the Radon-Nikodym property.
For the notion of the Radon-Nikodym property see [189] and for the concept of fragment
ability see [197].
Anoperator T € L(X,Y) is said to be an Asplund operator if it factors through an Asplund
space,

i.e., there are an Asplund space Z and operators Ty € L(X,Z),T, € L(Z,Y) suchthat =T, o Ty,
see [191],[203]. Note that every weakly compact operator T € W(X,Y) factors through a
reflexive Banach space, see [188], and hence T is an Asplund operator.

A careful reading of [179] together with the fact that (i) & (i1) in Theorem (4.1.12), for
real and complex spaces, should give the tools to establish the validity of the following lemma.
As usual T denotes the adjoint of T
Lemma (4.1.13)[177]: Let T: X — Y be an Asplund operator with ||[T|| = 1 and x, € Sy such

2
that ||[Txqll > 1 — %(0 < &£ <+/2). For any given l-norming set I' € By~ if we write M =
T*(I") then, for every r > 0 there exist:
(i) aw™-openset U, € X* with U, N M # @, and
(ii) points y, € Sy- and u,- € Sy with |y, (u,-)| = 1 such that
2

€
lxo —ul <eand llz- =y || <7 +?+ ¢ forevery z* € U, N M. (7)

We can prove our main result as application of all the above.
Theorem (4.1.14)[177]: Let A c C(K) be a uniform algebra and T: X — U be an Asplund

operator with || T ||= 1. Suppose that 0 < & < v/2 and x, € Sy are such that [|[Tx,l > 1 — ?

Then there exist uy € Sy and an Asplund operator T € S; (x,2) satisfying that

ITuoll =1, llxg —upll < eand I T —T II< 2.
Proof. Fix arbitrary r > 0 and 0 < ¢’ < 1. If 2 = A is unital then take I; = I'(4) the Choquet
boundary of A. If A = B is not unital then change K and take I}y as we did at the beginning. In
any case, we can assume that we are dealing with an Asplund operator T: X - U C
(C(K), Il _II,) for which we can apply Lemma (4.1.13) for Y: = 2, T = {§; € A*: s € T}, r and
€ > 0. We produce the w*-open set U,., the point u, and the functional y,- € Sy« satisfying the
properties in the aforementioned lemma. Since U, N M # @ we can pick s, € [, such that
T*8;, € Ur. The w*-continuity of T* ensures that U ={s € K:T"6s; € U,} is an open
neighborhood of sy. Using Lemma (4.1.5) - or Lemma (4.1.7) in the not unital case - for the
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open set U - that clearly satisfies U N T,y # @ - and &' we obtain a function f € W and t, € U N
[y satisfying

fto) =l f llo=1, 8)
If(t)| <& foreveryt € K\ U (9
and
IfOl+ A —-&)1—f()] <1 foreveryt € K. (10)
Define now the linear operator T: X — U by the formula
TEO®) = FOyr () + (1 — &)1~ f()T() (). (11)

It is easily checked that T is well-defined. Bearing in mind (10) we prove that ||'T"|| < 1. On the
other hand,

. (8) | ~
) 1=y ()l = |Tu)@o)| < 1Tl <1
and therefore T attains the norm at the point uy = u, € Sy for which we already had that
lug — xoll < &.
Now, for every x € By, since I, is a boundary for 2, we have that

ITx = T*, = sup IFO0r () =T (®) — &' (1 = FENT )]
< félrp{lf(t)llyﬁ(X) = T*6: ()] + €11 = FOINIT @)}

(8)
< Surp{lf(t)lllyﬁ — T"6 I} + 2¢”.
ter,
On one hand, since T*6; € U, N M for every t € U N Iy, we deduce that
7 £2
sup |[f(Olllyr =T70ll = 7+ — +e.
teunT,

On the other hand, since t € [y \ U implies t € K \ U, we obtain that

9
sup [f(Olllyy — T 6l < 2¢.
telo\U
Gathering the information of the last three inequalities we conclude that
|IT — T|| < max{4¢’,2¢’ +r + &2/2 + €}
Since r > 0 and 0 < &' < 1 are arbitrary, for suitable values
max{4e’,2e' + 1+ €2/2 + €} < 2e.

To finish the proof we show that T is also an Asplund operator. To this end it suffices to observe
that Asplund operators between Banach spaces form an operator ideal, and that T in (11) appears
as a linear combination of a rank one operator, the operator T and the operator x = f - T’IT"(x).

The latter is the composition of a bounded operator from U into itself with T. Therefore T is an
Asplund operator and the proof is over.
We conclude with a list of remarks concerning the peculiarities and scope of the results
that we have proved here:
R1: If we denote by A the ideal of Asplund operators between Banach spaces and J € A is a
sub-ideal, Theorem (4.1.14) naturally applies for any operator T € (X, ) and the
provided T belongs again to 7(X, ).
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R2: Theorem (4.1.14) applies in particular to the ideals of finite rank operators F, compact
operators K, p-summing operators II,, and of course to the weakly compact operators W
themselves. To the best of our knowledge even in the case W (X, ) the Bishop-Phelps
property that follows from Theorem (4.1.14) is a brand new result.

R3: Let L be a scattered and locally compact space. The space of continuous functions vanishing
at infinity Cy(L) on L endowed with its sup norm |I-|l,, is an Asplund space, see comments
after Corollary 2.6 in [179]. Therefore (Cy(L), %) has the BPBp for any uniform algebra.
More in particular, for any set I the pair, (cy (), 20) has the BPBp. Note that [179] provided
the first example of an infinite dimensional Banach space Y such that (cy,Y) has the
Bishop-Phelps-Bollobas property, namely for any Y = Cy(L) as before. In a different order
of ideas, it has been established in [195] that (cy,Y) has the BPBp for every uniformly
convex Banach space Y.

Section (4.2): Certain Spaces of Operators:

E. Bishop and R. Phelps in [210] proved that every continuous linear functional x* on a
Banach space X can be uniformly approximated on the closed unit ball of X by a continuous
linear functional y* that attains its norm. This result is called the Bishop-Phelps Theorem. B.
Bollobas [211] showed that this approximation can be obtained with the additional property that
the point at which x* almost attains its norm is close in norm to a point at which y* attains its
norm. This is a "quantitative version" of the Bishop-Phelps Theorem, known as the Bishop-
Phelps-Bollobas Theorem.

X and Y will be Banach spaces over the scalar field IK(R or C). As usual, Sy, By and X*
will denote the unit sphere, the closed unit ball, and the (topological) dual of X, respectively.
Theorem (4.2.1)[204]: (Bishop-Phelps-Bollobds Theorem). (See [212].) Let X be a Banach

2
space and 0 < € < 1. Given x € By and x* € Sy- with |1 — x™(x)| < %, there are elements y €

Sy and y* € Sy, suchthat y*(y) = L lly —x ll< eand [ly* — x*[| < &

K will be a compact Hausdorff space and u will be a o-finite measure. Different versions
of the Bishop-Phelps-Bollobas Theorem for operators were proved in [205]. Amongst them it is
shown a characterization of the Banach spaces Y satisfying an analogous result to the Bishop-
Phelps-Bollobas Theorem for operators from #; into Y. There are also positive results for
operators from L;(u) into L[0,1] [208],[214] and for operators from an Asplund space into
C(K) [207]. See also [213],[223],[224]

We provide classes of spaces satisfying a version of the Bishop-Phelps-Bollobas Theorem
for operators. By L(X,Y) we denote the Banach space of bounded linear operators from X into
Y. We need the following definitions.

The next property was introduced in [205].

Definition (4.2.2)[204]: Let X and Y be both real or complex Banach spaces. The pair (X,Y)
satisfies the Bishop-Phelps-Bollobas property for operators if given € > 0, there are n(e) > 0
and B(e) > 0 with lim,_,B(t) = 0 such that for any T € S;(xy), if x, € Sx is such that

ITxoll > 1 —n(e), then there exist a point uy € Sy and an operator S € S,y y) that satisfy the
following conditions:

ISugll = 1, llug — xpll < B(e) and I S—T II< €.
In this case, we also say that the space L(X,Y) has the Bishop-Phelps-Bollobas property.

101



When the operator T (in the definition above) belongs to a certain class, we expect that S also
belongs to the same class. Therefore we introduce the following notion.
Definition (4.2.3)[204]: Let X and Y be both real or complex Banach spaces and M a subspace
of L(X,Y). We say that M satisfies the Bishop-Phelps-Bollobas property if given € > 0, there
is n(&) > 0 such that for any T € Sy, if xy € Sy satisfies that [|[Txyll > 1 —n(¢e), then there
exist a point uy, € Sy and an operator S € S, satisfying the following conditions:
[Supgll =1, lug —xpll < e and IS—-TI<¢

To study the Bishop-Phelps-Bollobas property for operators on ¢, the following
geometric property was introduced in [205].
Definition (4.2.4)[204]: A Banach space X has the approximate hyperplane series property
(AHSP) if for every € > 0 there exist y(¢) > 0 and n(e) > 0 with lim;_,, y(t) = 0 such that
for every sequence (x;) C Sx( or (xx) € By) and every convex series Y1 @, satisfying

(e @)

k=1
there exist a subset D € N, {z,:k € D} c Sy and x* € S+ such that

(1) Xkepax >1—v(e),

(1) lz — xxll < e forall k € D,

(iii)x*(zx) = 1 forall k € D.

Note that X has AHSP if whenever we have a convex series of vectors in By whose norm
is very close to 1, then a preponderance of these vectors are uniformly close to unit vectors that
lie in the same affine hyperplane. For instance, finite-dimensional spaces, uniformly convex
spaces, C(K) and L (u) have AHSP [205].

We characterize the Banach spaces Y such that certain subspaces of operators from L, ()
into Y satisfy the Bishop-Phelps-Bollobas property. As a consequence, we show that the
following conditions are equivalent:

(a) Y satisfies AHSP.

(b) F(L, (), Y) (finite-rank operators) has the Bishop-Phelps-Bollobas property.

(¢) X (L1(w),Y) (compact operators) has the Bishop-Phelps-Bollobas property.
(d)W(L,(n),Y) (weakly compact operators) has the Bishop-Phelps-Bollobas property.
(e) RNV (L1(w),Y) (Radon-Nikodym operators) has the Bishop-Phelps-Bollobas property.

We also deal with the Bishop-Phelps-Bollobas property for Asplund operators. We extend
Theorem 2.4 and Corollary 2.5 of [207] to some spaces of vector valued continuous functions.
As a consequence, we obtain new spaces of operators satisfying the Bishop-Phelps-Bollobas

property. We prove that the pairs (X, (Y, C(K))), (X, W(¥,C(K))). and (X, L(Y,C(K)))

satisfy the Bishop-Phelps-Bollobas property if X is an Asplund space and Y has property a of
Schachermayer [227] (for instance Y = £;). Finally, new examples of spaces having AHSP are
provided, for instance K (X, C(K)) and L(X, C(K)) whenever X is uniformly smooth.

It will be convenient to begin by recalling a few definitions and results related to Radon-
Nikodym operators. Let (Q,Z,u) be a finite measure space. A bounded linear operator
T:Li(p) — Y is said to be representable if there exists g € S;_ ,..y) such that

T(f) = jﬂ gfdy forall f € Ly ()

>1-n(e)
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(see [218], p. 61 or [220], Definition 5.5.15)

We recall that a Radon-Nikodym operator is an operator T: X — Y such that TS is
representable for every operator S:L;(u) = X (see [220], Definition 5.5.12 and Theorem
5.5.19). A bounded operator T: L; (1) = Y is representable if and only if T is a Radon-Nikodym
operator (see [220], Proposition 5.5.18). Also, a Banach space Y has the Radon-Nikodym
property if and only if every operator T: L;(u) = Y is a Radon-Nikodym operator (see [220],
Proposition 5.5.16).

Following [217], an operator ideal 7 is a subclass of the class £ such that for any pair of
Banach spaces (X,Y),J(X,Y) is a subspace of L(X,Y) which contains the finite rank operators
and satisfies the so-called "ideal property". That is, given arbitrary Banach spaces X, Yy, we
have RoeSoT € J(X,Y) forany S in 7(X,,Y,), T in L(X,X,), and R in L(Y,,Y), and for every
Banach spaces X and Y. The operator ideal J is said to be closed if the subspace 7(X,Y) is closed
in L(X,Y) for all Banach spaces X and Y

As mentioned above, we denote by RN the closed operator ideal of all Radon-Nikodym
operators. Also we have F € K € W € RN (see [220], Proposition 5.5.20)

The elementary result below will be useful.

Lemma (4.2.5)[204]: (See [205], Lemma 3.3.) Let (c,,) be a sequence of complex numbers with
|c,| < 1 for every n, and let n > 0 be such that for some convex series Y., @y, Re Ymeq pCpp >
1 — 1. Then for every 0 < r < 1, the set D: = {i € N: Re ¢; > r}, satisfies the estimate

n
S 1 —
Zal/ 1—7r

ieD
The following result is a refinement of [214].
Proposition (4.2.6)[204]: Let (£,%,u) be a measure space such that L;(u) is infinite-
dimensional, Y a Banach space, and M a subspace of L(L,(u),Y) containing all finite-rank
operators. If M has the Bishop-Phelps-Bollobas property, then Y has AHSP
Proof. For every € > 0 there exists (&) > 0 satistfying Definition (4.2.3).

Now, given 0 < ¢ < %, we will prove that Y satisfies AHSP for the functions 77(¢) =

min{n (%), e} and y given by
y(e):=8s(1—¢)+e+e3(1 —¢). (12)
It is clear that y (&) > 0 and lim,_,,y(€) = 0 as it is required in Definition (4.2.4).
Let (y,) be a sequence in Sy and a convex series Y., @, satisfying

(e @)

Z AnYn| = 1- 77(5)
n=1
Fix N such that
N
Zanyn >1-n(e)>1—-e>0. (13)
N n=1
If we write &,, = SN ar then
N N N
D ae > @] >1-n() and Y a =1 (14)
k=1 k=1 k=1
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By assumption, there is a sequence (E,,) of pairwise disjoint subsets in X satisfying 0 < u(E,) <
oo for each n. For every positive integer n, let x, be the functional on L, (u) associated to yg_,
that is,

(D= | fd(f € L)
E‘)’L
Now we define the finite-rank operator (therefore in M)T: L, (u) — Y by
N

T(H) =) 5 (f € La(w)
=1
Note that | T II< 1 and ||T(xg, )| = ¥, |, forallk <N, thenT € Sy.

XEk

Define fo: = ERo1@s By (14),1foll, =1 and IT(R)I = Ik @yell > 1 -

n(e3). Since M has the Bishop-Phelps-Bollobas property, there exist g, € Sy, and S € Sy
satisfying

ISgoll =1, llgo — foll; < e and IS —TI< &3, (15)
Proceeding as in [214] we obtain

N
Z Re x;(go) > 1 — &3. (16)
k=1

2
Lets=1— %and D:=1{k e N:k < N,Rex,(go) > sx;(lgo])}. By (16) and following
the proof of [214] we obtain

£
Z Rexx(go) > 1— 1

k€D

3

=1-8¢> 0. (17)

Thus D + @.
Combining (17) and (15) and using ¢ < %We deduce that
Z &, > Z Re x;(go) — gy — foll, > 1 — 8¢ — gy — foll, > 1 — 8 — &3 > 0.

keD keD
By (13) and the previous inequality

N
> = (Z dk> (Z ak> > (1- 8¢ — £3)(1 — ()
kKED keD k=1

>(1-8s—e3)(1—-¢)=1-y(e)
Therefore, condition (1) of Definition (4.2.4) is satisfied. Now, note that for a complex number
w with |w| < 1 and Rew > r > 0 it is satisfied |1 —w|? = 1 + |w|?> —2Rew < 2(1 —1). So
for every k € D we have

1 i (o) | <2(1-5) e (18)
-~ —S)=—.
x (1901 4
For k € N we define z;, = S <xg*(2|XgEkD> if x;,(|gol) # 0 and 0 otherwise. In particular, ||z, || < 1
k 0

for every k. We write Q; = Q \ Uy, E). Let us notice that go = Y321 90Xk, + JoXa, and the
series 1s norm convergent. Then

104



(e @)

5(g0) = Z S(goXEk) + 5(90)(91) = Z X (1goDzx + 5(90)(91)
k=1

k=1
By the Hahn-Banach Theorem, there is a functional y* € Sy« attaining its norm at S(g,). Then

1=y*(5(g0)) = Z x(1goDy*(z) + y* (5(90)(91))

> (.

)
k=1
y*(zx) =1 for all k € N with x;(|go]) # 0
In particular, z;, € Sy for k € D and condition (iii) of Definition (4.2.4) is also satisfied.
gOXEk

x1(go)
k € D we deduce that
x*

|go|dﬂ> + [ goxa,ll = lgoll, = 1

k
Therefore

Now for every k € D we have that x,(g,) # 0 and T < ) = V. Hence by (15) for every

Z - * * *
K xlgoD x:(goD) " \x;UgoD
Finally, by (18), for every k € D we obtain
x*
+ . < 1 (9o) 1) -

x(go) _
x (190D

€
3

— Y et +z<¢

xx (190D -

lzxe — yiell < >
and Y has AHSP.
Improving [214], we give a partial converse of Proposition (4.2.6).

Theorem (4.2.7)[204]: Let (Q, X, u) be a finite measure space, Y a Banach space with AHSP
and M a subspace of L(L;(u),Y) such that contains all finite-rank operators and it is contained
in the subspace of all representable operators. Also, assume that the operator S, (f) = S(fx4)
belongs to M whenever S € M and A is any measurable subset of (). Then M has the Bishop-
Phelps-Bollobas property for operators.

Proof. By assumption Y has AHSP; let y and n be the functions satisfying Definition (4.2.4).

Given 0 < € < 1, we choose 0 < § < g such that 0 <y (§) < g and 0 < §' < min E,%&}.

Define p(¢): = %5) and assume that T € Sy and f; € S; () satisfy that [T foll > 1 — p(e).

There is a function h € L, (1) such that |h(t)| = 1 for every t € () and satisfying also that
h(t) fo(t) = |fo(t)| for every t € Q. Now we define a surjective linear isometry : L; (1) =

L1(u) given by

Zk

V() =hf (f € Li(w)),
that satisfies Y(fy)(t) € R for every t € Q

We write R = Ty~ ! and uy = Y (f;). Clearly, we have [|[R(ug)ll = IT(f)ll > 1 — p(e),
with uy € Sy () nonnegative and R € Sy () v)

Since T is a representable operator, R is also representable. So there is g € Lo, (1, Y) such
that

R(F) = jﬂ gfdu forall f € Ly ()
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By [218], g also satisfies that ||g|l. = |[R|| = 1. By [218], there exist a measurable function
h: Q - Y, whose range is countable, and a y-null subset E of Q such that [| (g — R) xa\ell , < Z.

Write h = Y7 1 xg Wy (pointwise convergence) with (w,) €Y and (B,) a sequence of

pairwise disjoint measurable sets of Q with U,,B,, = Q. Hence, fixed n € N and s,t € B, \ E
we have

5
lg(s) = gl < llg(s) = ()l + 1h(s) — hOIl + IR () — g (Ol <5
Both functions g and gy g\ g represent R, then we may assume that
£
lg(s) —g@®)I < 5 forall s,t € B, and n € N. (19)

By the Monotone Convergence Theorem the sequence (uo Xur_, Bk) converges to ug in L, ().
Since 1 — p(&) < [[R(ugp)ll, for some m large enough we have
1—-p(e) < ||R(u0)(u}?=1 Bk)" and |luo — UoXum, Bk" <4 (20)
We write B = UjZ; By. Since u, is a non-negative function in S;_(,», there is a non-negative
simple function v, in B, (,) with support contained in B satisfying [lvg — uoxsll < &' and
Vo

lvoll = llugxgll and so 0 <1 — 6" < llvgll < 1. The element s, = — belongs to St 1ts

lvgll
support is contained in B and also satisfies that

lIso — uoxsll < liso — voll + lvg — ugxsll = 1 = llvgll + llvg — upxgll < 26’
£ 1(5)

35 (1)

Hence, there is a finite number of pairwise disjoint measurable sets in B, {4, ..., Ay}, such that

sy belongs to the space generated by {XAi: 1<igKN }

Let {C;:1 < i < p} be the family of pairwise disjoint measurable subsets obtained by
indexing the set{4; N Bj:1 < i < N,1 <j <m,u(4; n B;) > 0}. Write s, = Y\ _; Bx Xc, With
Bic > 0 and Tje_, Brp(Cie) = lisoll = 1.

From (20) and (21) we obtain that
1n(5) n(5)

1-n()=1-p(e) - 5 < IRCuoxp)ll = —== < IIR(sp)l

2
> o (225)

Since R € S, (uyy) Yk = R ( e ) € By for 1 < k < p and

< min{

p(Cr)
p
1=1(8) < | Ben(COv (22)
k=1
Observe that by (19), for every k < p and t € C}, we have that
g gw)
t) — | = du(u) — du(u
"g() kaCk( )" c .u(Ck) ‘Ll( ) . .U(Ck) ‘Ll( )
Il g(®) —gQ) | £
< du(u) < —=. 23
jc ey <5 (23)
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Since Y has AHSP and Y% _, B p(Cy) = 1, by (22), there are sets D < {1, ...,p}, {z;: k € D}
Sy and y* € Sy~ satisfying

y*(zi) =1, Iz — yxll < 8 forallk € D and Z Biu(Cy) >1—y(8) > 0.(24)

keD
Now define the function g,: Q1 = Y givenby g1 = gxq \ € + YkepZkXc,, Where C = Uyep Ci.

It is clear that g; € B;_ (. v)- By (23) and (24), we have

&
191 = gl = 1091 = Dxcll, <5+ <e.

Let R; be the element in L(L,(w),Y) associated to g;. Then [|R,|l < 1 and
IRy = RIl =19, —gll, <e. (25)
Let s1 = Ykep Bk Xc,» Which by (24) is nonzero and satisfies

Isall = > Ben(C) = ¥° <2 ﬁku(ck)zk> =y (Ru(s0)) < Iy“ IR Mlis; N = lsy

keD keD
Then, ||IR,|| < 1 and R, attains its norm at s, = 2L By (20), (21) and (24) we have

sl

+ lIsy = Soll + llso — uoll = 1 — lisyll|

I I < ||—S1
S2 — Uy S -5
151

+ ) RGO + lso = uol

k<p,ké&D
< 2 Z Breu(Ci) + lso — uoxgll + llugxs — uoll
k<p,ké&D
5
< 2y(6) +§+6’ <&
Now, define T; = R,y and f, = ¥~ 1s,. Since ¥ is an isometry, T; € Scw, oy f2 € Si, ) and
T; attains its norm at f,. By (25), IT; — Tl = IR, — RIl < &, also ||[f;, — foll < €.

Let us notice that R; — R is the operator associated to the function g; — g. Hence, for
every f € L;(u) we have

(R —R)(f) =Ry — R)(fxc) = Z <j
kep " Ck
where R-(f) = R(f xc) and S is the finite-rank operator given by S(f) = Yxep (fckfdu) Zp.

Hence

fd#)zk —R(fxc) =SU) = Re(f)

T,—T=@R,—R)Y=(S—RY. (26)
To show that T; € M note that
Re(W(f)) = Re(hf) = R(hfxc) = T(Y ™ (hf xc)) = T(hhfxc) = Tc(f),
where h stands for the conjugate of h.
Now, the hypothesis on M implies that R o 1 also belongs to M. On the other hand, M
contains all finite-rank operators, thus (26) gives that T; is in M. Therefore M has the Bishop-
Phelps-Bollobas property.
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As a consequence of Theorem (4.2.7), if J is an operator ideal such that 7(L,(u),Y)
RN (Ly(u),Y), Y has AHSP and u is any finite measure, then the space (L, (w),Y) satisfies
the Bishop-Phelps-Bollobas property. By Proposition (4.2.6), we deduce the following:
Corollary (4.2.8)[204]: Let Y be a Banach space and (£, %, u) a finite measure space such that
L1 (w) is infinitedimensional. The following conditions are equivalent:

(a) Y satisfies AHSP

(b) F(L,(),Y) has the Bishop-Phelps-Bollobas property.
(¢) X (L1(w),Y) has the Bishop-Phelps-Bollobas property.
(d)W(L,(w),Y) has the Bishop-Phelps-Bollobas property.
(e) RNV (L1(w),Y) has the Bishop-Phelps-Bollobas property.

There are very different Banach spaces having AHSP. For instance, finite-dimensional
spaces, uniformly convex spaces, C(K),L,;(u) (uo-finite) and K (H)*(K(H) = compact
operators on a Hilbert space) satisfy this property (see [205] and [206]). Also every lush space
has AHSP [215] (see also [213]). We will provide later some examples of spaces of operators
satisfying AHSP.

We recall that an operator T € L(X,Y) is said to be an Asplund operator if T* is a Radon-
Nikodym operator (see [220], Definition 5.5.22). We denote by A the closed operator ideal of
all Asplund operators.

A Banach space Y is said to have property 8 (of Lindenstrauss [225]) if there are two sets
{yp:a € A} Sy, {y;:a € A} € Sy« and 0 < p < 1 such that the following conditions hold

@) Ya (Vo) =1,
®) [ya(y)| <p <tlifa =y
©) Iy lI=sup{lys(W|:a € A}, forally € Y.

Aron, Cascales and Kozhushkina in ([207], Theorem 2.4 and Corollary 2.5) proved that
A(X,C(K)) has the Bishop-Phelps-Bollobés property. We extend this result to some spaces of
vector-valued continuous functions C(K,Y) (Theorem (4.2.9)).

In general, it is known that not every operator into a C(K) space can be approximated by
norm attaining operators (see [226], Theorem A or [222], Corollary 2). Moreover, in view of
[209], we have to introduce some restrictions on Y in order to get a positive result of Bishop-
Phelps-Bollobas property for operators into C(K,Y)

We recall that a subspace Z of Y™ is said to be norming for Y, if for every y € Y, we have
Il y I=sup{|¢(¥)|: ¢ € B;} for any y € Y. We also say that a subset C of Y* is 1 — norming,
if | y l=sup{|¢(y)|:¢ € C} for every y € Y. We denote by a(Y,Z) the topology on Y of
pointwise convergence on Z. If Z is any norming subspace for Y and 7 is any linear topology on
Y with a(Y,Z) c T € n where n is the norm topology then C (K, (Y, 7)) is a Banach space with
the norm induced by £, (K,Y). Also C(K, (Y, 1)) is stable under products by elements of C (K)
Theorem (4.2.9)[204]: Let Y be a Banach space satisfying property [ for the subset of
functionals A = {y, : @ € A} and Z the closed subspace of Y* generated by A. Let T be a linear
topology on Y with o(Y,Z) € 7 € n. Then for every closed operator ideal 7 such that 7 € A,
we have that 7(X, C(K, (Y, 1))) has the BishopPhelps-Bollobas property for every Banach space
X and every compact Hausdorff topological space K.

Proof. Let us fix T in the unit sphere of (X, C(K, (Y,7))),0 < € < 1 and x, € Sy such that
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2

€
ITCGeodll > 1 - ”y

We will prove that there exist uy € Sy and R in the unit sphere of 7(X, C(K, (Y, 1))) such that
IRGI =1, Tty = xol < & and IR =T < & (3 + 18_—pp)
where p is the constant appearing in the definition of property f.
Since Y has property S, the set
B:={5; ®y;:t EK,a € A}
is a 1-norming subset of B¢k (v,7))*- By [207] one can find a w*-open subset U of X* so that
UNT*(B) # @ and two elements u, € Sy, uy € Sy- such that
uy(ug) =1, llug — xpll < € and |lx* —ugll < 3¢ forallx* e UNT*(B). (27)
Since U N T*(B) is nonempty, we can find some t;, € K and a, € A such that T*(5t0 0% )’;0) €
U. Consider the set
W:={teK:T"(6; ®a,) €U}
which is open and contains t,.

By Urysohn's Lemma, there is a continuous function f: K — [0,1] whose support is
contained in W such that f(t,) = 1. Define the operator S: X - C(K, (Y, 1)) by

SE() =T @) + (A +Mug@) = T (5 ® ¥a,)())F ()Y, (x € X, t € K)
where n = fi—’;. The operator S is clearly bounded and linear.

Our aim now is to show that S belongs to 7(X,C(K, (X,7))). In order to do that, we
consider the bounded linear operators R:X — C(K,(Y,7)) and F,Mq:C(K,(Y,7)) -

C(K, (Y, 7)) given by
R) (@) = (1 + Mug(X)f (t)Ya, (x € X,t € K)
M (9)(t) = f()g(t) and F(g)(t) = Ya,(9())Ye, (g € C(K,(Y,1)),t € K)
It is clearly satisfied that S =T + R — F o Mg o T. Since J is an operator ideal we have
that the rank-one operators R, F o My o T and so S belong to 7(X, C(K, (Y, 1))).
We will check that ||S]| = IS(ug)l = 1 + 1. Indeed, we have that

Yao (So)(t0)) = (1 + Mug(ug) = 1 +1. (28)
On the one hand, for t € K \ W we know that f(t) = 0, so S(x)(t) = T(x)(t), hence
IS(x) ()|l < 1 forall x € By. (29)

On the other hand, if t € W we distinguish two cases to estimate |y, (S(x)(t))].
For ¢ = ay we obtain that

Yay S| = [ya, (TE(®) + ((1 +mug(x) = T*(8¢ ® ¥a, ) () ®)]
= |(1 = fF(©))Ya,(TCE) + (1 + Mug(x)f (£)
< | = F0)Ya, TE®) + fF (O ()] + nlug ()] < 1+ 7, (30)
since (1 — f(£))Ya,(T()()) + f(H)ug(x) is a convex combination of yg (T(x)(t)) and

Uy (x).
For @ € A\ {a,}, since t is in W, by (27) we know that [uy — T*(6; ® yc’;o)" < 3.
Thus,
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YaSEE)] < e + |(us = T* (8 ® ya,)) @) + nus )| [ya (e, )IF ©)
<1+Q@Be+n)p<1+n. (31)
By (29), (30) and (31), we have that [|S|| < 1+ n and by (28) we obtain [|S|| =1+ n and

1S Quo)ll = 1+ 7. We will check that [|S — Tl < & (3 + i—”p) Ift € K\ W then S(x)(¢) =
T(x)(t). If t € W then by (27)
1S@)(®) = TEY O = | (A + Mg o) = T (8 ® ¥, (X)) ) F ()|

x ]

S
IR =TI < |z =] + 1S =7l = (= si) + s = 71

<77+€<3+14Tpp> = £<3+18Tpp>
which completes the proof.

We provide examples of pairs of Banach spaces with the Bishop-Phelps-Bollobas
property for operators. Recall that the spaces C(K,Y™),C (K , (YT, W)) and C (K , (YT, W*)) can
be isometrically identified with K (Y, C(K)), W(Y,C(K)) and L(Y,C(K)), respectively (see
[219], Theorem VIL.7.1, p. 490). It is also known that L(X,Y) = A(X,Y) whenever X is an
Asplund space. The following property will be required.

A Banach space Y is said to have property a (of Schachermayer) if there are two sets
{yp:a € A} Sy, {y;:a € A} € Sy« and 0 < p < 1 such that the following conditions hold

@) ys(y,) =1foralla € A
®|yay)|<p<lfora,yeMazy
(c) the unit ball of Y is the closed, circled convex hull of {y,: a € A}

For every set A the space £1(A) has property a. Property «a is quite general if we admit
equivalent norms (see [227] and [221] ). It is clear that Y™ has property S whenever Y has
property a. Hence, we obtain the following corollary:

Corollary (4.2.10)[204]: Let X be an Asplund space and Y a Banach space satisfying property
a. Then (X, (Y,C(K))), (X, W(Y,C(K))), and (X,L(Y,C(K))) have the Bishop-Phelps-
Bollobas property for operators for every compact Hausdorff topological space K.

It is known that uniformly convex spaces have AHSP (see [205], Proposition 3.8). Hence
X" has AHSP whenever X is uniformly smooth. We will generalize this fact by providing some
spaces of operators satisfying the same property.

We recall that a Banach space X is uniformly convex if for every € > 0 there is 0 < § <
1 such that

llu + vl

u,v € By, >1—-60= |lu—v|<e

In such a case, the modulus of convexity of X is given by
. lu + vl
6(e):=inf{1 —

U, VE By, lu—vl> E}.
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Given a (non-empty) bounded subset A of X, an element x* € X* and a > 0, the slice S(4, x*, a)
is the subset of A given by
S(A,x*, a):= {z € A:Rex*(z) > supRex™(x) — a}.
X€EA
The following elementary fact will be useful below.

Lemma (4.2.11)[204]: (See [206], Lemma 2.1.) If X is uniformly convex, then for every € > 0,
diam S(By, x*,8(¢)) < € forall x* € Sy~

Theorem (4.2.12)[204]: Let X be a uniformly convex Banach space and t be a linear topology

on X satisfying w € t € n. Then the space C(K, (X, t)) has AHSP for any compact Hausdorff

topological space K.

Proof. We write Y = C(K, (X, 7)) and denote by & the modulus of convexity of X. Take

(fi)i, € By and a finite convex series ;- a; satisfying
n

Z a;f;

i=1

>1—¢&6(¢).

Choose x5 € Sx+ and t, € K so that

n

i ) @filt) | > 1- )
i=1
By Lemma (4.2.5), the set D:={1<i<n : Rexj(fi(t,)) >1—58(e)} satisfies that
Ykep @x > 1 — €. Consider the subset U of K given by

U= 7 (5B x5 6()))
ieD

Since w € 1, U is open and it clearly contains t,. By Urysohn's Lemma, there exists a continuous
function ¢: K — [0,1] with supp(¢) < U and ¢(t,) =1

By assumption X is reflexive, so there is x, € Sy so that x5(x,) = 1. For each i € D,
define g; € By by

gi = ¢xo + (1= 9)f;

For i € D, we have that g;(t,) = x, and by Lemma (4.2.11) we obtain

lg: = fil =1lpCxo -1 - Ol < Stggllxo — fi@®l

< diam S(By, x5,6(¢)) < €
On the other hand, the element xg © 8, belongs to Sy« and (x5 o 6t0)(gi) = x5(gi(to)) = 1 for
everyi € D.

C(K,X) has AHSP whenever X also satisfies AHSP [216]. As we already noticed,
sometimes vector-valued spaces of continuous functions can be identified with spaces of
operators. Hence, we deduce the following result.

Corollary (4.2.13)[204]: Let X be a Banach space whose dual has AHSP. Then the space
K (X,C(K)) has AHSP for every compact Hausdorff topological space K.

The above corollary implies that L(X, C(K)) has AHSP for any finite-dimensional space
X. It is a natural question whether or not there are infinite-dimensional spaces with the previous
property. The answer is positive since it is not difficult to show that for every set I, the space
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(Die1Y)e,, has AHSP whenever Y satisfies AHSP. Hence the space L(£1,Y) = (@penY), has
also AHSP. We will provide another example that follows from the main result.

Corollary (4.2.14)[204]: The spaces L(X,C(K)) and K (X,C(K)) have AHSP for every
uniformly smooth Banach space X and every compact Hausdorff topological space K.

Section (4.3): I'-Flatness and Operators:

X, Y are Banach spaces (real or complex), K stands for the field of scalars R or C, L(X,Y)
is the space of all bounded linear operators T: X = Y, L(X) = L(X, X), By and Sy denote the
closed unit ball and the unit sphere of X, respectively and aco A stands for the absolute convex
hull of the set A.

According to [229], a pair (X,Y) has the Bishop-Phelps-Bollobas property (BPB
property) for operators if for every € > 0 there exists 6 (&) > 0 such that for every operator T €
L(X,Y) of norm 1, if x, € Sy is such that [|T(x,)|l > 1 — 6(¢), then there exist u, € Sy and
S € Sp(x,y) satisfying [IS(ug)ll = 1, lxg —upll < e,and I T — S lI< &.

If an analogous definition is valid for operators T,S from a subspace J < L(X,Y), then
we say that (X, Y) has the Bishop-Phelps-Bollobas property for operators from J.

The original Bishop-Phelps-Bollobés theorem [236] says that for every X, the pair (X, K)
has the BPB property for operators. Also, see Acosta, Aron, Garcia, and Maestre [229], if Y has
the Lindenstrauss' property f3, then for every Banach space X the pair (X,Y) has the Bishop-
Phelps-Bollobas property for operators.

In 2011 Aron, Cascales, and Kozhushkina [232] showed that for every X and every
compact Hausdorff space K the pair (X, C(K)) has the BPB property for Asplund operators. In
2013 Cascales, Guirao and Kadets [237] extended this result to uniform algebras A < C(K).
The exact statement of the last result is given below.

Theorem (4.3.1)[228]: ([237], Theorem 3.6). Let A < C(K) be a uniform algebra and T: X —

A be an Asplund operator with ||T|| = 1. Suppose that 0 < &€ < v/2 and x, € Sy are such that
2
ITxoll > 1— % Then there exist uy € Sy and an Asplund operator § € S, (x 4 satisfying that:

[Supgll =1, llxg —upll < e and IT—S II< 2¢.
In the same vein, Acosta, Becerra Guerrero, Garcia, Kim, and Maestre [230] generalized [232]
to some spaces of continuous vector-valued functions.

We extend all these results to a wider class of Banach spaces and to a wider class of
operators. The main difference of our approach is that instead of proving a Bishop-Phelps-
Bollobas kind theorem for each space separately (and thus repeating essential parts of the proof
many times), we introduce a new Banach space property (called ACK,, structure) which extracts
all the useful technicalities for the BPB type of approximation. We prove a general Bishop-
Phelps-Bollobas type theorem for I'-flat operators (see Definition (4.3.8)) acting to a space with
ACK,, structure and show that uniform algebras and spaces with the property f have ACK,

structure. After that, we study the stability of the ACK,, structure under some natural Banach

space theory operations which as a consequence gives us a wide collection of examples of pairs
(X,Y) possessing the BPB property for Asplund operators.

We collect the necessary definitions (in particular that of Asplund operators and of I'-flat
operators) and prove an important Basic Lemma. We introduce the central concept of ACK,,

structure and prove a general BPB type theorem for this class of Banach spaces. Finally, we
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perform the announced study of spaces with ACK,, structure which, on the one hand, gives a
unified proof of several results from [229],[230],[232] and [237], and on the other hand, leads
to new BPB type theorems in concrete spaces.

For the non-defined notions used through, see [240].

Let (B, ) be a topological space, p be a metric on B (possibly, not related with 7). B is
said to be fragmented by p, if for every non-empty subset A C B and for every € > 0 there exists
a t-open U such that UNA # @ and diam(U N A) < &. Some important examples of
fragmented topological spaces come from Banach space theory. For instance, every weakly
compact subset of a Banach space is fragmented by the norm (i.e., by the metric p(x,y) =Il x —
v ), see [244].

A Banach space X is called an Asplund space if, whenever f is a convex continuous
function defined on an open subset U of X, the set of all points of U where f is Fréchet
differentiable is a dense Gg-subset of U. This definition is due to Asplund [231] under the name
strong differentiability space. This concept has multiple characterizations via topology or
measure theory, as in the following:

Theorem (4.3.2)[228]: ([245],[249],]22],[251]). Let X be a Banach space. Then the following
conditions are equivalent:

(1) X 1s an Asplund space;

(ii) every w*-compact subset of (X, w™) is fragmented by the norm;

(111) each separable subspace of X has separable dual;

(iv) X* has the Radon-Nikodym property.

According to the above, every reflexive space and every separable space whose dual is
separable is an Asplund space. Classical example of Asplund spaces are L, and £, with 1 <
p < oo, and also c,; examples of spaces that are not Asplund are C[0,1],#;, €, L1[0,1] and
L»[0,1], see [239].

Definition (4.3.3)[228]: (]251]). An operator T € L(X,Y) is said to be an Asplund operator if it
factors through an Asplund space, i.e., there exist an Asplund Banach space Z and operators
T, €L(X,Z), T, € L(Z,Y) suchthat =T, o T}.

Compact and weakly compact operators are Asplund operators (every weakly compact
operator factorizes through a reflexive space).

Theorem (4.3.2) yields the following result:

Definition (4.3.4)[228]: Let Y be a Banach space. Y is said to have the BishopPhelps-Bollobas
property for Asplund operators (A-BPBp for short) if for every € > 0 there exists 6(¢) > 0,
such that for every Banach space X and every Asplund operator T € S (x y), if xo € Sy is such

that [IT (xo) |l > 1 — &§(¢), then there exist uy € Sy and S € Sy v, satisfying

ISu)ll = 1, llxg —upll < eand I T —S II<e.
Definition (4.3.5)[228]: ([241]). Let A and B be topological spaces. A function f: A — B is said
to be quasi-continuous, if for every non-empty open subset U C A, every z € U and every
neighborhood V of f(z) there exists a non-empty open subset W < U such that f(W) c V.
Note that a similar concept of fragmentability of maps was introduced in [242].

Definition (4.3.6)[228]: Let A be a topological space and (M, d) be a metric space. A function
f:A = M is said to be openly fragmented, if for every nonempty open subset U C A and every
€ > 0 there exists a non-empty open subset V ¢ U with d — diam(f(V)) < .
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Every continuous or quasi-continuous function f:A — M is openly fragmented. In
particular, if A is a discrete topological space then every f: A - M is openly fragmented. For
every metric space M, every left continuous f:[0,1] = M and every right-continuous function
f:10,1] - M are openly fragmented. Every f: A - M with a dense set of continuity points is
openly fragmented. Every separately continuous function of two variables f:[0,1] X [0,1] - M
1s quasi-continuous [234] and, consequently, openly fragmented. Some other easy but useful
examples are given in the following theorem:

Theorem (4.3.7)[228]: Let A, B be topological spaces, p be a metric on B (possibly, not related
with the original topology), and f: A — B be a function.
(1) IfB is fragmented by p, and f is continuous in the original topologies, then f: A = (B, p)
is openly fragmented.
(ii) If A is fragmented by some metric p; and f: (4, p;) — (B, p) is uniformly continuous,
then f: A = (B, p) is openly fragmented.
Let, moreover, (B, lI-ll) be a Banach space. Then
(i) If f,g:A - (B,lI-ll) are openly fragmented then f + g:A — (B,|ll) is openly
fragmented.
(iv) If f:A - (B, II'll) and g: A — K are openly fragmented then gf: A — (B, ll-ll) is openly
fragmented.

The statements (i1), (ii1) and (iv) are routine.

Definition (4.3.8)[228]: Let X, Y be Banach spaces and ' © Y. An operator T € L(X,Y) is said
to be I'-flat, if T*|p: (T,w*) = (X*, |I-llx+) is openly fragmented. In other words, for every w*-
open subset U € Y™ with U N T # @ and every € > 0 there exists a w*-open subset V ¢ U with
V N T # @ such that diam(T*(V NT)) < €. The set of all I'-flat operators in L(X,Y) will be
denoted by FI-(X,Y).

Statements (iii) and (iv) of the previous theorem imply that Fl(X,Y) is a linear subspace
of L(X,Y). Let us list some examples of I-flat operators.

Example (4.3.9)[228]: Every Asplund operator T € L(X,Y) is I'-flat for every I' € By+. This
follows from Theorem (4.3.7), (1).

Example (4.3.10)[228]: If (I',w*) c Y™* is norm fragmented, then every bounded operator in
L(X,Y) is I'-flat (Theorem (4.3.7), (i1)). In particular, we have the next concrete example.
Example (4.3.11)[228]: If (I, w*) c Y™ is discrete, then every operator T € L(X,Y) is I'-flat.

The notion of I'-flat generalizes the property of Asplund operators that allowed to prove
[232]. The immediate generalization of that lemma is the following result:

The proof of this fact is a modification of that of [232]. First, we use the following fact:
Proposition (4.3.12)[228]: (|[247], Corollary 2.2). Let X be a real Banach space, z* € Sy, z €
Sx,m >0 and z*(z) = 1 — 7. Then for every k € (0,1) there exist y* € Sy~ and u € Sy such
that

y' @ =1, lz-ul<y, Iz =yl < 2k
In the next proposition, we relax the condition z* € Sy allowing [|z*|| to be smaller than 1. Note
that x* plays the role of z*.
Proposition (4.3.13)[228]: Let X be a Banach space, € € (0,2/3),x € Sy, x* € By- and

|x*(x)|] = 1 — €. Then, for every k € [2(18_8), 1) there exist y* € Sy+ and u € Sy such that
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ly'@l=1 llx—u II<— lx* — y*Il < 2k.
Proof. Without loss of generality we can assume that x*(x) = 1—¢€. Then [Ix*]| = 1 — €. Set
z':=x"/lx*l,zz=x. Then z*(z) =1 —nforn =1— (1 — &)lx*I"! € [0,£]. If n = 0, then
z*(z) = 1, so we can take y* = z* and u = x, which satisfy the inequalities we want. So we
may assume that 0 <7 < €. Set ky: = k?n € (0,1). So, according to Proposition (4.3.12), there
exist y* € Sy- and u € Sy such that

* n * *
Y@ =1 lz-uls =, 2" =yl < 2ko.
0
Therefore, || x — u I< n/k, = £/k. Also, we have

*
™l

2k 1—¢
=1—||x*||+2k0=1—||x*||+—<1— - )
€ [ |l

Observe that the function Y(t) =1 -t + 2k (1 — 1—:8) is increasing when t € <0, 2k(1_8)>.

&€

x* —

lx* —y*ll <lx*—2z'+z" -y < + 2k,

So, if k > —) we have Y (llx*ll) < ¥ (1) = 2k. In this case, we get our conclusion.

Lemma (4.3.14)[228]: (Basic Lemma). Let X,Y be Banach spaces, I' C By+ be a 1-norming
set, T € Flp(X,Y) be a I'-flat operator with | T [[= 1, 0 < € < 2/3, and x, € Sy be such that

1) there exist:

ITxoll > 1 — €. Then for every r > 0 and for every k € [2(1

(i) aw*-openset U, c Y* with U, NT # @, and
(ii)points x,- € Sy« and u, E Sy with |x;(u,.)| = 1 such that

lxo — u, ll < Eand IT*z* — x:l| <r+ 2k forevery z* € U, NT. (32)

Proof. Use that I' € By is 1 -norming and pick y, € I such that
IT* (o) (xo)| = lyo(Txo)| > 1 —&.
Set U:={y" € Y":|T*"y*(xy)| > 1 — €}. We have that y; € U N T < By~. Since U is w*-open
inY* and U NT # @, according to Definition (4.3.8), for every r > 0 there exists a w*-open
subset U, € U with U, N T # @ such that diam(T*(U, N T)) <.
Fix some y; € U, N T and set x; = T*y;. Then, 1 = |lx7 [l = |x;(xy)| > 1 — & which, by

applying Proposition (4.3.13) to any 2(18_8) <k<1, gives x, € Sy- and u, € Sy with
|5 (u,.)| = 1 and such that
£
lxg — urll < T and ||x] — x,|l < 2k.

Finally, let z* € U, N T be arbitrary. Then,
IT*z" —x;l < IT*z* — x1 1l + llxy — x7l <7+ 2k,
which finishes the proof.
In the definition below we extract the structural properties of C(K) and its uniform

subalgebras that were essential in the proof of [237]. The name "ACK structure" comes from
the words "Asplund" and "C(K)".
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Definition (4.3.15)[228]: Let X be a Banach space and O be a non-emtpy subset of L(X). We
will say that X has O-ACK structure with parameter p, for some p € [O,1)(X € 0 — ACK,, for
short) whenever there exists a 1-norming set I' € By+ such that for every € > 0 and every non-
empty relatively w*-open subset U C T there exist a non-empty subset V < U, vectors x; € V,
e € Sy and an operator F € O with the following properties:
M Il Fell=IlF lI=1;
(D) x; (Fe) = 1;
(1) F*x; = x7;
(IV) denoting V; = {x* € T: IF*x*Il + (1 — &)ll(Ix+ — F*)(x™)|l < 1}, then |v*(Fe)| < p for
every x* € '\ Vy;
(V) dist(F*x*, aco {0,V}) < € for every x* € T'; and
(VD [v*(e) — 1| < e forevery v* € V.
The Banach space X is said to have simple O — ACK structure (X € O ACK ) if V; =T.
In other words, for X € O — ACK the above definition holds true with the following
modification: the property (IV) becomes
AV) IF*x* Il + (1 — )llUx — F*)(x™)Il < 1 for every x* € T.
In case of O = L(X), we will simply say ACK,, (and simple ACK ) structure.
Definition (4.3.16)[228]: A linear subspace J c L(X,Y) is said to be a I'-flat ideal, if all
elements of J are I'-flat operators, J contains all operators of finite rank, and for every T € 7 and
every F € L(Y) their composition F o T belongs to J.
Observe that the subspace of Asplund operators in L(X,Y) is an example of I'-flat ideal.
The theorem below motivates the above definition.
Lemma (4.3.17)[228]: Under the conditions of Definition (4.3.16) above, for every k €
(e/(2(1 — €)),1) and for every
v>2k<1+1_p+2k>,
there exist uy € Sy and S € Sy y) satisfying ISugll = 1, llxg — upll < % and [T =S lI<v.In

the case of Y € ACK the same is true for every v > 2k.
If, moreover, T belongs to a I'-flat ideal 7, then S can be chosen from J as well.
Proof. First, consider the more involved case of Y € ACK,. Fixr > 0 and 0 < g’ < 2/3.Now,
we can apply Lemma (4.3.14) with Y, T, r and € > 0. We produce a w*-open set U, € Y™ with
U.NT # @, and points x,; € Sy+ and u, € Sy with |x;(u,-)| = 1 such that (32) holds true.
Since U, NT # @, we can apply Definition (4.3.15) to U = U, N T and €' and obtain a
non-empty V. c U,y; €V,e € Sy, F € L(Y) and V; c I" which satisfy properties (I) - (VI). In
particular, for every z* € V c U, N T according to (32) we have

IT*z* — x; || <r+ 2k. (33)
Define now the linear operator S: X — Y by the formula
S(x):=x7(x)Fe + (1 — &)Uy — F)Tx, (34)

where the value of € € [&’,1) will be specified below in such a way that || S I< 1. In order to
do this, bearing in mind the fact that I' is 1-norming, we can write

IS = 1IS*Il =sup {lIS*y*l:y* € I'}.
So our first goal is to estimate

IS*y*Il = lly*(Fe)x; + (1 — )T*(Iy+ — F)()I (35)
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from above for all y* € T'. For y* € V;, the sought estimate ||S*y*|| < 1 follows immediately
from the definition of V; (see property (IV)). So, it remains to consider the case y* € ' \ V;.
Thanks to (V), for every y* € T, there exists an element v* = Y.2_; 1, vy with

IF*y™ —v*ll < ¢ (36)
such that {v;}i_; € V, and ¥ }_,|4x| < 1. According to (33) we have ||[T*v; — x| < r + 2k,
consequently

n
lv'(e)x; — T vl < Z |Alllvi(e)xy — T v
k=1
(VD) -
< &+ ) 4l —Toll<e' +r+2k (37)
k=1
Now, for every y* € '\ I/}
IS*y*Il < &ly*(Fe)| + (1 — &)lly*(Fe)x; + T*y* — T*F*y*|

(Iv)
< é&p+A-DITY I+ A -DIEFEYI(xr —TFy’
(36)
S Ep+(A-8)+2A -6+ A-dlv(e)xy —T v
(37)

< ép+A-8)+2'A-+A-8&(e" +r+ 2k)
<é+(1-&+3 +r+ 2k).
This means, that if we choose € = (3¢’ + r + 2k)/(1 — p + 3&’ + r + 2k), then we have || S ||
< 1. In this case,

) am . . . am
1= |xr(ur)| = |y1(xr(ur)Fe)| = yl(S(ur))| < "S(ur)" <L
Therefore, || S lI= 1 and S attains the norm at the point uy: = u, € Sy for which by (32) we
already had that [luy — xoll < %

Now, let us estimate

IS—TI1 =IIS"—T"ll=suplS*y* =Tyl
y*er
< suplly*(Fe)x; — T*F*y*| + 2&. (38)
y*er
For every y* € T we can proceed the same way as before. Namely,

(36)

N(F*y*)(e)xy — T*F*y*|| < 2&" +|lv*(e)x,; — T vl
(37)

< 3¢’ 471+ 2k.
Combining this with the inequalities (38) and the value of € we conclude that

IT—SlI< 36 +74+2k 4 28 T T+ 2k 39
=2e T 1—p+3e +r+2k (39)

Sincer > 0and 0 < &' < 2/3 are arbitrary, for suitable values we will have the desired estimate
N7T—-SIl<v.

To finish the proof in the case of Y € ACK,, we observe that if T belongs to a I'-flat ideal
Jthen S € 7.

Now the simpler case of Y € ACK. In this case ||S*y*|| < 1 for all y* € T thanks to (IV)'".
So, ||S|| < 1 for all values of & € [¢’, 1) and we can simply take & = &’. With such a choice of
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£ the estimate (39) changes to ||T — S|| < 5¢’ + r + 2k, which again for small values of r and
¢' gives us ||T — S|| < v for the v which corresponds to this case.

Theorem (4.3.18)[228]: Let X be a Banach space, Y € ACK,,I' © Y™ be the corresponding 1-
norming set from Definition (4.3.15) and T € L(X,Y) be a I" flat operator with || T ||= 1. Let
0 <&e<1/2 and let xq € Sy be such that [[Txgll > 1 — . Then there exist uy € Sy and an
operator S € Sy (x y) with [|[Sugll = 1 such that

2
max {llxo —ugll, 1 T —S I} < 2£<1+ )
{lixo —ug <V Py

Moreover, if Y € ACK then the estimate can be improved to
max {Jlxo — ull, I T — S I} < V2e.
Additionally, S can be chosen from J whenever T belongs to a I'-flat ideal J. In particular, every
Y € ACK,, (ACK) has the A-BPBp.
Proof. First, select g5 € (0, €) in such a way that the inequality [[Txyll > 1 — &, is still valid.

Now we apply Lemma (4.3.17) with g, instead of € and substitute k = ,/&y/2. In the case of
Y € ACK, we take v € <,/2£0 <1 + ;>,\/2_€(1 +—2 )), and in the case of Y €

1-p+,/2¢, 1-p++/2¢
ACK we take v € ({/2&9,V2¢).

Also, a look at the proof of Lemma (4.3.14) shows that the condition of T being I'-flat can
be weaken in the following way: for every y € By and every § > 0 if the w*-slice S(T', x, §): =
{y* €T:Rey*(y) > 1— 6} is not empty, then for every &€ > 0 there exists a non-empty
relatively w*-open subset V < S(T, x, §) such that diam(T*(V)) < e.

There are two reasons why we have selected the more restrictive variants. Firstly, with
the restrictive definition of (IV) we are able to prove a nice stability result, and secondly, all the
examples with "relaxed" versions of (IV) and of I'-flatness that we have in hand, satisfy the
restrictive variant of (IV) and of I'-flatness.

We presenting those natural examples of Banach spaces having ACK structure as well as
showing the stability of the ACK structure under some operations, such us £,,-sums or injective
tensor products.

First of all, let us introduce the first natural class of Banach spaces with ACK structure.
As commented above, Definition (4.3.15), comes from an analysis of the proofs in [237]. We
shall show next that, indeed, every uniform algebra A has simple ACK structure. The key tool
is Lemma (4.3.20), that was proved in [237], and is about the existence of peak functions f €
S, whose range is contained in the Stolz's region

Ste={zeC |zl +(1—-¢)|1 —z| < 1}.

For a topological space (T, 7), we denote by C,(T) the space of bounded continuous functions
f:T — K equipped with the sup-norm.

Definition (4.3.19)[228]: Let (T, 7) be a topological space. A subalgebra A < C,(T) is said to
be an ACK-subalgebra, if for every non-empty openset W c T and 0 < ¢ < 1, there exist f €
A and ty € W such that f(ty) =Il f lo=1, |f(t)| < e foreveryt € T\ W and f(T) c St,.
Lemma (4.3.20)[228]: Let A c C(K) be a uniform algebra. Then there exists a topological
space I'4 such that A is isometric to an ACK-subalgebra of C,(T4). In the case of K being the
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space of multiplicative functionals on A the corresponding I' ;4 can be selected as a topological
subspace of K.
We will use the following elementary property of St,.
Lemma (4.3.21)[228]: If z belongs to the Stolz region St,, then z" € St,.
Proof. For every z € St; it holds
1z"+(1—-8)1—-2z" =|z"l+A—-&)|1l—-z|[1+z+ 42"

<lz"+ @A —|zDI1+z+ -+ 2"

<|z|"+ @ —[zDA + |z + -+ |2]"7)

=lz|" + (1 —-z|") =1,
which finishes the proof.

The following simple lemma gives an essential property that turns uniform algebras into
Banach spaces with simple ACK structure.
Lemma (4.3.22)[228]: Let A < C,(I'4;) be an ACK-subalgebra. Then, for every non-empty
openset W c I, and 0 < € < 1, there exist a non-emtpy subset W, € W, functions f,e € A,
and t, € W, such that f(ty) =l fll=1, e(ty) =llell=1,|f(t)| <& for every t €T, \
Wy, |1 —e(t)| < eforeveryt € Wy and f(T,) c St,.
Proof. By using Definition (4.3.19) for the open set W C I'; and &, we get a function e € A
and t, € W such that e(ty) =lle ll=1,|e(t)] < € foreveryt € T, \ W and e(T'4)  St,. Let
Wy:i={t € W:|1—e(t)| < €}. Define the function f,,:T; = K by f,(t):= (e(t))" whose
range, by Lemma (4.3.21), is contained in St,.. From the very definition of W, and the fact that
e(T ;) c Stg, we deduce that [e(t)| <1 —¢e(1 —¢) < 1forevery t € I, \ W,. Thus, taking a
suitable ny € N, we can assume that | frg (t)| = le(t)|™ < eonT, \ Wy. Therefore, f:= f, €
A gives the conclusions of the lemma.
Theorem (4.3.23)[228]: Let A < C, (T ;) be an ACK-subalgebra, and let X be a subspace A C
X c C, (T 4) that has the following property: fx € X forevery x € X and f € A. Then X € ACK
with the corresponding 1-norming subset of By« being I' = {8;:t € ['4}.
Proof. Fix ¢ > 0 and a non-emtpy relatively w*-open subset = {§;: t € W c T4} c I'. Observe
that W c T4 is open. Now, by applying Lemma (4.3.22) to W with & we obtain the
corresponding W, c I 4,to € Wy, f,e4 € A. Let us define Vc U,xi €EV,e €Sy and F €
L(X) as follows:
Vi={6.:t € Wy}, xi:= 6, e:= ey, Fx:= fx, forx € X.
Then, F*x* = f(t)x* for every x* = §; € I'. We shall show that properties (I) — (VI) are
satisfied. First, || FI< 1 and |l Fe ll= e(ty)f(ty,) = 1, which proves (I). Property (II) is
straightforward from xj(Fe) = xj(fe) = e(ty)f(ty) = 1. From (F*x7)(x) = x(ty)f(ty) =
x(ty) = x7(x) we deduce that F*x; = x;, which is (IIT). To show (IV), take x* = §; € I and
estimate
IF*x*Il + (1 — e)llUy — F*) (")l

S fOI+A-91-fO] =1
Let us show now (V). Take x* = §; € I'. In case t belongs to [ ; \ W, then [F*x*l = |f ()| <
. Otherwise, t € W, (that is, x* € V), using that F*x* = f(t)x* and that f € Sy, we deduce
that f(t)x™ € aco{0, V}. Hence, in both cases

dist(F*x*,aco{0,V}) < e.

Finally, for every v* € VV we have that v*(e) = e(t) for some t € W,. So,
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v*(e) — 1l =le(®) — 1| <&,
which shows (VI) and finishes the proof.

From Lemma (4.3.20) and Theorem (4.3.23) taking X = A we obtain the promised
example.

Corollary (4.3.24)[228]: Every uniform algebra A has simple ACK structure.

Theorem (4.3.23) gives more examples of spaces with simple ACK structure. For
instance, let T be the unit disk in C, A(T) < C(T) be the disc-algebra, i.e., A(T) is the closure
in C(T) of the set {37 ,a,z": a;, € C,m € N} of all polynomials. For a given n € N denote
A,,(T) the closure in C(T) of the set {37 _a,z*: a;, € C,m € N}. Then A(T) and X = A,(T)
satisfy all the conditions of Theorem (4.3.23), so A,(T) € ACK, but A,,(T) is not an algebra.
Another example: let ¢ € X € £,. Then X € ACK.

The first example is of illustrative character, because the space A,,(T) is isometric to the
algebra A(T). In contrast, the second example gives a big variety of mutually non-isomorphic
spaces with ACK structure. Observe that the simple ACK structure of those X such that ¢y C
X c £ can be also deduced from Theorem (4.3.26) below.

Now we show that Banach spaces with Lindenstrauss' property 5 (see for instance [246])
have ACK structure.

Definition (4.3.25)[228]: A Banach space X is said to have the property S if there exist two sets
{x,:a € A} c Sy, {x;: @ € A} c Syx- and p € [0,1) such that the following conditions hold:

(D) xz(xg) = 1;

(ii)|xs(x,)| < p < 1ifa # y; and

(iii) [|x|| = sup{|x;(x)|: @ € A}, for all x € X.
Theorem (4.3.26)[228]: Let X have the property §. Then X € ACK,, with the same value of p
as in Definition (4.3.25) and with T = {x: « € A} from that definition. Moreover, if X has
property 8 with p = 0, then X € ACK.
Proof. Since X has property 8, the set I' = {x}: « € A} is a 1-norming subset of By-. Observe
that property 8 implies that (I', w*) is a discrete topological space. Fix € > 0 and a non-empty
relatively w”-open subset U c T'. Take x,, € U. Let us define the corresponding V,x; € V, e €
Sy, and F € L(X) as follows:

Vi={xs } U, xf1=x;, 1= x4, F(x):= x5, (X)Xq,.
It is clear that F*x™ = x*(xao)xfxo for every x* € X*. We shall show that properties (I) - (VI) of
Definition (4.3.15) hold true. Properties (I) - (III) are routine. To show (IV) observe first that
IF*xz, + (1 = )l U = F (o)l = llxa, (e, )xa, Il = 1,
that is, x4, € V;. Consequently, whenever v* = x, € I' \ V4, then @ # a, and thus [v*(Fe)| =
x; (x“o)| = P
In case that p = 0, we have that F*x;, = 0 for every a # g, so
IF*xall + (1 — )llUx- — F)xall = (1 — )lixall <1,

i.e., Vl =T.

Property (V) is a consequence of the fact that F*x* € aco{0,V} for every x* = x, €T,
because F*'x* = x,, (xao)xfxo. Finally, property (VI) and in turn our conclusions are consequence
of the fact that the unique v* € Vis v* = x5 ,s0 [v"(e) — 1| = 0 < &.
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Corollary (4.3.27)[228]: (]229], Theorem 2.2). Let Y have property . Then, for every Banach
space X, the pair (X,Y) has the Bishop-Phelps-Bollobas property for operators.
Proof. In the proof of Theorem (4.3.26), (I', w*) is a discrete topological space. Therefore every
operator T € L(X,Y) is I'-flat (Example (4.3.11) after Definition (4.3.8)). Now the application
of Theorem (4.3.18) completes the proof.
Now we show the stability of the ACK structure with respect to the operations of £,-sum
and injective tensor product of two spaces (Theorem (4.3.28) and Theorem (4.3.29))
Theorem (4.3.28)[228]: Let X,Y be Banach spaces having ACK structure with parameters py
and py respectively. Then Z: = X®. Y € ACK, with p = max{py, py}. Moreover, Z € ACK
whenever X,Y € ACK.
Proof. Observe that both X and Y have ACK structure with parameter p. Let [y € By« and [, C
By+ be the corresponding 1 -norming subsets in Definition (4.3.15). Then, the set
= {(x*0):x" €Tk} U{(0,y"):y" € Iy}
is a 1-norming subset of B+. Take a non-empty relatively w*-open subset U < I'. Then, there
exist relatively w*-open subsets Uy C Iy and Uy C I that are not both empty and such that
(Uyx x {0}) U ({0} x Uy) c U. Without loss of generality we may assume that Uy # Q.
Fix € > 0. By using Definition (4.3.15) for X, €, and Uy we obtain a nonempty subset
Vyx € Uy, x{ € Vy,ex € Sy, Fx € L(X) with the properties (I) - (VI). Thus, we can define the
corresponding V c U,z{ € V,e € S, and F € L(Z) as follows:
Vi={(x"0):x* € Vyx}c U, z{:= (x1,0), e:= (ex, 0),
and for (x,y) € Z,
F(x, y) = (FX(X),O)
Let us check the required properties. It is clear that || F |= 1 and that || Fe |l= |[Fx(ex)ll = 1,
which shows (I). (IT) follows easily; z*(Fe) = x;(Fyex) = 1. Due to the fact that (Fyxj,0) =
(x1,0), we deduce that F*z; = zj, showing that (IIT) holds. Now, for every z* = (x*,0) € V
with x* € Vy ; we have
IF*zl  +(1—e)llUz — F) (M)
= IFzx* Il + (1 — )l Uy — F) (x)I
<1,
which can be easily deduced from F*z* = (Fxx*, 0). Consequently, for every x* € Vy ; we have
z* = (x*,0) € V;. (Observe that in the case of simple ACK structure we have already proved
(IV)). Let v* € T'\ V. Then, either v* = (0,y*), or v* = (x*,0) with x* € I'y \ Vx 1. On the
one hand, when v* = (0,y"), we have |v*(Fe)| = 0 < p. On the other hand, whenever v* =
(x*,0) with x* € Ty \ Vy 1, then |[v*(Fe)| = |x*(Fxex)| < p, which proves (IV). Now, let z* €
I. Whenever z* = (0,y*) we have F*z* =0. Otherwise, z* = (x*,0) and we have
dist(Fyx*,aco{0,Vy}) < &. Thus, in both cases
dist(F*z*,aco{0,V}) < .
Finally, for every v* = (x*,0) € V we have |[v*(e) — 1| = |x*(ex) — 1| < &, which proves
(VI) and concludes our proof.
Recall, that given two normed spaces X and Y, one can define their injective tensor
product X &, Y, as the completion of (X ® Y, IIIl), where

Iz lle:=sup {{x" @y~ z)|:x" € By, y" € By-},
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forevery z€ X ® Y and (x* @ y*, x @ y): = x*(x)y*(y), forevery x @ y € X Q Y and for
every x" € X*and y* € Y".

An important example of such a product is the Banach space C(K) ®. Y, which can be
naturally identified with C(K,Y), that is, the Banach space of continuous (Y, ||-||)-valued
functions defined on K, endowed with the supremum norm ||f|| = sup{||f(t)|]: t € K}.

Note that it follows from the definition of the injective norm that if X, € By+ and Y, C
By~ are 1-norming, then for every z € X ®. Y the following equality holds:

Iz lle=sup {[{(x* ®y", z):x" € Xo,y" € Yp}.
Recall also that ||x* ® y*"(x®£y)* = llx*Il - ly*|l for every x* € X" and y* € Y".

This is all the information about tensor products that will be used in Theorem (4.3.29)
below. See Ryan [248] for tensor products theory in general and the above definitions and

statements in particular.
Theorem (4.3.29)[228]: Let X and Y be Banach spaces both of which have ACK (resp. ACK,)

structure. Then, X & ¢ Y has ACK (resp. ACK,) structure.

Proof. Since X and Y have ACK (resp. ACK,) structure, there exist 1 — norming sets I'y C Sy~
and Ty c Sy~ satisfying Definition (4.3.15). Define the map ¢: (By+,w*) X (By~,w*) —
(B(X®ey)*,w*) by ¢p(x*,y*) = x* Q y*, for every x* € By~ and for every y* € By-.

First, we shall show that the map ¢ is continuous. Let {(x, v;)},ea be a convergent net
to (x*,y*) € By+ X By-. Then, forevery x @ y € X @ Y, we can estimate

1 {p(xa,Ya) —d(x" ), x @ ) = % ()ya(¥) —x"()y* () |
< |G (x) = x* ) Ya | + [x" () a (V) — y* ()
< lxg () = x" Oyl 1y I +llx*C)lllye ) — y* )
< g =" Gy I+l x I ye ) — y* (),
which tends to zero. This argument extends easily to every element in X &® Y and, in turn, to
every z € X ® ¢ Y (due to the boundedness of the range of the map ¢).
The 1-norming set I' that we need for our theorem can be introduced as follows:
={x"@y":x*€ly,y" €y} = [y X Iy).
Let € > 0 and U be a non-empty relatively w*-open subset of I'. Let x; € I'y and yg € [y be
such that ¢(xg, y5) € U. The continuity of ¢ ensures that there exist non-empty relatively w*-
open subsets Wy c T'y, Wy < Iy such that x; € Wy, yg € Wy and ¢ (Wy X Wy) c U.

We can apply Definition (4.3.15) to X and Y, to the former with £/2 and Wy and to the
latter with £/2 and Wy, to find two non-empty sets Vy € Wy and Vy € Wy, two functionals x5 €
Vx and y; € Vy, two points ey € Sy and ey € Sy and finally, two operators Fy € L(X) and Fy €
L(Y), satisfying respectively the properties (I) - (VI), or with their corresponding modifications
for the the simple ACK structure. Denote also by Vy ; and Vy ; the corresponding variants for X
and Y of the set V] from property (IV) of Definition (4.3.15).

Now, define the non-emtpy set V ¢ U and corresponding z; €V,e € Sxg vy, F €
L(Xx X, Y) as follows: := ¢p(Vy x V) c U, zi:= ¢(x},y1) = x; @ yi,e:=ex ® ey, and
FxQ®y):=Fy(x) Q Fy(y) forevery x ® y € X @ Y. It remains to check the properties (I) -
(V). First, observe that F*(x* @ y*) = Fxx* @ Fyy* forevery x* € X* and y* € Y™,

(I) Let z belong to B XQ.v> then
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| Fzlle = sup sup {x* @ y*,Fz)| = sup sup (F'(x* ® y*),2)|

x*EFXy*EFY x*EFXy*EFY

= sup sup [(Fyx" @ Fyy",z)| < sup sup [[Fxx"[lllFyy”l

x*EFXy*EFY x*EFXy*EFY
< IFxllliFyll < 1,
which implies that || F [|= 1, since
| Fe ll= I[Fxexy & Fyeyll = lIFxexllllFyeyll = 1.
(D) zi(Fe) = (x; ® y1)(Fxex Q Fyey) = x1(Fxex)yi(Fyey) = 1.
(IIl) F*z] = z7, since forevery x @ y € X Q Y we have
(F'z))(x ®y) = (x1 @ ¥1) (Fxx @ Fyy) = (Fxx1)(x) (Fyy1) (¥),
which, in turn, implies that (F*z)(x @ ¥) = x; (x)y1(¥) = 21 (x Q ¥).
(IV) For (x*,y*) € Ty X Iy, denote z* = x* @ y~. Firstly, let us show that for every x* €
Vx 1 and y* € Vy 4 the functional z* belongs to V, i.e., that

IF* 21+ (1= &) | (I xg,ry = F7) &)
First of all, observe that
lx* @ y* — Fxx™ & Fyy™||
=llx*® (v —Fyy") — (x" — Fxx") ® Fyy’ll
<lly" = Fpy ll + IFpy Il (x* — Fyx)Il.

<1

Therefore,
IFxx " IFyy Il + (1 — e)llx™ ® y* — Fyx™ Q@ Fyy’ll
= IFyy IlUFxx*l + (1 — el (x™ = Fxx)ID + (1 — e)lly* — Fyy~ll
<IFyll+A-9aly" - Fyl <1
This implies that for every z* = x* @ y* € I' \ V; we have two possibilities: either x* & Vy ; or
y* & Vy 1. By symmetry, it is sufficient to consider x* & Vy ;. In this case |x*(Fxex)| < p, so
|z"(Fe)| = |x"(Fxex) ||y (Fyey)| < |x"(Fxex)| < p.

(V) We shall show that dist(F*z*, aco {0,V}) < ¢ for every z* = x* @ y* € I'. Due to
the facts that dist(Fxx*,aco{0,Vy}) < /2 and that dist(Fyy*, aco{0,Vy}) < &/2, there exist
vy € aco{0,Vy} and vy € aco{0,Vy} such that [|[Fyx* — vl < £/2 and ||[F5y* — vyl < /2.
Then v*: = vy @ vy belongs to aco {0,V} and

IF*z" —v*ll < I(Fxx™ —vg) @ Fyy*ll + llvy @ (Fyy™ — vy)ll
< IFxx™ — vgllliFyy ™Il + loxlllFry™ — vyl < e
(VI) Forevery v* = x* @ y* € V we get
lv*(e) — 1| = Ix"(ex)y (ey) — 1| < [x"(ex)y*(ey) — ¥ (ey)|

£
Hy'e) — 1 <51y (el +5 <&
This finishes the proof.

As we mentioned, Acosta, Becerra Guerrero, Garcia, Kim, and Maestre considered A-
BPBp in spaces of continuous vector-valued functions. Let us recall their result explicitly. Here,
as usual, o(Z,A) denotes the weakest topology on Z in which all elements of A C Z* are
continuous.

Theorem (4.3.29)[228]: (]230], Theorem 3.1). Let X,Z be Banach spaces, K be a compact
Hausdorff topological space. Let Z satisfy property [ for the subset of functionals A =
{z;:a € A}. Let T 2 0(Z,A) be a linear topology on Z dominated by the norm topology. Then
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for every closed operator ideal J contained in the ideal of Asplund operators, we have that
(X, C(K, (Z,7))) has the Bishop-Phelps-Bollobés property for operators from J.

The next proposition together with Theorem (4.3.18) generalize Theorem (4.3.29) for the
case of Z endowed with its strong topology.
Proposition (4.3.30)[228]: Let K be a compact Hausdorff topological space. Then,

(Y € ACK,) = (C(K,Y) € ACK,);
(Y € ACK) = (C(K,Y) € ACK).

Proof. Bearing in mind Corollary (4.3.24) and Theorem (4.3.29), the fact that the space
C(K) &, Y is isometric to C(K,Y) concludes the proof.

Our aim now is showing a generalization of Theorem (4.3.29) in the spirit of the ACK
structure, that covers all topologies T from that theorem.

For a topological space T and a Banach space Z denote by C, (T, Z) the space of all

bounded openly fragmented (see Definition (4.3.6)) functions f: T = Z equipped with the sup-
norm. For a topology 7 on Z denote by C,(T,(Z,7)) the space of bounded 7-continuous
functions f: T — Z equipped with the sup-norm.

Definition (4.3.31)[228]: Let Z € ACK,, and let I' C By~ be the corresponding 1-norming set. A
linear topology 7 on Z is said to be I'-acceptable, if it is dominated by the norm topology and
dominates o(Z, ).

The following result simultaneously generalizes our Theorem (4.3.23) and Theorem
(4.3.29). We state the result in the most general settings, which makes the statement bulky. Some
"elegant" partial cases will be given as corollaries.

Theorem (4.3.32)[228]: Let A < Cp,(T'4) be an ACK-subalgebra. Let Z be a Banach space and
O c L(Z) such that Z € O — ACK,(Z € 0-ACK) with I'; € Bz- being the corresponding 1-
norming set. Finally, let T be a I',- acceptable topology on Z. Let X < C,(T'4,(Z,7)) be a
Banach space satisfying the following properties:

(i) Forevery x € X and f € A the function fx belongs to X.

(i1) X contains all functions of the form f Q z,f € A,z € Z.

(1) F ox € X forevery x € X and F € O.

(iv) For every finite collection {x;}}i-; € X the corresponding function of two variables

@:T ;X (Iz,w") » K", defined by ¢(t,z*) = (z*(xk(t)))zzl, is quasi-continuous.

Then X € ACK, (X € ACK, respectively) with the corresponding 1norming subset of B-
being ' ={6; ® z*:t €T 4,z" € I}, where the functional §; @ z* € X* acts as follows:
(6 ® z)(x) = z"(x(t)).

Proof. Fix € > 0 and a non-empty relatively w*-open subset U c I'. Let t, € 4 and z; € I'; be
such that §;, & zg € U. Since U is relatively w*-open, there exist {x; };—; € X such that §; ®
z* € I belongs to U whenever

max [((8;, ® z5) — (6, ® z), x, )| < 1.

Consider the non-emtpty o;)_elil_rslet

B:={t € T g1 | 2§ (ere () — 2§ (1 (£0))| < 1 for 1 < k < n},
and define the following non-empty relatively w*-open subset of [’ :

D:={z" €Ty |z*(xk(t0)) — zS(xk(to))| <1lforl<k<n}
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Using property (iv) for {x;};—-; € X we can find a non-empty open subset B; € B and a non-
empty relatively w*-open subset D; € D such that for every t € B; and every z* € D, it holds

max z"(x (1)) — ZS(xk(to)N <1
Define the non-empty subset W:= {5, @ z*:t € B;,z* € D;} c T'. Itis clear that W c U.
By applying Definition (4.3.15) to Z,T';, D; and (¢/2), we getV, € D,,z{ € V;,e; €S,
and F; € O satisfying (I)—(VI). Denote also V; ; € Iz, the subset that appears in property (IV)
(in the case of Z € ACK we have V; ; = I'; ). By applying Lemma (4.3.22) to A, I'4, the non-
empty open set B; and (g/2), we find a non-empty subset B, € B;, functions f,, e, (both
belonging to A ) and s, € B,, satisfying its conclusions.
Finally, let us define the requested non-empty subset V c U and corresponding x; €
V,e € Sy, F € L(X) as follows:
V ={6;R®z":t€B,z"€V,}cWcU
x; =065, ® zg, e(t):=ey(t)ey, forevery t € T4
(condition (i1) implies e € X ), and
(Fx)(£): = fo()Fz(x(1)),
for every x € X and for every t € 4. Conditions (i) and (iii) ensure that F(x) € X. Observe
that forevery x* =6, ® z* €T

F'x* = fo(t)(6; ® F;z").

It remains to check the properties (I) —(VI).

(D) Itis clear that || F I= IF4ll = 1 and || Fe = lIfoe4llIIFz (eIl = 1.

(D) x1(Fe) = Z;(fo(so)edq(so)Fz(ez)) = 1.

(III) F*x; = x7, since for every x € X we have

(F*x1)(x) = Z;(fo(so)sz(So)) = (FZ*ZD(X(SO)) = Z;(x(so)) = x1(%).

(IV) Forevery x* € I', wehave x* = 6; @ z*,t € I'4 and z* € T,. First, consider the case

z" € V1 and observe that

I(Ux- = F)H)I - = llz" = fo(O)Fz-z"|
< 1= foOlz"ll + [fo@®)| - Uz — F2) ()
= fo®l - Uz = F2) @) + |1 = fo (D).
Therefore, in this case

IF** Il + (1 — e)llUx- — F) )

= /o IFzz" Il + (1 = &)llz" = fo () Fz-2"l

< fo@OIUWFzz* I + (1 = llUz = F2) (@)D + (1 = &)1 = fo(t)]
<o+ A=)l - fo(O] <1.

Whenever Z € ACK, then V; 1 = I';, so the above inequality holds for every z* € I';. Thus, we
have proved (IV)'. If Z € ACK, we still must consider those x* belonging to I \ V;. The above
inequality implies that z* € V; ; and, consequently, |z*(Fze;)| < p which, in turn, implies that

[x"(Fe)l = |fo(t)ea(t)z"(Fzez)| < p.
(V) Letx* = 6; Q z* € T'. Recall that F*x* = f,(t)6; ® F;z*. SetV,:={6;:t € B,}. In
the proof of Theorem (4.3.23) it was proved that for every t € 4 it holds

£
dist(f(t)d;,aco{0,V,}) < >
On the other hand, by our construction, we deduce that

125



£
dist(F;z*,aco{0,V;}) < ok

Thus, there exist a* € aco{0,V,} and b* € aco{0, V,} such that

£ £
If ()6, —a*ll < > and |F;z" — b*|| < >
In particular, since a* @ b* belongs to aco {0, V}, we can deduce that

dist(F*x*,aco{0,V}) < Ifo(t)d;  Fzz" —a* Q bl
< fo()6: ® Fzz" — fo ()6, ® b7l +
+lfo(®)6 @ b* —a” & bl
<Fzz" = bl + 11fo(©)6; — a’ll <e.

(VI) For every x* =6, @z €V we have t€ B, and z* €V,. Consequently,
les(t) — 1| < gand |z*(e;) — 1| < g From this we get

[x*(e) — 1] = leq(D)z"(ez) — 1] = |eq(O)(z7(ez) — D) + (eq(t) — DI < ¢,
which completes the proof.

Conditions (i) - (1i1) in Theorem (4.3.32) are easily verified in concrete examples. In
contrast, condition (iv) looks technical. So, in order to make Theorem (4.3.32) more applicable,
we shall present easy-to-verify sufficient conditions for (iv).

Before passing to these sufficient conditions, observe that the function of two variables
@:Ty X (T,,w*) > K" from condition (iv) is separately continuous. Therefore, the role of
sufficient condition for (iv) can be played by any theorem about quasi-continuity of a separately
continuous function f: U X V — W. There is a number of such theorems (see Encyclopedia of
Mathematics article "Separate and joint continuity" or the introduction to [235]). For example,
according to Namioka's theorem [243] this (and a much stronger result) occurs for U being a
regular, strongly countably complete topological space, V being a locally compact o-compact
space and W being a pseudo-metric space. The results of the kind "separate continuity implies
quasi-continuity" that we list and apply below do not pretend to be new.

Proposition (4.3.33)[228]: Let U, V, W be topological spaces, V be discrete and f: U XV - W
be separately continuous. Then, f is continuous (and consequently quasi-continuous).

If Z has property f3, the corresponding (I';, w*) is a discrete topological space. Thus, the
above proposition guaranties the validity of (iv) of Theorem (4.3.32) in this case.

Corollary (4.3.34)[228]: Under the conditions of Theorem (4.3.29), (K, (Z, 7)) € ACK,, where
p is the parameter from the property f of Z. If § = 0, then C (K, (Z,7)) € ACK. In particular,
this implies the conclusion of Theorem (4.3.29).

Proposition (4.3.33) also guaranties (iv) of Theorem (4.3.32) in the case of I'; = N (just
change the roles of U and V in Proposition (4.3.33)). If we apply Theorem (4.3.32) with A =
co € Cp(N) = £, this leads to the following result:

Corollary (4.3.35)[228]: Let Z € ACK,(Z € ACK),¢o(Z) € X € ¥,(Z), and X has the
following property: (Fz,, Fz,,...) € X for every x = (24,25,...) E X and F € L(Z). Then X €
ACK, (X € ACK respectively).

This corollary is applicable to c¢y(Z) and €,(Z) themselves and also for some
intermediate spaces like ¢y (Z, w) of weakly null sequences in Z.

Proposition (4.3.36)[228]: Let Z be a Banach space, (I'4,7) be a topological space, I';
(Bz+,w*), and x;:T4; — Z for k € {1,2,...,n} be T — 0 (Z,T;) continuous and 7—||-||-openly
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fragmented functions. Then, the function ¢: (T4, 7) X (I, w*) - K" given by ¢(t,z*) =
(z*(xk(t)))z=1 is quasicontinuous.

Proof. Fix (ty,z5) € T4y X T,. Let U4 € Ty, U, c I'; be open and w*-open neighborhoods of
to and z; respectively. Set U: = U4 X U,. We have to show that, for a given € > 0, there exist
a non-empty open subset W, < U, and a non-empty relatively w*-open subset W, c U, such
that for every t € W, and every z* € W,

max
1<ksn

z* (e () — zg(xic (t0))| < &. (40)
Fix 6 < €/4 and define
The setV; < U, is a non-emtpy open neighborhood of t, because of the T — a(Z, I';) continuity
of x;, (the map z; o x;, is a IK-valued t-continuous function). Applying inductively the definition
of openly fragmented function, we define a non-empty open set W, < (V,,T) in such a way
that forall k = 1, ..., n it holds
diam (x, (W,)) < 8.
Fix a t; € W, and define the non-empty relatively w*-open subset W, c U, as follows:
Wyi= {Z* € Uy: 1r§lf‘<>§l|2*(xk(t1)) — z5(x (t)] < 5}-
Let us show, for every t € W, and every z* € W,, the validity of inequality (40):
Zg (xk(to)) — Z*(xk(t))| < |20 (xk(to)) — Zj (xk(t))|
+|25 (e (8)) — 25 (x5 (£1))]
+|ZS (xk(t1)) — Z*(xk (t1))|
+z* (2 (81)) — z* O (D).
The first summand in the right-hand side of the previous inequality does not exceed § since t €
V4. Accordingly, the second and fourth summands are both bounded by § since z3, z* € B+ and
I (8) — 2, (£l < & since t,t; € W, and diam(x,(W,)) < 8. Finally, the corresponding
third summand is bounded by & since z* € W,. Therefore,
|25 (2 (t0)) — 2" (e ()] < 46 < &,
which completes the proof of (40) and that of the proposition.
As an application of the previous proposition we get the following corollaries which

contain as a particular case the space C,, (K, Z) of Z-valued weakly continuous functions for Z €
ACK,, (or Z € ACK).

Corollary (4.3.37)[228]: Let Z € O — ACK,, (or Z € 0-ACK) and A < C(K) be a uniform
algebra with K being the space of multiplicative functionals on A. Fix [, € H € Z*, where I,
is the 1-norming set given by the ACK structure of Z. Denote by A gz iy (K, Z) the following

subspace of (K, (Z,0(Z,H))) :
Agzmy(K,Z) ={f € Z¥:z" o f € Aforall z* € H}.

Let us assume that
(i) F*H c H forevery F € O.
(i) (f (K),0(Z,H)) is fragmented by the norm for every f belonging to A gz iy (K, Z).

Then, Ay(z ) (K, Z) € ACK,, (tesp. Aqzm (K, Z) € ACK).
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Sketch of the proof: It relays on the use of Theorem (4.3.32). Let I; € K be the corresponding
subset from Lemma (4.3.20). Then, restrictions of elements of A to I’ ; form an ACK-subalgebra
Cp(I4) isometric to A (that we identify with A) and restrictions of elements of A4z u) (K, Z)
to I',; form a subspace X © Cp,(I'g, (Z,0(Z, H))) isometric to Az 1) (K, Z). The conditions (i)
and (ii) of Theorem (4.3.32) follow from the definition of A5z ) (K, Z). The condition (iii) of
Theorem (4.3.32) is reduced to the present condition (i). And, finally, the condition (iv) of
Theorem (4.3.32) is reduced to the present (i1) by using Proposition (4.3.36).

The condition (i) above could be quite demanding, for instance, when O = L(Z) in which
case H is forced to be Z*. However, in all concrete examples that we know of ACK structure,
the family O can be taken really small. Thus, for concrete examples of Z, the condition (i) could
be easily satisfied for every election of H.

By using the results from [233] it can be shown that condition (i1) above is satisfied for

every H whenever (Z,w) is Lindeldf. Indeed, given f belonging to Agz iy (K, Z), f(K) € Z is
o(Z,H)-compact, thus, it is also Lindelof. A straightforward application of [233] ensures that
(f(K),o(Z, H)) is norm-fragmented. Hence, in this case, Corollary (4.3.37) can be simplified
as follows:
Corollary (4.3.38)[228]: Let Z € O — ACK,, (or Z € O-ACK) such that (Z,w) is Lindelof and
A c C(K) be a uniform algebra with K being the space of multiplicative functionals on A. Fix
[; © Hc Z*" such that F*H < H for every F € O, where I'; is the 1-norming set given by the
ACK structure of Z. Then, A gz 1y (K, Z) € ACK,, (resp. Aqz (K, Z) € ACK).

Observe that when Z has property S, the set O coincides with the set {x;(-)x,: a € A}.
Therefore, in this case, F*H < H for every H and for every F € 0. Thus, we have proved the
following corollary.

Corollary (4.3.39)[228]: Let Z be a Banach space with property £ such that (Z, w) is Lindelof
and A < C(K) be a uniform algebra with K being the space of multiplicative functionals on A.
FixI[; ¢ H c Z*, where I'; = {xg: a € A}. Then, Agz (K, Z) € ACK,,.

However, this technique can not fully generalize Theorem (4.3.29) by Acosta et al. to the
case of vector-valued uniform algebras, since here the Lindel6f property is essential and
property [ does not imply in general weak Lindelof. Observe that nevertheless the original
statement of Theorem (4.3.29) is covered completely by our Corollary (4.3.34).
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Chapter 5
Bishop-Phelps-Bollobas Property and Moduli
We show that every infinite-dimensional separable Banach space can be renormed to fail
the BPBp-nu. In particular, this shows that the Radon-Nikodym property (even reflexivity) is
not enough to get BPBp-nu. We calculate the two moduli for Hilbert spaces and also present
many examples for which the moduli have the maximum possible value (among them, there are
C(K) spaces and L;(u) spaces). We show that if a Banach space has the maximum possible

value of any of the moduli, then it contains almost isometric copies of the real space i’g) and
present an example showing that this condition is not sufficient. We deduce that the subspaces
of finite-rank operators, compact operators and weakly compact operators on L, (i) have the
BPBp-v.

Section (5.1): Numerical Radius:

For X be a (real or complex) Banach space and X its dual space. The unit sphere of X
will be denoted by Sy. We write L(X) for the space of all bounded linear operators on X. For
T € L(X), its numerical radius is defined by

v(T) = sup{|x*Tx|: (x,x*) € I(X)}, (1)
where T1(X) = {(x,x*) € Sx X Sx«:x*(x) = 1}. It is clear that v is a seminorm on L(X). See
[253],[254] for background. An operator T € L(X) attains its numerical radius if there exists
(x9, x5) € I(X) such that v(T) = |x{Tx,].

We will discuss the density of numerical radius attaining operators, actually on a stronger
property called Bishop-Phelps-Bollobas property for numerical radius. Let us present first a
short account on the known results about numerical radius attaining operators. Motivated by the
study of norm attaining operators initiated by J. Lindenstrauss in the 1960s, Sims [255] asked in
1972 whether the numerical radius attaining operators are dense in the space of all bounded
linear operators on a Banach space. Berg and Sims [256] gave a positive answer for uniformly
convex spaces and Cardassi showed that the answer is positive for €1, ¢y, C(K) (where K is a
metrizable compact), L, (1), and uniformly smooth spaces [257]-[259]. Acosta showed that the
numerical radius attaining operators are dense in C(K) for every compact Hausdorff space K
[260]. Acosta and Payéa showed that numerical radius attaining operators are dense in L(X) if X
has the Radon-Nikodym property [261]. On the other hand, Paya [262] showed in 1992 that
there i1s a Banach space X such that the numerical radius attaining operators are not dense in
L(X), which gave a negative answer to Sims' question. Some also paid attention to the study of
denseness of numerical radius attaining nonlinear mappings [263]-[266].

Motivated by the work [267] of Acosta et al. on the Bishop-Phelps-Bollobas property for
operators, Guirao and Kozhushkina [268] introduced very recently the notion of Bishop-Phelps-
Bollobés property for numerical radius.

Definition (5.1.1)[252]: (see [268]). A Banach space X is said to have the Bishop-Phelps-
Bollobas property for numerical radius (in short, BPBp — nu) if, for every 0 < € < 1, there
exists 1(€) > 0 such that, whenever T € L(X) and (x,x*) € II(X) satisfy v(T) =1 and
|x*Tx| > 1 —n(e), there exit S € L(X) and (y,y™) € II(X) such that
v(S) =y Syl=1 1T -S|l <e¢,
lx —yll <e& lIx* —y*ll <e. (2)
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Notice that if a Banach space X has the BPBp-nu, then the numerical radius attaining operators
are dense in L(X). We show that the converse result is no longer true. It is shown in [268] that
the real or complex spaces ¢y and £; have the BPBp-nu. This result has been extended to the
real space L;(R) by Falco [269]. Aviles et al. [270] give sufficient conditions on a compact
space K for the real space C(K) to have the BPBp-nu which, in particular, include all metrizable
compact spaces.

We introduce a modulus of the BPBp-nu analogous to the one introduced in [271] for the
Bishop-Phelps-Bollobas property for the operator norm. As easy applications, we prove that
finite-dimensional spaces always have the BPBp-nu and that a reflexive space has the BPBp-nu
if and only if its dual does. We devoted to prove that Banach spaces which are both uniformly
convex and uniformly smooth satisfy a weaker version of the BPBp-nu and to discuss such
weaker version. In particular, it is shown that L, () spaces have the BPBp-nu for every measure
uwhenl < p < oo,p # 2. We show that, given any measure u, the real or complex space L, ()
has the BPBp-nu. Finally, we prove that every separable infinite-dimensional Banach space can
be equivalently renormed to fail the BPBp-nu (actually, to fail the weaker version). In particular,
this shows that reflexivity (or even superreflexivity) is not enough for the BPBp-nu, while the
Radon-Nikodym property was known to be sufficient for the density of numerical radius
attaining operators.

The n dimensional space with the 1 norm is denoted by {,gn)' Given a family {X} };-, of
Banach spaces, [@y-; Xi]c, (resp., [Br=1 Xx] {)1) is the Banach space consisting of all sequences
(xx ) p=1 such that each x; is in X}, and lim_ [[x, || = O (resp., Y peq Xkl < ) equipped with
the norm [|(x ) =1 | = supy lxgell (resp., () =1 ll = Xpmq lxie )

Analogously to what is done in [271] for the BPBp for the operator norm, we introduce
here a modulus to quantify the Bishop-Phelps-Bollobas property for numerical radius.
Notation (5.1.2)[252]: Let X be a Banach space. Consider the set

M, (X) = {Ce, x*, T): (x,x*) € TI(X), 3)
T eLX),v(T)=1=|x"Tx|},
which is closed in Sy X Sy+ X L(X) with respect to the following metric:
dist((x, x*, T), (y,¥*,S)) @
=max{ll x —y I, Ix* —y*ILIT—SI}.
The modulus of the Bishop-Phelps-Bollobas property for numerical radius is the function
defined by
Mnu(X) (€)
= inf{1 — |x*Tx|: (x,x*) € I(X), T € L(X), (5)
v(T) =1, dist((x,x*, T), Hnu(X)) > e}
for every € € (0,1). Equivalently, n,,(X)(¢) is the supremum of those scalars 7 > 0 such that,
whenever T € L(X) and (x,x*) € II(X) satisfy v(T) = 1 and |x*Tx| > 1 — 1, there exist S €
L(X) and (y,y*) € II(X) such that
v(S) =ly*Syl =1, IT =Sl <e,

* * 6
e =yl <& llx" — y°ll < e. (6)
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It is immediate that a Banach space X has the BPBp-nu if and only if n,,,,(¢) > 0 for every 0 <
¢ < 1. By construction, if a function € = n(¢) is valid in the definition of the BPBp-nu, then
Mu(€) = n(e).

An immediate consequence of the compactness of the unit ball of a finite-dimensional
space is the following result. It was previously known to A. Guirao (private communication).
Proposition (5.1.3)[252]: Let X be a finite-dimensional Banach space. Then X has the Bishop-
Phelps-Bollobas property for numerical radius.

Proof. Let K = {S € L(X):v(S) = 0}. Then K is a norm-closed subspace of L£L(X). Hence
L(X)/K is a finitedimensional space with two norms:
v([T]) :=inf{v(T —S5):S € K} =v(T), .
I[TNl] :=inf{l T —SI:S € K}, (7)
where [T] is the class of T in the quotient space L(X)/K. Hence there is a constant 0 < ¢ < 1
such that
cll[T]II < v(T) < IIIT]II. 8
Suppose that X does not have the BPBp-nu. Then, there is 0 < ¢ < 1 such that n,,,(X)(¢) = 0.
That is, there are sequences (x,,, x5,) € I1(X) and (T;,) € L(X) with v(T,,) = 1 such that
dist((xp, 25, Tr), M (X)) > € (n € N),
lirrlnlx,*lTnxnl = 1.

€)

By compactness, we may assume that lim,, [|[T;,] — [To]ll = 0 for some Ty € L(X) and v(T,) =
1. Hence there exists a sequence {S, },, in K such that lim,, ||T,, — (T, + S,,)|l = 0. Observe that
v(Ty + S,) = v(T,) =1 foreveryn € N.

By compactness again, we may assume that (x,,, x,;) converges to (xg, x5) € X X X*. This
implies that (xq,xg) € TI(X), and |x5(Ty + Sp)xo| = v(Ty + S,) = 1, that is, (xq,xg, Ty +
S,) € I, (X) for all n. This is a contradiction with the fact that

0 = limdist((xn, x5, Tn), (xg, x5, T + Sn))
. (10)
> hrrlndlst((xn, x5 Tr), Mpu (X)) > &
We may also give the following easy result concerning duality.
Proposition (5.1.4)[252]: Let X be a reflexive space. Then
M (XD (€) = 1y, (X7) (€) (11)
for every € € (0,1). In particular, X has the BPBp-nu if and only if X* has the BPBp-nu.
We will use that v(T*) = v(T) for all T € L(X), where T* denotes the adjoint operator of T.
This result can be found in [253], but it is obvious if X is reflexive.
Proof. By reflexivity, it is enough to show that 7, (X) (&) < Npu(X*)(€). Let € € (0,1) be fixed.
If n,y (X) () = 0, there is nothing to prove. Otherwise, consider 0 < 1 < n,,(X)(g). Suppose
that T; € L(X*) and (x7,x;) € II(X™") satisfy
v(Ty) =1, % Tyxg| > v(Ty) — 1. (12)
By considering T; € L(X), we may find S; € L(X) and (y,,y;) € II(X) such that
lyiSiyil =v(S) =1, lly: — x4l <e,

Iy — xill < & ITf — Syl < . (13)
Then S; € L(X™) and (y{,y,) € II(X™) satisfy
[y, Sy =v(S) =1, lly; —x1ll <, (14)

ly: —x1ll <& IIT; — S{ll < e.
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This implies that n,,(X*) (&) > n. We finish by just taking supremum on 7.

We do not know whether the result above is valid in the nonreflexive case.

For a Banach space which is both uniformly convex and uniformly smooth, we get a
property which is weaker than BPBp-nu. This result was known to A. Guirao (private
communication).

Proposition (5.1.5). Let X be a uniformly convex and uniformly smooth Banach space. Then,
given € > 0, there exists n(e) > 0 such that, whenever T, € L(X) with v(T,) =1 and
(x9, x5) € NI(X) satisfy |x5Toxol > 1 —n(e), there exist S € L(X) and (y, y*) € II(X) such that
v(S) =1y Syl, Ix—-yl<e (15)
Ix* =yl <e IS—-Toll <e
Proof. Notice that the uniform smoothness of X is equivalent to the uniform convexity of X*.
Let 6x(€) and 6x+(€) be the moduli of convexity X and X*, respectively. Given 0 < € < 1,
consider
n(e) = —m1n {(SX( ) Oy (Z)} > 0. (16)
Consider Ty € L(X) with v(Ty) =1 and (xg, x5) € II(X) satisfying |xgToxo| > 1 — n(e).
Define T; € L(X) by

Tix =Tox + A4 ( )xo (x)xg (17)

for all x € X, where A, is the scalar satisfying |1;| = 1 and |x;Tyxo + A1(e/4)| = |x5Toxo| +
€/4. Now, choose x; € Sy and x] € Sy~ such that |x] (x;)| = 1, x{(xg) = |x7(xg)|, and
2
£
|xiTix1| > v(T) — 71 <E> (18)
Now we define a sequence (x,,, x,, Tp,) in Sy X Sy« X L(X) inductively. Indeed, suppose that we

have a defined sequence (xj, xj‘, T]) for 0 < j < nand let
n+1

€
Thi1X = TpX + Apyq Wx;(x)xn (19)

Then choose x,,; € Sy and x;,; € Sy« such that |x;;.;(x,+1)| =1 and |x;,,(x,)| =
Xp41(Xn):

gn+2
|41 Tne1Xn+1l = v(Thy) — 7 <W> (20)
Notice that, for all n > 0, we have
n+1
ITass = Toll < 27
@21)
V(Tns) = 0(T) 1< 27

This implies that (T},) is a Cauchy sequence and assume that it converges to S € L(X). Then we

have
limT,, =S, ITy,— Sl < ¢
n

lim|x; T, x,,| = limv(T,) = v(S). (22)
n n

We will show that both sequences (x,,) and (x;,) are Cauchy. From the definition, we have
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€n+2
V(The1) — 7 <W>

*
< |xp+1Ths1Xn+1l
n+1

x;+17hxn+14‘An+1Z§IIx;(xn+1)x;+1(xn)
gn+l
< v(Tn) + er*wl(xn);

<

v(Trs1) .
n+

> |xr*LTn+1xn| = xr*LTnxn + /1n+1m

€n+1 €n+1 €n+1 (23)
In summary, we have
€n+1
v(Tn) + Wx;kwl(xn)

€n+1 €n+1 €n+2

> U(Tn) -n gn+1 + gn+1 —n gn+2 J° (24)

Hence

4n+1 €n+1
x:l+1(xn) > 1 - 2 €n+1 T] <4n+1>

1 €n+1 €n+1
1o ) (5]

X, + X X, + X ghtl
o] 5 i (52 5 10 ()
X5+ X X5+ x; gn+l

This means that
n+1

2, — Xpqqll < Az
n+1

lxn — xp44ll < 2’ (26)
for all n. So (x,,) and (x;;) are Cauchy. Let x,, = lim,, x,, and x5, = lim,, x;;. Then |lx, — X |l <
g/4 and |lxy — x5 |l < €/4. Hence, |x5 (xo)| = lim,, |x;,(x,)| = 1 and

v(S) = limv(T,) = lim|x;T,x,| = |X5%SXw|. (27)
n n
Let @ = x5 (%), V" = @x%, and y = x,. Then we have y*(y) = 1,v(S) = |y*Sy|, and
ly — x|l < €. Notice that
la — 1] = |xg (Xe0) — 25 (x0)|
£

< (% — x0) (Xeo) | + [x0(X00) — x5 (x0)| < > (28)
Therefore
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£ €
ly* =x"l < llay” =y I+ lly" = x"l < St <¢& (29)

This completes the proof.

We discuss a little bit about the equivalence between the property in the result above and

the BPBp-nu. For convenience, let us introduce the following definition.
Definition (5.1.6)[252]: A Banach space X has the weak Bishop-PhelpsBollobas property for
the numerical radius (in short weak BPBp — nu); if given € > 0, there exists n(e) > 0 such
that whenever Ty € L(X) with v(Ty) = 1 and (xg, x5) € I(X) satisfy [x;Toxo| > 1 —n(e),
there exist S € L(X) and (y,y") € II(X) such that
v(S) = [ySyl. Ihx—yl<e, (30)
Ix* —y*ll<e I1S—TI<e.

Notice that the only difference between this concept and the BPBp-nu is the normalization
of the operator S by the numerical radius. Of course, if the numerical radius and the operator
norm are equivalent, these two properties are the same. This equivalence is measured by the so-
called numerical index of the Banach space, as follows. For a Banach space X, the numerical
index of X is defined by

n(X) = inf{v(T): T € LX), ||T|| = 1}. (31)
Itis clear that 0 < n(X) < 1 and n(X)||T|| < v(T) < ||T|| forall T € L(X). The value n(X) =
1 means that v equals the usual operator norm. This is the case of X = L;(u) and X = C(K),
among many others. On the other hand, n(X) > 0 if and only if the numerical radius is
equivalent to the norm of £(X). See [272] for more information and background.

The following result is immediate. We include a proof for the sake of completeness.

Proposition (5.1.7)[252]: Let X be a Banach space with n(X) > 0. Then, X has the BPBp-nu if
and only if X has the weak-BPBp-nu.
Proof. The necessity is clear. For the converse, assume that we have n(e) > 0 satisfying the
conditions of the weak-BPBp-nu for all 0 < ¢ < 1. If T € L(X) with v(T) = 1 and (x,, x3) €
M(X) satisfy |x3Txo] > 1 —n(e) for 0 < € < 1, then there exist S € L(X) and (y,y"*) € II(X)
such that

v©=ly'syl Is-Ti<e, G2)
Ix—yll<e  lIx"=y'll<e.
As v(S) > 0 by the above, let S; = (1/v(S))S. Then we have
L=v(S) =y Syl llx —yll <e
lx™ =yl <e. (33)
Finally, we have
1
ST <“—S—S“ S-T
1Sy =TIl (S) + I I
||
IV(S) =1+ [IS =TIl
(S) 34
: (39)
[v(S) —v(DI+ IS =TIl
(X)
nX)+1
1) IS =Tl < =
( n(Xx) n(X)

An obvious change of parameters finishes the proof.
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We do not know whether the hypothesis of n(X) > 0 can be omitted in the above result.

Putting together Propositions (5.1.5) and (5.1.7), we get the following.

Corollary (5.1.8)[252]: Let X be a uniformly convex and uniformly smooth Banach space with
n(X) > 0. Then X has the BPBpnu.

We comment that every complex Banach space X satisfies n(X) > 1/e, so the above
corollary automatically applies in the complex case. In the real case, this is no longer true, as
the numerical index of a Hilbert space of dimension greater than or equal to two is 0. On the
other hand, it is proved in [273] that real L, (1) spaces have nonzero numerical index for every
measure 4 when p # 2. Therefore, we have the following examples.

Example (5.1.9)[252]: (a) Complex Banach spaces which are uniformly smooth and uniformly
convex satisfy the BPBp-nu.

(b) In particular, for every measure u, the complex spaces Ly, (1) have the BPBp-nu for
1<p<oo.

(c) For every measure u, the real spaces L, (1) have the BPBp-nu for 1 <p < oo,p # 2.

H. J. Lee, M. Martin, and J. Meri have proved that Proposition (5.1.7) can be extended to
some Banach spaces with numerical index zero as, for instance, real Hilbert spaces. Hence, they
have shown that Hilbert spaces have the BPBp-nu. These results will appear elsewhere.

We will show that L;(u) has the BPBp-nu for every measure u. In the proof, we are
dealing with complex integrable functions since the real case is followed easily by applying the
same proof.

As a first step, we have to start dealing with finite regular positive Borel measures, for
which a representation theorem for operators exists.

To prove this proposition, we need some background on representation of operators on
Lebesgue spaces on finite regular positive Borel measures and several preliminary lemmas.

Let m be a finite regular positive Borel measure on a compact Hausdorff space Q. If u is
a complex-valued Borel measure on the product space (1 X (), then define their marginal
measures ' on Q(i = 1,2) as follows: u*(4) = u(A x Q) and u?(B) = u(Q x B), where A and
B are Borel measurable subsets of ().

Let M(m) be the complex Banach lattice of measures consisting of all complex-valued
Borel measures p on the product space Q X Q such that |u|* are absolutely continuous with
respect to m for i = 1, 2, endowed with the norm

dlu|*
am || (35)
Each y € M (m) defines a bounded linear operator T, from L, (m) to itself by
(T.(f), 9) = f)gy)du(x,y), (36)
axQ

where f € Lyi(m) and g € L, (m). Iwanik [274] showed that the mapping u — T, is a lattice

isometric isomorphism from M(m) onto L(L;(m)). Even though he showed this for the real
case, it can be easily generalized to the complex case. For details, see ([274], Theorem 1 and
[275], IV Theorem 1.5(i1), Corollary 2).

We will also use that, given an arbitrary measure u, every T € L(L,(u)) satisfies v(T) =
IT|| [276] (that is, the space L, (u) has numerical index 1).
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Lemma (5.1.10)[252]: (see [267], Lemma 3.3). Let {c,,} be a sequence of complex numbers
with |c,| < 1 for every n, and let n > 0 such that, for a convex series Y.a,, Re Y- @, Cp >
1 — 7. Then for every 0 < r < 1, the set A: = {i € N%:Re ¢; > r} satisfies the estimate
U]
Zai>1 — 37)
1EA

From now on, m will be a finite regular positive Borel measure on the compact Hausdorff space
Q.
Lemma (5.1.11)[252]: Suppose that there exist a nonnegative simple function f € §; ) and a

function g € S;_ () such that

3

Re(f,g) > 1 - (38)

Then there exist a nonnegative simple function f; € S ) and a function g; € Sy ) such that
g1(x) = Xsupp(fl)(x) + g(x)XQ\supp(fl)(x);
fog)=LIf - fil <e¢ (39)
lg — g1ll,, < Ve, supp(f1) < supp(f).

Proof. Let f = Z] 1 (,[?]/m(B )) XB; for some (,8]) such that §; > 0 for all j and Z] 1B =1,

and B; 's are mutually disjoint. By the assumptlon we have
3

£
Re(f, g) = Z ) j Re g(x) dm(x) > 1 -+, (40)
=1 J
and letting
1 g2
J=1/:1<j<n, j Reg(x)dm(x) > 1——, (41)
m(B;) Jg, 4
we have by Lemma (5.1.10)
£
D p>1-2 (42)
JjeJj
For each j € J, we have
£2
1-— < j Re g(x)dm(x)
4 m(Bj) Bj
1
= Re g(x)dm(x)
m(B;) Ji;n(re g<1-¢)
+j Re g(x)dm(x) (43)
Bin{Reg>1—¢}

— e)m(Bj N{Reg <1- e})

<t (1
~m(B;)

m(B N{Reg>1-— E}))
m(B N{Reg < 1—- E})

=1—¢

This implies that
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m(B N{Reg <1 —E})

m(B)

Define B; = Bjn{Reg > 1 — ¢} forall j € J,

f={17)8D 8(xs,m(B), (45)
J€J j€J
and g;(x) =1 on supp(f;) and g;(x) = g(x) elsewhere. Then it is clear that supp(f;) c

supp(f), llg — g1l , < Ve, and (f1, 91) = 1. Finally we will show that ||f — f;]l < €. Notice
first that

Z B mx(gj) _JZE]: B mxg

JjeJj

(44)

<y ﬁ, ]) Z B,m(B)"

j€j
;'Bjm(B) ;B]m(B) (46)
_ m(B \ B;)
DWE=TOE
Hence
"f_flll Z]EZJ:B] Z[:;E]B] (B) Z]E]ﬁ] Z]E]ﬁ] (B) f"
T aje]Pj XB
Sy ol DLy *"Zﬁf & Zﬁ’
e €
= ‘;ﬁf T3t
E € €
<Z+E+Z=E. (47)

Lemma (5.1.12)[252]: (see [277], Lemma 3.3). Suppose that T,, is a normone element in

L(L;(m)) for some u € M(m) and there is a nonnegative simple function f; such that f; is a
norm-one element of Ly(m) and ||T, fo|l > 1 — €3/2° for some 0 < & < 1. Then there exist a

norm-one bounded linear operator T, for some v € M (m, m) and a nonnegative simple function
fi in Sy gmy such that |T, =T, || < & lIfy — foll < 3¢, and (d|v['/dm)(x) =1 for all x €
supp(f1).

Lemma (5.1.13)[252]: Suppose that T, € L(L,(m)) is a norm-one operator, f = Y1~ f; (XBi /

m(B;)), where m(B )>0forall1<j<nand {B } are mutually disjoint Borel subsets of

(1, is a norm-one nonnegative simple function, and g is an element of S; ) such that
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6
£
I{e(£7;7:1f) > 1 _'327 (4{3)
forsome 0 < € < 1 and
lv|*

@ =1, 9@ =1 (49)

for all x in the support of f.
Then there exist a nonnegative simple function f € S L,(m)» a function § € S; ), and an
operator Ty in L(L,(m), L;(m)) such that
(9. T5f) = ITl = 1, IT, — T5ll < 2¢

I f=Fi<3e lg—glsve (f.g) =1 (50)
Proof. Since
6
Re(g, Tof) > 1=, (51)
we have
86
1- 77 < Re(g,T,f)
= f(x)Re g(y)du(x,y)
SXQ (52)
XBj(x)
=20 jm 15 eI
Let
) XB; (%) 1-¢°
=] <m(3j)> Re g()v(9) > | (53)

Then from Lemma (5.1.10) we have }};e;8; > 1 — e3/2. Letf; = Z]-E]ﬁj <)(Bj/m(Bj)>, where
ﬁj = ,8]-/(2]-6],8]-) forall j € J. Then

~ XB] 3
IL=FI<|> (B -B) =]+ ) Bi<el<e (54)
: m(B;)|| 4
jEJ JEJ
Note that there is a Borel measurable function h on Q X Q such that dv(x,y) =
h(x,y)d|v|(x,y) and |h(x,y)| = 1 for all (x,y) € Q X Q. Let

Ve
C=10y) g y) = 1 < 51 (55)
Define two measures vy and v, as follows:
vr(A) =v(A\C), v.(A) =v(ANC) (56)

for every Borel subset A of 1 X Q. It is clear that
dv = dv; + dv,, d|vs| = hdvy,
d|ve| = hdv,, d|v| = d|vs| + d|v,|.
Since (d|v|'/dm;)(x) = 1 for all x € U}, B;, we have

(57)
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_dplt - dly] divl
= 0 =k + ) (58)

forallx € B = U]T-llej, and we deduce that |v| (B ) ml(B ) forall 1 <j < n.

We claim that |vf|1(Bj)/m1(Bj) < €2/22 for all j € . Indeed, if |g(y)h(x,y) — 1| >
Ve/23/2, then

Re(g(h(x,y)) < 1— 7. (59)

So we have
g3 1

5 Re foQXBj(x)g(Y)dU(X, y)

= (5 xR IV )

1
= WB,.)I axaXe;c0Re(GONR(, y)d|ve| (x, y)

1
+WBJ')IQXQXBJ(X)RG(Q(y)h(x’ y)alvel(x,y)

- <(1“£%)|Vfr(59)'F|”cP(Eﬁ)>

m (Bj )

1
e |ve| (B)

2 ml(Bj) .

N

(60)

This proves our claim.
We also claim that, for each j € J, there exists a Borel subset Ej of B; such that

£ _
(1- E) ml(B-) <my(B;) < my(B))
dm, (x) =2
for all x € B;. Indeed, set B; = B; N {x € Q: (d|vf| /dml) (x) < 8/2}. Then

& d|vf|1
[ Same < TE-@dm@
Bj\Bj B; 4 (62)
= [v?|(B;) < ml(B)
This shows that m, (Bj \ Ej) < (e/2)my (Bj). This proves our second claim.
Now, we define § by G(¥) = g)/1gW)| if lg)| > 1 —Ve/2%? and G(¥) = g(¥) if
lg(¥)| < 1—+e/23/%, and we write f =Y ;¢; B <ng/m1(§j)>. It is clear that § € Sy, (), |l

g — g 1< e, and G(y) = 1 for all x € supp f.
Finally, we define the measure
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dv(x,y)

. ~1
=) X8, (TG YIdvc(x, y)( vl )) (63)
Jj€J
+ x\5(0)dv(x, y)
where B = U, B;. It is easy to see that (d|7|'/dm,)(x) = 1 on B and (d|7|'/dmy)(x) < 1
elsewhere. Note that

d(¥ —v)(x,y)

h dvt \7
B TYe) CCLLEIETEION R

JjeJj

=) x5, @dvy () (64
j€l
If (x,y) € C, then |g(¥)| > 1—+e/2%% »1—1/23/% and
lGg)h(x,y) — 1]

g)
= [igooren =]
lg)h(x,y) — 1] N 11— 1gW)Il
lg)| lg)I
9 —1] __VE 22
FIe)] <22§2§_1<2ﬁ' (65)

Hence, for all (x,y) € C, we have

dOA(x, y)< lnil (x)> -1

1

< [FORG - 1 ( ol (x)>_
dlv |t \
o|(@m) -
N(ml ) <|c|1 )
x)| + () —-1j.
So, we have, for all x € J;,
d|v —v|! c1 B
Tl < Zm@[d = ())

JjeJj L
vt \T |t
e ) )

dm,
140

(66)




()

+Z XB; (x)

J€J

<§ngm<a5+<1 'C'(ﬂ>

J€J

+Z XB; (x)( |
j€j
< 2Ve +e < 3ve. (67)
This gives that [T, — Tl < 3+/e. Note also that, for all j €],
. X5 ~>
D =~'9
my ( j)
XB; (x)
- | G dB(x,)
axqm 1( ])

_ X5, h(x,y)dlv, |t
_.[ngml([?j) h  dmy (x)) dve(x,y)

_j X5,(x) <0l|vc|1 >_1d| I
- le(gj) dml (x) Ve (x)

= j Xéf(fc ) dmy(x) = 1. (68)
N a m1(B))

Hence we get (T5f, §) = 1, which implies that ||T;f|| = 1. Finally,
I -l < 1 - ﬁHWﬁ fl

o m(®) Zﬁ,ml(B)

j€J j€J

~ XB; AB;
<Z B]( ] ]

3 my (B;) _ml(gj)
+' XBi - A5, >+£
ml(B) ml(B)

ZZ At \B)+£

it ml(B)

B
ZZB] ml() +e<——= : z+¢e<3e. (69)

JEJ ml(B) 1_7

We are now ready to present the proof of the main result in the case of finite regular positive
Borel measure
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Proposition (5.1.14)[252]: Let m be a finite regular positive Borel measure on a compact
Hausdorff space Q. Then L, (m) has the Bishop-Phelps-Bollobas property for numerical radius.
More precisely, given € > 0, there is n(¢) > 0 (which is independent of the measurem) such
that if a norm-one element T in L(L,(m)) and (fy, go) € N(L,(m)) satisty [T fy, go)l > 1 —
n(¢), then there exist an operator S € L(L,(m)), (f1, g1) € I(L,;(m)) such that
S0l = 1Sl =1, Ifo — fil <&
lgo — g1ll < & IIT =S|l < e (70)
Proof. Let §; = 65/(5-2%),8, = 63%2/(32-2), and &5 = (¢/10)? for some 0 < e < 1.
Suppose that T € L(Ly(m)) with | T = 1 and that there is an fy € Sy and go € Sp_(m)
such that (fy, go) = 1 and [{Tfy, go)| > 1 — 83 /2. Then there is an isometric isomorphism ¥
from L,(m) onto itself such that W(f;) = |f,| and there is a scalar number @ in Sk such that
KT fo, go)| = (aTfo, go)- Then letting f; = W[y, g1 = (W 1)*gy, and Ty = a¥T¥Y L, we have
(Sfi,91) = (YT, W~ Yf,, (‘P_l)*go)
63
=(aTfo, 90) > 1 ~ 26
(fu91) = (Pfo, W™ )"go) = 1. (71)
Since [|T; f1ll > 1 — 8§(63/2°), by Lemma (5.1.12), there exists a norm-one bounded operator
T, and a nonnegative simple function f, € Sy () such that [Ty — T, Il < 83, lIfz — fill < 364,
and (d|v|'/dm,)(x) = 1 for all x € supp(f,). Then

(Tyf2, 91) = T1f1, 91) —Tif1 — Tif2, 91) — (T1fz2 — Tuf2, G1)
> (T1f1;g1) —fs = foll = ITy = Tyl

1 —6 240, >1—-3V6, =1 66 72
> 1716 V2 27" (72)
Notice also that
(f291) ={r91)—{(fr—fo90) 21— lfs — f2l
6
— - — 73
1-36;,>1-56,=1 e (73)

By Lemma (5.1.11) there are a nonnegative simple function f3 € S; ) and a function g5 €
S Lo (M) such that

g3 (x) = Xsupp f3 (x) + gZ (x)XQ\supp f3 (x)

If2 — f3ll <62, gz — g1l < \/5_2; (f3,93) = 1. (74)
So we have
(Tyf3,93) = Tpf2,91) — T,f2 — Ty f3,91) — (va3;91 — 9g3)
1 % 2./6 —3V6,=1 % 75
> 16 2 > - 27 ( )

By Lemma (5.1.13), there exist f, € S;_ ) and g4 € S;_ (m) and an operator T, such that
(G Tafa) = 1= T4l IT, — T, 1l < 285,
Ifa — f3ll <363, 192 — g3l < \/5_3; (farga) = 1. (76)

ITy — T1ll < Ty =TIl + 1T, — T4l
< 61 + 265 < 363,
Ify — fall < Nfi = foll HMIf2 = [zl + 1fz — fall
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<38, + 8, + 385 < 1065, (77)
g1 — gall <llg1 — g3l + 1193 — gall
<8, + /85 < 255,
LetS = a¥W T, W, f = W1f,, and § = W*g,; then we have
IT =S|l =IT- atp_szLLp" = [la¥T¥Y~! - T,
= IT; — Tyll < 363,
Ifo = fll = lfo =¥ full = lIfy — fall < 1063,
lgo = Fll = llgo — ¥*gall = I(¥~1)"go — gl
=191 — gall < 2/ 83 (78)

(f,g) = (Lp_lf4'W*g4) = {fo g4) =1,
I(Sf, g) = |(atp_1T4Lpr_1f4»Lp*g4)| = |a| =1.
This completes the proof.

Finally, we may give the proof of the main result in full generality.
Theorem (5.1.15)[252]: Let u be a measure. Then L;(u) has the BishopPhelps-Bollobas
property for numerical radius. More precisely, given € > 0, there exists n(g) > 0 (which does
not depend on u) such that whenever Ty € L(L;(u)) with v(Ty) = 1 and (fy, go) € (L, (1))
satisfy (T fo, 9o)| > 1 — n(¢€), then there exist T € L(L;(w)), (f1, g1) € N(L1(w)) such that

KTfi,g0l =v(T) =1, lIfo - fill <e
lgo — g1l < &, IT —Tyll < e. (79)
Proof. Notice that the Kakutani representation theorem (see [278] for a reference) says that, for
every o-finite measure v, the space L,(v) is isometrically isomorphic to L;(m) for some
positive Borel regular measure on a compact Hausdorff space. Then, by Proposition (5.1.14),
there is a universal function € = n(&) > 0 which gives the BPBp-nu for L, (v) for every o-finite
measure v.
Fix € > 0. Suppose that Ty € L(L;(u)) with v(Ty) = 1 and (fp, f5) € (L, (w)) satisfy
{5, Tofo)l > 1 —n(e). (80)
Choose a sequence {f,,} in Ly (u) such that sup, [Ty f,ll = 1 and let G be the closed linear span
of
{T{f:n,m € N U {0}}. (81)
As G is separable, there is a dense subset {g,;:n € N} of G and let E = U;—; supp g,, Where
supp gn is the support of g,,. Then the measure u|y is o-finite. Let
Y ={f € Ly(n):supp(f) € E} (82)
be a closed subspace of L1 (u). It is clear that L, (1) = Y @ Z and Y is isometrically isomorphic
to L,(¢|g). So Y has the BPBp-nu with n(¢).

Now, write Sy = Tyly: Y = Y, consider yo = fy € Sy, ¥5 = fo |y € Sy+, and observe that
YoWo) =1 and |y5(Sovo)l = |fo (Tofo)l > 1 —n(e). Hence, there exist S € L(Y) and
(Fo, o) € TI(Y) such that

175 (STo) | =1 =v(S), IS — Soll <&,

) . (83)
lyo — Joll <&, llyg — Yol < e.
Finally consider the operator T € L(L,(u)) given by
T(y,2)
= (5y,0) + Tp(0,2)((v,2) € L1(1) =Y D1 2). (84)
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We have ||T|| = 1 (and so v(T) = 1). Indeed,

TG, 21 = 168y, Ol + ITo(0, DIl < Iyl + llzll = I, DI (85)
for all (y,2) € Ly(w) and IIT(Fo, 0l = I(SFo, )l = ISFoll = 1. Let x = (F,,0) and x* =
(Vs folz). Then (x, x*) € (L, (1)). Moreover, we have

lx*Tx| = |9Syol = 1 = v(T),
lx — foll = lly — yoll <e,
lIxg — foll = max{lly — f5lyll, Ifo'1z — fo |z I}

= ly* —yoll <,
IT—Tol = ” uSlﬁpu IT(Cy,z) — To(y, 2)l
yi+lzl<1
86
= sup ISy — Soyll = IS — Soll < . (86)
yll<i

This completes the proof

We prove that the density of numerical radius attaining operators does not imply the
BPBp-nu. Actually, we will show that, among separable spaces, there is no isomorphic property
implying the BPBp — nu other than finitedimensionality.

We need to relate the BPBp-nu to the Bishop-PhelpsBollobas property for operators
which, as mentioned in the introduction, was introduced in [267]. A pair (X, Y) of Banach spaces
has the Bishop-Phelps-Bollobas property for operators (in short, BPBp); if given € > 0 there
exists n(€) > 0 such that, given T € L(X,Y) with ||T|| = 1 and x € Sy such that ||Tx]|| > 1 —
n(¢€), then there exist z € Sy and S € L(X,Y) satisfying

ISII = ISzl =1, [[x — z|l < ¢,
IT - S < e. (87)

See [267],[271],[277] for more information and background. Among the interesting
results on the BPBp, we emphasize that a pair (X,Y) when X is finite-dimensional does not
necessarily have the BPBp. For instance, if Y is a strictly convex space which is not uniformly

convex, then the pair ({’52), Y) fails to have the BPBp (this is contained in [267]; see [271]). The

next result relates the BPBp-nu to the BPBp for operators in a particular case. We will deduce
our example from it.

Before proving this proposition, we will use it to get the main examples. The first example
shows that the density of numerical radius attaining operators does not imply the BPBp-nu.
Example (5.1.16)[252]: There is a reflexive space (and so numerical radius attaining operators
on it are dense) which fails to have the BPBp — nu. Indeed, let Y be a reflexive separable space
which is not superreflexive and we may suppose that Y is strictly convex. Observe that Y cannot

be uniformly convex since it is not superreflexive. Now, X = {,gz) @, Y is reflexive, but the pair
({,gz), Y) fails the BPBp since Y is strictly convex but not uniformly convex [271]. Therefore,

Theorem (5.1.20) gives us that X does not have the BPBp-nu.

The example above can be extended to get the result that every infinite-dimensional
separable Banach space can be renormed to fail the BPBp-nu. This follows from the fact that
every infinite-dimensional separable Banach space can be renormed to be strictly convex but
not uniformly convex (this result can be proved "by hand"; an alternative categorical argument
for it can be found in [279]). With a little more of effort, we may get the main result.
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We need the following result which is surely well known. We include a nice and easy
proof kindly given to us by Vladimir Kadets. We recall that, given a Banach space Y, the set of
all equivalent norms on Y can be viewed as a metric space using the Banach-Mazur distance.
Lemma (5.1.17)[252]: Let Y be an infinite-dimensional separable Banach space. Then the set
of equivalent norms on Y which are strictly convex and are not (locally) uniformly convex is
dense in the set of all equivalent norms on Y (with respect to the Banach-Mazur distance).
Proof. Fix e € Sy and e; € Sy- such that e (e) = 1. For a fixed € € (0,1/2), denote

q(y) = max{(1 - &yl lesM} (v € V). (88)
Evidently, (1 — &)|ly]l < q(y) < |lyl| forevery y € Y. Fix a sequence {ey: k > 2} of norm-one
functionals separating the points of Y, and denote

(e @)

p(y) = Zzik

k=1

e[ e (89)

Then, p is a strictly convex norm on Y,p(e) > 1/v2, and p(¥) < |ly|| for all y € X. Finally,
write

Iyl = A —e)q(y) + 8% (v €Y). (90)
Then, ||l 1s a strictly convex norm on Y and

1=yl < llylly < @+ 9)llyll (v € V). (91)

We will finish the proof by showing that ||-|[; is not uniformly convex (actually, it is not locally
uniformly convex). Indeed, for each n € N we select y, € N}y, ker e, with [[y,ll =1 and
consider e,, = e + (¢/4)y,. Then, q(e) = 1,q(e,,) = 1, and q(e + e,) = 2. At the same time,
p(y,) — 0,s0p(e,) - p(e) and p(e + e,) — 2p(e). Consequently,

lell, = 1, llegll, — 1, lle + egll, — 2, (92)
but e —eyll, = (£/4)||yn||1 > (1- 8)2(8/4), which means the absence of local uniform
convexity at e.
Theorem (5.1.18)[252]: Every infinite-dimensional separable Banach space can be renormed
to fail the weak-BPBp-nu (and so, in particular, to fail the BPBp-nu).
Proof. Let X be an infinite-dimensional separable Banach space. Take a closed subspace Y of X
of codimension two. By [280], the map carrying every equivalent norm on Y to its numerical
index is continuous and so, the set of values of the numerical index of Y up to reforming is a
nontrivial interval [280]. Then Lemma (5.1.17) allows us to find an equivalent norm |- | on Y
in such a way that (Y, | - |) is strictly convex and is not uniformly convex, and n(Y,|-|) > 0.

Now, the space X = {,gz) @1 (Y,| - |) is an equivalent renorming of X which does not have the
BPBp-nu (indeed, otherwise, the pair ({,gz), (v,|- |)) would have the BPBp for the operator
norm and so, (Y, | - |) would be uniformly convex by [271], a contradiction.) Moreover, as

n(X) = min {n (¢?),n(v,1- D} >0 (93)
(see [272], for instance), X also fails the weakBPBp-nu by Proposition (5.1.7) .

To finish with the promised proof of Theorem (5.1.20), we first see the following stability
result.
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Lemma (5.1.19)[252]: Let X = [®;_1Xx], or [By-1Xk]ls,. If X has the Bishop-Phelps-
Bollobéas property for numerical radius with a function 7, then each Banach space X; has the
Bishop-PhelpsBollobas property for numerical radius with n,,(X;) >n. That is,
inf; 1, (X;)(€) = Ny (X)(e) forall 0 < e < 1.

Proof. Let P;:X — X; and P;:X* - X; be the natural projections, and let Q;: X; » X and
Q;: X; — X* be the natural embeddings.

Assume that an operator T;: X; = X; and a pair (x;, x;") € I1(X;) satisfy that

v(T) =1, [x;Tix;| > 1 —n(e). (94)
We define an operator T: X — X and (x, x*) € II(X) by
T=Q;oT;oP;, (x,x") = (Q;x;, Qi x[); (95)
then clearly we see that
X Tx] = % Tyxi] > 1 n(e). (96)

From the assumption, there exist S: X — X and a pair (y, y*) € I1(X) such that
ly*Syl =1=v(S5), IS=TIl <e,

x x 97
by —x' I <& lly—xll <& G7)
Since this clearly shows that
IPioSoQ;—Till <& IPy" —x{ll <&
98
1Py —xill <&, (%8)
we only need to show that |P/y*(P; o S o Q;)P;y| = 1.
We first show the case of ¢y sum. Since
1Pyl = 1Py — Prxll < lly — xll < e (99)
for every j # i, we have
1=y o =) By () <) IFylieyl
JEN JEN (100)

<IPyl+e D Byl <lyl=1
JEN,j#i
This shows that [|[P/y*|| = 1 and P{y" = 0 forevery j # i. Soy* = Q;P;y" and P;y*(P;y) = 1.
This and the fact that ||y — Q; P;yll < & imply that

(0P + () 0 — 0P, QPly) € C0). (10)

So we get that (Q;P{y*)S(Q;P;y + (1/&)(y — Q;P;y))v(S) = 1. Hence, we have
1= |y*Syl = 1(Q{P{y")Sy|

(1—¢&)(Q;Piy")S(Q;Py)

(102)

<1

1
+e(Q;P{y")S <Qipiy + E()’ - Qipi)’)>

and so we get |P/y*(P; S o Q)P;y| = [(Q;P;y")S(Q:Py)| = 1.

We next show the case of £; sum. The proof is almost the same as that of the ¢, case.
However, for the sake of completeness, we provide it here.

Since ||P/y*|| = [|P/y* — Pix*|| < lly* — x|l < € for every j # i, we have
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1=y o =) By () <) 1Py liEy
jeN jeN
<IPyl+e Yo Iyl <lyl=1
JEN,j#i
which shows [|P;yll =1 and P;y = 0 for every j # i. Since this implies (Q;P;y, Q{P{y* +
(1/e)(y* = Q{P{y™)) € TI(X), we get that |(Q;P{y" + (1/e)(y" — Q;P{y))S(Q:Py)| < v(S) =
1. Hence, we have

(103)

1=|y*Syl = ly*S(Q;P;y)|

(1—2)(Q;Piy")S(Q;Piy)

(104)

<1

1
+& <Q{Pl-’y* + A (y* — Q{Pi'y*)> S(Q;P;y)

and so |P/y*(P; o S o Q)Py| = |(Q;Piy")S(Q;Py)| = 1.

Theorem (5.1.20)[252]: If L, (1) @, X has the BPBp — nu, then the pair (L, (1), X) has the
BPBp for operators.

Proof. Note that n,, (L, (1) ©,1 X)(e) > 0as € > 0. Fix 0 < &g, <1 and choose 0 < e <1
such that 6 + Moy (L (1) @1 X)(8) < &. Let N(go) = Nou Ly (1) 1 X)(&).

Suppose that Ty € L(Lq(u), X) with [[Toll = 1 and fy € S;, () satisfy

ITofoll > 1 —n(eo). (105)

For any measurable subset B, let
Li(ulg) = {flp:f € Ly (W)} (106)
with the norm ||f |zl = f XB||1- Then it is easy to see that L, (u|g) is isometrically isomorphic

to a complemented subspace of Ly (u). Let Pg: L;(u) = L,(u|g) be the restriction defined by
Pg(f) = flg for all f € Ly(u) and let Jg:L;(u|g) = Ly(1) be the extension defined by
Je(f)(w) = f(w) if w € B and Jp(f)(w) = 0 otherwise. It is clear that Pg/p = 1d;_ (,,) and
JgPs(f) = fxp for all f € L;(u). Notice also that L;(u) is isometrically isomorphic to

Li(ulg) ©1 L1(ulpe).
Let A = supp fp and gg = P, f,. Then

IToJagoll = ITofoll > 1 —n(g) >0 (107)
and define the operator Ty: L, (tt|4) = X by Taf = ToJuaf /IIToJall for every f € L;(u|4). Then,
ITagoll = ITofoll > 1 —n(eo). (108)

Since pi| 4 is o-finite, Ly (u|4)* = Lo (1] 4). Let gg € Sy (4|, be a function such that (gg, go) =
1, and choose xj € Sy« such that x35(T,g9¢) = ITagoll. Define the operator S, €

L(L1(ulg) ©1X) by

So(f,x) = (0,Taf) ((f,x) € L1(ul ) D1 X) (109)
and observe that [|Sy]| = v(Sy) = 1. Indeed,
I1Soll < 1 =Tyl

sup{|x*Tyf|:x* € Sx+, f € SLl(.ulA)}

sup{|(f*, x)So(f, ) |: ((F* %), (f, %)) € (L1 () B4 X)}
v(So) < ISoll- (110)
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It is immediate that
(90, %0)S0(go, 0) = x6(Tago) = ITagoll > 1 — n(eo). (111)
By Lemma (5.1.19), L, (u|4) @, X has the BPBp-nu with the function 1. Therefore, there exist
Sy € L(Ly(pla) D1 X), (g1, %1) € S, ui @, x> @and (g1, X1) € S (ul )@ ox* Such that
(g1, %1) — (go, DIl < &, (g1, x7) — (f5, ¥ < ¢
IS1 = Soll <& ((g1,%1), (g1, 1)) = 1,

|Cg1, x1)S1(g1, x1)| = v(S1) = 1. (112)
Claim (5.1.21)[252]: We claim that x; = 0.
Otherwise,
1 = Re((g1,x1), (g1, %1))
(91,0)
= lig1lIRe ( (g3, %), ~—=
llg.l (113)
(0,x1)
+llx,|IRe <(g1, x1), I |1| < 1.
X1
We deduce that

(91,0) (O xl)
<||g1|| (g0, x 1)> <|| ol 9% 1)> (114)

€ (L, (uly) B, X).
Since [1$; (€0, x0)/lxa )1l = 1651 = So)((0,x0)/llx ]| < &, we get that
1= (g1, %), 51(g2, )]

] : s, (L9e9
= ‘"91" <(91'x1)’51< gl >>

+||X1" <(g1,x1);51< "xlll ) ‘

< Ngallv(S) + ellxgl < llgall + llxqgll = 1, (115)
a contradiction. This proves the claim.
We define the operator S,: L, (ul|,) @1 X — Li(ul,) @1 X by S,(f,x) = S,(f,0) for
every f € Ly(ul,) and for every x € X. Then we have
v(S;) = 1(91,x1)52(91,0) =1, IIS; — Szl < & (116)
Indeed, from Claim (5.1.21), we have
v(S1) = 1091, x1)51(g1, x| = (g1, x1)51(g1, 0)|
= (g1, %1)S2(g1, 0)| < v(S2).

(117)

On the other hand, we see that
|G xS (f, 0l = [(F, xS (f, 0 <l f 1 v(Sy) < v(Sy) (118)

for every ((f*,x*), (f, x)) € M(L;(ul,) D1 X). Therefore, v(S,) < v(S;). Also,
151 — Szl < sup [I51(0, x)l

.X'ESX

= sup [[S1(0,x) — Sp(0, %)l < €

.X'ESX

(119)
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Claim (5.1.22)[252]: There exists Sg: L (ul4) @1 X = L (ul4) D, X such that [|S3(g4, 0)Il =
IS5 = 1,55(0,x) = 0,S5(f,x) € {0} &, X for every (f,x)€ Li(uly) ®,X, and [|S3 —
SHll < 4e.

Indeed, write S; =(Dy,D,), where Dy:L,(uly) &,X—-> Li(uly) and
D,: Ly(uls) @1 X - X. We have that

sup{|g*D1(g1,0) + x*D,(g4,0)|:

X" €8x, (9" 91) =19 € SLoo(ulA)}
= sup{|g*D1(g1, 0)| + 1D, (g4, O)I:
(9%91) = 1,9" € Sipquin}
sup{|g”D1(g1, 0)I:
(95,91)=1,9" € SLoo(mA)} + 11D (g1, O)II
v(S2) = (g1, x1)S2(g1, 0)|
|91D1(g1,0) + x1D, (g4, 0)|.

(120)

IIVAN

This implies that
|xID2(g1; O)l = "Dz(gL O)"

|91D1(g1,0)| = sup{lg*D;1(91,0):{(g", 91) = 1,9" € Lo (u|4)} (121)
Therefore, |g7| equals 1 on the support of D,(gy,0). As |[{g1, 91)| = 1, we also have that |g;|

equals 1 on the support of g;. Changing the values of g; by the ones of f; on \
(supp (D,(g1,0)) U supp(gl)), we may and do suppose that |g}| = 1 on the whole A.
We also have [|D,(g;, 0)|l > 0. Indeed,

152 (g1, 0) — So(go, O)II

< "SZ (91; O) - 50(91; O)" + "50(91; O) - SO(gO; O)" (122)
<2e+¢e=3¢

D, (91; 0) — T490ll
< IID1(g1, 0l + ID; (g1, 0) — T4 9ol
= "(D1(91; 0), D, (91, 0)) - (0, TAgo)"

= [1S,(g91,0) — Sy(g0, 0l < 3¢ (123)
and |D;(g1, 0)Il > IT4goll — 3¢ > 1 —n(g) — 3¢ > 0.
Finally define the operator S; by

So we have

S5(F,%) = (o, D,(f, 0) + gi (Dr(f, ) %) (124)
for (f,x) € L;(ul|,) @4 X. It is clear that
ISzl < sup (D2 (f, 0)ll + |g1 D1 (f, 0)]). (125)
f€SL, (na)
Notice also that
ID1(f, 0)l
< DL (f, O)Il + 11D (f, 0) — Tuf i (126)

= "(Dl(f' 0)' DZ(f' O)) - (OJTAf)"

= 1S2(f, x) = So(f, 1)l
for all (f,x) € Ly(ul4) D1 X. Hence we have
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1S3 — S
=2 sup [ID:(f,0)l < 2IIS; — Soll < 4e. (127)

FESLy(uia)y _
On the other hand, let G: L, (u|4) = L1 (| 4) be defined by G(f) = g;f forevery f € L;(u],)-
Then, we have

v(S;) = sup{|z*S,z|: (z,z*) € TI(L,(u]4) D1 X)}
> sup{ x*D, <G <1%XC> ) O)
5o o5 )
x" € Sy-,C € T, 1(C) > 0}
= su {2 (6 (g 7¢)-0)|

i (e )
€ €3,u(C) >0}, (128)

where X, is the family of measurable subsets of A. Hence, for any simple function =

strictly positive measure, we have
n

v > ) el

| ((ai/u(Ai)))(Ai) € S1,(ul,)> Where {4;}; is a family of disjoint measurable subsets with

5" k[ oy )

1
*Join (6 Gy ea) )
g1t u(A) "4
> ID2(G(s), 0l + |g1D1(G(s), 0)|. (129)
Since |g1| = 1, G is an isometric isomorphism, so for each f € S;_(,, there exists a sequence

of norm-one simple functions (s;) such that G (s;) converges to f. Therefore,
v(S) = sup  (IID(f, 0l + |giD1(f,0)]) > lIS5ll. (130)

fESL1(H|A)

On the other hand, we see that
1S3l > [(g1,%1)S5(g1, 0)|
= |x1D5(g1,0) + g1D1(g1, 0)| = v(S2) = 1. (131)
Therefore, 1 = [|S3]l = [1S3(g1, 0)]l which proves Claim (5.1.22).
Finally, set S3 = (0,T) for a suitable T:L;(u|4) @, X = X and define the operator
Ty:Ly () = X by

Ti(f) = To(fxac) + T(Paf,0) (132)
for every f € L1(u). Then, we have
IT, (O < ITollf xacll + “T“"fXA" =[£Il (133)
for every f € L1(u), so ITyIl < 1. Also,
IT:Jag)ll = 1153091, Ol = 1S3l = 1, (134)

so T, attains its norm at /4,9, € L,(¢), and
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IJag1 — foll = lg1 — goll < &. (135)
We also have that, for any f € S;_(,,

ITo(f) = Ta(OIl = ITo(fxa) — T(P4f, O
< NToUaPaf) — Ta(PaOIl
T4 (Paf) — T(Paf, 0l
< MToJa — Tall + 1Sy — Ssli
< n(g) + 6¢. (136)
Hence [T, — T;1 Il < n(gp) + 6¢€ < &,.
Section (5.2): Banach Space:

The classical Bishop-Phelps theorem of 1961 [285] states that the set of norm attaining
functionals on a Banach space is norm dense in the dual space. A few years later, B. Bollobas
[286] gave a sharper version of this theorem allowing to approximate at the same time a
functional and a vector in which it almost attains the norm. We study the best possible
approximation of this kind that one may have in each Banach space, measuring it by using two
moduli which we define.

We first present the original result by Bollobas which nowadays is known as the Bishop-
Phelps-Bollobas theorem. Given a (real or complex) Banach space X, we write By and Sy to
denote the closed unit ball and the unit sphere of the space, and X* denotes the (topological)
dual of X. We will also use the notation

NX):={(x,x)eX XXl x = lx"Il = x*(x) = 1}
Theorem (5.2.1)[281]: (Bishop-Phelps-Bollobas theorem). (See [286].) Let X be a Banach
space. Suppose x € Sy and x* € Sy~ satisfy |1 — x*(x)| < €2/2 for some 0 < £ < 1/2. Then
there exists (y,y*) € I(X) such that || x — y I< £ + € and [Ix* — y*| < &.

The idea is that given (x, x*) € Sy X Sy such that x*(x) ~ 1, there exist y € Sy close to
x and y* € Sy- close to x* for which y*(y) = 1. This result has many applications, especially
for the theory of numerical ranges, see [286],[287].

Our objective is to introduce two moduli which measure, for a given Banach space, what

is the best possible Bollobas theorem in this space, that is, how close can be y to x and y™ to x*
in the result above depending on how close is x*(x) to 1. In the first modulus, we allow the
vector and the functional to have norm less than or equal to one, whereas in the second modulus
we only consider norm-one vectors and functionals.
Definitions (5.2.2)[281]: (Bishop-Phelps-Bollobas moduli). Let X be a Banach space. The
Bishop-Phelps-Bollobds modulus of X is the function ®x:(0,2) » R*such that given § €
(0,2), @x(5) is the infimum of those € > 0 satisfying that for every ( x,x*) € By X By« with
Rex*(x) >1— 4, thereis (y,y*) e I(X) with | x —y lI< € and [|x* — y*|| < e.

The spherical Bishop-Phelps-Bollobas modulus of X is the function ®3: (0,2) —» R*such
that given § € (0,2), ®5(8) is the infimum of those £ > 0 satisfying that for every (x,x*) €
Sy X Sy with Rex*(x) > 1 — 6, there is (y,y*) € I(X) with | x — y [< € and [lx* — y*|| <
E.

Evidently, ®3(8) < ®x(8), so any estimation from above for ®y(8) is also valid for
@3 (8) and, viceversa, any estimation from below for ®3(8) is also valid for ®(5).

Recall that the dual of a complex Banach space X is isometric (taking real parts) to the
dual of the real subjacent space Xp. Also, I1(X) does not change if we consider X as a real
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Banach space (indeed, if (x,x*) € II(X) then x* € Sy+ and x € Sy satisfies x*(x) =1 so,
obviously, Rex*(x) = 1 and (x,Rex*) € I1(Xg)). Therefore, only the real structure of the
space is playing a role in the above definitions. We prefer to develop the theory for real and
complex spaces which, actually, does not suppose much more effort. This is mainly because for
classical sequence or function spaces, the real space underlying the complex version of the space
1s not equal, in general, to the real version of the space. Unless otherwise is stated, the (arbitrary
or concrete) spaces we are dealing with will be real or complex and the results work in both
cases.

The following notations will help to the understanding and further use of

Let X be a Banach space and fix 0 < § < 2. Write

Ay (8) = {(x,x*) € By X By=:Rex*(x) > 1 — 8§}, A3(5):
= {(x,x") € Sy X Sy-:Rex*(x) > 1 — §}.

It is clear that

dy(6) = su nf  max{llx—y I, llx*—y*l},
x(O)= S o e x=y i3
®3(8) =  sup inf max{llx—yllIx* =y}

(x, x*)EAS &) (v,y*)eN(X)
We denote dy (A, B) the Hausdorff distance between A, B € X X X™ associated to the #-
distance dist in o, X X*, that is,
diste, ((x, x*), (y,¥9)) = max{ll x — y II, lx* — y*II}
for (x,x*),(y,y*) € X X X*, and
dy(A,B) = max {sup inf dist., (a, b), sup 1nfdlstoo(a b)}

acAb

for A,B c X X X*. We clearly have that

Dy (8) = dy(Ax(8),TI(X)) and ®(8) = dyy(Ax(8), (X))
for every 0 < § < 2 (observe that [1(X) < Ax(6) and I1(X) < A3 (8) for every & ).
The following result is immediate.

Routine computations and the fact that the Hausdorff distance does not change if we take
closure in one of the sets, provide the following observations.

Observe that the smaller are the functions ®4(-) and ®3(), the better is the
approximation on the space. It can be deduced from the Bishop-Phelps-Bollobas theorem that
there is a common upper bound for @y () and ®3(+) for all Banach spaces X. In the next section
we present the best possible upper bound. We will show that

D3 (8) < Px(6) < <V268 (O < 6 < 2,X Banach space) (137)

This follows from a result by R. Phelps [294]. A version for ®3(8) for small's can be also

deduced from the BrondstedRockafellar variational principle [295], as claimed in [288]. The
sharpness of (137) can be verified by considering the real space X = ¢ 25 ),

We prove that for every Banach space X, the moduli ®x(8) and ®3(8) are continuous in

8. We prove that ®y(8) < ®y+(8) and D5 (8) < Py-(8). Finally, we show that &y (8) = V26

if and only if ®5(8) = V26.

Examples of spaces for which the two moduli are computed are presented. Among other
results, the moduli of R and of every real or complex Hilbert space of (real)-dimension greater
than one are calculated, and there are presented a number of spaces for which the value of both
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moduli are V26§ (i.e. the maximal possible value) for small § 's: namely c,, £; and, more in
general, L (1), Co(L), unital C*-algebras with non-trivial centralizer...

The main result states that if a Banach space X satisfies ®x(6,) = /26, (equivalently,
®3(8y) =+/28, ) for some 5, € (0,1/2), then X contains almost isometric copies of the real
space i’g). We provide, for every § € (0,1/2), an example of a three-dimensional real space Z

containing an isometric copy of fg) for which ®,(8) < V28.
Our first result is the promised best upper bound of the Bishop-Phelps-Bollobas moduli.
We deduce the above result from [294], which was stated for general bounded convex
sets on real Banach spaces. Particularizing the result to the case of the unit ball of a Banach
space, using a routine argument to change non-strict inequalities to strict inequalities, and taking
into account that the dual of a complex Banach space is isometric (taking real parts) to the dual
of the real subjacent space, we get the following result.
Proposition (5.2.3)[281]: (Particular case of [294]). Let X be Banach space. Suppose that z* €
Sx+, Z € By and n > 0 are given such that Re z*(z) > 1 — 1. Then, for any k € (0,1) there exist
y* € X" and y € Sy such that

~ % ~k o~ ~ n * ~ %
Iy*Il = y° (), Iz =yl<, Iz =yl <k

Theorem (5.2.4)[281]: For every Banach space X and every 6 € (0,2), ®x(5) < V26 and so,

D3(6) < V26
Proof. We have to show that given (x,x*) € By X By« with Re x*(x) > 1 — §, there exists

(y,y*) € I(X) such that | x —y I< V26 and ||[x* — y*|| < V28. We first prove the case of § €
(0,1). In this case,
0<1-6<Ix*I<1,

> 0,z" = x"/llx*|l and z = x, one has
Rez*(z) >1—n.
Next, we consider k = 1/v26 and claim that 0 < k < 1. Indeed, as the function

©=""10 G er 138
pt) = V258t (138)

is strictly increasing, k = @ (llx*Il) and 1 — & < llx*|l < 1, we have that

Ix*lI-1+6
[l

so, if we write n =

0= g(1 6)<k<(p(137)—\/g<1
- - X —E )

as desired. Therefore, we apply Proposition (5.2.3) with z* € Sy«,Z € By,n > 0and 0 < k < 1
to obtain y* € X™ and yy € Sy satisfying

n x' 'l —1+6
151 =7°G), 12— <1 =25, |57 <k = .
V=70 Wz =y i<y =20 i Ix*IV28

Ask < 1, we get §* # 0 and we write y* = >—,y = J, to get that (y, y*) € I1(X). We already

Iy~
have that || x — y lI< V26. On the other hand, we have
~ % 5}*
™ —y*ll = |x" — || < lx* =lx" TN+ x™ ||y — =
Y TALN Y T
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X

< lx"ll — 5l — 1]
S x| y
< lx"ll — 51— a1 +1 1 — llac*
S x| y
< Il n > 5 1|]+1 ]

X — — — llx
S PO e y

(bl

2
<—=Ux"1=1+68) +1—lx*.
_25( )

Now, as the function

y(t)=\/i_(t—1+5)+1—t(t€[0,1])

is strictly increasing (for this we only need 0 < § < 2 ), we get y(llx*l) < y(137) = ==

V24. It follows that ||[x* — y*|| < V28, as desired.
Let us now prove the case when § € [1,2). Here, it can be routinely verified that

5—1
m<m—1
s0, writing
)
w(a)_—<r_ +26 - 1)
we get
_ <1/)(6)<\/_—1(6e [1,2)). (139)

\/_ —
Now, we distinguish two situations. F1rst suppose that [lx*|l < (). Then, we take any y € Sy
such that || x — y |I< 1 and take y* € Sy~ such that y*(y) = 1. Then, (y,y*) € II(X), [l x — y |l
< 1<+/268 and
Ix* =y I < 1+ lIx'l < 1+ 9(8) < V28

by (139). Otherwise, suppose llx*|l > Y (5). We then write n = "x*”");rd >0and k =n/V26

as in the previous case, and we show that k < 1. This is trivial for the case § = 1 and for 6 > 1,
we use that the function ¢ defined in (138) is now strictly decreasing to get that

0—1
k=o(x*l) <o@) <o (m) =

Then, the rest of the proof follows the same lines of the case when & € (0,1) since this
hypothesis is no longer used.

Notice that the above proof is much simpler if we restrict to x* € Sy« (in particular, to the
spherical modulus ®3(8) ), but the result for non-unital functionals is stronger. Actually, the
following stronger version can be deduced by modifying the selection of k in the proof of
Theorem (5.2.4).
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We observe that, given 0 < 8 < 1, the hypothesis above is not empty only when 1 — 6 <
6. On the other hand, in the proof it is sufficient to consider only the case of § <1+ 6.
Otherwise, the evident inequality Rex*(x) > —6 = 1 — (1 + 8) implies that there is a pair
(y,y*) € I(X) satisfying | x —y I< {/2(1+0) and |[x* —y*|| < /2(1 + 8). Hence the
statement of our remark holds true with p: = V26 — /2(1 + 0).

Next, we rewrite Theorem (5.2.4) in two equivalent ways.
Corollary (5.2.5)[281]: Let X be a Banach space.

(a) Let 0 < € < 2 and suppose that x € By and x* € By * satisfy

Re x*(x) > 1 —&2/2
Then, there exists (y,y*) € I1(X) such that
|l x—yl<eand ||x* —y*| < &.
(b) Let 0 < § < 2 and suppose that x € By and x* € By~ satisfy
Rex*(x) > 1-24.
Then, there exists (y,y*) € I1(X) such that
I x—y < V28 and [lx* — y*Il < V2.

As the last result, we present an example of a Banach space for which the estimate in Theorem
(5.2.4) 1s sharp.
Example (5.2.6)[281]: Let X be the real space i’g). Then, ®5(8) = ®x(8) = V26 forall § €
(0,2).
Proof. Fix 0 < § < 2. We consider

2 1 2

and observe that z*(z) = 1 — §. Now, suppose we may find (y,y*) € II(X) suchthat || z — y ||
<26 and ||z* - v < V26. By the shape of By, we only have two possibilities: either y is an
extreme point of By or y* is an extreme point of By (this is actually true for all two-dimensional

real spaces). Suppose first that y is an extreme point of By, which has the form y = (a, b) with
a,b € {-1,1}. As

V26 V26
z=(1-v25,1) € Sy andz*=< ,1 - )ESX*,

lz—yll=m {1 -v26 —al,|1—b|} <V26,
we are forced to have b = 1 and a = —1. Now, we have y* = (—t,1 —t) forsome 0 < t < 1
and

V248 V248
lz* —y*Il = ottt —T‘ =m {V26,2t} > V25,
a contradiction. On the other hand, if y* is an extreme point of By+, then either y* = (a, 0) or
y* = (0, b) for suitable a, b € {—1,1}. In the first case, as
V248 V248
"Z*_y*"=‘7—a 1—T< V26,

we are forced to have a = 1 and so, y = (1, s) for suitable s € [-1,1]. But then || z — y [|>
V248, which is impossible. In case y* = (0, b) with b = +1, we have
V26 ‘ V26

IIZ*—y*II=T+ 1—T—b‘ < V26,
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so b =—1 and therefore, y = (s,—1) for suitable s € [-1,1], giving lz—y > 2, a
contradiction.
Our first result is the continuity of the Bishop-Phelps-Bollob4s moduli.
We need the following three lemmas which could be of independent interest.
Lemma (5.2.7)[281]: For every pair (x,, x5) € By X By~ there is a pair (y,y*) € II(X) with
Re[y™(xo) + xo(»)] > 0.
Moreover, if actually Re x3(xy) > 0 then (y, y*) € I1(X) can be selected to satisfy

Rely* (xo) + x¢(3)] > 2 /Re(xscxo))

Proof. (a) Take y, € Sy N ker x; and let yg be a supporting functional at y,. Then
Re[yg(x0) + x5(¥0)] = Re yg(xo)
If the right-hand side is positive we can take y = y,, ¥* = y;y, in the opposite case take y =
VoY = "Yo
(b) Take y = =
llxo

the minimum of f(t): =t + % for t > 0 equals 2va, we get

Re[y*(xg) + x5(0)] = lIxoll + LRe x5(xg) = 24/ Re xg(xg)

lIxol

and let y* be a supporting functional at y. Then, since for a fixed a > 0

as desired.

The above lemma allows us to prove the following result which we will use to show the
continuity of the Bishop-Phelps-Bollob4as modulus.
Lemma (5.2.8)[281]: Let X be a Banach space. Suppose (xg, x5) € Ax(6p) with 0 < § < §, <
2. Then:
Case 1: If §, 6, €]0,1] then

1-J1-6,

2_60 60_6

6o 8§ —1+/1—28+ 86,
Proof. Denote t = Re x5(xg). Let (y,y*) € II(X) be from the previous lemma (in Case 1 we
use part 2 of the lemma, in Case 2 we use part 1). For every A € [0,1] we define x; = (1 —
Mxy+ Ay and x; = (1 — A)x; + Ay*. Both x; and x; belong to corresponding balls, and
distoo((xo,xS), (xz, x/{)) < 24. We have

Rex;(xz) = (1 — )%t + A(1 — DRe[y" (xo) + x5 + 242, (140)

diste, ((xg, x3), Ax(8)) < 2
Case 2: If §,6, € [1,2) then
diste, ((xg, x3), Ax(8)) < 2

so in Case 1
Rex;(x1) = (1 — )%t +22(1 — DVt + 22 = (1 — DVt + )2,
Now we are looking for a possibly small value of 4, for which (x;,x;) € Ax(8). If 6 > 1 —t,
the value 2 = 0 is already OK and diste, ((xg,x§), Ax(6)) =0. If 0 < § < 1 —t then the
positive solution in A of the equation ((1 — )Vt + )2 =1-6is
VI=5 -
/‘lt == .
1-+t
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Evidently, A4, € [0,1], so (x,lt, x/{t) € Ax(6). Since A; decreases in t,
1-J1-6,

diste (%0, %5), A% (8)) < 22 < 2145, = 2

This completes the proof of Case 1 .

In Case 2 we may assume t < 1 — § (otherwise the corresponding distance is 0 and the
job is done), so t < 0. By part 1 of the previous lemma and (140)

Rex;(xy) > (1 — )%t + A%,
so we are solving in A the equation
1-2D%t+22-1+6=0, ie. A +OA2=2tA+(t—1+6)=0

The discriminant of this equationis D = —t6 —§ + 1. Note that D > —(1 —-6)6 — 6 +1 =
(1-6)2>0andt— 1+ & <0, so there is a positive solution of our equation given by

1 1
Ae =—(t D)=——({t+V1—td—9).
=14 +D) Tre¢ T )
This A; decreases in t, SO

A < Mg, = 0(1—50+\/1—25+550)=

2+60 60_6
6o & —1+41—-285+686,

which finishes the proof.
For the continuity of the spherical modulus, we need the following result.
Lemma (5.2.9)[281]: Let X be a Banach space. Suppose (x, x5) € A3(8y) with 0 < § < §y <
2.
Case 1: If 6 < 1, then

4(69— 6
distar (G0, x0), 45(0)) < —20 =0
So
Case2:If§ € [1,2) and 2 — /2 — §y < 6 < &y, then
. . 2(6p — 6)
dist,, ((XO,XO),A§(5)) < ﬁ

Proof. Let us start with Case 1. Fix § € (0,8). As lIxgll = 1, we may find y; € Sy satisfying
X0 (ysz) > 1—¢. Forevery A € [0,1] we define
x(4,8) = Axg + (1 — D)ys.
€ [0,1] and write xz = X(/lf, ¢ ) A straightforward verification shows that
RexS(xsz) >1-4
and so, as 1 — § > 0, we have that x; # 0 and also that

Rex0< >>1—6
el

Therefore, <” T ) € A3(5). We have

Consider A; = ;_(’;
-

xO_

et <2(5=g) + e~

60 6 60 6 60_6
<2< >+ x|l — lxolll < < >+x—x <4< )
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We get the result by just letting & — 0.

Let us prove Case 2. If Re x5(x,) > 1 — §, then the proof'is done. Suppose that
1—-6>Rexj(xy) >1—-46,.

: : 45—2~87—62 486—2—80—62
Fix € (0, min {2 — 60’T10} ) (observe that Tlo

lixoll = 1, we may find y; € Sy satisfying xg (yg) > 1 —£&. Now, we consider
S

e = ——F—

§T2-6-¢

Notice that Az € (0,1) (since § < §p and § < 2 — §,) and
Ixell > llxcoll — Allyg || = 1 — 28 > .

> 0 by the conditions on §). As

and xg = xo + AgYs.

Also, observe that
1-6)2—-56-&+6,—-6

2-6-¢

RexS(xsz) S1-6+4=

. 46-2—8,—52
so, Re xg(xz) < 0 since § < ——>—. Now,
NS 5-1

X X 1—-60+2:(1—
RexS( E))Rex(’;( s >> o +2¢( S()=1—(5.

Therefore, <”iﬁ, xS) € A3(5). We have
xo —7—rll < llxo — xell + Jjxe - < + |l = 1
o Tl < Womxel +xe — gl < 7=5 = + lleell =1
60 - 6

6p— 0 6 — 0
<gogmp el = ol < 525+ v~ wl <2 (325 =5).
Consequently, letting & — 0, we get

20— 6
dist (o 29), 438)) < 2000
as we desired.
Proposition (5.2.10)[281]: Let X be a Banach space. Then, the functions
5 ®y(8) and § » P3(6)
are continuous in (0,2).
Proof. Let us give the proof for @4 (§). Observe that for 6;, 6, € (0,2) with §; < §,, one has
0 < Py(8;) — Px(61) = dy(Ax(8,), TI(X)) — dy(Ax(8,), TI(X))
< dH(AX(52)»AX(51))-
Now, the continuity follows routinely from Lemma (5.2.8).
An analogous argument allows to prove the continuity of ®3(8) from Lemma (5.2.9).
The following lemma will be used to show that the approximation in the space is not
worse than the approximation in the dual. It is actually an easy application of the Principle of
Local Reflexivity.
Lemma (5.2.11)[281]: For € > 0, let (x,x*) € By X By~ and let (y*, ") € II(X™) such that
Ix* — y*ll < eand [[x — ™| < €.
Then there is a pair (y, y*) € I1(X) such that

Il x—yll<éeand |Ix* —y*| < &.

158



Proof. First chose €’ < ¢ such that still
lx* — 9"l < & and ||lx — y™|| < &’
Now, we consider ¢ > 0 such that

: 2¢
1+&e" +&+ 1—+€<€

and use the Principle of Local Reflexivity (see [282], for instance) to get an operator T: Lin
{x, 7"} - X satisfying

ITLIT IS 1+E T) =x, 7 (TE™) =y~ G = 1.
TG™)
IT (@I

Next, we consider X = € Sy and X* = y* € Sy, observe that

15
1+¢ 1+¢
and we use Corollary (5.2.5) to get (y,y*) € I1I(X) satisfying that

ReX* (%) > ——

2§
1+¢

2§
T+¢ and [|IX" — y*|l <
Let us show that (y,y*) € II(X) fulfill our requirements.

lx =y ISITE) —TEIN+ITET™) — %I+ X -y |
2§

<A+8&€+&+ 1—+€<€

X —yl<

and, analogously,

. o Tt el < o 28
Ix* =y Il < llx™ =y N+ 1y =yl <& + 1+€<&
getting the desired result.
Proposition (5.2.12)[281]: Let X be a Banach space. Then
Dy (8) < Py-(6) and @5 (8) < Pz-(6)
for every 6 € (0,2).
Proof. The proof is the same for both moduli, so we are only giving the case of ®x(§). Fix § €
(0,2). We consider any &€ > 0 such that ®x-(§) < € and for a given (x,x*) € Ax(8) consider
(x*,x) € Ax+(6) (we identify X as a subspace of X**) and so we may find (y*, y**) € II(Y™")
such that
Ix* =yl < & and [lx — ™| < e.
From Lemma (5.2.11), we find (y,y*) € II(X) such that
I x—ylI<eand [|x* —y*|| < e.

This means that ®x(5) < ¢ and, therefore, @ (§) < Py+(5), as desired.

We do not know whether the inequalities in Proposition (5.2.12) can be strict. Of course,
this cannot be the case when the space is reflexive.
Corollary (5.2.13)[281]: For every reflexive Banach space X, one has @y (6) = ®x+(5) and
d5(8) = Py (8) forevery 0 < 6§ < 2.
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Our last result states that when the Bishop-Phelps-Bollobas modulus is the worst possible,
then the spherical Bishop-Phelps-Bollobas modulus is also the worst possible.
Proposition (5.2.14)[281]: Let X be a Banach space. For every § € (0,2), the condition
®,(8) = V28 is equivalent to the condition ®3(8) = V28 Proof. Since ®5(8) < Px(8) <
V26, the implication [CID)S(((S) = m] = [CDX((S) =26 ] is evident. Let us prove the inverse
implication. Let ®(8) = V28. Then there is a sequence of pairs (x,,, x;;) € By X By- such that
Re x;,(x,) > 1 — & but for every (y, y*) € II(X) we have

1 1
Ixn = yll > V28 —— or I — y*ll > V28 -

An application gives us that |[x,|| = 1 as n = oco. As the duality argument given in Lemma
(5 2.11) implies the dual version, we also have ||x,|| = 1 as n = co. Denote X,, = ”x—””,f,*l =
TL

In the case when § € (0,1], we have Re %;,(%,) > 1 — & but for every (y,y*) € II(X)

llx n”
1 1
1% = Yl > V28 = — = llxp = Znll or I¥n =yl > V26 — = — ll¥7 — xnll.

Since the right-hand sides of the above inequalities go to V28, we get the condition ®3(8) =
V28.

In the case of § € (1,2), we no longer know that Re X,,(%,) > 1 — &, but what we do
know is that lim inf Re ;;(%,,) > 1 — &, and that gives us the desired condition ®5(8) = V26
thanks to the continuity of the spherical modulus (Proposition (5.2.10)).

We start with the simplest example of X = R.

6 if0 <6 <

CID 0)=0 for every § €
Ve—14+1 if1<8<2 =(9) Y

Example (5.2.15)[281]: ®R(6) ={
(0,2).

Proof. We first fix § € (0,1]. First observe that taking x =1 — §,x" = 1, it is evident that
®R(6) > 6. For the other inequality, we fix x,x* € [—1,1] with x*x > 1 — §. Then, x and x*
have the same sign and we have that [x|] > 1 — § and |x*| > 1 — §. Indeed, if |x| < 1 — 6, as
|x*| < 1,onehas x*x = |x*x| < 1 — §, a contradiction; the other inequality follows in the same
manner. Finally, one deduces that |x — sign(x)| < § and |x* — sign(x*)l < 6, as desired.

Second, fix § € (1,2). On the one hand, taking x = V6§ — 1,x* = —Vd — 1, one has
x*x=1—-6.As|x+1]=vd—1+1and |x* — 1| =Vvd —1+1, it follows that CDR((S)

V6 — 1 + 1. For the other mequahty, we fix x,x™ € [— 1,1] with x*x > 1 — §. If x and x* have
the same sign, which we may and do suppose positive, then |[x — 1| < 1 < § and |x* — 1] <
1 < 4 and the same is true if one of them is null. Therefore, to prove the last case we may and
do suppose that x > 0 and x* < 0. Now, if we suppose, for the sake of contradiction, that

|lx = (=1)| > V48 +1and|x—1| >Vé—1+1,
wegetx>Vvéd—1land —x* >Vvd—1,s0 —x'x>6—1 or, equlvalently, x'x<1-6,a
contradiction. Therefore, either |x — (— 1)| <Vé6—1+1and|x*—(-1)| <1< \/7 1+1
or[x*—1|<Vd—1+1land|x—1|<1<V6—-1+1.

The result for @3 is an obvious consequence of the fact that Sg = {—1,1}.
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Let us observe that the above proof gives actually a lower bound for ®4(6) for every
Banach space X when § € (0,1].

We do not know a result giving a lower bound for ®x(§) when § > 1, outside of the
trivial one @5 (8) > 1. Also, we do not know if the lower bound for the behavior of @5 (5) in a
neighborhood of 0 given in the remark above can be improved for Banach spaces of dimension
greater than or equal to two.

We next calculate the moduli of a Hilbert space of (real) dimension greater than one.
Example (5.2.16)[281]: Let H be a Hilbert space of dimension over R greater than or equal to
two. Then:

(a) D3(8) = /2 — V& — 23 for every & € (0,2).
(b) For 8 € (0,1], @4 (8) = max{5,v2 — V& — 28}. For & € (1,2), ®;(8) = 3.

Proof. As we commented in the introduction, both @, and @3, only depend on the real structure
of the space, so we may and do suppose that H is a real Hilbert space of dimension greater than
or equal to 2. Let us also recall that H* identifies with H and that the action of a vector y € H
on a vector x € H is nothing but their inner product denoted by (x, y). In particular,
M(H) ={(z,2) € Sy X Sy}.
Therefore, for every & € (0,2), ®,(8) (resp. @3 (5) ) is the infimum of those £ > 0 such that
whenever x,y € By (resp. x,y € Sy) satisfies (x,y) > 1 — &, there is z € Sy such that || x —
zI<eand |y —z I €.
We will use the following (easy) claim in both the proofs of (a) and (b).

Claim (5.2.17)[281]:. Given x,y €Sy with x+y # 0, write z = —2

lx+yll

to denote the

normalized midpoint. Then

lx—zl=lly—zll= \/2 — 2+ 2(x,y).

Indeed, we have || x — z [I?= 2 — 2(x, z) and
2(x,x +y) 24 2(x,y)

Ix+yl — J2+2(x,y)
giving || x — z [|I= \/ 2 — /2 + 2(x,y), being the other equality true by symmetry.

(a) We first prove that ®3,(8) < \/2 — V4 —25. Take x,y € Sy with (x,y) > 1 — §( so

. +y
X + 0). consider z = —
Tty ), lx+yll

hx—zl=ly-zl= \/2—\/2 +2(x,y) <\/2—\/4—26.
To get the other inequality, we fix an ortonormal basis {e,, e,, ... } of H, consider

x=,1—6/2e;+./6/2e, €Sy and y=,/1—6/2e; —/6/2e, € Sy
and observe that (x,y) =1 — 6. Now, given z € Sy, we write z; = (z,e;1),2, = (2, e,), and
observe that

max{ll z—x I3l z— y II*}

2{x,z) =

€ Sy and use the claim to get that
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= m_IE_iX“Zl —41- (5/2|2 + |Zz i./(5/2|2 +1—z2 —222}
=2z224+1—-68/2—22,/1—-6/2 + m+ax|z2 + ,/5/2|2 +1—2z%2 - 272
=2— 2241 — 5/ +2|2,0/8/2 =2 —21-65/2.

It follows that d35(8) > V2 — V& — 28, as desired.

(b) We first fix & € (0,1) and write g, = maX{(S,\/Z — V4 — 26}. The inequality
®y(8) > g, follows, the fact that @5 (5) > ®3(8) and the result in item (a). To get the other
inequality, we first observe that

Oy (6) < Pringx,y}(0) Vx,y € By with (x,y) =1 — 6. (141)
This follows from the obvious fact that ®. (§) increases when we restrict to subspaces. This
implies that it is enough to show that for P = (p,0),Q = (q1,92) € B @ such that py,q, >

O,IPII>NQI,and (P,Q) > 1 — & where i’gz) is the 2 -dimensional Hilbert space, there exists
Z€ES 2 SO that | P — z lI< &y and || Q — 7 I &y. Now, it is straightforward to check that we
2

have || Plle [v1—4,1], and g4 = €[1—-6,v1—46]. Fig. 1 helps to the better
understanding of the rest of the proof.

Pl

Consider M = < \/ 1_26||;||||P” ) \/ ”PHZ_”(Pl”_(S)>, which is the normalized midpoint between A =

N2
(1,0) and B = (1”P|(|5 1-— (ﬁ) ) and write A to denote the arc of the unit sphere of H between

A and M. We claim that Q € U,caB(z,&5) and P € N,caB(z, ;). Observe that this gives that
there is z € A € Sy whose distance to P and Q is less than or equal to g, finishing the proof.

Let us prove the claim. First, we show that Q = (q4,q,) € U,eaB(2,&y). If g5 < /%,

the ball of radius &, centered in the point of A with second coordinate equal to g, contains the
point Q since & > dlstoo((ql, 0), A) dist(Q, A). For greater values of g,, write first C =

<q1, /%), which belongs to B(M, e,) by the previous argument. Also, as M is the

normalized midpoint between A and B, we have by the claim at the beginning of this proof that

so, also, | M — D |I< &,. Therefore, both the points C and D belong to B(M, &;), so also the
whole segment [C, D] is contained there, and this proves the first part of the claim. To show the
second part of the claim, that P € N,cAB(z, &y), we consider the function
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} ; ‘ . 1
1—-6 T 9 /1-36 P A
Fig. 1[281]: Calculating ®y4(5) for § € (0, 1).
f@):=1+p*—2p(p+1-6) (p € [V1-6,1])
and observe that it is a convex function, so

f) <m {f(137),f(V1 - 6)} < &

It follows that

I P—Ml= \/1+II PI2={21PI(IPI+1-6) <&,
hence M € B(P, &,). As also A € B(P, gy), it follows that the whole circular arc A is contained
in B(P, &) or, equivalently, that P € N,caB (2, ).
Fix § € (1,2). Analogously to what we did before in Eq. (141), to show that ®,(§) <
V8, it is enough to consider the two-dimensional case and that, given p = (Il p Il ,0) € By, q =
(q1,9,) € By with g, >0, to find z € Sy such that |z—P I, Il z— Q lI< V8. Routine

does the job. For the other inequality, we fix an orthonormal basis {e;, e,, ... } of H, consider
P=Vé§—1e; €EBy, Q =—V§—1e, €EBy
and observe that (P, Q) = 1 — §. For any z € Sy, we write z; = (z, e;) and we compute
max{ll z—P 1% 11 z— Q II*}
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={lzs Ve 1| +1- |zl |z +VE— 1| +1—|z12)
= max|zy + VB 1| +1- Iz’ = (lal+V6-1) +1- |z

=854+ 2V6 —1|z| > 6.
It follows that ®p(8) > V3, as desired. We present a number of examples for which the values
of the Bishop-Phelps-Bollobas moduli are the maximum possible, namely ®3(8) = ®4(5) =
V26 for small 8's. As we always have ®5(8) < Px(8) < V26, it is enough if we prove the

formally stronger result that ®3(8) = V28 for small § 's (actually, the two facts are equivalent,
see Proposition (5.2.14)), and this is what we will show. It happens that all of the examples have

in common that they contains an isometric copy of the real space £ g) or {,gz)' We show that the
latter is a necessary condition that it is not actually sufficient.

The first result is about Banach spaces admitting an L-decomposition. As a consequence
we will calculate the moduli of L, (i) spaces.
Proposition (5.2.18)[281]: Let X be a Banach space. Suppose that there are two (non-trivial)
subspaces Y and Z such that X = Y @ ;. Then ®4(8) = ®5(8) = V28 for every § € (0,1/2]
Proof. Fix § € (0,1/2] and consider (yy,y5) € II(Y) and (2, z5) € I1(Z) and write

Xo = <T)’o; <1 - T) Zo) € Sy, x5 = ((1 - m))’o;zo) € Sx-
It is clear that Re x5(x,) = 1 — 6. Now, suppose that we may choose (x,x*) € II(X) such that
lxo — xIl < V26 and [lx§ — x*|| < V2.

Write x = (y,2) EY @D, Z,x" = (y*,2") € Y* @, Z" and observe that

1 =Rex"(x) =Rey"(y) +Rez"(2) < Ily" Il ly I +lz"l Iz I<KN y I+l z =1,
therefore, we have

Rey* () =lly*ll Iy II. (142)
Now, we have
(1 —V28) — lly*ll| < [|(1 = V28)y5 — y*|| < V26
from which follows that [|y*|| < 1 and so, y = 0 by (142), giving || z |[=Il x ||= 1. But then,
V26 V26 V26 V26
o — xIl = — Yo 1—7 Zo—z| 22—+ I—T =z ll| = V26,

a contradiction. We have proved that ®(8) > V28, being the other inequality always true.

The result above produces the following example.

Example (5.2.19)[281]: Let (, X, u) be a measure space such that L; (u) has dimension greater
than one and let E' be any non-zero Banach space. Then, ®; , £)(6) = CDfl(#,E)((S) = /26 for
every § € (0,1/2].

Indeed, we may find two measurable sets A, B € 1 with empty intersection such that () =
AUB. ThenY = L,;(ul4, E) and Z = L,(ulg, E) are non-null, L; (i, E) =Y @, Z and so the
results follows from Proposition (5.2.18).

Particular cases of the above example are ¢, and L,[0,1].
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It 1s immediate that, using a dual argument than the one given in Proposition (5.2.18), it
1s possible to deduce the same result for a Banach space which decomposes as an £,-sum.
Actually, in this case we will get a better result using ideals instead of subspaces.
Proposition (5.2.20)[281]: Let X be a Banach space. Suppose that X* =Y @, Z where Y and
Z are (non-trivial) subspaces of X* such that Y~ # X* and Z% # X*(w" is the weak -topology
o(X*,X)). Then @4 (8) = ®5(5) = V24 for every § € (0,1/2].
Proof. We claim that there are y,, z, € Sy and y, € Sy and z; € S, such that

Rey;(vo) =1, Rezi(zp) =1, y*(z) =0Vy* €Y, z°(y,) =0Vz" € Z.
Indeed, we define y, and y,, being z, and z; analogous. By assumption there is y, € Sy such
that z*(y,) = 0 for every z* € Z and we may choose x* € Sy such that Re x*(y,) = 1 and we
only have to prove that x* € Y and then write yy = x*. But we have x* = y* 4+ z* with y* €
Y,z* € Z and
1 =Rex"(yo) =Rey (yo) <yl <lly*ll + 12"l = 1,

soz"=0and x" €Y.

We now define

V28 V28
Xo = < Yo <1 -

T T)ZS)ESX*XO=(1—V25)y0+ZOEX

and first observe that ||x,|l < 1. Indeed, for every x* = y* 4+ z* € Sy one has

lx* (x0)| = |(1 —V28)y*(yo) + Z*(Zo)| <@=V2O)lly l + 1zl < ly* Il + lIz*Il = 1.
It is clear that Re x5(x,) = 1 — 6. Now, suppose that we may choose (x,x*) € II(X) such that

lxg — xll < V28 and ||xy — x*|| < V26.

We consider the semi-norm ||:|ly defined on X by Il x lly: = sup{|y*(x)|: y* € Sy} which is
smaller than or equal to the original norm, write x* = y* + z* with y* € Y and z* € Z, and
observe that

1=Rex"(x) =Rey™(x) + Rez"(x) <Ily"Il l x lly+ lz"I I x I Ny*Il + Nz"ll = 1.
Therefore, we have, in particular, that

Rey™ (@) =yl l x lly . (143)

Now, we have

(1 =V28)~1 x lly| = [(1 = V28)llyoll,~ll x lly| < [|(1 — V28)yo — x[|,, < V25
from which follows that || x ly< 1 and so, y* = 0 by (143) and |[z*]l = [Ix*|| = 1. But then,

R T T M R Y

+ 5 >—+|[1-—

2 2
a contradiction. Again, we have proved that ®5(8) > V28, the other inequality always being
true.

The first consequence of the above result is to Banach spaces which decompose as € ,-
sum of two subspaces. Indeed, if X =Y @, Z for two (non-trivial) subspaces Y and Z, then
X*=Yt®,Z! and Y' and Z* are w*-closed, so far away of being dense. Therefore,
Proposition (5.2.20) applies. We have proved the following result.

Corollary (5.2.21)[281]: Let X be a Banach space. Suppose that there are two (non-trivial)

subspaces Y and Z such that X =Y @ oo . Then @y (8) = ®5(5) = V26 for every § € (0,1/2]

lxg — x*Il = .
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As a consequence, we obtain the following examples, analogous to the ones presented in
Example (5.2.19).
Examples (5.2.22)[281]:

(a) Let (Q, X, u) a measure space such that L, () has dimension greater than one and let
E be any non-zero Banach space. Then,

L) = PL o) (8) = V28 (6 € (0,1/2]).
(b) Let I be a set with more than one point and let E be any non-zero Banach space. Then,
Sy = Pyre(8) = V28 and @rp) = D) (8) = V268 (8 € (0,1/2)).

We deduce from Proposition (5.2.20) that also arbitrary C (K) spaces have the maximum moduli
and for this we have to deal with the concept of M-ideal. Given a subspace J of a Banach space
X, ] is called M-ideal if J* is an L-summand on X* (use [291] for background). In this case, X* =
J* @, J* where J* = {x* € X*:llx*Il = ||x*|,]|} = J*. Now, if X contain a non-trivial M-ideal J,
one has X* = J* @, J* and to apply Proposition (5.2.20) we need that J* to be not o(X*, X)-
dense. Actually, J* is not dense in X* if and only if there is x, € X \ {0} such that |lx, + y|| =
max{|lx,ll, I y I} for every y € J (this is easy to verify and a proof can be found in [284]). Let
us enunciate what we have shown.
Corollary (5.2.23)[281]: Let X be a Banach space. Suppose that there is a non-trivial M-ideal |
of X and a point x, € X \ {0} such that [|x, + vl = max{llx,ll, |l y I} for every y € J. Then,

dy(8) = d3(8) = V26 for every § € (0,1/2]. With the above corollary we are able to prove
that the moduli of any non-trivial Cy(L) space are maximum.
Example (5.2.24)[281]: Let L be a locally compact Hausdorff topological space with at least
two points and let E be any non-zero Banach space. Then @, ;) (6) = CDgO e (0) = V26 for
every § € (0,1/2].

Indeed, we may find a non-empty non-dense open subset U of L and consider the subspace

J=1{f € Go(L, E): fly = 0},

which is an M-ideal of Cy(L, E) by [291] (use the simpler [291] for the scalar-valued case) and
it is non-zero since L \ U has non-empty interior. As U is open and non-empty, we may find a
non-null function x, € Cy(L, E) whose support is contained in U. It follows that [lx, + yll =
max{|[x,ll, | y I} for every y € J by disjointness of the supports.

A sufficient condition to be in the hypotheses of Corollary (5.2.23) is that a Banach space
X contains two non-trivial M-ideals J; and J, such that J; N J, = {0}. In this case, J; and J, are
complementary M-summands in J; + J, [291]. Let us comment that this is actually what happens
in C(K) when K has more than one point.
Corollary (5.2.25)[281]: Let X be a Banach space. Suppose there are two non-trivial M-ideals
J; and J, such that J; N J, = {0}. Then ®y(8) = ®5(8) = V26 for every § € (0,1/2]
A sufficient condition for a Banach space to have two non-intersecting M-ideals is that its
centralizer is non-trivial (i.e. has dimension at least two). We are not going into details, but
roughly speaking, the centralizer Z(X) of a Banach space X is a closed subalgebra of L(X)
isometrically isomorphic to C (Ky) where Ky is a Hausdorff topological space, and it is possible
to see X as a C(Ky)-submodule of []rek, Xi for suitable X;'s. We refer to [283] and [291] for

details. It happens that every M-ideal of C (Ky) produces an M-ideal of X in a suitable way (see
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[283]) and if Z(X) contains more than one point, then two non-intersecting M-ideals appear in
X, so our corollary above applies.

Corollary (5.2.26)[281]: Let X a Banach space. If Z(X) has dimension greater than one, then
dy(8) = D5(8) = V286 for every § € (0,2].

To give some new examples coming from this corollary, we recall that the centralizer of
a unital (complex) C*-algebra identifies with its center (see [291] or [283]).

Example (5.2.27)[281]: Let A be a unital C*-algebra with non-trivial center. Then, ®,(8) =
®3(8) = V28 for every § € (0,1/2].

It would be interesting to see whether the algebra L (H) for a finite- or infinite-dimensional
Hilbert space H has the maximum Bishop-Phelps-Bollobas moduli. None of the results of this
section applies to it since its center is trivial and, despite it containing K (H) as an M-ideal, there
is no element x, € L(H) satisfying the requirements of Corollary (5.2.23) (see [3, p. 538]). Let
us also comment that the bidual of L(H) is a C*-algebra with non-trivial centralizer, so
D)4 (8) = Dy (8) = V28 for every & € (0,1/2]. If there is 6 € (0,1/2] such that
D, (6) < V26, then this would be an example when the inequality in Proposition (5.2.12) is

strict.
We finish with two pictures: one with the Bishop-Phelps-Bollobas moduli of R, C and

fg), and another one with the corresponding values of the spherical Bishop-Phelps-Bollobas
moduli. (See Figs. 2 and 3.)

We show that Banach spaces with the greatest possible moduli contain almost isometric
copies of the real £2,. Let us first recall the following definition.
Definition (5.2.28)[281]: Let X, E be Banach spaces. X is said to contain almost isometric copies
of E if, for every € > 0 there is a subspace E, C X and there is a bijective linear operator T: E —
E.with| TlII<1+eand [T <1+e.

The next result is well-known and has a straightforward proof.
Lemma (5.2.29)[281]: A real Banach space E contains an isometric copy of fg) if and only if
there are elements u, v € Sg such that | u —v [|= || u + v ||= 2. E contains almost isometric

copies of i’g) if and only if there are elements u,, v,, € Sg,n € N such that ||lu,, — v,|| = 2 and
lu, +v,ll > 2asn - o
The class of spaces X that do not contain almost isometric copies of i’g) was deeply

studied by James [292] (see also the exposition in Van Dulst [290]), who gave to such spaces
the name "uniformly non-square". He proved in particular, that
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Fig. 2[281]: The value of ®x(J) for R (green), C (red), efj) (blue). (For interpretation of
the references to color in this figure legend, see [281]).

2 +

: »>

0 1 2

Fig. 3[281]: The value of ®3(5) for R (green), C (red), efj) (blue). (For interpretation of
the references to color in this figure legend, see [281].)

every uniformly non-square space must be reflexive, that this property is stable under passing
to subspaces, quotient spaces and duals. In fact, a general result is true [293]: for every 2-
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dimensional space E if a real Banach space X does not contain almost isometric copies of E then
X 1s reflexive.

We prove that if a real Banach space X satisfies that its Bishop-Phelps-Bollob4as modulus
is V24 in at least one point § € (0,1/2), then X (and, equivalently, the dual space) contains
almost isometric copies of £ g). Actually, as shown , @ (8) = V26 if and only if &3 (8) = V28.
Therefore, we may use the formally stronger hypothesis of ®5(8) = V26.

We will use some lemmas and ideas of Bishop and Phelps [285], see corresponding
lemmas in Diestel [289].

From now on, X will denote a real Banach space. For t > 1 and x* € Sy-, we denote

Kit,x):={xeX:ll x I tx*(x)}.

Observe that K (t, x*) is a convex cone with non-empty interior.
Lemma (5.2.30)[281]: (Particular case of [289], Chapter 1, Lemma 1). For every z € By, every
x* € Sy- and every t > 1, there is x, € Sy such that x, — z € K(t,x*) and [K(t,x*) + x,] N
By = {xo}
Lemma (5.2.31)[281]: (See [289], Chapter 1, Lemma 2, with a little modification that follows
from the proof there.) Let x*, y* € Sy~ and suppose that x*(ker y* N Sy) € (—o0, &/2]. Then

dist(x*, Liny*) < &/2 and m {[lx* —y*|, lIx* +y*l} < ¢
Lemma (5.2.32)[281]: Let z € By, x* € Sy+,t > 1, and let x; € Sy be from Lemma (5.2.30).
Denote y* € Sy- a functional that separates x, + K(t,x*) from By, so y*(xy) =1 and
y*(K(t,x*)) c [0, ). Then x*(ker y* N Sx) < (—o,1/t] and so, dist (x*, Lin y*) < 1/t and
min{llx* — y*II, lx* + y*lI} < 2/t
Proof. This also can be extracted from [289], but it is better to give a proof. For every w €
ker y* N Sy we have that w does not belong to the interior of K(t,x*), so 1 =l w lI> tx*(w),
i.e. x*(kery* N Sy) c (—oo,1/t]. An application of Lemma (5.2.31) completes the proof.

Now we are passing to our results. At first, for the sake of simplicity, we consider the
easier finite-dimensional case.

Lemma (5.2.33)[281]: Let X be a finite-dimensional real space. Fix € € (0,1). Suppose that

2
(x,x*) € Sx X Sy satisfies that x*(x) = 1 — % and that

m {lly—xIlly"—x"l} >«
for every pair (y,y*) € II(X). Then for t = %, there exists y, € [x + K(t,x*)] N Sy such that
x*(yo) = 1.
Proof. Consider a sequence t, > t,n € N, with lim, t,, = t. Using Lemma (5.2.30), we get
Yn € Sy such that
Yn — X € K(ty, x*) and (K(t, x*) + ) N By = {y,}. (144)
Let y, € X* be a functional that separates K(t,,x*) + 1y, from By, ie. y,(y,) =1 and
V(K (ty, x*)) € [0, ). Then, according to Lemma (5.2.32),
2
min{[lx* — yll, Ix* + yall} < = <E&. (145)

n

But
Ix* +ypll > "+ y) ) =1+ x" () =1+ x7(x) + x* (¥, — x)
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g2
= 2—7+x*(yn—x).

Since (¥, — x) € K(t,, x*), we have x*(y, — x) > 1y, — 0)ll/t;, > 0 s0
2

&
X" +yll >2-—>e¢

(we have used here that 0 < £ < 1 ). Comparing with (145), we get [lx* — y,ill < &, so the
condition of our lemma says that [[x — y,|| > €. Without loss of generality (passing to a
subsequence if necessary) we can assume that y,, tend to some y,. Then

2 g2
£ < 1iTrln||)In — x|l < 1irrlntnX*()’n —x) =t(x"(yo) —x*(x)) < E<X*()’o) -1+ —>

2
2 g2
<—-(1—-14+—]==¢.
£ 2

This means that all the inequalities in the above chain are in fact equalities. In particular,
x*(y,) = 1and
lyo — xIl = lirrlnllyn — x|l = t(x*(yo) — x*(x)),
ie.yy € [x + K(t,x*)] N Sy.
Lemma (5.2.34)[281]: Under the conditions of Lemma (5.2.33), there are y* € Sy- and a >
1 — = with
? g

Ix* —ay*ll <7 and " = y"ll > &, (146)

and there 1s v € Sy such that
x*(w) =y*(v) = 1. (147)

Proof. Let y, be from Lemma (5.2.33). Fix a strictly increasing sequence of t,, > 1 with
lim,t, =t and let us consider two cases. Case 1: Suppose there exists my € N with int
[K (tmo,x*) + x] N By # @. Then, using the fact that for every closed convex set with non-
empty interior, the closure of the interior is the whole set, we get

Yo € [x + K(t,x*)] N By = mnt[x + K(t,x*)] N By = )U int[x + K(t,, x")] N By.

So, we can pick

z, € [x + K(t,, x*)] N By (148)
such that z,, — y,. In particular, x*(z,) = 1. Let us apply Lemma (5.2.30): there are v, € Sy
such that

v, — z, € K(t,,,x*) and [K(t,, x*) + v,] N By = {v,}. (149)
Then x*(v,, — z,,) > 0,ie. 1 > x*(v,) > x*(z,) = 1, so x*(v,) — 1. Condition (148) implies
that z, —x € K(t,,x*) which, together with (149), mean that v, —x € K(t,, x").

Consequently,
2

3
"vn - x" < tnx*(vn - x) < tn? <e&
If we denote y,; € Sy« to the functional that separates v,, + K(t,, x*) from By, then (v, y») €
[1(X). Since we are working under the conditions of Lemma (5.2.33), it follows that

lyn —x*Il > €.
Also, by Lemma (5.2.32), dist(x*, Lin y;;) < 1/t,,, so there are a,, € R such that
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Ix* — anynll < 1/t
Again, without loss of generality, we may assume that the sequences (a,,), (v;,) and (y,;) have
limits. Let us denote o: = lim,a,, y*:=lim,y,, and v:=lim,v,. Then [[v = 1,|ly*|l =
1,x*(v) = lim,x*(v,) = 1, and y*(v) = lim,, y,,(v,,) = 1. This proves (147). Also,

£
Ix* —ay*ll = lim|lx* — apypll < - = 5.
n t 2
Consequently,
£
S22l —ay’ll > (" —ay (V) =1 -« (150)

so,a>1-— 2

Case 2: Assume that for every n € N we have int[K(t,,x*) + x] N By = @. Let us

separate x + int(K (t,,, x*)) from By by a norm-one functional y;,, that is,
yo(x + int[K (t,,, x")]) > 1,
so, in particular, y, (x) > 1.

Again, passing to a subsequence, we can assume that there exists y* = lim, y, which
satisfies |ly*ll = 1,1 > y*(x) > lim,y;(x) > 1. So, y*(x) =1, ie. (x,y") € II(X). By the
conditions of our lemma, this implies that

ly* = x*Il = max{ll x —x II, [ly* — x*[I} > e.
Since

Yo € x + K(t,x%) = U ntlx + K (6, x9)],
neN
we can select z,, € int[x + K(t,,, x*)] in such a way that z,, - y,. Then

y*(yo) = limyn(z,) > 1,
hence, y*(y,) = 1. This means that condition (147) works for v:=1y,. The remaining
conditions can be deduced from Lemma (5.2.32) the same way as in Case 1. We state and prove
the main result in the finite-dimensional case.
Theorem (5.2.35)[281]: Let X be a finite-dimensional real Banach space. Suppose that there is

a8 € (0,1/2) such that @y (8) = V26 ( or, equivalently, ®5(8) = V28 ). Then X* contains an
isometric copy of i’g) (hence, X also contains an isometric copy of i’g) ).
Proof. Denote €:= V2§ € (0,1). There is a sequence of pairs (x,,, x;) € Sy X Sx+ such that

2
x,*l(xn)>1—6=1—%and

max{lly — x,ll, ly* — xpll} > € — -

for every pair (y, y*) € II(X). Since the space is finite-dimensional, we can find a subsequence
of (x,,, x,) that converges to a pair (x,x*) € Sy X Sy+. This pair satisfies that x*(x) > 1—§
and for every (y,y*) € II(X),
max{ll y —x I, Ily" —x*1} > max{lly — x|l ly* — xpll} — max{llx — xul, llx* — x5 11}
1
> e ———max{llx — xpll, lIx" —xnll} > &

Since by Theorem (5.2.4), x*(x) cannot be strictly smaller than 1 — §, we have x*(x) = 1 — 6.
Therefore, we may apply Lemma (5.2.34) to find y* € Sy and a > 1 — g for which conditions
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(146) and (147) are fulfilled. Now we claim that in fact there is only one number y € R for
which

g
I = vyl <5 (151)
and this y equals 1 — g Soa=1- g and, we also claim that
g
lx* —ay*|| = 5 and [[x* —y*|l = e. (152)
Indeed, when we were proving Eq. (150), we proved that every y € R that fulfill (151) satisfies

y>1-— g On the other hand, the function y + ||x* — yy™|| is convex, so the set G of those y €
R satisfying (151) is also convex; but 1 € G, so y < 1. Finally, according to (146),

& &
5 >1—y=ly " —yylI=lx =y = lx*—yy*l > >

This means that all the inequalities above are equalities, so y < 1 — 2, and also (152) is true.
The claim is proved. Now, let us define
x*—ay”* 2 g
*: __ 7 __ * 1 _ *
W ey e ¢ (179))
and let us show that functionals u* and y* span a subspace of X* isometric to i’g). According
to Lemma (5.2.29), it is sufficient to show that [[u* — y*|| = [[u® + y*|| = 2. At first,

=y = (e = (1-2)y) v | = i -y =2
At second,
25 1w+ = o (e = (1-2)y) 4y | = S -y + eyl

>2( -y ey =2
Let us comment that for complex Banach spaces, we cannot expect that Theorem (5.2.35)
provides a complex copy of £ 25) in the dual of the space. Namely, the two-dimensional complex
space X = {,gz) satisfies ®y(8) = V28 for 6 € (0,1/2) but it does not contain the complex
space ¥ g) (of course, it contains the real space £ g) as a subspace since {,gz) and ¢ 25) are isometric
in the real case). We do not know whether it is true a result saying that if a complex space X
satisfies @y (8) = V26 for some § € (0,1/2), then X contains a copy of the complex space {,gz)

or a copy of the complex space i’g).

We extend the result of Theorem (5.2.35) to the infinite-dimensional case. We proceed as
in the proof of such theorem, but instead of selecting convergent subsequences, we select
subsequences such that their numerical characteristics (like norms of elements, pairwise
distances, or values of some important functionals) have limits.

Theorem (5.2.36)[281]: Let X be an infinite-dimensional Banach space. Suppose that there is
8 € (0,1/2) such that ®x(8) = V28 ( or, equivalently, ®5(8) = V258 ). Then X* (and hence
also X) contains almost isometric copies of i’g).

Proof. Denote €: = v28. There is a sequence of pairs (x,,, x);) € Sy X Sy~ such that x(x,,) >

2
1—6=1—%and
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max{lly — x,ll, lly* — x5} > & — (153)

S

2
for every pair (y,y*) € I1(X). Since we have x;,(x,) < 1— (E — %) /2 by Theorem (5.2.4),

we deduce that lim, x;; (x,,) = 1 — §. Denote t = % As in the proof of Lemma (5.2.33), we find
a sequence (y,,) of elements in Sy such that
lim|ly, — x, |l < tlimx; (y,, —x,) and limx;(y,) = 1. (154)
n n n

Pick a sequence (t,) with t, > t,n € N and lim,, t,, = t. Using Lemma (5.2.30), for every n €
N we get y,, € Sy such that

Yn — Xp € K(ty, xp) and (K (£, x) + yn) N By = {yn}- (155)
For given n € N, let u;, € Sy- be a functional that separates K (t,, x;;) + y,, from By, that is,
satisfying uy, () = 1 and uj, (K (t,, %)) € [0, ). Then, according to Lemma (5.2.32), we
have

min{llxy — upll, Ixp + unll} < 2/t, <e.
As we have
loxn + unll > Cep +up) () = 1+ xr;l(yn) =1+ xn(xn) + 20 — x)

&
)2—?>€,

we get ||x, — upyll < &, s0(153)says that [[x, — y,ll > € — 1 Without loss of generalit , passin
- g y g

to a subsequence if necessary, we can assume that the following limits exist: lim, [|x,, —
Yo, limy, 2 (v, — x7,) and lim,, x5 (3,). Then

2 g
€< lirrlnll)In — xull < lirl;ntnxT*l(yn — X)) = tlimxy (y, — %) < <limx:1(yn) -1+ _>
n n

£ 2
2 g2
<—-|1-14+—=)=c
£ 2

This means that all the inequalities in the above chain are in fact equalities. In particular,
lim,, x; (y,) = 1, and
€= hrrln"yn — xpll = th_rrlnx:L(yn - xn); (156)
so the analogue of Lemma (5.2.33) is proved.
Now, we proceed with analogue of Lemma (5.2.34): we need to show that there are y,, €
Syanda, > 0,a, =1 —gwith

£
I — enyill < 5 and llx;, = yill > (157)
and there 1s a sequence of v,, € Sy such that
limx;; (v,,) = limy, (v,,) = 1. (158)
n n

Case 1: Assume that there exist r > 0 and n € N such that, for all m > n,
([K(t—r1,x,) + x,] N By) \ (x,, + rBy) # 0.
This means that for all m > n there is z,,, such that
"Zm - xm" >, "Zm" < 1 and "Zm - xm" < (t - r)x‘;kn(zm - xm)-
For A € (0,1) denote yy, 3: = Az, + (1 — A)yy,. Clearly, y,, 2 € Bx. Denote also
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Ap =1 {A:ym,,l € x,, + K(t, x,*n)},
and let us show that
limA,, = 0. (159)
m
Observe first that A, is smaller than every value of A for which
"ym,/l - xm" < tx*(ym,/l - xm)-
On the one hand, if ||y, — x|l — txm, (Vi — X)) < 0, then A = 0 belongs to the set in question,

and the job is done. On the other hand, if |y, — x|l — txm (W — ) = 0, then there is A for
which
/“IZm - xm" + (1 - A)"ym - xm" = t/lx:n(zm - xm) + t(l - A)x:n(ym - xm)
is positive and belongs to the set in question. This means that
")’m - meI - tx:n(ym - xm)
/‘lm < * * ’

")’m - meI - txm(ym - xm) + txm(zm - xm) - "Zm - xm"
but the limit of the right-hand side equals 0 thanks to (156). So condition (159) is proved. This
means that y,,, A, € Xy + K(t,%5,) and ||[Yma — Vil < 24,5, = 0. Let us pick a little bit

bigger 1,,, > A,,, in such a way that we still have || Ym,2i,, — Ym = 0, but for some t, <t with
t, — t, we have
1Yz = %ml < B (Vima, — Xm)- (160)
Then, in particular, lim,, x;, (yn’;ln) = lim,, x,;(y,) = 1. Let us apply Lemma (5.2.30). There are
v, € Sy such that
Un = Yn,i, € K(En, x7) and [K (En, x7) + vp] N By = {v,}. (161)
Then x;; (v, — yn,;ln) >0,ie. 1>x,(v,) > x,*l(yn,;ln) — 1, so x;,(v,) — 1. This proves the
first part of (158). Condition (160) implies that y, 5 —x, € K (£, x5) which, together with

(161), mean that v, — x,, € K(&,, x;,). Consequently,
2

~ ~. €
"vn - xn" < tnxn(vn - xn) < tn? <é&.

If we denote by y,; € Sy- the functional that separates v, + K (t,,, x*) from By, then (v,,, y,;) €
[1(X)( this proves the second part of (158) even in a stronger form) so, thanks to (153),

lyn — xpll > € — o
Also, by Lemma (5.2.32), dist(x;;, Lin y,;) < 1/%,, so there are @,, € R such that

Ix™ — apynll < 1/t,.
Again, without loss of generality, we may assume that the sequences (a,) and |[lx;; — a, vl
converge. Then,

~& | =

lim lx;, = anyill <
Consequently,
> limlxy — anypll > im(x, — apyp) (v) = 1 = limay,
solim,a, >1—-. St
for (152).

arting at this point, (157) can be deduced in the same way as it was done

NN | M

174



Case 2: Assume that there is a sequence of 1;; > 0,7;, = 0 and that there 1s a subsequence of
(xm, %) (that we will again denote (x,,, x;,)) such that
([K(t = T x) + 2] N Bx) \ (% + 1 Byx) = @ (for all m € N).
Then also
[K(t — T x5) + x] N (1 —1,)By = @ (forallm € N).
Let us separate

LK (t = T, X) + X1

1-—mn,
from By by a norm-one functional y,;, that is,
Yn(K(t = Ty X)) + X)) > 1 — 13 (162)

so, in particular, y;,(x,,) > 1 —1n, and lim,,y;, (x,,) = 1. By the Bishop-Phelps-Bollobas
theorem, there is a sequence (%, J,) € I1(X), such that

max{||X, — x, [, 175 — yall} > 0 asn - oo
Again, passing to a subsequence, we can assume that all the numerical characteristics that appear
here have the corresponding limits. According to (153), for n big enough, we have

19n — xpll = max{llX, — x|l IFn — xall} > € - e
so limy, llyn — x|l > €. We can select z,, € x,, + K(t — 1., x;,) in such a way that || z,, — y,, || =
0. Then
1 > limy, () = limy,(z,) > lim(1 —7,) = 1.
n n n
This means that condition (158) works for v,,;: = y,,.

Now consider an arbitrary w € Ker y,, N Sy. Taking a convex combination with an
element h of the unit sphere where y,,(h) almost equals —1, we can construct an element W €

By such that || W — w < 21, and y;; (W) = —7;,. Then, by (162), W ¢ int(K (t — 1, x7)), so |l
w 1> (t — 1) x;,(W). Consequently,
1
Xo(W) < (W) + 21, < P + 213,.

n
Observe that we have shown that the values of the functional x;, on ker y,; N Sy do not exceed

L4 21y,. Therefore, by Lemma (5.2.31),

- -rn

1

dist(x;;, Lin y;) < + 21, > -

t—1,
and so there are a,, € R such that

lim 1, — apyill < =

n t

The remaining conditions in (157) and (158) can be deduced from the same way as in
Case 1.

Finally, (157) and (158) imply that lim,, [[x;, — y, |l = lim,, llx,, — y,, |l = 2 : the proof does
not differ much from the corresponding part of Theorem (5.2.35) demonstration.
Corollary (5.2.37)[281]: Let X be a uniformly non-square Banach space. Then, ®3(5) <

Dy (6) < V26 forevery 6 € (0,1/2). Consequently, every superreflexive Banach space can be
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equivalently renormed in such a way that, in the new norm, ®3(8) < ®x(8) < V28 forall § €
0,1/2)

It would be interesting to obtain a quantitative version of the above corollary.

For every &8 € (0,1/2) we denote € = V28, so 0 < & < 1. We denote B c R® the
absolute convex hull of the following 11 points Ay, k = 1,...,11 (or, what is the same, the
convex hull of 22 points +A4;,k =1, ...,11)

g
4, =1 —5,1,2), 45 =1 —g,—1,§), Ay = (e 1,1,%), Ay = (e - 1,—1,%),
Ag = (1,1 - g%) A, = (—1,1 —g,%), Ag = (1,5— 1%) Ao = (—1,g - 1%)

Ao = (1,1,0), 411 = (1,-1,0).
Denote D, ("D" from "Diamond") the normed space (R3, ||-Il), for which B2 is its unit ball. Then
D} can be viewed as R3 with the polar of B3 as the unit ball, and the action of x* € D} on x €
D, is just the standard inner product in R3. Let us list, without proof, some properties of D,
whose verification is straightforward:

e The subspace of D, formed by vectors of the form (x;, x,, 0) is canonically isometric to
g

e There are no other isometric copies of fg) in D,.

e The subspace of D} formed by vectors of the form (x,, x,, 0) is canonically isometric to
{,gz) (and so, is isometric to i’g).

e There are no other isometric copies of fg) in D;.

e The following operators act as isometries both on D, and D}:(xq,x,, x3) —
(x5, x1,%3), (X1, x5, x3) = (X1, =X, x3). In other words, changing the sign of one
coordinate or rearranging the first two coordinates do not change the norm of an element.

The following theorem shows that the existence of an ¢ g)—subspace does not imply that

4 (8) = V26, even in dimension 3.

Theorem (5.2.38)[281]: Let § € (0,1/2),¢ = V2§, and X = D,. Then ®4(6) < V26,

Proof. Assume contrary that ®y(8) = v26. Like in the proof of Theorem (5.2.35), this implies

the existence of a pair ( x, x*) € Sy X Sy, with the following properties: x*(x) = 1 — § and
max{ll z—x Il, Iz* — x*I} > ¢ for every pair (z,z*) € I1(X). (163)

Also, repeating the proof of Theorem (5.2.35) for this x* € Sy, we can find u*, y* € Sx+ such

that the pair (u*, y* ) is 1-equivalent to the canonical basis of {,gz) and

2 €
u =E(x —(I—E)y )
This means that x* = gu* + (1 - 2) y*. What can be this (u*, y*) if we take into account that

there is only one isometric copy of {,gZ) in X™ ? It can be either u* = (1,0,0),y* = (0,1,0), or a
pair of vectors that can be obtained from this one by application of isometries, i.e. just 8
possibilities. Consequently, x* either equals to the vector (¢/2,1 — €/2,0), or to a vector that
can be obtained from this one by application of isometries, again just 8 possibilities.
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By duality argument, there are u,y € Sy such that the pair (u,y) is 1-equivalent to the
canonical basis of {,52) and

x=§u+(1—§)y.

Since the only (up to isometries) pair u,y € Sy of this kind is u = (1,1,0),y = (1,—-1,0), we
getx = (1,1 — ¢,0), or can be obtained from this one by application of isometries. So there are
8 X 8 = 64 possibilities for the pair (x, x*). Taking into account that x*(x) = 1 — § we reduce
this number to 8 possibilities: x = (1 —¢,1,0),x* = (¢/2,1 — €/2,0) and images of this pair
under remaining 7 reflections and rotations of the underlying R2. If we show that this choice of
(x,x*) do not satisfy condition (163) then, by symmetry, the remaining choices would not
satisfy (163) neither, and this would give us the desired contradiction.

Indeed, the pair (z,z*) € II(X) that do not satisfy (163) for x = (1 —¢,1,0),x" =
(/2,1 —¢€/2,0) is the following one: z = (1 — &,1,¢/2),z" = (¢/2,1 — /2, €). Let us check
the required properties. At first, z = A, € Sy. Then, z*(z) = 1. The last property means, that
lz*Il > 1, so in order to check that [|z*|| = 1 it remains to show that |z*(A,)| < 1 for all k. This

is true for € < 1. Finally, Il z—x lI=Il (0,0,&/2) lI= 2"%141" = %e <e& and lIzF —x*|l =l

(0,0,8) 1= {(0,0,8), A) =~ < .
Section (5.3): Numerical Radius of Operators on L, (u):

We provide a version of Bishop-Phelps-Bollobds theorem for numerical radius for
operators. For a Banach space X, By and Sy will be the closed unit ball and the unit sphere of X,
respectively. We will denote by X™ the topological dual of X and by £L(X) the space of bounded
linear operators on X endowed with the operator norm. The symbols F (X), K (X) and WC(X)
denote the spaces of finite-rank operators, compact operators and weakly compact operators on
X, respectively. It is well known that F(X) € K (X) € WC(X). The normed spaces will be
either real or complex.

Bishop-Phelps-Bollobas theorem states that for any Banach space X, given 0 < € < 1,

2
and (x,x*) € By X Sy« such that |x*(x) — 1| < %, there is a pair (y,y*) € Sy X Sy« satisfying

ly—xl<ely —x"|<eand y"(y) =1
(see [300],[301] or [302]).

After some interesting about denseness of the set of norm attaining operators, in 2008 it
was initiated the study of versions of Bishop-Phelps-Bollobas Theorem for operators [297]. It
was considered the problem of obtaining versions of such results for numerical radius of
operators (see [307]). We just mention that the numerical radius of an operator is a continuous
semi-norm in the space L(X) for every Banach space X.

Guirao and Kozhushkina proved that the spaces ¢, and ¥, satisfy the Bishop-
PhelpsBollobas property for numerical radius (BPBp-v) in the real case as well as in the complex
case [307]. Falco showed the same result for L; (R) in the real case [306]. Choi, Kim, Lee and
Martin extended the previous result to L, (¢) for any positive measure p [304]. Avilés, Guirao
and Rodriguez provided sufficient conditions on a compact Hausdorff space K in order that
C(K) has the BPBp-v in the real case [299]. For instance, a metrizable space K satisfies the
previous condition [299]. It is an open problem whether or not such result is satisfied for any
compact Hausdorff space K in the real case. In the complex case there are no results until now
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for C(K) spaces. Motivated by Definition 1.2 of [307], we introduce the notion of the BPBp-v
for subspaces of the space of bounded linear operators. A Banach space X satisfies the BPBp-v,
introduced in [307], ifand only if the space M' = L(X) satisfies the BPBp-v (Definition (5.3.1)).
Then, we give some sufficient conditions on a subspace M of L(L,(u)) to satisfy the BPBp- v,
for any finite measure y. We show that M has the BPBp- v if M contains the space of finite-
rank operators on L;(u), is contained in the class of representable operators on L;(u) (see
Definition (5.3.5)) and T\, € M for every T € M and any measurable set A, where T, 1s the
operator on L, (u) given by Ti4(f) = T(f x4) for all f € L;(u). As a consequence of the main
result we obtain that for any o-finite measure u, the spaces of finite-rank operators, compact
operators and weakly compact operators on L, (i) have the BPBp- v. The results are valid in the
real as well as in the complex case.

If X is a Banach space and T € L(X), we recall that the numerical radius of T, v(T), is
defined by

v(T) =sup {|x*(T(x))|:x € Sx,x* € Sx+, x*(x) = 1}.
In general the numerical radius is a semi-norm on L(X) satistying v(T) <|| T || for each T €
L(X). The numerical index of X, n(X) is defined by
n(X) = inf {v(T):T € Syx)}-

Hence, n(X) is the greatest constant t such that t || T I< v(T) for each T € L(X). It is
always satisfied that 0 < n(X) < 1 and, in case that n(X) = 1, it is said that X has numerical
index equal to 1. In such case it is satisfied that v(T) =|| T |l foreach T € L(X). It is well known
that the spaces L{(¢) and C(K) have numerical index equal to 1 for any measure u and any
compact Hausdorff space K [303].

Guirao and Kozhushkina [307] introduced the definition of the BPBp- v. We will use a
little different concept by admitting subclasses of the space of bounded linear operators on a
Banach space X.

Definition (5.3.1)[296]: Let X be a Banach space and M a subspace of L(X). We will say that
M has the Bishop-Phelps-Bollobas property for numerical radius (BPBp- v) if for every 0 <
g < 1, there is n(e) > 0 such that whenever S € M,v(S) = 1,x, € Sy and x5 € Sy are such
that xg(x0) = 1 and |x5(S(x0))| > 1 — n(e), there are T € M, x; € Sy and x{ € Sy- such that

) x1(x) =1,

i) [x1(T(x))| =v(T) =1,

1) v(T —S) < g, llx; — xoll < € and [|x] — xgll < €.

We notice that for spaces with numerical index equal to one, Definition (5.3.1) can be
reformulated by using the usual norm of the space £(X) instead of the numerical radius. The
following simple technical lemmas will be useful. Next lemma is a straightforward consequence
of [297].

Lemma (5.3.2)[296]: Assume that {z,:k €N} c {z€C:|z| <1} and {Br:k €N} cC
satisfies that Y5>, |Bx]| = 1. If0 < &€ < 1 and Re(X 721 Brzx) > 1 — €2, then

D IBd > 1

where B = {k € N:Re(Brz;) > (1 — :)Efﬂkl}.

Next result is a generalization of Lemma (5.3.2) to L; (). Also it extends [307] where the
state the analogous result for the sequence space #;.
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Lemma (5.3.3)[296]: Let (€1, %, 1) be a measure space. Assume that 0 < e <1, f € B, (, and
g € B, () are such that

1-¢e2< Rej fgdu.
Q
Then the set C given by
C={teQ:Ref()g(t) > (1 -)If(OI}

satisfies that
Rejfgdu> 1-—e.
C
Proof. It is clear that the set C is measurable. By assumption we have

1—£2<Rej fgduSRejfgd,u+(1—£) |f|du
Q c a\c

SSRejfgd,u+(1—e)<j |f|du+j |f|du>S£Rejfgdu+1—e.
c c Q\C c
Hence,

Rejfgd,u>1—e.
C

Lemma (5.3.4)[296]: Let z be a complex number, 0 < € < 1 and assume that

Rez > (1 — g)|z|.
Then

1z — |z|| < V2¢]z|.
Proof. We write z = x + iy, where x,y € R. Since x? + y2 = |z|? and = Rez > (1 — ¢)|z|,
we have y2 < |z]2 — (1 — &)?|z|? = (2e — £2)|z|?. It follows that

|z — 1212 = (Jz] — )% + ¥? < (e|z])? + (2 — €2)]z|? = 2¢]z|.
We recall the following notion (see for instance [305], Definition I11.3).
Definition (5.3.5)[296]: Let ({, X, 1) be a finite measure space and Y a Banach space. An
operator T € L(L,(u),Y) is called Riesz representable (or simply representable) if there is h €
Lo(u,Y) such that T(f) = fﬂhfdu for all f € L;(u). We say that the function h is a
representation of T.
We will use the following identification.

Proposition (5.3.6)[296]: ([305], Lemma IIL.4, p. 62) Let (Q,%, u) be a finite measure space
and Y be a Banach space. There is a linear isometry @ from the space R of representable
operators in L(L,(u),Y) into Ly, (u,Y) such that if T € R and ®(T) = h, then it is satisfied that

T(f) = jﬂ hfdu, forall f € Li(n).

It is known that WC (L, (u)) is a subset of the representable operators into L, () whenever y is
any finite measure (see for instance [305], Theorem II1.12, p. 75). We will write R(L,(u)) for
the space of representable operators into L, (u). Given T € L(L, (1)) and a measurable subset
A of Q, we will denote by T}, the operator on L, (i) given by T4 (f) = T(f x4) forall f € L, (w).

In [298] it was proved that a subspace of L(L;(u),Y) that contains the subspace of finite-
rank operators and is contained in the space of representable operators and that satisfies also an
additional assumption has the Bishop-Phelps-Bollobas property for operators whenever Y has
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the so called AHSp, a property satisfied by L;(x). Now we will prove a parallel result for
numerical radius for subspaces of L(L,(u)). Such proof is more involved since we have to
approximate one pair of elements (x,x") in the product of S; () X S¢ (4 instead of one
element in the unit sphere of L, ().

In the proof of the next result we will write g(f) instead of [ g (@®)f (t)du for each
element f € Ly (u) and g € Lo, ().
Theorem (5.3.7)[296]: Let (€2, A, 1) be a finite measure space and let M be a subspace of
L(L;(u)) such that F(L,;(u)) € M < R(L,(u)). Assume also that for each measurable subset
A of Q and each T € M it is satisfied T\, € M. Then M has the BPBp - v, and the function n
satisfying Definition (5.3.1) is independent from the measure space and also from M.

&8

Proof. Let us fix 0 < € < 1. We take n(=n(¢)) = 5 Assume that Ty € Sy, fo € S (u) and

9o € Siqw satisty go(fo) = 1 and |go(To(fo))| > 1 — 1. Let A, be a scalar with |4,| = 1 and
such that | gO(TO(fO))| = Re ogo(To(fy)). By changing T, by A,T, we may assume that
Re go(To(fy)) = | 90(To (fo))|. In view of Proposition (5.3.6) there is a function hy €
SLeo(uL, () @ssociated to the operator Ty. Since the proof is long we divided it into five steps.
Step 1. In this step we will approximate the pair of functions (fy, go) by a new pair (f;, g;) such
that f; and g, take a countable set of values and also there are subsets where f;, g; are constant
and h, has small oscillation on these subsets.

More concretely, we will show that there are functions f; € S;_(,) and g, € S () and a
countable family {Dy: k € J} c Q of pairwise disjoint measurable sets such that u(D;) > 0 for
all k € ], ,u(Q \ Uke Dk) = 0 and such that the following conditions are satisfied

Ifi = foll, <7 191 = gollo, < 7 (164)
Re g;(f1) >1—n, Re 91(T0(f1)) >1-n, (165)
for each k € J, f; and g, are constant on Dy, (166)
sup {llho(s) — ho(t)ll,:s,t € Dy} <, Yk €], (167)
and
1= llholl,, = sup {llRo(O)ll,: t EUke; Dy}. (168)

Since the set of simple functions is dense in both L;(u) and L., (u), there are simple functions
f1 € Sp, ) and g1 € Sy () satisfying (164) and (165).

On the other hand, by [305] there is a measurable subset E; of Q such that u(E;) = 0 and
ho(Q\ E;) is a separable subset of L,(u). Suppose that the set {y;:i € N} is dense in
ho(Q\ E;). Since f; and g, are simple functions, we can assume that Im(f;) =
{a,;r=1,..,n} and Im(g,) ={b;:l =1,..,m}. Now, fori EN, r € {1,...,n} =N and [ €
{1, ..., m} = M we consider the following subsets of ()

Aqrp = hot <Bg(}’1)> Nn@Q\ E)n fi () n gyt (by)

and

Ary = <h6 ! <Bg(yi)> \ULZh hy'! <Bg(ye)>> N@Q\E) N fia) ngrtb), Vi= 2.
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It is clear that the elements of the family {A(i,m): (i,r, D) ENXNXM } are measurable subsets
of (0 and pairwise disjoint. Now, let W = {(i, r,l) EN XN X M:.U(A(i,r,z)) = O} and E, =
U ir.newAir,p- By the definition of W it is trivially satisfied that E; is measurable and u(E,) =
0. On the other hand there exists a measurable subset E5 of Q \ (E; U E,) such that u(E3) =0
and || h llo=supf{ll A(t) ll;:t € Q\ E3}. Assume that {D;:k € J} is the family of pairwise
disjoint measurable subsets obtained by indexing the set {A(i,r,l) \E5:(i,71,)) e (NXN X M)\
W}. Then, we have that u(Dy) > 0 for all k € J, u(Q\ Ure; D) = 0 and also the family

{Dy: k € J} satisfies the conditions (166), (167) and (168). Therefore, by (166) there are sets of
scalars {ay: k € J} and {y,: k € J} such that

XD
fl:z (D],i) 2, il =1, 91 = E ViXpe vl <1, Ve €. (169)
kej

kej
Step 2. In this step we will define another simple function f, € §;_(,) which is an approximation
of f;, and can be expressed as a finite sum instead of the countable sum appearing in the
expression of f; given in (169).

By (169) and (165) there is a finite subset F of J such that

Z lay| >1—1n>0, Regy <Z (Dk)> >1-—n. (170)

KEF KEF
and also
Reg, | T, Z a2 ) ) 51—, (171)
4 1 (Dy)
EF
For each k € F we put B, = o Ia I and define f, = Y ,.cr' Bk ;Z;"). In view of (170) and (171)
k k
we have that
XDy
Regi(f) =Regy | ) Brrpis | > 17 (172)
o~ 1(Dy)

and

Re 91(To(f2)) =Reg;| Ty <Z Bk :égb) >1-n. (173)
KEF

Clearly f, € Sy (4 and by (169), (170) we have that

XD XD
Ifz = fill, = 'Z s = ), w
1 (Dy) #(Dy)
Ko k )
”Z B, XDy XDy Z XDy
.U(Dk) o~ .U(Dk) KETNF .U(Dk)
<) Bemad+ ) el =1- el + Z e
kEF kEJ\F keF kEJ\F
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=2<1—Z |ak|><2n<z. (174)

kEF
Step 3. Now, we approximate the function h, by a new one h, such that for each k € F the new

function is constant on each Dj. So we also approximate the operator T by a new one.
For this aim we choose an element t;, in Dy, for any k € F, put ¢, = hy(t;) € L, (1) and
define hy € Lo, (u, L1(1)) by

hy = hoXa\(Uper D) T Z Y XD,
KEF
By (168) we have that |||l < 1. If Ty € L(L1(n)) is the operator associated to hy, then T is

the sum of Ty |0\\u,.zp,) @nd a finite-rank operator, so T; € By,. By using (167), we clearly have
ITy = Toll = llhy — holl,, < sup {lx — ho(Dll,: t € Dy, k € F}

= sup {llho(ty) —ho(®)ll,:t € Dy, k € F} < 1.
Since [Tyl =1 we get that 0 < 1 —n < |[T4 |l £ 1. Now we define T, = L and so we have

(175)

T
that
IT, =Tl =1 = IIT1ll < 7.
In view of the previous inequality and (175) we obtain that
£
IT; = Toll < IT, = T1ll + 1Ty = Toll < 217 < 7 (176)
From (173) and (176) we get that
Re g1(T>(f2)) = Re g1(To(f2)) — IT, = Toll > 1 = 3n. (177)

On the other hand, it is clear that

= | mpbdu= | wpdut ) | hafdu=) B

\UkerDi kEF kEF

For simplicity, for each k € F, put ¢, = % So we have that
1

Tz(fz) = Z Br b

kEF
It is clear that ¢y € By, (. for every k € F. From (172) and (177) we obtain that

B ( Xp, _ f2 + T2 (f2)
Re g4 ;7<M(Dk)+¢k> —Reg1<T>>1—2n.

Step 4. In this step we will obtain approximations f3, T3 of f, and T,, respectively. We will
check in the final step that T attains its norm at f3, a necessary condition for our purpose. In
fact f; and T3 are the final approximations to f, and Tj.

Define the set G as follows

G = {k € F:Reg, (% o5+ qbk)) >(1- J2_n)|ﬁk|}.

In view of Lemma (5.3.2) we have that
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:E: 1Bl >1— /21 "1-—'§zg-

keG
It is immediate that

4
Reﬁkg1< (D )) > (1 - 2\/_)|Bk| < %) |Bk|; Vk € G.
So, for each k € G we have
X, e4 e4
Re Bryr = Re Br g1 < (D, )> <1 — ﬁ) 1Bk | = <1 — F) | Bl

Hence, we obtain that 8, # 0 for k € G and also that
4

lVi| > 1—F>0, Vk € G.
By using also Lemma (5.3.4) we get
2
1Brevi —1Brvill < 57 B V-
Hence,
|Brvil g’ |Br vkl 2
— - d — —|vil, Vk € G,
Bk Vi 27 |Bk| an Bk 27 h/kl
SO
2
b5
Ve Bl £ e
Vel B 27
The element f; given by
£ = 1 |Br vkl XDy,

Yikec Bl & Yk 1(Dy)
belongs to the unit sphere of L (¢). Now, by using (178) and (180) we get that

B 1 |Brvicl XD, XDy
Ifs = 12l = I5— Bl & vie (D) kzepﬁkﬂ(Dk)l'

1 |Br Vil
iee 1&kec 1Pkl Vi KEF\G
1
< Z 5 7 ||,3k)’k| _ |Br V| +Z |Br Vil — 8| +
£ |LkeG 1Pk 145 145 e 145
<1-3 B0+ Siad+ Y 16
keG keG kEF\G

Oolm

(g
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_ 1 |Br V| XDy,
| Zkes |,3k|kEG Yie u(Dy) Z 'Bk,U(Dk) Z Bi

(178)

(179)

(180)

(181)

XDy
.U(Dk)

(182)

> I
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In view of (164),(174) and (182), we obtain that

Ifs — foll, < llfs — f2ll, + Iz = full, + 1Lf = foll, < 5 3 + 2 + 2 <e& (183)

Now notice obviously that
4

Re Brg1 (@) > (1 — 2,/2m)|Bx| > <1 —%> |Bk|, Vk € G.

For each k € G, define P}, as follows
2

P, = {t € Q:Re B g, ()P (t) > <1 - %) |ﬁk¢k(t)|}-

Clearly P, is a measurable set. According to Lemma (5.3.3), for each k € G we have

Brg1drdp > <1 — —> | B,

Py
SO

2
&
fp |prldu > 1 — 57 > 0. (184)
k

Letus fix k € G and t € P,. Notice that g, (t) # 0. By Lemma (5.3.4) it follows
k91 () #k (1) =18 g1 ()P (O] < 75 1Brg1 (D Pr (D],
So
1Bk g1 (D) ()]
P ®

For each k € G we can define the element ¢, in L;(u) by
Ve okl gl

P T, 1dilde g:
It is immediate that ¢y € S (). From (184) and (185), for each k € G we have
o — dil,
< [lox — ¢kXPk|| + ||¢kXQ\Pk||

&E
10D, Vk € G t € P (185)

<ok - ¢kXPk" +

|91| |91| |Bk| |91|
< 911 | 917 9l
AL el 1P B P 1
| B | lg | 82
|_|¢k| . P, — PrXp, +7
1
Igll e 1Bkl g2
< tors + ——— =
k] k| *el vl B 27
|g1| 3
< ok — to + - (by(181))
| kl 1 1 4
Yk to |g1| Yk |g1| 3
= X o +—
|Vk|fpk|¢k|dll 91 "7 el T g . 4
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e & ¢ ¢
=1—j Ipeldp + = < —+- < =, (186)
P

. 4 27 4 2
Let the function h; be defined as follows
hy
h; = Il T XO\Upeo D T Z PrXD,-

keG
It is easy to see that h; belongs to the unit sphere of Lo, (i, L1(1)). Let T3 € Sp(;,, () be the
operator associated to the function h; in view of Proposition (5.3.6). Since G is a finite set,
F(Ly(u)) € M and T; € M, by using the assumptions on M we know that T3 € Sy,.
We also have that

175 = Toll = [y — |
> > bl
— lx n hy 1
= || Xa\(UkeeD) T 3XDy ~ AR XQ\(UgegDr) — ||h1||ooXDk
hy hy
= ”h ” XQ\(UREGDR) + Z (kaDk ”h ” XQ\(UREGDR) Z ¢kXDk
keG o0
g
=2 @e= 90| =sup llpw— il < 5
keG o0
By the previous inequality and (176) we obtain
IT3 — Toll < T3 = Toll + T, — Toll <&, (187)
Step 5. Finally, we are going to find an approximation of g; and complete our proof.
We put A = {t EQ: g ()] =1— —} and let the function g, be defined by g, = IXA
g1Xa\a- Since g, € Sp ), we have that g, € 5, (). It is also clear that
2
g2 — gill,, < 77 (188)
By using (164) and (188) we also have that
2
e £
g2 — goll, < llg2 — g1II + 191 = goll, <57+ 7 < (189)
By (179) we know that |y, | > 1 —— for each k € G. Since G c J, in view of (169), the
restriction of g, to D coincides With yk and so D;, € A for all k € G. Hence,
Yk
glek = | kl Vk € G.
Therefore, we deduce that
1 |Bkyi|l Xp
(fs) = -
92(/s) = g2 Yikec Bl e Vi 1(Dy)
Yikec Bl L u(Dy) 72V P
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1
_ |Brvic| vk 1 (190)
Yikec 1Bl e Yie o vkl
For each k € G, from the definition of P, and A, we deduce that P, C A, so

145 o 145
( )=f du = —. 191
I Lo il Ty 1l ™ ™ T (o0
Since
| Bk vkl
Ts( )=j hofady==————) - ,
3(fs Q 3fs Ykec 1Bk 145 Vi

keEG
by using (191) we have that

1 | Br Vil
92(Ts(fz)) = m; ng(fpk)

_ 1 Bevel vie _ | (192)
Yikec 1Bl e Yk Vil
We have shown that there are elements T3 € Sy, f3 € S;, () and g, € S; () that in view of
(183),(187),(189),(190) and (192) satisfy
ITs —Toll <& lifs — foll, <& gz — goll, < ¢

and also
92(f3) = g2 (Tg(f3)) = 1.
8
So we showed that M has the BPBp- v with the function 7 given by n(¢) = it

233'

In case that u is a o-finite measure, there is a finite measure ¢ and a linear isometry @
from L;(u) onto L;({). From this fact we deduce the following result which generalizes
Theorem (5.3.7) for some well-known classes of operators.

Corollary (5.3.8)[296]: Let (£, %, u) be a o-finite measure space. The following subspaces of
L(L1 (1)) have the BPBp-v and the function 7 satisfying Definition (5.3.1) is independent from
the measure space.

(a) The subspace of all finite-rank operators on L, (1).

(b) The subspace of all compact operators on L ().

(c) The subspace of all weakly compact operators on L, (ut).

In case that u is finite, then the subspace of all representable operators on L, (1) also has

the BPBp — v.
Proof. Assume first that y is a finite measure. It is known that F(L,(n)) € K (L, (u)) <
WeE(L,(n) € R(L,(n)) and T|A(BL1(M)) (- T(BLl(#)) for each T € L(L,(1)) and every
measurable subset 4 of Q. Also, it is clear that T, € R(L;(n)) forany T € R(L,()) and every
measurable subset A of Q. Therefore, the spaces F(Lq(n)), K (Li(w)), WC(L,(u)) and
R(L,(w)) satisty the assumptions of Theorem (5.3.7), and so the above statements hold in case
that u is finite.

Now, let u be a o-finite measure. We will show that the space F(L;(u)) satisfies the
BPBp- v. There is a finite measure ¢ and a surjective linear isometry @ from L, (u) into L1({).

The mapping @ induces a surjective linear isometry from F (L, (1)) into F(L,({))) given by

186



T ®oTod 1 Since ® is an isometry, it follows that v(T) = v(® o T o d~1) forevery T €

F(Li(1)). On the other hand, it is satisfied that (f,g) € I(L;(u)) if and only if

(@), (@7 (9)) € M(L1 (). Also (@7 (g) (P o T o @~ (D(f))) = g(T(f)) for every

T € F(Ly(1))). Since F(L,({)) has the BPBp- v we deduce the same property for F (L (1)).
The proofs of the statements b) and c¢) are analogous.

Corollary (5.3.9)[365]: Let (Q,%, 1) be a measure space. Assume that 0 < ¢ < 1,f/ € By, (w

and g/ € By w are such that
1-¢e?2< Rej ijgjdu.
Then the set C given by "
C={teRe ) fIHF©®>1-2)) IFOI,

Rejijgjdu>1—e.
C

Proof. It is clear that the set C is measurable. By assumption we have

1—52<RejQijgjd,uSReLijgjdu+(l—s)jQ\CZ|fj|du
SsReLijgjdu+(1—s)z<L |fj|d,u+jﬂ\c |fj|du>

SeRej ijgjdu+1—e.
c

Rejijgjdu>1—e.
C

Corollary (5.3.10)[365]: Let z; be a complex number, 0 < & < 1 and assume that

Resz > (1 - E)Z|Zj|.
> 1= Izl < VZE Y 7|

Proof. We write z; = x; + iy;, where x;,y; € R. Since sz + yjz = |zj|2 and Y x; = Re Y z; >
(1—&)X |z, wehave Y y? < | Y z|* — (1 — )2 X |z]* = (2e — €®) X |z|?. It follows that

Z|zj —z|* = Z(|zj| —x)?+ Zy,? < Z(e|zj|)2 + (26 — gz)z 12| = 252 12]2.

Corollary (5.3.13)[365]: Let (Q, A, 1) be a finite measure space and let M be a subspace of
L(Ly(u)) such that F(L,;(u)) € M < R(L,(u)). Assume also that for each measurable subset

A of Q and each T/ € M it is satisfied Tlfq € M. Then M has the BPBp -v, and the function n
satisfying Definition (5.3.1) is independent from the measure space and also from M .

Proof. Let us fix 0 < e < 1. We take n(=n(¢)) = 2% Assume that (Tj)o esl, (fj)o €
S0 a0d (69), € Su o satisty $(g), ((7),) = 1 and 2|0, (), ((),))] > 1 -
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n. Let (xlj)o be a scalar with Z|(/1j)0| =1 and such that Z|(gj)0 <(Tj)0 ((fj)0)>| =
Re X (V) (%), <(Tj)0 ((ff)0)>. By changing (7/) by (&) (T/), we may assume that
Re Z(gj)o <(Tj)0 ((fj)0)> =) |(gj)0 <(Tj)0 ((fj)0)>|. In view of Proposition (5.3.6) there

is a function (hj ) 0 € SLeo(uLy (1)) associated to the operator (Tj ) o Since the proof is long we

divided it into five steps.
Step 1. In this step we will approximate the pair of functions (( fI ) o’ ( g’ ) 0) by a new pair

((fj )1, (gj )1) such that (fj )1 and (gj )1 take a countable set of values and also there are

subsets where ( fI )1, ( g’ )1 are constant and (hj ) 0 has small oscillation on these subsets.

More concretely, we will show that there are functions ( fI )1 € 5., w and ( g’ )1 €S1.w

and a countable family {Dy: k € J} € Q of pairwise disjoint measurable sets such that u(D;,) >
0 forallk € J, ,u(Q \ Uke Dk) = 0 and such that the following conditions are satisfied

YD, =6 <5 Y @), - @)l <3
Re Y (97, ((77),) > 1= Re Y (g7), (1), ((+1),)) > 1
for each k € J, (fj)l and (gj)l are constant on Dy,

sup Z {I(r)y() = W), @, :5,t € D} <, vk €,

1= ()], = sup D {I(n),(®],: ¢ €Ue; D}

Since the set of simple functions is dense in both L;(u) and L., (u), there are simple functions
(fj)l € S;, () and (gj)l € 51, (u satistying (164) and (165).

On the other hand, by [305, Theorem I1.2, p. 42] there is a measurable subset E; of { such
that u(E;) = 0 and (h/) (@ \ Ey) is a separable subset of L, (i). Suppose that the set {y;: i € N}

is dense in (hj ) O(Q \ E;). Since (f J )1 and (gj )1 are simple functions, we can assume that
Im ((fj)l) = {ai:r =1, ...,n} and Im ((gj)l) = {blj:l =1, ...,m}. Now, for i€ N, r e
{1,..,n} =Nand!l € {1, ..., m} = M we consider the following subsets of ()

Aaro =1 (53(00,)) 0 @\ ED 0 £ (el) 0 70

and

and
Agry = <hgf <B§ ((yj)i)> \UiZl o/ <B ((y])e)>> n@\E)n £ (@) n gl (b)),
Vi = 2.

It is clear that the elements of the family {A(i,m): (i,r, D) ENXNXM } are measurable subsets
of 0 and pairwise disjoint. Now, let W = {(i, r,l) ENXN X M:.U(A(i,r,z)) = O} and E, =
Uir.newAir,p- By the definition of W it is trivially satisfied that E; is measurable and u(E,) =

NS
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0. On the other hand there exists a measurable subset E; of Q \ (E; U E,) such that u(E;) = 0
and ||hj||oo = sup X{Il K/ (¢t) ll;: t € Q\ E3}. Assume that {Dy: k € J} is the family of pairwise
disjoint measurable subsets obtained by indexing the set {A(i,r,l) \E;:(i,7,)) e (NXNX M)\
W}. Then, we have that u(Dy) > 0 for all k € J, u(Q\ Uge; D) = 0 and also the family
{Dy: k € J} satisfies the conditions (166), (167) and (168). Therefore, by (166) there are sets of
scalars {a,{: k € ]} and {y,{ k € ]} such that

7, = 3 Yol ¥ Sl
keJ
(¢), = Z Zykxpk, Z|y,{| <1, Vke]J.

kej
Step 2. In this step we will define another simple function (ff ) , € Sp,(u Which is an

approximation of (f J )1, and can be expressed as a finite sum instead of the countable sum

>>1—n

ReZ(gf)l (TJ')0<RZEF a,{Jé—Z’b) >1-n.

. j _ .
For each k € F we put §; = Z—Zk C;Taf‘ and define (ff)z = Yver X B 2Dk
€F |}

appearing in the expression of ( fI )1 given in (169).
By (169) and (165) there is a finite subset F of J such that

ZZlak|>1 n>0, ReZ(g’) <Z @, (D)

k€F

and also

. In view of
u(Dy)

(170) and (171) we have that

RGZ(g’) (),) ReZ(g’) <Z B )((g’;)>>1—n
Re (07, (), ((7),) = Re Y (o), [ (79, (Z ﬁ;#’{gk)) 1o

Clearly (f7), € Sp, () and by (169), (170) we have that

; ; i XDy i XDy
Y.~ 000, = ) Tsizizs- ) Vel
k€EF

ke] 1
_ j XDy j X j XDy
- Ezﬁkuwk) Ezakuwk) zzakuwk)
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<> I =adl+ Y Ylall=1=> Yl + > > il

keF keJ\F keF keJ\F

=2<1—Z Z|a,{|><2n<z.

kEF _ _
Step 3. Now, we approximate the function (hf ) 0 by a new one (hf ) 5 such that for each k € F

the new function is constant on each D;.. So we also approximate the operator (Tj ) 0 by a new
one.
For this aim we choose an element t; in Dy, for any k € F, put ¢y, = (hj)o(tk) € Li(w)

and define (hj)l € Lo(u, L;(1)) by

(W), = > (W) toswierpo + . . Bl

keEF
By (168) we have that ||Z(hj)1||Oo <1.If (Tj)1 € L(L,(u)) is the operator associated to (hj)l,

then (Tj )1 1s the sum of (Tj )
(167), we clearly have

YN, = (@),
=S, - W)l <sup Y (vl - (W), @l :t € Dk € F)
= sup Z {||(hf)0(tk) — (hf)o(t)"1 :t €Dy, k € F} <.

Since 3, ||(T7) || = 1 we getthat 0 < 1 —n < [|X(77). || < 1. Now we define (T7), = 3.

01U eer D) and a finite-rank operator, so (T )1 € B;,. By using

(17),
[T ),

and so we have that

S, - @) ) =1- Y i), <

In view of the previous inequality and (175) we obtain that

YA, = (@)l < DTN, = (@), 1+ Y 1), - ()| < 2n < 2

From (173) and (176) we get that

Re Y (o), (1), ((F1),))
>Re ) (¢7), (1), ((7),)) = D@, = (1), ]| > 1= 3n.

On the other hand it 1s clear that

(), ((7),) = | 2200, (),n

I QIREEDN YQNREEIWIAT

k€F
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For simplicity, for each k € F, put qb,{

(Tj) (f] = Z Zﬁk(pk

_ kEF
It 1s clear that qb,i € BL L (u) forevery k € F. From (172) and (177) we obtain that

Y0, (3 B o0)) - negon, (),

Step 4. In this step we will obtain approximations ( fI ) 5 (Tj ) 3 of ( fI ) 5 and (Tj ) 5 respectively.

We will check in the final step that (Tj ) , attains its norm at ( fI ) ,» @ necessary condition for
our purpose. In fact ( fI ) 3 and (Tj ) , are the final approximations to ( fI ) 0 and (Tj ) o
Define the set G as follows

6 ={keF:Re Y (g7), B"(M){g")wk) > -l

In view of Lemma (5.3.2) we have that

S Sl > 1 E =14

k€EeG

It is immediate that
4

Re Y Bl(97), (M)((g';)) > (1-2y2m) ) |B]] = <1 —F>Z|B,{|, vk € G.

So, for each k € G we have

RGZBka RGZB;f(gj)<)((ZR)> <1_2€_:5>Z|ﬁli|

Hence, we obtain that ,8,{ # 0 fork € G and also that

Z|yk| >1—F>0 Vk € G.
By using also Lemma (5.3.4) we get

Z'Bkyk ka Il <= Z'Bkyk

27Z|Bk
<72|Yk , Vk € G,

Hence,

ka

SO
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J J 2
el 2 e
| vel Bl 2
The element (f7) , given by
1), =Y 3 S Wil o
Pk B~ v #OO

belongs to the unit sphere of L, (¢). Now, by using (178) and (180) we get that

YD, - (),

_ | ka| XDy j Xpyg
_Z ZkEG |Bk Z Vi #(Dy) kzep 'Bk‘u(Dk)

kEG

_ | ka| XDy j XDy i XDy
-2, zkEG 5] z yk (D) ;B"M(Dk) z i w0

kEG

DI el AP
keG kea |'3k kEF\G
<) % Gllﬁ |B;YR Vm £, 2, VM s+ ) DAl
keG € k k keG kEF\G
<1-) Z|ﬁk|+2 Zz7|ﬁk|+ > ka

keG kEF\G
<2<1—;Z|ﬁk> 27_—.

In view of (164),(174) and (182), we obtain that
DG, = (),
< Z I, = ], + YD, = D+ 16D, = )l

< 8.+-4'+-4 <eE&.

Now notice obviously that
4

Re ) 810", (60) > (1= 22D Y |81 > (1 35 ) D I8l vie e

For each k € G, define P}, as follows

P, = Z {t € Q:Re B (g7), OPLE) > <1 — —) |,8kqbk(t)|}

Clearly P, is a measurable set. According to Lemma (5.3.3), for each k € G we have
Ref > Bl dldu> <1 - —) > 16l
Py
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SO

f Z|¢k|du> 1——> 0.
Py

Letus fix k € G and t € P;,.. Notice that . ,[?k (gf)l (t) # 0. By Lemma (5.3.4) it follows
> L), 08l @ | BL(a7), 08l ©ll < 5 ) |7, 0l ®)]
18197, (00l 0)]

2 Bl(gM1 (D)
For each k € G we can define the element (p,{ in L;(p) by
o=y 210 (61,
71T, lotlan (@D "
It is immediate that (pk € 51, (w- From (184) and (185), for each k € G we have

Dol = oil, < ) Il - dixe, ], +Z||¢km\pkn

So

HOE <> |#l®)|, vk e Gt e P,

Z"‘pk ¢kXPk| +
|(g’) |
} |¢k| @ |,
! onl@) B (97),
w2 Z_Z"Pi"(gni'% | k||¢k||<gf) - 1
| J _ 2
+Z %W“'Ei]zi')( _qb]iXPk +7
- (g]) J B 2
SZ Vi YIE i |(gf) | +Z v/ |'3]j 23+%
_ j
sz Pr — || k||g,3 | 1+—(by(181))
=z| W lell |, | L1 ||(g’) |
Vil Sy ¢lldn (91 * |k| P, 4

=1 jZ| |d+<2+g<€
) Picldi 274772

Let the function (hf ) 5 be defined as follows
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. (),
(h])3 - ||(h])1|| T X2\Ukee D T Z Z (kaDk

KEG
It is easy to see that (hf ) , belongs to the unit sphere of Lo (u, L1 (1)). Let (TJ ) 5 € Sc(, ) be

the operator associated to the function hé in view of Proposition (5.3.6). Since G is a finite set,
F(Li(1w)) € M and (Tj)1 € M, by using the assumptions on M’ we know that (Tj)3 € S]\j/[.
We also have that
(r'),

2.1, = @), = 2 W), = i
hJ hJ
- Z (1) 3XQ\(UkecDi) T Z (h/) XD — ”(El]))” XO\(UpegDy) — Z ”(El]))”oo)(pk

keG keG

=) &x £ olx ), T X > dix
”(hj)llloo OQ\(UgegDk) kADg — ||(h1) oo N\ (UrecDr) — kADg

keG keG
Z Z(‘Pk ¢k)XDk

=sup ) llof — #]ll, <
keG
By the previous inequality and (176) we obtain
D), = @)l < >N, = (@), ]+ Y (7, = (), <&
Step 5. Finally, we are going to find an approximation of ( g’ )1 and complete our proof.

We put A = {t e Q) |(gj)1(t)| >1- 2—2} and let the function (gj)z be defined by

7

(e @)

(e @)

(gj)z =Y |Eg1; |)(A Z(gj)l)(ﬂ\A. Since (gj)l € Sy (u)> We have that (gj)z € Sy - It is
also clear that
Yl - @), <=
By using (164) and (188) we also have that
. . g
P CHICON D Iio, = ()], + Sl - (67, <5 +<e
By (179) we know that Z|yk| >1—— for each k € G. Since G c J, in view of (169) the

restriction of (gj )1 to Dy, coincides Wlth yk and so Dk c A for all k € G. Hence,

(9) 1, = Z— vk €G.

Therefore, we deduce that

(,((7,) = Y @), (Z = ¢ ;:k' fg;))

kEG

194



|r3k7’k 1 .
ZZkeG |Bk Z j u(Dy. )(g])z(XDk)

keG k

I Y Z B kV_kI e _
ZkEG |,3k Ve |yk

kEG
For each k € G, from the definition of Py, and A, we deduce that P, © A SO

, 0]
(67,(00) = ]Z| T 1elan™ Z|

by using (191) we have that

@, (@, ((7),)) =szea > '@”"( 1, l)

keG

_ Z Z |8 k7_’k| Vk _
ZkEG |Bk keG yk |yk |
We have shown that there are elements (TJ)3 es’ ) (f )3 € S, () and (gj)z €S,

that in view of (183),(187),(189),(190) and (192) satisfy
DN, = )< e DTN, = ()], <
> ), - (o)l <e

> (67, (7)) = D@, (@), (7)) = 1.

8
So we showed that M has the BPBp- v with the function n given by n(¢) = —

233

Since

and also

Corollary (5.3.12)[365]: Let (), Z, 1) be a o-finite measure space. The following subspaces of
L(L; (1)) have the BPBp-v and the function 7 satisfying Definition (5.3.5) is independent from
the measure space.

(a) The subspace of all sequence of finite-rank operators on L, (u).

(b) The subspace of all sequence of compact operators on L, (u).

(c) The subspace of all sequence of weakly compact operators on L (@).
In case that u is finite, then the subspace of all representable operators on L, () also has the
BPBp —v.
Proof. Assume first that y is a finite measure. It is known that F(L;(n)) € K (Ly(n)) <
WeE(L,(n) € R(Ly(n)) and Tlijq(BLl(u)) cT’ (BLl(#)) for each T/ € L(L,(u)) and every

measurable subset A of Q. Also, it is clear that Tlfq € R(L,(n)) forany T/ € R(L,(n)) and every
measurable subset A of Q. Therefore, the spaces F(L;(u)), K (Li(w)), WC(L,(u)) and
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R(L,(w)) satisty the assumptions of Theorem (5.3.7), and so the above statements hold in case
that u is finite.

Now, let u be a o-finite measure. We will show that the space F (L1(w)) satisfies the
BPBp- v. There is a finite measure ¢ and a surjective linear isometry @/ from L, (u) into L, ({).
The mapping ®/ induces a surjective linear isometry from F (L, ())) into F(L1({))) given by
T/ ®J o T/ o &7/, Since ®/ is an isometry, it follows that v(T/) = ¥ V(CDj 0T/ o CD'j) for
every T/ € F(L,(1)). On the other hand, it is satisfied that (f/, g’) € (L, (u)) if and only if
(@ (F), (@) (g") € N(L;()). Also £(®7) (g (@ o7 0 @7 (¢/(7))) = g/ I (r7) for
every T/ € F (L1(ll)))- Since F(L;({)) has the BPBp- v we deduce the same property for
F(Ly ().
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Chapter 6
Bishop-Phelps-Bollobas Version and Theorem

We study Banach spaces Y such that (X, Y) has the Bishop-Phelps-Bollobas property for
every Banach space X. In this case, we show that there is a universal function nY (¢) such that
for every X, the pair (X,Y) has the BPBP with this function. This implies that this property of
Y is strictly stronger than Lindenstrauss property B. We get these results is the study of the
Bishop-Phelps-Bollobas property for cy-,#1- and £,- sums of Banach spaces. The Bishop-
Phelps-Bollobas theorem holds when the range space is finite-dimensional, an L, (1)-space for
a o-finite measure u, a C(K)-space for a compact Hausdorff space K, or a uniformly convex
Banach space. This result implies that Bishop-Phelps-Bollobas theorem holds for operators from
£, into such direct sums of Banach spaces. We also show that the direct sum of two spaces with
the approximate hyperplane series property has such property whenever the norm of the direct
sum is absolute.

Section (6.1): Lindenstrauss Properties 4 and B:

In 1963, J. Lindenstrauss [327] examined the extension of the Bishop-Phelps theorem, on
denseness of the family of norm-attaining scalar-valued functionals on a Banach space, to
vector-valued linear operators. He introduced two universal properties, A and B, that a Banach
space might have. Seven years later, B. Bollobas observed that there is a numerical version of
the Bishop-Phelps theorem, and his contribution is known as the Bishop-Phelps-Bollobas
theorem. Vector-valued versions of this result have been studied (see, e.g., [310]). We introduce
and study analogues of properties A and B of vector-valued versions of the Bishop-Phelps-
Bollobéas theorem.

This time giving the necessary background material to help make entirely accessible. The
Bishop-Phelps-Bollobas property was introduced in 2008 [310] as an extension of the Bishop-
Phelps-Bollobas theorem to the vector-valued case. It can be regarded as a "quantitative version"
of the study of norm-attaining operators initiated by J. Lindenstrauss in 1963. Let X and Y be
Banach spaces over the field K = R or C. We will use the common notation Sy, By, X™ for the
unit sphere, the closed unit ball and the dual space of X respectively, L(X,Y) for the Banach
space of all bounded linear operators from X into Y, and NA(X,Y) for the subset of all norm-
attaining operators. (We say that an operator T € L(X,Y) attains its norm if || T ||=|l Tx || for
some x € Sy.) We will abbreviate L(X, X), resp. NA(X, X), by L(X), resp. NA(X).

Definition (6.1.1)[308]: ([310], Definition 1.1). A pair of Banach spaces (X, Y) is said to have
the Bishop-Phelps-Bollobas property (BPBp for short) if for every € € (0,1) there is n(g) > 0
such that for every Ty € L(X,Y) with ||Tyll = 1 and every x, € Sy satisfying
ITo(x)Il > 1 —n(e),
there exist S € L(X,Y) and x € Sy such that
1=1S1I=N0Sx1, llxo —xll <& and ITo =TIl <e.
In this case, we will say that (X, Y) has the BPBp with function € — 1(¢).

The study of the "denseness of norm-attaining things" goes back to the celebrated Bishop-
Phelps theorem [315] which appeared in 1961. This theorem simply states that NA(X, K) is
dense in X™ for every Banach space X. The problem of the denseness of NA(X,Y) in L(X,Y)
was given, and in 1963J. Lindenstrauss [327] provided a simple example to show that it is not
true in general. On the other hand, motivated by some problems in numerical range theory, in
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1970 B. Bollobas [316] gave a "quantitative version" of the Bishop-Phelps theorem which, in
the above language, states that the pair (X,K) has the BPBp for every Banach space X.
Nowadays, this result is known as the Bishop-Phelps-Bollobas theorem. See the expository
[309] for a detailed account on norm-attaining operators; any result not explicitly referred to
below can be found there.

As the problem of the denseness of norm attaining operators is so general, J. Lindenstrauss
[327] introduced and studied the following two properties. A Banach space X is said to have
Lindenstrauss property A if NA(X,Z) = L(X, Z) for every Banach space Z. A Banach space Y
is said to have Lindenstrauss property B if NA(Z,Y) = L(Z,Y) for every Banach space Z. We
remark that both properties A and B are isometric in nature (that is, they depend upon the
particular norm).

Lindenstrauss property A 1is trivially satisfied by finite-dimensional spaces by
compactness of the closed unit ball, and it is also satisfied by reflexive spaces [327]. J. Bourgain
[317] proved in 1977 that the Radon-Nikodym property characterizes Lindenstrauss property A
isomorphically: a Banach space has the Radon-Nikodym property if and only if it has
Lindenstrauss property A in every equivalent norm. From the isometric viewpoint, W.
Schachermayer [330] introduced property a, which implies Lindenstrauss property A. It is
satisfied, for instance, by #;, and it is also satisfied in many Banach spaces, including all
separable spaces, after an equivalent renorming. There is a weakening of property «, called
property quasi-a introduced by Y. S. Choi and H. G. Song [321] which still implies
Lindenstrauss property A. On the other hand, examples of Banach spaces failing Lindenstrauss
property A are cy, non-atomic L, (@) spaces, C(K) spaces for infinite and metrizable K, and the
canonical predual of any Lorentz sequence space d(w, 1) withw € £, \ #;. Finally, we mention
that Lindenstrauss property A is stable under arbitrary €4-sums [321].

Less is known about Lindenstrauss property B. The base field K clearly has it, since this
is just the Bishop-Phelps theorem. However, it is unknown whether every finite-dimensional
space has Lindenstrauss property B, even for two-dimensional Euclidean space. J. Lindenstrauss
gave an isometric sufficient condition for property B, called property 5, which is satisfied by
polyhedral finite-dimensional spaces, and by any space between ¢, and ., inclusive. It was
proved later by J. Partington [329] that every Banach space can be equivalently renormed to
have property [ and, therefore, to have Lindenstrauss property B. There is a weakening of
property f3, called property quasi- f and introduced by M. Acosta, F. Aguirre and R. Paya [313],
which provides new examples of spaces with Lindenstrauss property B, such as some non-
polyhedral finite-dimensional spaces and the canonical predual of any Lorentz sequence space
d(w,1) with w € ¢y \ #1. Among spaces without Lindenstrauss property B we find infinite-
dimensional L;(u) spaces, C[0,1],d(w,1) with w € £, \ #; and every infinite-dimensional
strictly convex space (or C-rotund space in the complex case); in particular £, for 1 <p < oo
all fail Lindenstrauss property B. We finish by mentioning that Lindenstrauss property B is
stable under arbitrary cy-Sums [313].

Since its introduction in 2008, quite a few papers regarding the Bishop-Phelps-Bollobas
property have been published (see, e.g., [312],[314],[318], [322], [326]). Among others, the
following pairs have been shown to have the BPBp: (L; (1), Lo [0,1]) for every o-finite measure
U, (X, Cy(L)) for every Asplund space X and every Hausdorff locally compact space L, (X,Y)
when X is uniformly convex or Y has property £, or if both X and Y are finite-dimensional.
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We will deal with the following definitions, which are exactly the BPB versions of
Lindenstrauss properties A and B.

Definition (6.1.2)[308]: Let X and Y be Banach spaces. We say that X is a universal BPB
domain space if for every Banach space Z, the pair (X,Z) has the BPBp. We say that Y is a
universal BPB range space if for every Banach space Z, the pair (Z,Y) has the BPBp.
The following assertions are clearly true:

(a) a universal BPB domain space has Lindenstrauss property A,

(b)a universal BPB range space has Lindenstrauss property B.

The converse of (a) is known to be false: the space £, has Lindenstrauss property A but
fails to be a universal BPB domain space [310]. Even more, every finite-dimensional Banach
space clearly has Lindenstrauss property A, but £2 fails to be a universal BPB domain space.
(We will prove this later in Corollary (6.1.15), but it can be found by "surfing" into the details
of the proofs in [310].) Also, a twodimensional real space is a universal BPB domain space if
and only if it is uniformly convex [326] (see Corollary (6.1.17) below).

The validity of the converse of (b) has been pending from the beginning of the study of
the BPBp, since the basic examples of spaces with Lindenstrauss property B, i.e. those having
property (3, are actually universal BPB range spaces [310]. We will provide an example of a
Banach space having Lindenstrauss property B but failing to be a universal BPB range space.

We compare the function (&) appearing in the definition of the BPBp for different pairs
of spaces.

Notation (6.1.3)[308]: Fix a pair (X,Y) of Banach spaces and write
OX,Y) ={(x,T) e XX LX,Y):IIT lI=Il x lI=I Tx ll= 1}.
For every p € (0,1), let
SXX,Y)P):={S,x)eLX,Y)XX:IISNI=Ilx =11 Sx I>1—p}.
Also, for every € € (0,1) we define (X, Y)(¢) to be the supremum of the set consisting of 0
and those p > 0 such that for all pairs (Ty, xo) € S(X,Y)(p), there exists a pair (T, x) € II(X,Y)
such that [|xy — x|| < € and [Ty — T|| < &. Equivalently,
n(X,Y)(e) =inf{1—II Tx l:x € Sy, T € L(X)

Il T ll=1,dist((x, T),TI(X,Y)) > €}
where dist ((x,T), II(X,Y)) = inf{max{ll x —y LI T =S I}: (¥,S) € [I(X,Y)}.
It is clear that the pair (X,Y) has the BPBp if and only if n(X,Y)(g) > 0 for every € € (0,1).
By construction, if a function € — 7n(¢) is valid in the definition of the BPBp for the pair (X, Y),
then n(e) < n(X,Y)(e). That is, n(X,Y)(¢) is the best function (i.e. the largest) we can find to
ensure that (X,Y) has the BPBp. It is also immediate that n(X,Y)(¢) is increasing with respect
to €.

We first study the behavior of the BPBp with respect to direct sums of Banach spaces.
Specifically, we prove that given two families {X;:i € I} and {Y] j € J} of Banach spaces, if X
is the cy-, £70r €o-sum of {X;} and Y is the ¢y, £1-or £ -sum of {Y]}, then

n(X,Y)(&) <n(X,Y)(e) (€ LjE))
Therefore, if the pair (X,Y) has the BPBp, then every pair (Xl-,Yj) does with a non-worse

function 7. The main consequence of this result is that every universal BPB space has a
"universal" function 1. That is, if X is a universal BPBp domain space, then

inf{n (X, Z)(¢): Z Banach space } > 0 (¢ € (0,1))
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if Y 1s a universal BPBp range space, then
inf{n(Z,Y)(¢): Z Banach space } > 0 (¢ € (0,1)).

With this fact in mind, we see from [326] (where the existence of a universal function was
hypothesized) some necessary conditions for a Banach space to be a universal BPB domain
space. In particular, a real, two-dimensional universal BPB domain space must be uniformly
convex. Another related result is that for Banach spaces X and Y and a compact Hausdorff space
K, if the pair (X, C(K,Y)) has the BPBp, then so does (X,Y). We also provide a new result on
the stability of density of norm-attaining operators from which we can deduce that NA(X) is not
dense in L(X) for the space X = C[0,1] @, L,[0,1]. With respect to domain spaces, we obtain
the following result: If a Banach space contains a non-trivial L-summand, then it is not a
universal BPB domain space. Hence every Banach space of dimension greater than one can be
equivalently renormed so as not to be a universal BPB domain space.

With respect to range spaces, we provide an example of a Banach space Y which is the
co-sum of a family of polyhedral spaces of dimension two such that (£2,Y) does not have the
BPBp. This is the announced result of a Banach space having Lindenstrauss property B (in fact,
even having property quasi-  of [313]) and yet failing to be a universal BPB range space. It
also follows that being a universal BPB range space is not stable under infinite ¢ - or € ,-sums.

Contains the results on direct sums which will be the main tools for the rest. We give the
results related to domain spaces, while our results related to range spaces are discussed.

We study the relationship between the BPBp and certain direct sums of Banach spaces.
We will use these results later to get the main theorems.

Our principal deals with cy-,#4-, and f,-sums of Banach spaces. Given a family
{X5: A € A} of Banach spaces, we denote by [D,epXalc, (resp. [BreaXale,, [BreaXale, ) the
Co-sum (resp. £1-sum, £ ,-sum) of the family. In case A has just two elements, we use the simpler
notation X @ oY and X P 1.

Theorem (6.1.4)[308]: Let {X;:i € I} and {Y] jE ]} be families of Banach spaces, let X be the
co-»1—, or £, — sum of {X;} and let Y be the ¢y, #; —, or £o, sum of {Y;}. If the pair (X,Y)
has the BPBp with n(¢), then the pair (Xl-, Y]) also has the BPBp with n(¢) forevery i €1,j €
J. In other words,

n(X.Y) <n(X,Y;) (€ Lj€))
This theorem will be obtained by simply combining Proposition (6.1.5), Proposition (6.1.8), and
Proposition (6.1.9) below. In some cases, we are able to provide partial converses.

Before providing these propositions, and therefore the proof of Theorem (6.1.4), we
present its main consequence: universal BPB spaces have "universal" functions 7. We will
frequently appeal to the following result.

Corollary (6.1.4)[308]: Let X and Y be Banach spaces.
(a) If X is a universal BPB domain space, then there is a function 7y : (0,1) — R¥such that
for every Banach space Y, (X,Y) has the BPBp with ny. In other words, for every

Y! U(X; Y) > Nx-

(b)IfY is a universal BPB range space, then there is a function 7y: (0,1) — R¥such that for
every Banach space X,(X,Y) has the BPBp with ny. In other words, for every

X, U(X' Y) 2 Ty-
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Proof. (a) Assume that (X,Y) has the BPBp for every Banach space Y, but no such universal
function ny exists. Then, for some &€ > 0, there exists a sequence of Banach spaces {Y,,} such
that (X, Y;,) has the BPBp and n(X, Y;,)(¢) — 0 when n — oo. But if we consider the space Y =
[@neN Y]-]CO, then (X,Y) has the BPBp by the BPB universality of X, and Theorem (6.1.4)

(actually Proposition (6.1.5) below) gives n(X, Y,,)(¢) > n(X,Y)(e) > 0, a contradiction.

(b) The same idea as in (a) works, with £;-sums of domain spaces substituting ¢, — sums
of range spaces.

We are now ready to provide the following three propositions which will give Theorem
(6.1.4). The first is the most natural case: £;-sums of domain spaces and cy- or €,-sums of
range spaces.

We observe that this result appeared in [320], but not interested in controlling the function
n(€), which will be of relevance to us.

Proposition (6.1.5)[308]: Let {X;:i € I} and {Y] jE€ ]} be families of Banach spaces, X =
[@ic1Xilp, and Y = [@¢; Y] , orY = [®)c ,Y,-]CO. If the pair (X,Y) has the BPBp with n(¢),

then (Xl-, Y]) also has the BPBp with n(¢) for every i € I, j € J. In other words,
n(X, V() <n(X,Y) GeLje).
Proof. Let E; and F; denote the natural isometric embeddings of X; and Y; into X and Y,
respectively, and let P; and Q; denote the natural normone projections from X and Y onto X; and
Y;, respectively. For T € L(X,Y), we can easily see that
I T l= sup{||Q;T||:j € J} = sup{IITE;ll: i € I}
(A proof of this fact can be found in [328], for instance.) Hence
I T l=sup{||Q,TE;|:i € 1,j € J}.

Fix h € I and k € J. To show that the pair (X}, Y},) satisfies the BPBp with function n(¢),
suppose that [T (xp)ll > 1 —n(e) for T € Sy(x, v,) and x, € Sy, . Consider the linear operator
T = F,TPy € L(X,Y). Note that Q;T = 0 for j # k and Q,TE; = 0 for i # h, while Q,TE), =
TN T =0T lI= 1 and |[T(Epxp)|l > 1 —n(e).

Since the pair (X, Y) has the BPBp, there exists (xo, S ) € I1(X,Y) such that

IT—SI<e and llxg — Ep(xp)ll < €.

Let S = Q) SE;, € L(Xp,Yy). Clearly | SIS 1 and IS—TI<I S —T lI< &. Now we
want to show that S attains its norm at P, (x,) and that ||Py, (x,)Il = 1. Indeed, forj € J,j # k
one has

1Q;Sxoll = 11Q;Sx0 — Q;Txol <N S—Tl<e<1
Hence [|Sx,ll = 1 = [|QxSxoll, which shows that ||Q,S|| = 1 and Q.S attains its norm at x,.
Similarly, for i € I,i # h we have

1QkSEill = 1QuSE; — QkTEN <1 S—T lI<e < 1
and 50 [|Qx S|l = 1 = [|Q,SELIl =1l S II. Since

1 = 10Sxoll < ) 1QSEPuxoll = ISPyxol + ) 10kSE:Pixo
i€l i€l,izh
< IPyxoll + € Z 1Pxoll < 1Py Il + Z 1Pxoll = 1
i€l,izh i€l,izh
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we have ||P;x,ll = 0 for i # h and [|S(Pyxo)ll = IIPyxoll = 1. Further,

IPnxo — xpll = ||Ph(xo — Eh(xh))" < llxg — Ep(xp)ll < e.
The next proposition gives when the converse result is possible, but only for range spaces.
Proposition (6.1.6)[308]: Let X be a Banach space and let {Y] JjE ]} be a family of Banach

spaces. Then, for both Y = [GBJ-E] Y]]C and Y = [GBJ-E] Yj]{) , one has
0 0
X,Y) =infn(X,Y;).
n(X,Y) = infn (X, %)

Consequently, the following four conditions are equivalent:
(1) inf E]n(X,Y)(e) > (0 forall € € (0,1),
(11) every pair (X ) Y) has the BPBp with a common function n(g) > 0,

(iii) the pair (X, [@;¢,¥;], ) has the BPBp.,

(1v) the pair (X [GBJ-E] Y-] ) has the BPBp.
Proof. The inequality < follows from Proposition (6.1.5). So let us prove the converse
inequality. To do this, we fix & € (0,1). Write n(¢) = inf;¢;n(X,Y;) and suppose n(g) > 0
(otherwise there is nothing to prove), so n(X ) Y-) >n(e) > 0. Let Fj and Q; be as in the proof
of Proposition (6.1.5). Suppose that T € Sy (xy) and x, € Sy satisfy
ITxoll > 1 — 7).
Then there is jo € I such that [|Q; Tx,l| > 1 —n(e). By the assumption on &, there are an
operator S; : X — Y; and a vector u € Sy such that
ISl = 1S ull = 1, IS, — ;. Tl <& and llxo —ull < &.
Define S: X — Y by

S= ) FQT+E,S,
J#Jo

Clearly Il S II< 1 and Il Su > ||S;,ul| = 1, so (u,S) € II(X,Y). On the other hand,
IT—5Sl= S}é?"Q,(T O =10Q;,T -S|l <e
j

We have proved that (X, Y) has the BPBp with the function 7(¢). In other words, n(X,Y)(¢) >
n(e)

One particular case of Proposition (6.1.6) is that the BPBp is stable for finite £,,- sums
of range spaces.

Corollary (6.1.7)[308]: Let X,Y;, ..., Y, be Banach spaces and write Y = Y; @y - Do Y
Then, (X,Y) has the BPBp if and only if (X, Y-) has the BPBp for every j =1, ...,m. As a
consequence, Y;, ..., Yy, are universal BPB range spaces if and only if Y is.

Note that since ¢4 is not a universal BPB domain space, we cannot expect an analogue of
Proposition (6.1.6) for £;-sums of domain spaces. Indeed, even Corollary (6.1.7) has no
counterpart for finite £;-sums of domain spaces. This follows from the fact that £2 fails to be a
universal BPB domain space (Corollary (6.1.15) below or [326], Corollary 9).

The second result deals with cy-or £, — Sums of domain spaces.

Proposition (6.1.8)[308]: Let {X;: i € I} be a family of Banach spaces, X = [®;¢;X;]., or X =
[Dic1 Xils,,, and let Y be a Banach space. If the pair (X,Y) has the BPBp with 7(¢), then the
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pair (X;,Y) also has the BPBp with n(¢) for every i € I. In other words, n(X,Y) < n(X;,Y) for
every i € [.
Proof. For every i € [ we may write X = X; @, Z for a suitable Banach space Z. Thus, without
loss of generality, we may assume that X = X; @4 X,.

For fixed € € (0,1), suppose that [T (xy)ll > 1 —n(e) forsome T € L(X;,Y) with || T ||
= 1 and some x, € S, . Define a linear operator T e L(X,Y) by

T(x1,x5) = Txy (x4, x5) € X).
Observe that || T [I= 1 and ||T(xo, 0)|| > 1 — (). Since the pair (X,Y) has the BPBp, there
exist § € L(X,Y) with || S II= 1 and (x], x3) € Sy such that
ISI= 1S x)l =1, IT=S1l<e and |(x],x3) — (x5, 0)] < &.
From the last inequality, we see that
lx; — x0ll <& llx3ll <e<1 and |lx¢]l = 1. (D
If we define S € L(X1,Y) by S(x1) = §(x1,0), then [ S IKI SlI=1and I S—T IKNT =S |l
< €. So, by (1), it suffices to show that [IS(x;)Il = 1. Indeed, using (1) again, we have that
le x5l < 1, 50 (x1, e 1x}) € By. We can write
S(xi,x3) = (1 —e)S(x1,0) + eS(xq, e71x5)

and, since [|S(x], x5)|| = 1, we get ||S(x1, 0)]| = 1. This is exactly [IS(x1)|l = 1, as desired.

Considered as a real Banach space, £2, is not a universal BPB domain space (it is isometric
to £2. As a consequence, we cannot expect the converse of Proposition (6.1.8) to be true, even
for finite sums.

The third proposition deals with the remaining case of £;-sums of range spaces.

Proposition (6.1.9)[308]: Let {Y] RS ]} be a family of Banach spaces, Y = [69 jej Y]] 0 and let
1
X be a Banach space. If the pair (X,Y) has the BPBp with n(¢), then the pair (X ) Y-) also has

the BPBp with n(¢) for every j € J. In other words, n(X,Y) < n(X, Y-) forevery j € J.
Proof. Arguing as in the previous proof, we may assume thatY =Y; @, Y,.
For € € (0,1) fixed, suppose that [T (x;)|l > 1 —n(e) for some T € L(X,Y;) with || T ||
= 1 and some x; € Sy. Define a linear operator T € L(X,Y) by
T(x) = (Tx,0) (x € X).
Observe that || T ll= 1 and ||T(x,)|| > 1 — n(¢). Since the pair (X, Y) has the BPBp, there exist
SeL(X,Y) with || S I= 1 and x, € Sy such that
ISH=1Sx )l =1, IT-=S1<e and |lx; — x,ll < €.
Write S(x) = (S1(x), S, (x)) for every x € X, where S; € L(X,Y;) for j = 1,2, and observe that
| Sx — Tx = 11S;x — Txll + IS,xll <& (x € By). (2)
In particular,
IS; =TIl < € and [IS;]l < e.
Now, consider y* = (y{,y5) EY* =Y @, Y, with [ly*|| = 1 such that Re y* (S’(xo)) =1.
We have that
1=Rey" (S(x0)) = Rey; (Six0) + Rey3(S220) < IS10oll + S22 = IS (o)l = 1
Therefore, we get that
Re y1(S1x0) = IS1x0ll and Re y3(S;x0) = I1S2x,l
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Finally, we define S € L(X,Y;) by

Sx =Si1x+y,; (Szx) (x €X)

II51 oII
(Observe that [|S1xgll =1 — [[Sox0ll > 1 — IS, > 1 — & > 0.) Then, for x € By we have

Il Sx I ISl + [y5(So2)| < SN + ISoxll =1 S(x) II< 1,
so || S II< 1. Furthermore,

ISxoll = {|S1x0 + ¥> (Szxo)
|51 o||

= Rey1(S1x0) + Rey;(S2x0) = 1
Hence S attains its norm at x. As [[xo — x4 || < &, it remains to prove that || S — T |I< €. Indeed,
for x € By, we have
I Sx — Tx I I1S1x — Txll + |y5(S2x)| < IS1x — Txll + 1S,
soll § =T lI< € by (2)

As ¥, does not have Lindenstrauss property B, we cannot expect that a converse of
Proposition (6.1.9) can be true in general. In fact, we don't even know whether such a converse
is true for finite sums, that is, whether (X, Y; @, Y;) has the BPBp whenever (X, Y;) does for
j=1.2.

Another result in the same direction is the following generalization of [319] where it is
proved for X = 4.

Proposition (6.1.10)[308]: Let X and Y be Banach spaces and let K be a compact Hausdorff
space. If (X, C(K,Y)) has the BPBp with a function n(¢), then (X,Y) has the BPBp with the
same function 77(¢). In other words, n(X,Y) > n(X,C(K,Y)).
Proof. Given € > 0, consider T € S, x y) and x, € Sy satistying

x> 1-n().
The bounded linear operator T: X — C(K,Y), defined by [T (x)](t) = T(x) for all x € X and
t € K, satisfies |Txo|| = ITx,ll > 1 — (). By the assumption, there exist x; € Sy and S €
L(X,C(K,Y)) such that

ISI=1SGII =1, I1T-Sl<e llxg—xll <&

Moreover, there is t; € K such that 1 = ||S(x)| = ||[§ (xl)](tl)". We can now see that the
bounded linear operator S: X — Y defined by S(x) = [S(x)](t,) for all x € X satisfies that

IHH—ﬂmMﬂ@(Qm—MﬂmﬂmN—WMﬁm—l

S1%g
> Re y; <51x0 + y5(S2x0) IS 0">
1X

XEB X
and
IS=T1 = sup I SC) = T(0) 1= sup [S]() = [T
.X'EBX XEB X
<sup 1S T I=IS-Tl<e

.X'EBX
As we have already known that [|x; — x|l < &, we obtain that (X,Y) has the BPBp with the
function 7n(¢).

We observe that the converse implication in the above proposition is false, as Y = Kis a
universal BPBp range space by the Bishop-Phelps-Bollobas theorem but C[0,1] does not have
even Lindenstrauss property B [331].
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A more general way of stating Proposition (6.1.10) is that if (X ,C(K) R, Y) has the
BPBp with n(e), then so does (X,Y). We do not know what other spaces, besides C(K), have
this property. In an analogous way, noting that L, (¢, X) = L1 (u) ®,, X, we remark that we do
not know if a result similar to Proposition (6.1.10) can be obtained for vector-valued L;-spaces
in the domain; that is, we do not know if the fact that (L, (u, X),Y) has the BPBp implies that
(X,Y) does as well (where X and Y are Banach spaces and u is a positive measure).

We finish with a discussion on some analogues to Propositions (6.1.5), (6.1.8), and (6.1.9)
for norm-attaining operators. Let X, Y, X;, X,,Y;, and Y, be Banach spaces. It has been proved
in [328] that Proposition (6.1.5) has a counterpart for norm-attaining operators; that is, if
NAX; @ 1X,,Y; @o Yo) is dense in L(X; @ 1X,,Y; Do Y2), then NA(X;,Y;) is dense in
NA (Xl-, Y]) for i,j € {1,2}. If we consider £;-sums in the range space, it is possible to adapt the
proof of Proposition (6.1.9) to this case, obtaining that if NA(X,Y; @, Y,) is dense in
L(X,Y; &, Y,), then NA(X, Y-) is dense in L(X, Y-) for j = 1,2. As far as we know, this result
1s new. On the other hand, if we consider £ -sums of domain spaces, we do not know how to
adapt the proof of Proposition (6.1.8) to the case of norm-attaining operators. We do not know
if the result is true or not; that is, we do not know whether the fact that NA(X; @ X,,Y) is
dense in L(X; @, X,,Y) forces NA(X;,Y) to be dense in L(X;,Y),i = 1,2.

Let us summarize this new result here (actually, we state a formally more general result)
and deduce from it what we believe is an interesting consequence.

Proposition (6.1.11)[308]: Let {Yj:j € ]} be a family of Banach spaces, Y = [GBJ-E] Yj]fl’ and
let X be a Banach space. f NA(X,Y) is dense in L(X,Y), then NA (X ) Y-) is dense in L(X ) Y-) for
every j € J.

Example (6.1.12)[308]: Consider the Banach space X = C[0,1] @4 L,[0,1]. Then, NA(X, X) is
not dense in L(X, X). Indeed, if NA(X, X) were dense in L(X, X), then NA(L;[0,1], X) would be
dense in L(L;[0,1],X) by [328]. But the above proposition would imply that
NA(L,[0,1],C[0,1]) is dense in L(L,[0,1], C[0,1]), a result which was proved to be false by W.
Schachermayer [331].

We have two objectives. First, we will show that every Banach space of dimension greater
than one can be renormed to not be a universal BPBp domain space. One should compare this
result with the result by J. Bourgain [317] asserting that a Banach space has Lindenstrauss
property A in every equivalent norm if and only if the space has the Radon-Nikodym property.
We will study conditions which ensure that a Banach space is a universal BPB domain space.
Lemma (6.1.13)[308]: Let X be a Banach space containing a non-trivial L-summand (i.e. X =
X; @, X, for some non-trivial subspaces X; and X,) and let Y be a strictly convex Banach space.
If the pair (X, Y) has the BPBp, then Y is uniformly convex.

Proof. For j = 1,2, we pick ¢; € Sy, and e; € Sy such that ej*(ej) =1 and e;{(X,) = 0 and
e;(X1) = 0 (just identify X;" with a subspace of X* and extend the functional to be zero on the
other subspace).

Fix € € (0,1/2) and recall that n(X,Y)(e) > 0 by the BPBp. Consider y;, y, € Sy such
that

lyy + ¥l > 2 = 2n(X,Y)(e)
We define an operator T € L(X,Y) by
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T(xq,%2) = ef(x)y1 + e3(x2)y, ((xl;xZ) € X),
which satisfies || T ||= 1. As

1 1 1
"T (E 31;§ez>|| =5 ly: + ¥21l > 1 —n(X,Y)(e),
there are (x;,x,) € Sy and S € L(X,Y) such that

1
1S 1= 1SCe 2l = 1, [5e1 —x
We deduce that |l— |x]||| <e<1/2,500< ||x]|| < 1 and

<256 -] +

1
~es —x2|| <eand IT—-SI<e

e — < 2e+|1-2|x]l| < 4

Y ,II

for j = 1,2. If we write

2x]

llx1 ]"

S(xl o)eB d ( X2 )eB
= _—, and z
Nl I Y 272\ gl Y

we have that

1 =1SCep, 21 =1 xq11Z1 +lixzllZ20 and g Il + llxo 1l = 1.
As 'Y is strictly convex, it follows that z; = z,. Now,
lyy — ¥l =1T(e;,0) — T(0, )l

< IT(ey,0) — S(ey, 0Nl + 1T (0, €5) — S(0, el
+1IS(ey, 0) — zyll + 1S(0, e2) — |l

<2|IT- 5||+||5(e1,0) S(,, l 0]+ |50 -5 (o, ||Z||>||

< 2641l S ||(

+|| ><105

U gl 1|| llc, ||"
This implies that Y is uniformly convex, as desired.
Theorem (6.1.14)[308]: The base field K = R or C is the unique Banach space which is a
universal BPBp domain space in any equivalent renorming.

Proof. If dim(X) > 1, we consider any one-codimensional subspace Z of X and observe that
X ~ X:= K @, Z. Now, consider any strictly convex Banach space Y which is not uniformly
convex, and the above lemma gives that (X, Y) does not have the BPBp.

We next give the following particular case of Lemma (6.1.13), which can be deduced
from arguments given in [310].

Corollary (6.1.15)[308]: Let Y be a strictly convex Banach space. If (£2,Y) has the BPBp, then
Y is uniformly convex.

A nice consequence of the above corollary is the following example.

Example (6.1.16)[308]: There exists a reflexive Banach space X such that the pair (X, X) fails
the BPBp. Indeed, let Y be a reflexive strictly convex space which is not uniformly convex and
consider the reflexive space X = £2 @, Y. If the pair (X,X) had the BPBp, then so would
(£2,Y) by Theorem (6.1.4), a contradiction with Corollary (6.1.15).

We give some necessary conditions for a Banach space to be a universal BPB domain
space. Let us recall that if a Banach space X has Lindenstrauss property A, then the following
hold [327]: (a) if X is isomorphic to a strictly convex space, then Sy is the closed convex hull of
its extreme points, and (b) if X is isomorphic to a locally uniformly convex space, then Sy is the
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closed convex hull of its strongly exposed points. These results have been strengthened to the
case of universal BPBp domain spaces in [326] but with the additional hypothesis that there is
a common function n giving the BPBp for all range spaces. Thanks to Corollary (6.1.4), this
hypothesis is unnecessary.
Corollary (6.1.17)[308]: Let X be a universal BPB domain space. Then,

(a) in the real case, there is no face of Sy which contains a non-empty relatively open subset

of Sy

(b)if X 1s isomorphic to a strictly convex Banach space, then the set of all extreme points of

By is dense in Sy;

(c)if X 1s superreflexive, then the set of all strongly exposed points of By is dense in Sy.

In particular, if X is a real 2-dimensional Banach space which is a universal BPB domain
space, then X is uniformly convex.

We don't know if a universal BPB domain space has to be uniformly convex. We can
improve Corollary (6.1.17)(c) to get a slightly stronger result. To do this, we follow
Lindenstrauss [327] to say that a family {x,}, < Sy is uniformly strongly exposed (with respect
to a family {f,}, € Sx+ ) if there is a function € € (0,1) +— &(&) > 0 having the following
properties:

(1) fy(x,) =1 for every a, and
(i1) for any x € By, Re f,(x) > 1 — §(¢) implies [[x — x4l < €.

In a uniformly convex Banach space, the unit sphere is a uniformly strongly exposed
family (actually, this property characterizes uniform convexity).

Corollary (6.1.18)[308]: Let X be a superreflexive universal BPB domain space. Then for every
&y € (0,1) there exists an gy3-dense uniformly strongly exposed family. In particular, the set of
all strongly exposed points of By 1s dense in Sy.

Proof. We write ||-]| for the given norm of X and consider an equivalent norm ||-lIl| on X for
which the Banach space (X, Il | - | II) is uniformly convex. We may assume that ||x |I<Il x || for
all x € X (see [323], for instance). For each m € N, we define an equivalent norm on X by

1 1/2
2 s = (12 124 — WX WI2) G € ),

We observe that X,,, = (X, lIll,;,) is uniformly convex, so we may consider the function & +—
8 (€) (from the uniform convexity of X;,,), which gives that Sy _ is a uniformly strongly exposed
family (with respect to Sy ). That is, for every y € Sy there is y* € Sy» such that y*(y) =1
and

if z € By is suchthat Rey*(z) > 1 —6p,(e), thenll z — y lI,,< e. 3)
Let I,,: (X, II'lN) — (X, lI-1l,,,) be the formal identity operator and write

Ly vm+1
Ty, =—— and q,, =
Il Vm

for every m € N. Since
1<l < a and apt < R < L
it follows that
At < Tt < ap.
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Therefore, if S € L(X, X,,,) satisfies [T, — S| < azt < T2, then S is invertible (see [324],
Corollary 18.12) and
142
1T "I T, — S < a Ty — S
1= ITR T, = SI 1= ay Ty, — S|
(see [309] where it is done for the case X,,;, = X, but the general case easily follows). Then
a2 Ty, — S a
- _m"m _II — m_ @
1-apllTy =S 1= anlTy =Sl
Finally, let € — 1y (&) > 0 be the universal BPBp function for X given by Corollary (6.1.4).
We need to show that for every fixed &, € (0,1), there exists a function £ — &, (¢) > 0
satisfying the following conditions: For each x € Sy there exist x; € Sy and x] € Sy, such that
(@) llxg = xoll < &
(i1)x;(x;) = 1, and
(iii) for every € > 0, if x € By satisfies Re x1(x) > 1 — &, (¢), then llx; — x|l < &. Indeed,
fix &g € (0,1) and choose m € N satisfying

1" = S7HI <

ISTH < 1T + TR —S7HI < a

a =
™ V1+m

1~améo g) (¢ > 0) for this m. Observe that the operator T,, € L(X, X,,,)

> 1 —1ny(gy) and a;! > &,.

Consider 6., (¢) = 6y, (

satisfies [|T;,]| = 1 and

llxol _
ITmxoll,, = m ITIn > lIxollay," > 1 —nx(e)
m

Hence, by the BPB property of (X, X,,,), there exist both an operator S € L(X,X,,,) with || S ll=
1 and x; € Sy such that

lIxo — x4 1l < &, ISx )N, =1, and [T, — S|l < &.
Now, for y = Sx; € Sy _, lety™ € Sx: be the functional satisfying (3) (i.e. y* strongly exposed
Sx; with the function &,,(-)). So y*(Sx;) = 1, and for x € By and &’ > 0

Rey*(Sx) > 1 — §,,(&") implies [ISx — Sx;|l < €.
Consider x; € Sy (which satisfies [lx; — xoll < & ) and x; = S*(y*) € X* (which satisfies

x1(x1) =1 and |lx{|l = 1). Suppose that for some & > 0,x € By satisfies Rexj(x) > 1 —
8¢, (€). Then

1-— aAméo
Rey*(Sx) = Rex;(x) > 1 — 8, (¢) = 1 — &y, (—e)
m
so [|Sx — Sxq|l < %e. On the other hand, as ||T,,, — Sl < gy < a;;} < IITrglll_l, it follows
that S is invertible and we get from (4) that [|S71| < ﬁ Therefore
e 1—a,c
Ix =2l < ISTHINSx — Sxyll < IS7H ———¢
am
am 1—ané&
< e<e
S1—ayulT, =Sl  an,

One can ask whether it is actually possible to deduce uniform convexity from the above
corollary. This is not the case, even in the finite-dimensional case. To see this, just consider a
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three-dimensional space X in which the set M of strongly exposed points is dense but not all of
Sx. (For instance, we may modify the Euclidean sphere in such a way that there are two
diametrically opposite small line segments and the rest of the points are still strongly exposed.)
Now, for every g5 > 0, consider the set of those points in Sy whose distance to Sy \ M is greater
than or equal to &5/2 (which is contained in M ). Then this set is a closed subset of Sy consisting
of strongly exposed points, and so it is uniformly strongly exposed by compactness. On the other
hand, it is clearly &y-dense.

We give an example of a Banach space having Lindenstrauss property B which is not a
universal BPB range space. We recall that, as a particular case of [310], finite-dimensional real
polyhedral spaces are universal BPB range spaces since they have property f (we will not
introduce the definition of property f here since we are not going to work with it).

We are now able to present the main example.

Example (6.1.19)[308]: For k € N, consider ¥, = R? endowed with the norm

1
I Goy) i=m il Iyl + %l oy € R,
Observe that By, is the absolutely convex hull of the set {(0,1), (1,1 — %), (—1,1 — %)}, so Yy

is polyhedral and, therefore, it is a universal BPB range space by [2, Theorem 2.2]. Then, we
have that

infn (€7, Y)(e) = 0
for every € € (0,1/2). Therefore, if we consider

y - [@ " o> yk] and W = [@ yk]
i=1 c i=1 £, i=1 foo

0
then none of the pairs (2, V), (£2,2) and (2, W) has the BPBp.
Proof. Define T}, € L(#2,Y,) by
1 1
T.(e;) = (—1,1 _ E) and Ty.(e,) = (1,1 _ E) |
1 1 1 1 1
Clearly |[[Txll=1 and Ty (Eel + Eez) = (0,1 — Z)' Hence, ||Tk (Eel +Ee2)" =1-
Assume that for some 1/2 > &€ > 0 we have
inf (€7, Y)(e) > 0
and take 7(&) such that inf,enn(#2,Y,)(€) > n(e) > 0. Then, for every k € N such that 1 —
% > 1 —1(¢), we can find S, € L(#%,Y,,) with [[Sill = 1 and u,, € Sz such that
1 1
ISewell = 1, T, — Sill < € and "uk - (E er + Eez)" <e

Now, as "uk — G e +%e2)" < 1/2, we have that u; lies in the interior of the interval

[e1, e2] © Sz and that [IS; (w; )l = 1. It follows that the entire interval [Sy (e;), Sk (ez)] lies in
the unit sphere of Y, and so IS, (e;) — Sk(e2)ll < 1. Since [T}, — S|l < €, we get that

1T (e1) — Sk(e)ll < Tk (er) — Sk (el + 1Sk (er) — Sk(e)ll < e+ 1< 3/2,
On the other hand, since ||y (e;) — T (e,)ll = 2,

ITx(e1) — Sx(e)ll > Tk (e1) — Tr(e)ll — ITk(e5) — Sk (el > 2 —e > 3/2
a contradiction.

, & =

1
o
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The last assertion is a direct consequence of Proposition (6.1.5) (for the cy- and £, -sums)
and Proposition (6.1.9) (for the £;-sum).

Here is the main consequence of the example above.

Theorem (6.1.20)[308]: Lindenstrauss property B does not imply being a universal BPB range
space.

Proof. Just consider Y in the above example. Then Y has Lindenstrauss property B as a sum of
Y, 's, each of which has it, and this property is stable under cy-sums (see [313]). However, Y is
not a universal BPB range space since (2, ) does not have BPBp.

In [313], a property called quasi- § was introduced as a weakening of property  which
still implies property B. The above argument shows that property quasi- f does not imply being
a universal BPB range space:

Corollary (6.1.21)[308]: Property quasi- § does not imply being a universal BPB range space.
Proof. As in the theorem above, consider the space Y of Example (6.1.19). Then, Y has property
quasi- S since it is a cy-sum of spaces with property 5, and we may use [313].

We now list more consequences of Example (6.1.19), showing first that there is no infinite
counterpart to Corollary (6.1.7).

Corollary (6.1.22)[308]: The BPBp is not stable under infinite ¢, — or l,-sums of the range
space. Even more, being a universal BPB range space is not stable under infinite ¢y, — or £, —
sums.

It is shown in [325] that if Y is a real strictly convex Banach space which is not uniformly
convex, then (cy,Y) fails to have the BPBp. We are now able to show the same for some non-
strictly convex spaces.

Corollary (6.1.23)[308]: Let Y, Z and W be the spaces of Example (6.1.19). Then none of Y,
Z and W is strictly convex and, in the real case, none of the pairs (cq, Y), (co, Z), (cg, W) has
the BPBp

Proof. Notice that ¢, and £2 @, ¢ are isometric, so we consider £2 Do, ¢o. If (#2 Do o, Y)
has the BPBp, then from Proposition (6.1.8), (£2,Y) has the BPB, contradicting Example
(6.1.19). The same argument works for (cy, Z).

Finally, we have the following negative results on the stability of the so-called AHSP.
Recall that a Banach space Y has the Approximate Hyperplane Series Property (AHSP) [310]
if it satisfies a geometrical condition which is equivalent to the fact that (¢,,Y) has the BPBp.
Corollary (6.1.24)[308]: The AHSP is not stable under infinite cy—, 1 — or £,, — sums.
Proof. Let Y = [@;2,Y;]., be the space given in Example (6.1.19). As £; = £ @, 4;, it
follows from Proposition (6.1.6) that (£;,Y) does not have the BPBp, from which we deduce
that Y does not have the AHSP [310]. On the other hand, all the Y}, have the AHSP since they
are finite-dimensional [310]. For the #;-sum and the . -sum, the argument is the same
considering Z = [®;21Y,],, and W = [@;2, Vi ]o, .

Section (6.2): Theorem for Operators:

The celebrated Bishop-Phelps theorem states that the set of norm attaining functionals on
a Banach space is norm dense in the dual space. The study of when a theorem of this type holds
in the vector valued case has produced a theory with deep and elegant results. Lindenstrauss in
[337] proved that for certain Banach spaces X and Y, the subset of norm attaining operators from
X into Y is not norm dense in the space of all continuous and linear operators L(X,Y). There are

210



also remarkable situations in which a Bishop-Phelps theorem for operators does hold, such as
when the domain space is reflexive [337] or, more generally, when it has the Radon-Nikodym
property [335].

Given a Banach space X, we denote the unit sphere of X by Sy and the closed unit ball by
By. X* will be the topological dual of X. Bollobas in [334], [333] proved a "quantitative version"
of the Bishop-Phelps theorem [332] (known as the Bishop-Phelps-Bollobas theorem) that can
be stated as follows.

2
Let € > 0 be arbitrary. If x € By and x* € S+ are such that |1 — x*(x)| < %, then there

are elements y € Sy and y* € Sy- suchthat y*(y) = L,y —x I< e and [ly* — x*|| < .

Bollobas proved this result in order to be able to apply it to the study of the numerical
range of an operator.

For a Banach space X, we let [1(X) denote the subset of X X X* given by I1(X): =
{(x,x*):x € Sy, x™ € Sy, x*(x) = 1}. Given a bounded function ®:Sy — X, its numerical
range is V(®): = {x*(®(x)): (x,x*) € II(X)}. The properties of the set [1(X) play a crucial role
in the study of numerical range. What Bollobas proved was that the ordered pairs of X X X* that
"almost belong" to I1(X) can be approximated, in the product norm, by elements of I[1(X). The
numerical range of an operator allows the recovery of some properties of the operator. Thanks,
among other things, to the Bishop-Phelps-Bollobas theorem, the theory of numerical range is
far richer that one might expect at first glance (see [334]). Since this theory studies operators
from a Banach space into itself it may be of interest to consider possible extensions of the
Bishop-Phelps-Bollobas theorem to operators between two Banach spaces.

Since it is false in general that for every pair of Banach spaces X and Y, the subset of
norm attaining operators from X into Y is norm dense in the space L(X,Y), we cannot expect a
version of the Bishop-Phelps-Bollobas theorem for operators to hold in full generality. That is
why we introduce the following property.

Definition (6.2.1)[331]: Let X and Y be real or complex Banach spaces. We say that the couple
(X,Y) satisfies the Bishop-Phelps-Bollobas property for operators (or that the Bishop-Phelps-
Bollobas theorem holds for all bounded operators from X into Y) if given € > 0, there are () >
0 and B(¢) > 0 with lim;_,,fB(t) = 0 such that for all T € S;(xy), if xo € Sy is such that
ITxoll > 1 —n(e), then there exist a point u, € Sy and an operator S € Sy y) that satisfy the
following conditions:

ISugll = 1, llug —xpll < B(e), and II1S—-T Il<¢

Note that an independent concept, the Bishop-Phelps-Bollobas property for a pair (X, Y),
has been studied for closed subspaces X C Y by M. Martin, J. Meri, and R. Paya in [338] in their
work on intrinsic and spatial numerical range.

In the study of the Bishop-Phelps theorem for operators between Banach spaces two kind
of questions are usually considered:

(a) For which X is it true that for every Banach space Y, the norm attaining operators are dense
in L(X,Y)? (b) For which Y is it true that for every Banach space X, the norm attaining operators
are dense in L(X,Y)?

Schachermayer in [340] introduced property a as a sufficient condition on a Banach space
X to fulfill (a). A sufficient condition for (b) was given by Lindenstrauss [337] introducing
property . These two properties generalize in some sense the geometric situations of the
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classical Banach spaces ¢4 and c,, respectively. We study whether these properties still work
not just for the Bishop-Phelps theorem for operators but for the Bishop-Phelps-Bollobas theorem
for operators.

We prove that the pair (X, Y) has the Bishop-Phelps-Bollobas property for operators for
every Banach space X whenever Y has property . This implies a general positive result about
the Bishop-Phelps-Bollobas theorem for operators between Banach spaces whenever the range
space is fixed. Looking at the dual case, we concentrate on ¢4, since it is the typical example of
space having property . We characterize when the Bishop-Phelps-Bollobas theorem holds for
operators from £, into Y. In order to do this, we introduce property AHSP and show that there
are many spaces having this property, including finite-dimensional normed spaces, L, (u) for
every o-finite measure y, C (K) for any compact Hausdorff space K, and every uniformly convex
Banach space. A consequence of our study is that property a of Schachermayer is no longer a
sufficient condition for a Banach space X to satisfy that the pair (X, Y) has the Bishop-Phelps-
Bollobés property for operators for every Banach space Y. We show that a version of the Bishop-
Phelps-Bollobas theorem holds when X = ¢7, and Y is uniformly convex. Finally, following
Lindenstrauss' fundamental paper [337], it seems reasonable to ask if there is a version of the
Bishop-Phelps-Bollobas theorem that involves the second duals of X and Y. We provide an
example to show that no such result holds in general.

We will provide a partial positive result concerning the Bishop-PhelpsBollobas theorem
for operators under an additional assumption. The result will use an isometric condition on the
range space Y, called property [, that was introduced by Lindenstrauss [337].

Definition (6.2.2)[331]: A Banach space Y is said to have property 8 (of Lindenstrauss) if there
are two sets {y,;a € A} Sy, {y;:a € A} c Sy~ and 0 < p <1 such that the following
conditions hold:

(@) Ye(Ve) = 1.
‘(vp)| <p<tlifa#p

©) Il y lI=sup{lya (M|}, forally € Y.
Clearly, co(A) and £, (A) satisfy the above property for {y,:a € A} = {e,:a € A} and
{ya: @ € A} the biorthogonal functionals, and p = 0 in this case.
Theorem (6.2.3)[331]: Let X and Y be Banach spaces such that Y has property . Then the pair
(X, Y) has the Bishop-Phelps-Bollobas property for operators. Indeed, if T € Sy (xy), € > 0 and

2 2
Xy € Sy satisfy [T (xo)ll > 1 — %, then for each real number 1 such thatn > 1%} (E + %), there

are S € L(X,Y), z, € Sy such that: 2

ISzoll = S 1l 2o — xoll <& NS—TI<n+e+ %
% (T(xo))| >1- é. By the Bishop-
Phelps—Bollol;zj(syzhgorem, there exist z; € Sy~ and z, € Sy such that |z5(zp)| = 1, l1zg — xll <
% iz, )

125 — T*(va, Il <

Proof. Since Y has property S, there is ay € A such that

| < &( see [334]). Hence we obtain that

T'(Va,) ' " T (ya,)
%" IreCre I Tt (v,

TR
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2

&
<e+|IT@l-1]<e+5

2
For a real number 7 satisfying n > 1%} (E + %), we define the operator S € L(X,Y) by

S(x) =T + [ +mz5(x) — T (¥a,) ()] Va, (x € X)
Note that S is a rank one perturbation of T, and so S — T is compact. Thus for all y* € Y™,
S =T O+ (Va1 +mz5 — T (v, )]

Since the set {y;: @ € A} is norming for Y it follows that || S ||= sup, IS*(y2)Il. Let us estimate
the norm of S. Clearly,

5*(va,) = 1 + 1)z
and thus

IS 1= IS (va, )l = @ +mlizgl =1 +7.
On the other hand, for a # a, by the choice of 7, we obtain
IS* )l < 1+ p(llzg — T*(va, )l + nlizgl)
£2
< 1+P<£+z+’7><1+77

Therefore,
1S =18 (ya)ll = (1 +mlizgll = (1 +n)lz5(z0)

= |2, (S20)| < ISzoll <II S |

so S attains its norm at z,, and moreover we have that
2

&
Iz = xoll <& and IS =T I<n+e+—

Since property [ is not restrictive at all from an isomorphic point of view (see [339], we deduce
the following consequence.
Corollary (6.2.4)[331]: For every Banach space Y, there is a space Z isomorphic to Y such that
the Bishop-Phelps-Bollobas theorem holds for the operators from any other Banach space X to
Z. In fact, the function that controls the distance between the original operator T and its norm
attaining approximation S depends juston Y.
Now, we are going to prove that for finite-dimensional spaces, the Bishop-Phelps-
Bollobas theorem holds for operators. The following result is true.
Proposition (6.2.5)[331]: Let X and Y be finite-dimensional Banach spaces. For every € > 0,
there exists § > 0 such that whenever T € S x y), there is a linear operator R € S (x yy such that
the following conditions hold:
(i) IR—T I< &, and
(i1) for all x € Sy satisfying || T(x) I> 1 — &, there is X € Sy such that || R(X) ll= 1 and
such that || x — X lI< ¢
In other words, we have a Bishop-Phelps-Bollobas theorem for finite-dimensional spaces
X and Y that is uniform in the following sense. Given X, Y and ¢, there is a § such that for any
T:X - Y thereis R: X = Y, as above, with || T — R ||< € and such that for any unit vector x at
which T is within § of attaining the norm, there is a unit vector X within € of x at which R attains
its norm. That is, the same R "works" for all such x. On the other hand, unlike the classical
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Bishop-Phelps-Bollobas theorem, the constant § depends not only on € but also on X and Y.
This 1s true, even in the case when Y = R or C.

Proof. The proof is by contradiction. If the result is false for some ¢, then for every n, we can
find T, € Sy (x,yy such that for all R € Sy (x vy with [T, — RIl < &, there is x,, p € Sy satisfying
1T (xn )l > 1 — % and such that dist(x, z, NA(R)) > &, (where NA(R) = {z € Sx : | R(2) |l
= 1}). By taking subsequences, we may assume that (T,) = Ty € S;(xy). Putting x,: = xp, 1.,
we can also assume that (x,) = xo € Sy. Now, [[To(xo) |l = 1 although for all large n, &, <
dist(xn, NA (TO)) < 1%, — xoll = 0, which is the desired contradiction.

In order to give versions of Bishop-Phelps theorem for operators from a fixed Banach
space X, Schachermayer in [340] introduced the isometric property a, which has a certain
duality relationship with property . The most typical example of a space having property « is
£1. Our aim will be to characterize when the Bishop-Phelps-Bollobas theorem holds for
operators from #; into an arbitrary Banach space Y. We introduce the awkwardly named
property AHSP that we use to get such a characterization, and we show the richness of this
property by proving that several classes of spaces enjoy it.

Definition (6.2.6)[331]: A Banach space X is said to have property AHSP if for every € > 0
there exists 0 < 1 < ¢ such that for every sequence (x; ) C Sy and every convex series Y. p—1 Xk
with

(e @)

k=1
there exist a subset A € N and a subset {z;: k € A} satisfying
(1) Xkeaay > 1—n,and
(11)(a) llzy, — xxll < e forall k € A,
(b) x*(z,) = 1 for a certain x* € Sy- and all k € A.

It 1s immediate that the above property holds if it is satisfied just for finite convex
combinations (instead of infinite convex series). In Definition (6.2.6) we can consider sequences
(xx) p=q of vectors in the unit ball of X. A characterization of property AHSP is the following.

Geometrically, X has AHSP if whenever we have a convex series of vectors in By whose
norm is very close to 1, then a preponderance of these vectors are uniformly close to unit vectors
that lie in the same hyperplane (x*)~1(1) where x* has norm 1.

The following elementary lemma will be very useful to check that some Banach spaces
have property AHSP.

Lemma (6.2.7)[331]: Let {c,,} be a sequence of complex numbers with |c,| < 1 for every n,
and let n > 0 be such that for a convex series Y.a,, Re Yo~ @,c, > 1 — 1. Then for every 0 <
r < 1, the set A: = {i € N:Re; > r}, satisfies the estimate

n
Zai>1_1—r

i€A
Proof. By the assumption we have that

1—17<Rez aici=z aiReci<z a’i+rz ai=(1—r)z a;+r
i=1 i=1

i€A i¢A i€A

>1—n

Then we obtain that
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1—-n-—r n
Zai> 1—r =1_1—r

i€A

The next result will be used to check that finite-dimensional spaces have AHSP.
Lemma (6.2.8)[331]: Let X be a finite-dimensional normed space. Then for every € > 0, there
is § > 0 such that whenever x* € Sy-, there exists y* € Sy- such that dist(x, D(y*)) < ¢ for all
x €{x € Sy:Rex*(x) >1— 6}, where D(y*): = {y € Bx:y*(y) = 1}.
Proof. We argue by contradiction. Assume that there is some positive real number &, not
satisfying the above condition. Thus, for every positive § > 0 there exists x5 € Sy such that
for all y* € Sy-,dist(x, D(y*)) > &, for some x € {y € Sy:Rex5(y) > 1 — &§}. Hence, we can
find sequences (1) = 1,(x;;) € Sy- such that for all y* € Sy+,{x € Sx:x5,(x) > n,}N
{x € Sy: dist(x, D(y*)) > 80} # @. By compactness of the unit sphere, we may assume (x;,) —
x* for some x* € Sy-. By the previous condition there is a sequence (x,) € Sy so that r;; <
Re x;,(x,) < 1 for every n and such that for alln € N,

dist(xn,D(x*)) > &. (5)
We may also assume that (x,) converges to some x € Sy. Since (x;;(x,)) = 1 and both
sequences are convergent, it follows that x*(x) = 1; that is x € D(x*). We obtain that
dist(xn, D(x*)) < llx;,, — x|| for every n. Since (x,,) converges to x, this inequality contradicts
(5).

Lemma (6.2.8) should be compared with the Bishop-Phelps-Bollobas theorem that is
valid in finite-dimensional spaces. Here, the functional y* depends only on x*, whereas in the
general case y and y* depend on the choice of x and x*. Note that this strengthened version
comes at the cost of having 6 depend not only on &€ but also on the particular space X. The
condition appearing in Lemma (6.2.8) is a strengthening of property AHSP, as we will check
below.

Proposition (6.2.9)[331]: Every finite-dimensional normed space has AHSP.

Proof. If X is a finite-dimensional normed space, then we have just seen that for each € > 0,
there is & > 0 satisfying the condition in Lemma (6.2.8). We may assume that § < ¢ < 1. Now
assume that

(e @)

Z XYk

k=1
for some convex series Y, yy of elements {y, } in By. If Re x* (X5, Vi) > 1 — 52 for some
x* € Sx+, then the subset

>1— 62

G:={n € N:Rex*(y,,) >1— 6}

is such that Y pcqcr > 1 — 6 in view of Lemma (6.2.7). Hence the above lemma provides an
element y* € Sy+ and a subset {z,:k € G} € Sy such that y*(z;,) =1 for all k € G with
lvie — zill < €, as we wanted to show.

Now we will show that some classical Banach spaces have AHSP.
Proposition (6.2.10)[331]: For every o-finite measure u, the real or complex space L;(u) has
AHSP.
Proof. The following proof for the complex case works for real L, (1) as well. Assume that 0 <
€ < 1 and take
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f 4 4 1
s(e): = ypnper r(e): = al E(Sf) ) and n(e):=e(1—-r(e)). (6)

Note that 0 < s(¢) <r(¢) <landson(e) >0
Assume that (f;,) is a sequence in By _(,,y such that a certain convex series Y., @y, f,, satisfies
IXnanfnll; > 1 —n(e). We choose a functional x* in the unit sphere of the dual of L (u) such

that Re x* (O anfn) > 1 —n(e). We may assume that x* is an extreme point of the unit ball of
(L1(u))*, and we denote the corresponding function by h € L, (). Since x* is an extreme point,
we may assume that |h| = 1. By using a convenient isometry we may also assume that the
function h € L., (1) that represents the functional x* is the constant function, h = 1.

Now we define

A:={n € N:Rex*(f,) >r(e)} = {n € N:j Re f,du > r(e)}
By Lemma (6.2.7) we know that "’
> a1~ IO
! 1—7(e)

i€A
and so we take y(¢€): = % = ¢. Letting E,,;: = {t € Q:Re f,,(t) > s(&)|f ()|} for each n €
A, we clearly have

re) < jﬂ Re f,du = jE Re f,du + j Re f,du

n Q\E‘)’L

< jE Re fdu + jﬂ s(O)\fuldu

n \En

<jE Re fpdu + s(e) <1_L|fn|dﬂ>

n

< jE Re f,du + s(¢) <1 — jE Re fndu>

n n

= (1-s(e) jE Re fudyt + s(¢)

Then we obtain

r(e) — s(¢)
J, rein> T &
Hence
r(e) —s(e)
jQ\En |fn|d.u<1_jEn |fn|dﬂ<1—jEnRefnd‘u<1—1_—S(€) (8)

If t € E, we have (Re f;,(£))? > s(£)2((Re £,,(t))? + (Im £,,(t))?) and so (&)|Im f,(t)| <
V1 —s(e)?|Re f,,(t)|. Hence we obtain the following upper-estimate:

| y 1— s(e)? 9
Ln|mfn|ﬂ< S(T 9
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For each n € A, we define g,, € L1 (1) by
(Re fn)XEn

" TRe fxa I,
It is clear that ||g,|l, = 1 and also x*(g,,) = fﬂgndu = 1 for every n € A.
To complete the proof, by finding an upper-estimate of [|g,, — fy,ll,. We have
"gn - fn"l < "gn - anEnlll + "anQ \ En"1
< lgn — (Re fn)XEnlll + "(Re fa — fn)XEnlll + "anQ\Enlll
Hence we have proved that L; (1) has AHSP.
Proposition (6.2.11)[331]: The real or complex spaces C(K) have AHSP for any compact
Hausdorff space K

Proof. Once again, the proof will only deal with C-valued functions on K and it is valid in both
cases. Fix 0 < & < 1, and let (fy)~; € B¢(x) and a convex series (ay)j-; satisfy

> ] >1-()

Z A fr
Consider a point ty € K and a scalar 4, |A]| = 1, satisfying

In: (neA)

4

k=1

(e @)

1> Re AZ ay fic (to) >1—(Z)

k=1

4

&€

2
We take A: = {k € N:Re(Af;(¢0)) > 1 — (Z) }and 5 = £2/42. Then

(0] (0]

1— (2)4 < Re ){Z akfk(to) = Z akRe(/‘lfk(tO))
k=1 k=1
S ar(1-0)) «
keA keA

As Y ar =1, we obtain 1— (2)4 <1- (Z)Z Ykea®k. Hence Yypeqap < (Z)Z and so

&€

2

Ykealr > 1— (Z) :
For each k € A, we choose a function u;, € C(K) such that

supp uy C [fil 7' (1 = 6,11), 0 < uy <1, wie(t) = 1.

Ij:_kl)> on supp u; and g, = Afi on K \
k

supp uy, then g is continuous on K. Also, g is in the unit sphere of C (K) since f is in the
unit ball,
fr

|fk + U <_fk + Fdl

If we define g, on K by gg:= /1<fk + uy, (—fk +

)| < Vel + 11 = 1fidl =1

r(e) —s(¢)

e Y ®)

<1—|Re fuxe, |, + I10m £)xe, Il +1 -
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1-— 2 —
1R futs, |, + e+ 1= (by (9D
’1 — s(¢e)? r(e) —s(e)
< S(T + 2 <1 — 1——5‘(8)> (by (7) and (6))

= ¢.
and |gy(ty)| = 1. In addition, [|g; — Afxll < & since this function is zero outside the set supp
u, and for t € supp u, we know that

191 (®) = 2fi (O] < [1 = 1fi (O] < 6. (10)

2
Writing a: = 2 G) , we see that

e\ 2
Re g, (ty) > ReAfi(tg) —6 > 1 — (Z) —6=1-a

and so

IIm gy (t0)| < V2a
|91 (o) — 1 <V a? + 2a. (11)

Now for every k € A we set hy: = uiAgy, where py = gy (to), so that hy € S¢ (k. The element
x* = A8, is an element of S¢ )+ and satisfies x*(hy) = 1 forall k € A. Indeed, in view of (11),
(10) and the choice of §, for every k € A,
Ihe = fill = lidgr — fill = g — Afill
< g — giell + 1l gge — Afiell
< lue = 1 + g — Afiell

Hence

2

4 2
<+VJa2+2a+6= €—+€—+(E) < e

43 4 4
In the above proof we need only that every point ¢ in K has a basis of compact neighborhoods.
Hence the same argument shows that Cy({1), the Banach space of continuous functions on ()
that vanish at oo, also has AHSP for any locally compact space ().
We now show that many spaces that are completely different from C (K) and L, (u) also
have AHSP. To do so, we recall that a Banach space X is uniformly convex if for every € > 0

there is 0 < § < 1 such that

lu+vll
for all u, v € By such that T> 1—6,wehave |lu—vl<e¢

In such a case, the modulus of convexity is given by

_ lu+vl
5(e): = mf{1 -

Proposition (6.2.12)[331]: A uniformly convex Banach space has AHSP.
Proof. Let X be a uniformly convex Banach space, let € > 0 be arbitrary, and let § = §(¢) be
as in the definition of uniformly convex.

U,V EBy, lu—vl> E}
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r(

Letus fix 0 < e<1landtake r(e) =1—-46(¢),n(e) = ‘g(l_Tg)) and y(¢) = 2 Assume

that {x,;: n € N} c By is a subset such that for some convex series Y peq XpnXn, 1Yme1 Anxpll >
1 — n(e). We choose a functional x* € Sy« suchthat Re x*(Xpe1@nxy) > 1 —1n(e) andlet A =

{n € N:Rex*(x,) > r(¢)}. By Lemma (6.2.7) we know that ¥ ,c a, > 1 — % =1- g

For n,m € A we have that [|x,, + x|l > |x*(x, + x)| > 2r(e) = 2 — 28(¢) and, by using
the uniform convexity of X, we obtain [|x,, — x|l < €. Since A # @, we can choose ny € A and
define z, = x,  for every n € A. Hence we have that

lz,, — x,ll <&, foralln € A, and Z a, > 1—;= 1—y(e)
nea
Finally, if we choose a functional x* € Sy+ such that x*(xno) =1, we see that the three
requirements for property AHSP have been met.

The following proposition shows that every strictly convex Banach space which is not

uniformly convex fails AHSP. In particular, the reflexive space X = @,¢% does not satisfy
AHSP (see [336], Theorems 9.18,9.14 and 8.17).
Proposition (6.2.13)[311]: A strictly convex Banach space having AHSP is uniformly convex.
Proof. Recall that a Banach space Z is said to be strictly convex if every point of its unit sphere
is an extreme point of the unit ball. Assume that the Banach space X has AHSP. By assumption,
for € > 0 small enough such that y(¢) < 1/2, we have the following. Whenever,y € By, Il x +
y 1> 2 — 2n(¢e), then there exist u, v € Sy suchthat [ u —x I< g, lv—y lI< eg,and u + v |l
= 2. If we use the strict convexity of X, it follows that u = v so || x — y lI< 2e¢. It follows that
X 1s uniformly convex.

We are going to characterize those Banach spaces Y having the property that the Bishop-
Phelps-Bollobas theorem holds for operators from £, into Y. To do so, we will use the property
AHSP that was introduced.

Theorem (6.2.14)[331]: A Banach space Y is such that the couple (£,Y) has the Bishop-
Phelps-Bollobas property for operators if, and only if, Y satisfies AHSP.

Proof. Our proof will be given for the case of complex Banach spaces. (In fact, the case of real
Banach spaces is simpler and gives a better order of approximation.)

Let Y be a Banach space with AHSP. Given &€ > 0, we will use the functions y(¢) and
n(¢) satistfying the conditions. We can assume that € is small enough such that 0 < y(¢) < 1.
Given T € Sy, y), we take xo = (x9(n))p=1 € Sp,, such that [[Txoll >1—n(e). By
composing with an isometry, we may assume that x,(n) = Rexy(n) > 0 for every positive
integer n

By the assumptions on T and x,, we can apply AHSP to the convex series ),x,(n) and
for the elements x,, = T(e,,),n € N, where (e,,) is the canonical basis of ;. Hence, there is a
subset A € N and {y,:n € A} c Sy such that

Z xom) > 1 —y(e), lly, — x,ll <€, foralln € A. (12)
neaA
and
> x| = ) xom. (13)
neA neA
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There is a linear bounded operator S of norm 1 from ¢4 to Y such that
ifneA
S(en) = {yn .
T(e,) ifngA
In view of (12) we obtain that
IT=S1I =supll(S—T)(ell
n

= suplly, —xnll <&
neaA

Since y(&) < 1, in view of (12), then A # @. If Py(xo) = YneaXo(n)e,, then the element z, =

_Palxo) .
PGl Sp, is such that
I I <l P,xoll + I[P Pyxg
Yo ™2 Xo — Fax X — ———
R N e
- Z xo(n) + |1 = IPaxolll (by (12))
ngA
ngA

Also, by using (13), we know that
1Sz0 |l = 1Xnea Xo ()Yl _ 1Xnea Xo(M)Ynll _
0 P40l Ynea *o(n)
Hence, by taking S(€) = 2y(¢g), we obtain that (£1,Y) satisfies the Bishop-Phelps-Bollobas
property for operators.
Conversely, assume that Y is a complex Banach space such that (£,,Y) satisfies the
BishopPhelps-Bollobas property for operators. Given 0 < p < 1, we choose s such that 0 <

— P
s<land0<,/2(1-5) <3
Let n(e) and B(€) be the positive numbers that appear in the definition of the Bishop-
B(e)
—<

1-s

Phelps-Bollobas property for operators. Choose € = €(p) such that 0 < ¢ < g <1 and

g. Let (y,,) € Sy be a sequence and let Y a,, be a convex series such that

(e @)

Z anyn

n=1
There is a bounded linear operator T: #; — Y such that T (e,) = y, foralln. Wehave | T lI= 1
and the element x, = Y71 ane, € S, satisfies that

(e @)

Z anyn

n=1
We apply the assumption that (¢;,Y) satisfies the Bishop-Phelps-Bollobas property to obtain a
norm one operator S € L(#4,Y) and an element u, € S, such that

ISuoll = 1, llug — xoll < B(e), I1S—-TI<e.

>1-n(g)

IT (xo)1l = >1-n(e). (14)

It then follows that
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Z (a, —Reuy(n)) < Z lug(n) — a,| = lluy — xll < B(e), (15)
n=1 n=1
and so
Z Reuy(n) > 1 — B(e). (16)
n=1
Let us consider the set

A:={n € N:Reuy(n) > sluy(n)|}
By using (16) we obtain that

1-6() < Z Reuy(n)

= Z Reuy(n) + Z Re uy(n)

nea ne¢A
<Z Reuo(n)+sz lup(n)|
nea ne¢A
D (n)+S<1— [u (n)|>
< Reuy(n) +S<1— Reu (n))
So
B(e)
nze;q Reuy(n) > 1 R (17)
Hence
Z @, >Z Reuo(n) — Il — %ol
neaA neA
>1- P8y —x,1
>1—f(—_€)s—ﬁ(€)

We take y(p):= f(¢) + % < p and so lim;_,y(t) = 0. Now, if z € C satisfies |z| = 1 and
Rez >t > 0, then we know that
|1—z|2=1+|z|>—2Rez < 2(1 —1t).
Thus, for n € A, by the choice of s, it follows that
| L @) [ i

p
|u0(n)| <2(1-s5)< Z (19)

If we write z,: = S(e,,), then
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(e @)

Z ug(n)z,|-

n=1

1 =1IS(uoll =

Hence, there is an element y* € Sy« such that

uo(M)y*(z,) = lue()| (20)
for all n € N. Thus, for all n € A, z,, belongs to Sy. Also we know that for n € A we have

p
"Zn - yn" = "S(en) - T(en)" <e<l g

2
and so
up(n) “ uy(n)
“luo (n)l Zn n < |u0 (n)l Zn Zn + "Zn yn"

Ug(n) |

< — 1| + llz), — yull
o ()] T

p p
<7 +35=p (by (19)).

In view of (18), the previous inequality and (20), we have checked that

Z a, >1-y(p), n o (1) — vy, <p, and y* < o (1) zn> =1, foralln € A4,
oy |u0(n)| [uo ()|

and so Y satisfies AHSP.

We show that for every n € N and for every uniformly convex space Y, the pair (£,Y)
satisfies the Bishop-Phelps-Bollobas property for operators.

We begin with the following result for operators from ¢, into a uniformly convex Banach

space. In order to state it, let us recall that for A € N, P4:cy — ¢y is defined by Py(x) =
ZneAx(n)ew
Lemma (6.2.15)[331]: Let Y be a uniformly convex Banach space with modulus of convexity
6(e). Let e > 0. If T € Sy(¢,v), and A © N has the property that [TP4ll > 1 — &(¢e), then we
have that [|[T(I — Pyl < &
Proof. Since Y is uniformly convex, for each € > 0, there is 0 < §(¢) < 1 such that whenever
u and v are in By, satisfying Il u + v |[> 2 — 26 (¢), it follows that || u — v ||< €. Assume that
T € L(cy,Y) satisfies | T [I= 1 and let A € N with TPl > 1 — §(&). Choose xy € P,(cy) N
S¢, such that [TPy(xo)ll > 1 = &(e).

Since 1 =II T Iz lIT(xo £ 2)I| for every element z € B,, whose support lies outside A,

we obtain that [|T(xo) + T(I — P)(¥)Il < 1 forany y € B, . Also, we have that
IT(xo + (I —Pa)(¥)) + T(xo — U — PO
= 12T (xp) Il = 12T Py(x0)1l > 2 — 26(e).
Thus, by using the uniform convexity of Y we obtain that
12T = PRI = I(Txo + TU — P)()) — (Txo — TU — P DI < 2e.
Since y is an arbitrary element of the unit ball of ¢, we finally get that [[T(I — Pyl < e.

We prove the promised result that (£7,Y) satisfies the Bishop-Phelps-Bollobas property
for operators for every n whenever Y is a uniformly convex Banach space. Unfortunately, our
method involves constants that depend on n, and we do not know whether the result can be
extended to, say, (cq,Y) or (£, Y) if Y is uniformly convex.
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Theorem (6.2.16)[331]: Let Y be a uniformly convex Banach space with modulus of convexity
5().Letn EN,0 < e < 1,0 < &' < e with ¢’ + < mln{(S(e),%(s + 52/3)}. For any x, €

£1/3

Bpm and T € Sy (pn yysuchthat [Txll > 1 — &', there exist zy € Byn and V € Sy n v) such that

EI
IVzoll = 1, llizo — xoll < €Y%+ £¥/3, |V =T li< & + 6n(Ve + £1/6) + <€ + —1/3>

Proof. Let T € L(£3,,Y) be a norm one operator and x, € Byn satisfying [Txoll > 1 —&’. By

composing with an isometry on €4, if necessary, we may assume that x,(i) > 0 foreach i < n
Let y* € Sy+ be such that y*T(x,) = Re(Tty*)(x) > 1 — €.
Define

= {i < miRe(Ty ") (e)xo(D) > (1 - /3) Ty (e}
c {i <n:Re(T*)(ep) > 0,x4(i) > 1 — '/3}
Since T'y* € (£5,)* = €7 and Ty < lly*ll = 1,
n

Z Ty el <1

IfA: = Yer |(T'y*)(e;)|, we will check that A

1/3

1— &' < Re(Tty")(x) Z Re(Tty*) (e)xo (i)

Z T D@+ ) Re(Ty e xo(D)

IEE IEE
<D 1Ty El + (1 =) Y Ty (el
IEE I¢E

<1-A+(1-e3)A=1-¢£34

SO
gl

Thus,

1-&' <Re(Ty)() < ) ReTy)(e)xo() + ) 1Ty ) (edxo(d)

IEE I¢E
gl
<D Re(Ty)(ed + ) 1Ty el < ) Re(Ty e + =75,
IEE I¢E IEE

and sO

!

&E
Z Re(T'y")(e) > 1— &' ——73

icE
TPg <Z ei) > |(T'y") <Z ei)

i€E i€E

By the choice of ¢’ we have

ITPell >
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EI
>1—<£’+—1>>1—6(€). (22)
€3

By Lemma (6.2.15) we obtain that

IT( - Pp)ll < e. (23)
Setting eq = Yepe; in Bp,(pny and
1
5=, [
i€EE
in (£%)", by the definition of E, we have that
1Pz (x0) — eoll < €'/3 and x;(ey) = 1. (24)
Define the operator S: €%, = Y by
T(e
S(x): = TPg(x) + 3n(Ve + £/0)x§(Pz(x)) IITETO;II (x € £7)
0

Lett = % We claim that |le — egll < €1/* forall e € Ext(BpE(fgo)) satisfying |xg(e) — 1| <

7. Indeed, if |x5(e) — 1| < 7 then |};ege(i) —|E|| < T|E|, and so Re(1 — e(i)) < t|E| for all
i € E. Hence |e(i) — 1| = /2 — 2Re(e(i)) < /27|E| = €¥/* for all i € E, and the claim
follows.

By (22) we obtain

!

£ 1

ISCe)ll = ITPz(e)ll + 3n(Ve + e/6) > 1 — <€’ + —1> +3n <\/E + 56> (25)
€3

and we also know that

I SCe) IK1+3n <\/E + €%> (1-1), (26)

forall e € Ext(BpE({)go)) such that |x3(e)| < 1 — 7. By the choice of &', the upper bound in (26)
1s less than the lower bound in (25), so the operator S = S o Py attains its norm at some point e
in Ext(B P (eT, y) with 1 — |x§(e)| < 7. So, by the claim above, S attains its norm at Ae for some

number A of modulus one such that [[Ae — ey|l < €/%. Hence S also attains its norm at z, =
Ae + (I — Pg)(x,) and by (24) we have

Izg — xoll = lIAe — Pg(xo)ll < lide — egll + lleg — Pg(xp)ll < gl/* + £1/3,
From the definition of S and by (25) and (26) we have

1- <€ +ﬁ> +3n(Ve + %) <l S IIK 1 + 3n(Ve + £%/¢)

and putting V: = ﬂ it follows that
IT-VIKIT-=SI+IS—=VI

<ITU = PRI+ ITP; — SIl + ||S -5 ||
ITU =PI+ 3n(Ve+ee)+ |11 S 1l -1

<
<e+3n(Ve+eV8)+ 1S -1
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1 ! 1
<e+3n <\/E + e€> + max{e’ +€—1,3n (\/E+ gé)}
&E3
< e+6n(Ve+e/6) + <s’ +;T>
and the proof is complete.

On a general vector valued result of Bishop-Phelps type, Lindenstrauss [337] proved the
denseness of the subset of operators between Banach spaces whose second adjoints attain their
norms. Thus, instead of asking whether or not every pair of Banach spaces (X, Y) has the Bishop-
Phelps-Bollobas property for operators, one could begin by asking the following question:

Is there a function y: R* — (0,1),lim,,qy(t) = 0, such that the following holds: for all
T € S,xy) and xq € Sy with [[Txoll > 1 —y(e), there exist S € Syxy) and x5" € Sy«
satisfying,

IS%x" =1, 1S =T lI<e& llxg" — xoll < €2
Unfortunately, even this question has a negative answer in general. We will use the original idea
of Lindenstrauss to show that.
Lemma (6.2.17)[331]: Let Y be a strictly convex Banach space.
(a)LetT: ¥, — Y be an operator such that T (e,,) # 0 for all n. If T attains its norm at a point
z € By, then |z(n)| = 1, foralln € N.
(b)If T: ¢y — Y is an operator attaining its norm, then T is a finite rank operator.
Proof. (a) Suppose that there exists a point z € S, at which T attains its norm. If we assume
that there exists n so that |z(n)| < 1, then [z £ (1 — |z(n)])e, |l < 1 and so, by convexity,
ITI=IT(2) I=1T(z £ 1 —[zm)De)ll
Since Y is strictly convex we get that T'(e,;) = 0. This is a contradiction.

(b) Let z € S¢, be such that T attains its norm at z. Since there exists an n, with [z(n)| <
1 for all n > n,, the above argument implies that T'(e,,) = 0 for all n > n,,.

The argument of the proof of part (b) of the above lemma actually shows that if for some
operator T: ¢y — Y the Bishop-Phelps-Bollobas theorem holds, then T can be approximated by
finite-rank operators and so it is compact.

By taking second adjoints we obtain the following proposition.

Proposition (6.2.18)[331]: Let Ty:co = Y be an isomorphism. Assume that Y** is strictly
convex and T € L(cy,Y) is such that
IT = Toll < igf{IITo(en)II}
Then
{yeBy TN =IT I} c{y € By :|ly(n)| =1, forall n € N}.

Example (6.2.19)[331]: Applying the above proposition to X = ¢y, Y any Banach space
isomorphic to ¢y such that Y** is strictly convex and T, = I, the identity mapping, gives a
negative answer to the above question. Indeed, given T € L(cy,Y) such that | T —1 [I<
inf, {lle,IY}, then |z(n)| =1, for all n €N and all z€ B, with [T"(2)ll =T Il. So

dist(z,B.,) = 1.
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Section (6.3): Approximate Hyperplane Series Properties:

The motivation comes from recent intensive study of the famous BishopPhelps Theorem
[351], which states that every Banach space is subreflexive, i.e., the set of norm attaining
(continuous and linear) functionals on a Banach space is dense in its topological dual.

The first who initiated the study of the denseness of norm-attaining operators between
two Banach spaces was Lindenstrauss [363]. Later a lot of attention was devoted to extend
Bishop-Phelps result in the setting of operators on Banach spaces (see, e.g., [343],[354]).

In 1970, Bollobas showed the following "quantitative version" which is now called
Bishop-Phelps-Bollobas Theorem [352]. To state this result we mention that for a normed space
X, we denote by By and Sy the closed unit ball and the unit sphere of X, respectively. As usual,
X" denotes the dual Banach space of X.

The mentioned above version of the Bishop-Phelps-Bollobas Theorem from [353] states
that if X is a Banach space and 0 < € < 1, then given x € By and x* € Sy- with |1 — x"(x)| <
g2/4, there are elements y € Sy and y* € Sy+ such that y*(y) =1,y —x I< ¢ and
ly* — %Il < e.

For a refinement of the above result see [356]. In 2008 Acosta, Aron, Garcia and Maestre
initiated the study of parallel versions of this result for operators [344]. For two normed spaces
X and Y over the scalar field K(R or C), £L(X,Y) denotes the space of (bounded and linear)
operators from X into Y, endowed with the usual operator norm.

We recall the following definition from [344].

Definition (6.3.1)[341]: Let X and Y be both either real or complex Banach spaces. It is said
that the pair (X, Y) has the Bishop-Phelps-Bollobés property for operators (BPBp), if for any
€ > 0 there exists n(e) > 0 such that for any T € S;(xy), if x € Sy is such that | Tx [I> 1 —
n(e), then there exist an element u in Sy and an operator S in Sy (x yy satisfying the following
conditions
ISull=1, lu—xll<eand IS—T |I< &.

During the last years there are a number of interesting results where it is shown versions of
Bishop-Phelps-Bollobas Theorem for operators (see [348],[355] and [361]). It is known that the
pair (X,Y) has the BPBp whenever X and Y are finite dimensional spaces (see [344]). If a
Banach space Y has the property f of Lindenstrauss, then (X, Y) has the BPBp for every Banach
space X (see [344]). In the case when X = ¢, a characterization of the Banach spaces Y such
that the pair (¢,,Y) has the BPBp was given in [344].

It should be pointed out that very little is known about the stability under direct sums of
the property that a pair of Banach spaces (X, Y) has the Bishop-Phelps-Bollobas property for
operators. In order to state some results of this kind we recall the following notion used in [345].
Given two Banach spaces X and Y (both real or complex), we say that Y has property Py if the
pair (X,Y) has the BPBp for operators.

It was shown in [349] that the pairs (X, (D Z;‘f’zlYn)CO) and (X, (@ Z;‘f’zlYn)foo) satisfy
the Bishop-Phelps-Bollobas property for operators whenever all pairs (X, Y;,) have the Bishop-
Phelps-Bollobas property for operators "uniformly". In general the analogous stability result
does not hold for every Banach sequence lattice E instead of ¢j. For instance, the subset of norm
attaining operators from any Banach space X into £,,(1 < p < ) is not dense in the space of
operators from X into €, ([359],[342]) for every Banach space X. Indeed it is a longstanding
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open question if for every (real) Banach space X, the subset of norm attaining operators from X
into the euclidean space R? is dense in the corresponding space of operators. However, it is also
known that P,_is stable under finite £,,-sums for 1 < p < oo (see [345]).

We provide two nontrivial extensions of the above stability results. On one hand we prove
that the property P, is stable under absolute summands (Theorem (6.3.9)). This extends the

above mentioned result for finite £,-sums. We also prove under mild additional assumptions,
that the property P,_is stable under E-sums, being E a uniformly monotone Banach sequence

lattice (Theorem (6.3.13)). As a consequence we deduce, for instance, that if {X,:k € N} is a
sequence of spaces such that X, is either some C(K) or L;(u) or a Hilbert space, then the pair

(i’l, CretX k){)p) has the BPBp for operators (Corollary (6.3.14)).

On the other hand, in case that the range is a Hilbert space, we also prove some optimal
stability result of BPBp under £;-sums on the domain (Proposition (6.3.6)). This result extends
[362], where the above result for the £1-sum of copies of the same space.

As we already mentioned there is a characterization of the Banach spaces Y such that the
pair (£1,Y) has the Bishop-Phelps-Bollobas property for operators [344]. The property on Y
equivalent to the previous fact was called the AHSp.

We will need the following definition, where in what follows by a convex series we mean
a series Y.a,, where 0 < a,, < 1 forecachn € Nand };,_,a, = 1.

Definition (6.3.2)[341]: A Banach space X has the approximate hyperplane series property
(AHSp) if and only if for every 0 < & < 1 there exists 0 < 1 < ¢ such that for every sequence
{x,} in Sy and every convex series Y.a,, with

(e @)

n=1
there exist a subset A € N and a subset {z;: k € A} C Sy satisfying

(@) Xkeax > 1 —¢,

(b) 1z — xxll < € forall k € A and

(c) there is x* € Sy~ such that x*(z;,) = 1 for every k € A.

We will use the following characterization of the AHSp (see [345], Proposition 1.2.)
Proposition (6.3.3)[341]: Let X be a Banach space. The following conditions are equivalent:

(a) X has the AHSp.

(b)For every 0 < € < 1 there exist yx(€) > 0 and nx(&) > 0 with lim,_,,yx(¢) = 0 such
that for every sequence {x,} in By and every convex series Y., @, with |X - arxill >
1 —nx(€), there are asubset A € N with Y pcqar > 1 — yx(€), anelement x* € Sy+, and
{zp:k € A} € (x*)"1(1) N By such that ||z, — x|l < € forall k € A.

(c) For every 0 < € < 1 there exists 0 < n < & such that for any sequence {x,} in By and
every convex series Y., @, with |X7_;arxill > 1 —n, there are a subset A © N with
Yiealr > 1—¢€, an element x* € Sy+, and {zz:k € A} € (x*)"1(1) N By such that
lzi — xxll < € forall k € A.

(d) The same statement holds as in (c) but for every sequence {x,} in Sy.

We study the Bishop-Phelps-Bollobas property for operators between special types of

Banach spaces. In particular we are interested in stability of this property when the domain is an
£, sum of Banach spaces. We consider either real or complex Banach spaces.

>1-n.
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We will need the following lemma (see [344], Lemma 3.3).
Lemma (6.3.4)[341]: Let {c,,} be a sequence of complex numbers with |c,,| < 1 for each n and
let n > 0 be such that there is some sequence {a,} of nonnegative real numbers satisfying
Yo i, <1 and Re) o  a,c, >1—1n. Then for every 0 <r <1, the set Ai={i €
N: Re ¢; > r}, satisfies the estimate
Ul
Z a; >1 T

i€A
We also need the following technical lemma. For the sake of completeness we include a proof.
Lemma (6.3.5)[341]: Let H be a real or complex Hilbert space and assume that u, v € Sy. Then
there is a surjective linear isometry @ on H such that ®(u) =vand | -1 lI=lu—v .
Proof. The result is obvious in the case dim H = 1. Assume that dim H > 2. Thus there is an
element v+ € Sy orthogonal to v and such that [u, v] € [v, v*], where [x,y] is the linear span
of the vectors x and y in H. Let u,u, € K such that u = u;v + u,v" and write u* = —u;v +
u vt Itis clearly satisfied that
1=llul*=|ug|? + |uy|? and (u,ut) = 0.
Let M be a subspace of H orthogonal to [v,v'] = [u,u*] and such that H = [u,u'] @ M.
Define the mapping ®: H — H given by
d(zu + wult +m) =zv + wvt + m, V(z,w) € K>, m € M,

which is a surjective linear isometry on H. It clearly satisfies ®(u) = v and ®(ut) = vt.

Clearly (@ — D) =v—u,(®—D@?) =vt—utand | u—v = [lut — vi|. Also
we have that

(v—uv-—ut)=—-({vu")+@wv) =0.
Hence ® — [ restricted to [u, u'] is a multiple of a linear isometry from this subspace into itself.
As a consequence || @ — I ||=|l u — v |l. The next result uses the argument outlined in [362] in

the case that the domain is the £;-sum of one space.

Proposition (6.3.6)[341]: Assume that {X;:i € I} is a family of Banach spaces, H is a Hilbert
space such that the pair (X;, H) has the BPBp for operators for every i € I and with the same
function 7. Then the pair ((© YierXide, H) has the BPBp.

Proof. We write Z = (D };1X;)¢,. Given 0 < & < 1, we choose positive real numbers 7, s and

t such that
Oy (7”)}

5 {e 6y (1) @7

r<Z,S<min Z' 3
where 6y is the modulus of convexity of H.
Assume that zy = {zo(i)} € Sz and T € Sy ) satisfies [IT(zo)ll > 1 — t*. Forevery i €
I, we denote by T; the restriction of T to X;, that is embedded in Z in a natural way.
Assume that y* € Sy satisfies that Re y*(T(z,)) = IT (z)ll > 1 — ¢2.

Denote by B = {i € I: Rey*(T;(20(©))) > (1 — ) llzo()lI}. We clearly have that
1-t2 <Rey*(T(z)) = Z Rey" (Ti(z0(1)))
i€l

= Rey (Tz@) + Y. Rey'(Tilzo(®))

i€B i{EI\B

5
} and t < min {Z,n(s),
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< Z llzo (DIl + Z (1 =DlzoDl

ieB i€I\B
—1—t¢ Z 2o (DI
i€I\B
Hence
Z lzo(D)Il < t. (28)
i€I\B

By assumption, for every i € B there is an operator S; € S;(x, ) and an element x; € Sy, such
that

ool < s
i < S, |X; —
IT;1 Iz (DI
It follows by (29) that for every i,j € B we have that
S; (Zo(l)) S; (Zo(]))“
S;(x;) + S;(x; > — 25
" l( l) ]( ])” "ZO(l)" "ZO(])"
" Ti(zo (1)) T](ZOUD " B
IT:1Mzo (DI "Tj""ZO(j)"
>2(1—-1t)—4s
> 2(1 — &y (r).
As a consequence [|S;(x;) — Sj(x;)|| < r foreach i,j € B.
Since B # @, we choose some element i, € B and define y, = §;, (xl-o). By Lemma

“ <s and [IS;(x)Ill =1, Vi € B. (29)

(6.3.5), for every i € B, there is a linear surjective isometry ®;: H — H such that ®;(S;(x;)) =
Yo and 1®; — Il = IS;(x;) — yoll < 7.
We define an operator R = {R;};¢; € L(Z, H) by
Ri =cDi°Si, Vi € B and Ri=Ti, VLEI\B
Clearly that R is in the unit ball of L(Z, H) and it satisfies

IR—TI =sup {IR,—T;ll:i € B}
Ssup {IICDL—IIILEB}+Sup {"SL—TLIILEB}
T; T;
<r+su {| :ieB}+su {" —T; lEB}
PP~ P

<r+s+sup {{1—|Tll:i € B}
Sr+s+t<e.
Let P be the natural projection on the subspace of elements in Z whose support is
contained in B.
Now observe that x, given by
120 () llx;
xo(i) = < [IPg(zp)l ’
0 ifiel\B

ifi €B

belongs to S; and also satisfies

229



Ixo — zoll < llxg —IIPg(zp)Ixo I+l Pp(Zo)lxo — zoxgll + [|Zoxnall
<11 = 1Pl + ) 1 20(D)l = 20N + 20 s |

iEB

< 2||zoxngll + Sz lzo (D1l (by (29))
i€EB
< 2t + s ( by (28))
<&
It remains to check that R attains its norm at x,. Indeed,
RGN = | 2RI
° 1P5 (201l | &2 oD
— 1> | w@les el
=— Zo(l (5 (x;
1P5 (zo)ll & || 70070
- > 2@yl = 1
=— Zo(D Yol = 1.
1P5 (zo)ll & || 700 7°

Hence R € S;(z ) and [|[R(xo) |l = 1. This completes the proof that the pair (Z, H) has the BPBp.

It follows from [349] that (X;, H) has the BPBp for every i € I with the same function 7
provided that ((69 Yie ,Xl-)fl, H ) has the BPBp. This shows that the assumption in Proposition
(6.3.6) 1s a necessary condition. Now we prove stability results of the Bishop-Phelps-Bollobas
property for operators when the domain is #;.

As we already mentioned it was proved that the pair (£1,Y) has the BPBp for operators
if, and only if, Y has the approximate hyperplane series property (see [344]). Since the AHSp is
an isometric property, if a space is the (topological) direct sum of two subspaces with the AHSp,
in general it does not have the AHSp. However, we will prove that this property is stable under
sums involving an absolute (or monotone) norm. First we recall this notion.

Definition (6.3.7)[341]: Let X and Y be Banach spaces, and Z =X @ Y, a norm |-l in Z is
said to be absolute if there is a function f: R$ X R{ — R¢such that

lx+ylle=FfUxIyl), vx€eX,y €Y. (30)
The absolute norm is normalized if f(1,0) =1 = f(0,1).

It is immediate to check that in case that the equality (30) gives a norm in Z, the function
f can be extended to a norm | - | on R? satisfying |(r,s)| = f(|r],|s]) for every pair of real
numbers (7, s).

We also recall that the norm | - | is absolute on R? if, and only if, it satisfies

[rl < Isl. [t] < |ul = f(r, 1) < f(s,u)
(see [353]).

Clearly the usual £,,-norm of the sum of two Banach spaces is an absolute norm for every
1<p<oo

Next result is a far reaching extension of Proposition 2.1, Theorems 2.3 and 2.6 in [345],
where the £),-norm on R? for 1 < p < o is considered. Part of the essential idea of the argument
we will use is contained there, however our proof is simpler.
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The following technical lemma will be useful in the proof of the main result.
Lemma (6.3.8)[341]: Let | - | be an absolute and normalized norm on R2. For every & > 0 there
is 6 > 0 satisfying the following conditions:
(r,s) ER?, |(1,9)|=1,s>1—-6=>3teR:|(t,1)|=1and |t —1| < ¢
and
(r,s) ER?,|r,s|l=1,r>1—-6=>3teR: |1, t|=1and |t —s| < .
Proof. Of course it suffices to check only the first assertion. Assume that it is not true. Hence
there is some €5 > 0 such that
V6 > 03(rs,55) € Srz)ySs > 1 —6and t € Rwith [(£,1)| =1 = |t — 15| = &.
We choose any sequence {J,,} of positive real numbers converging to 0 . By assumption there
is a sequence {(7,, Sp)} in S(grz .|y satisfying for each n € N that
Sp>1—06, and |t — 1| = g Vt € R with [(¢,1)| = 1. (31)
By passing to a subsequence, we may assume that (73, s,) — (7, s). Since [(0,1)| = 1 and the
norm is absolute on R? it is satisfied
s =1(0,9)] = [(r,8)| = 1.
Since s, > 1 — §,, foreachn we also have s > 1. Sos = 1. So |(7, 1)| = 1. We also know that
1, — 1, hence (73, s,) — (r,1) and this contradicts condition (31).
Theorem (6.3.9)[341]: Assume that | - | is an absolute and normalized norm on R?. Let X be a
(real or complex) Banach space that can be decomposed as X = M @ N for certain subspaces
M and N and such that
Il (m,n) I=[lm I, IInll|, vm € M,n € N.
Then X has the AHSp if, and only if, both M and N has the AHSp. In such case, both subspaces
satisfy Definition (6.3.2) with the same function 7.
Proof. We can clearly assume that both M and N are non-trivial. Let P and Q be the natural
projections from X onto M and N, respectively.
First we check the necessary condition. So assume that X has the AHSp and we show that
M also has the AHSp. Let us fix 0 < e <1 and let ny, be the positive number satisfying
Definition (6.3.2) for the space X and €/2.
Assume that Y7, @;m; is a convex series with {m,: k € A} c S, satisfying

(e @)

k=1
By the assumption there are A c N and {x;: k € N} c Sy such that
€ €
Z ay > 1—§> 0, llx; — myll <§, Vk € A and co{x,:k € A} c Sy.

keA
So A # 0.

Since the norm | - | on R? is an absolute norm it is satisfied

€
1P Cex) — myell = 1P O — )l < e — myell < > (32)

>1_T]0

and

€
1Q Gl < llxge — myll < 7

Hence we have that

231



€ €
IP(x)ll > 1 — > and [|Q(x )l < > Vk € A. (33)

On the other hand, since co{xy: k € A} C Sy there is x* € Sy- that can be decomposed as x* =
m* + n*, for some m* € M* and n* € N* and such that for each k € A it is satisfied
1 =Rex"(x)
= Re m*(P(xk)) + Re n*(Q(xk))
< lm* P Ce )l + In*IHQ G )l
= (llm*1l, I D AP Ce) I, 1Q Ger) 1)

< llx*lHllxll = 1.
As a consequence, we obtain that

m*(P(x;)) = Im* P (x ), Yk € A. (35)

Letus fix k € A. If m* = 0, in view of (34) we obtain that ||Q (x;)|| = 1, which contradicts (33).

By using again (33) we also know that P(x;) # 0, so we can write u;, = ||1igk§||' By (35) we
k

obtain that

and clearly yp—— € Sy+ C Sy-.

For k € A we also have

I ||"P( S PG|+ 1P G =l

< 1= WP Gl + 1P Cxg) — myell
< ¢ (by (33) and (32)).
We checked that M has the AHSp.

Conversely, assume that M and N have the AHSp. We will prove that X also has the
AHSp. Let ¢ be a real number with 0 < € < 1. In view of Lemma (6.3.8) there is 0 < § < 1
satisfying the following conditions

(a,b) € Sz b>1-8=>3c€R:|(c,1)| = Land Ja —c| < ; (36)
and

(a,b) € Sz a>1-6=>3ce€R:|(L,¢)|=1and |b—c| < é (37)
Let us choose 0 < g < g. Assume that the pair (&;,1;) satisfy condition (c¢) in Proposition
(6.3.3) for both M and N. We also fix real numbers 7, s and &, such that

0<S<min{§,nz—1}, O<r<min{§,szn1} and 0<50<%:. (38)

By [344] finite-dimensional spaces have the AHSp. So for every €5 > 0 there is 0 < 1y < &
satisfying condition (d) in Proposition (6.3.3) for R? endowed with the norm | - |.

Let {x;} be a sequence in Sy and Y a;, be a convex series such that [|Y o apxell > 1 —
No. Hence we have

(e @)

k=1

(e @)

> (P +0(x0)

k=1

1—1n0<
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(e @)

Z aP (xx)

k=1

g
|

(e @)

Z a,Q (xy)

k=1

)

)

ALEATY aan(xk)u>‘
k=1

IA

k=1
o0

=D @PGol10GD
k=1

Since (R?, | - |) has the AHSp, it follows that for the convex series Y w1 ax (1P G )1, 11Q () 1D,
there are a subset A © N, {(ry, s¢): k € A} € Sgz and (@, B) € S(ge) satisfying

Z a,>1—¢y, 1,5, =20, ar, + Bs, =1, Vk € A4, (39)
keA
and
P )Nl = 1l < &9, NQ Gyl — sic| < &, VK € A. (40)
It is clearly satisfied that
Z Ay Xy = Z AR Xkl — Z Ay Xy
keA k=1 keN\A
= Z ApXp || — Z a (41)
k=1 keN\A
>1—1,— & (by (2.13))
> 1 — 2¢,.
Now fix arbitrary elements m, € Sy, and ny € Sy and define the following elements:
PO e A and P(x;) # 0
my: = 1P e
My ifk € Aand P(x;,) =0
and
ny: = % ifk € Aand Q(x;) # 0
Sk ifk € Aand Q(x;) = 0.

Next we write y;: = my, + ny, for all k € A. Since |(ry, si)| = 1 for every k € A, it is clear that
{yi: k € A} c Sy and in view of (40) we obtain

Iy — xill < I = IPC] + Ise = 1Q (x| < 2, VR E A (42)
By the previous inequality and bearing in mind (41) we have

Z AV Z XX

keA keA
In view of Hahn-Banach theorem there is a functional x* € Sy~ such that

> _2€0>1—4€0.

233



Rex*(Z akyk> = Z Yl > 1 — 4e,.
kEA keA
Now we define B = {k € A:Rex*(y,) > 1 — r}. In view of Lemma (6.3.4) we have that
4e
Z“">1_TO>O‘ (43)

kEB
If we decompose x* = m* + n*, for each k € B we have that

1—-r <Rex*(y) = Re(m*(mk) + n*(nk))
< lIm”llmy |l + Re n*(ny) (44)
< Im*Hllmgll + In*llingll < 1.
As a consequence of (44), for each k € B, we also have that
Im*lir, = Im*lllmy |l < Rem”(my) +r (45)
and
In*lisg = In*lllingll < Ren*(nyg) + 7. (46)
In order to show the result we will consider three cases:
Case 1) Assume that |m*|| < s.
Since |[n*]l < llx*|l = 1, in view of (44) we know that
Skzlln*llsk21—T—S>1—6,VkEB. (47)
By using also (46) we obtain that
Ren*(ngy)=21—-2r—s>1-mn,, Vk €B.
Since N has the AHSp there are C € B,{v,: k € C} € Sy and nj € Sy~ such that

Z a, > (1 —¢) Z ay, ni(v,) = 1and |lv, — nill < &, Vk € C.(48)

By (47) we can usek€§6), and so for evekrEyBk € C there is a; € R such that
(@ DI =1, lay =7l <. (49)
So we define the subset {z,: k € C} € X by
Z =ak"TTZﬁ+vkif m, #0, z, = qmy + v, if m, =0, Vk € C.

Clearly we have that
Izl = |(ax, DI =1, Vk € C.
By (42), (49) and (48) we obtain that
Iz — 2l <z — Y ll + Ny — xll
< |ay — 1| + v — ngll + 2&4
< §+ & + 2¢
<E.
We also have that
ni(z;,) =nji(v) =1, Vk € C.
Finally from (48) and (43) we also know that

4¢e 4e
Z ak>(1—el)z ak>(1—51)<1—TO>>1—£1—70>1—€.

kec keB
So the proof is finished in this case.
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Case 2) Assume that [[n*|| < s.
We can proceed in the same way that in Case 1, but by using that M has the AHSp.
Case 3) Assume that [|[m*||, In*]l > s.
We define the set B; given by
B, ={k € B:r,, = s}.
For each element k € B, in view of (45) we have that
Rem*(my)

r
= - 2 1 - T4 > 1 - T]l'
lm* || lm* || s?

Since M has the AHSp there is a set D; € By, {u,: k € D;} c Sy, and m] € Sy~ such that

Zakz(l—el)z a’kzz ay — & (50)

k€D, k€EB; k€EB,
and

m
"uk - r_:" < &, mi(u) =1, Vk € D;. (51)

In an analogous way, we can proceed by defining the set C; = {k € B:s; = s} and by using that
N has the AHSp we obtain that there is a set F; c Cy,{vy: k € F;} € Sy and n] € Sy~ such that

Zakz(l—el)z aRZZak—el (52)

= kec, kec,
and

n
"vk - S—:" <eg&,ni(v) =1, Vk € F,. (53)

. : 1
Let us notice that for k € B \ B; we have that r,, < s and since 1 = |(ry, Si)| < s + 53, < 5+

1
sy then 55, > 5> S Hence k € C,. Hence we checked that

B\ B; € (C; andso B\ C; C B;. (54)
Clearly we have that

Y oa <Y ary ary a

k€B;NC, keD;NF, k€B;\D; k€EC,\F;

< Z ap + 2&; (by (50) and (52))

k€D, NF,

Yo=Y ar Y w

kEB\B, ke(B\B1)NF; keB\(B,UF;)

:E: a + :E: a (t57(2.28)) 56)

ke(B\B1)NF; kEC\F;

a, + & (by (52)).
ke(B\B;)NF,

(55)

We also obtain

IA

IA

By arguing as above we get
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Yoas 3 ar Y

kEB\(C, ke(B\C,)ND; keB\(C;UD;)

< D> @+ ) @ by(4) 57)
ke(B\C,)ND; k€B{\D;
< Z ap + & (by (50))
ke(B\C;)ND;
Now we take the set C given by C = (D; N F)U((B\ By) N F;) U ((B\ C;) N D;). Let us
notice that in view of (54) the three subsets whose union is C are pairwise disjoint.

We deduce that
Z ag = Z (4% + Z (4% + Z ag
kecC kED{NF,; ke(B\B;1)NF; ke(B\C;)ND,
> Z ay + Z ay + Z &y, — 4e; by (55), (56) and (57))
k€BLNC, kEB\B; kEB\C,
= Z a, —4&
KEB
4e,
>1-— T —4& (by (43))
>1—e.

If D; = @, then C = (B \ By) N F,. In this case we choose any elements u, € Sy, and mj € Sy
with mj(uy) = 1. Analogously, in case that F; = @, we have C = (B \ C;) N D; and we choose
vy € Sy and n] € Sy~ such that nj(v,y) = 1. Otherwise D; # @ and F; # @ and so the elements
m] and nj satisfying (51) and (53) attain their norms; so in this case we can choose u, € Sy
and v, € Sy with mi(uy) = 1 and nj(vy) = 1.
For each k € C we define
U +Sspv,  ifk €D NF;
Zy ={TUo +sxvx ifk€ (B\B)NF

Uy + Spvy  ifk € (B\ C;) N D;.

We claim that ||z, — x|l < € for each k € C. To see this observe that for k € D; N F; we have
iz = xkll <z = yicll + llyie — xiel

my ng
< |<rk "uk _ E",sk "vk _ §">| 426, (by (2.16) by (51) and (53))

< |(rkens sie)| + 2¢0
<& t2¢ <€
For k € (B \ B;) N F; we have that

Ny
2 = ell < Wz = Vil + 1y = 2l < 275 + 5 [ = =] + 226
k

< 2s+¢& + 2¢ (by (53))
< &
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In case when k € (B \ C;) N Dy,
Iz — xpll < Nz — Yl + lyie — xel

my
<7y "uk — r_" + 25, + 2¢,
Kk

< & + 25 + 2¢y (by (51))
<&
and this proves the claim.

Now we observe that amj + fn] € X* and [lam] + fnill = |(a,B)|" = 1. In view of

(51), (53) and the choice of uy and vy, for each k € C one clearly has
(ami + pni)(z,) = amI(P(Zk)) + ﬁnI(Q(Zk))
=ar, + fs, = 1.

Before we state and prove a stability result of AHSp for some infinite sums of Banach
spaces that includes infinite £,-sums, we recall the following notion that was introduced in
[357], [358].

Definition (6.3.10)[341]: A Banach space X has the approximate hyperplane property (AHp) if
there exists a function §:(0,1) — (0,1) and a l-norming subset C of Sy« satisfying the
following property.

Given £ > 0 there is a function Yy .: C — Sx+ with the following condition

x* €C,x €Sx,Rex*(x) >1—35(¢) = dist (x,F (YX,g(x*))> < ¢,

where F(y*) = {y € Sx:Rey*(y) = 1} for any y* € Sy-.

A family of Banach spaces {X;:i € I} has AHp uniformly if every space X; has property
AHp with the same function §.

Clearly we can assume that the 1-norming subset C in the previous definition satisfies
TC c C, where T is the unit sphere of the scalar field.

Let us notice that a similar property to AHp was implicitly used to prove that several
classes of spaces have AHSp (see [344]).

It is known that property AHp implies AHSp (see [357]). Examples of spaces having AHp
are finite-dimensional spaces, uniformly convex spaces, L;(u) for every measure y and also
C (K) for every compact Hausdorff topological space K (see [344], Propositions 3.5,3.8,3.6 and
3.7 and also [357], Corollary 2.12).

In what follows we will use the standard notation from the theory of Banach lattices as
presented for example in [364]. We denote by w the space of all real sequences. As usual, the
order |x|: = (|x,|) < |y| for x = (x,,),y = (3,) € w means that |x,| < |y,| for eachn € N.

A (real) Banach space E C w is solid whenever x E w,y € E and |x| < |y| then x € E
and || x I;<Il y llg. E is said to be a Banach sequence lattice (or Banach sequence space) if E C
w, E 1s solid and there exists u € E with u > 0. A Banach sequence lattice E is said to be order
continuous if forevery 0 < f;, | 0, it follows that || £, | 0. If E is an order-continuous Banach

sequence lattice, then E* can be identified in a natural way with the Kothe dual space (E', |I-1lg7)
of all x = (x;) € w equipped with the norm



o . (0]
Let E be a Banach sequence lattice. For a given sequence (X, ||l of Banach spaces the
q g q ko lixg ) g p

vector space of sequences x = (xy) =1, With x; € X, for each k € N and with (|[xx||) € E,
becomes a Banach space when equipped with the norm

1Gan = (e, )]

this space will be denoted by (D X1~ Xk ).

Finally we recall that a Banach lattice E is uniformly monotone (UM) if for every € > 0
there is & > 0 such that whenever x € Sg,y € E and x,y = 0 the condition | x + y [ 1+ 6
implies that || y ||< €. It is known that every UM Banach lattice is order continuous (see [350]).

We will use the following duality result which is well known in the case E = £, with 1 <
p < o orE = ¢ (see, e.g., [347]). Since the proof of the general case is similar we omit it.
Theorem (6.3.11)[341]: Let E be an order continuous Banach sequence lattice and let (X;,) be
a sequence of Banach spaces. Then the mapping (D Yo 1 Xn) g 3 X* = (x;,) = ¢~ defined by

be (i) = ) i), () € (ea i Xn> .
E

n=1 n=1
is an isometrical isomorphism from (@ Y1 X, )" onto (B Y1 X)) E)".

The following technical result will be useful.
Lemma (6.3.12)[341]: Let E be a Banach sequence lattice which is order continuous and {X}, :
k € N} be a sequence of (nontrivial) Banach spaces. For each natural number k assume that
Cy © Sx; 1s a 1-norming set for X,. Then the set C given by

C = {(exArxp):e* € Sgr,e™ 20,4, €K, |Ax| = 1,x; € C, Vk € N}

is a subset of S;+, a 1-norming set for Z, where K is the scalar field and Z = (D Y51 Xi ).
Proof. By Theorem (6.3.11) the set C is contained in S;+. Let z = (2;) € Z and € > 0. By
assumption we know that (||z;|]) € E. In view of Theorem (6.3.11), E* coincides with E’, so
there is a nonnegative element e* € Sy such that e*((llzkll)) = ||(||Zk||)||E =|l z |l. Foreach k €
N, Ci is a 1-norming set for X} and so there exists z, € Cj, and a scalar A;, with |4;| = 1 such

that Re Az, (zx) > llzgll — The element z* = (exA,z;) € C and

(ej+1)2K
&g
Rez*(z) = Z Re ej A,z (z0) > Z e <||zk|| - m) >|| z Il —.
k=1 k=1 k

We proved that C is a 1-norming set for Z.

Now we are ready to prove the stability of the AHSp.
Theorem (6.3.13)[341]: Let E be a Banach sequence lattice with the AHSp and such that it is
uniformly monotone. Assume that {X): k € N} has property AHp uniformly. Then the space
(@ X p-1Xy)E has the AHSp.
Proof. We take M = {k € N: X}, # 0}. If M is infinite, there is no loss of generality in assuming
that M = N. Otherwise the proof of the statement is essentially the same but easier.

So we assume that X, # {0} for each k. We put Z: = (@ Y -1 Xi)E-

Let us fix 0 < € < 1. By assumption, {Xj:k € N} has AHp uniformly, so there is
(0,1) — (0,1) satisfying Definition (6.3.10) for each k € N. We choose 0<7n <
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min E, 6 G)} Since E is uniformly monotone, we can use condition ii) in [360], so there is
0 < a < ¢g/4 <1 satisfying that
g
e€Sg e=20, AcN, llexyl, > i ||e)(N\A||E <1-a. (58)

Forr = (14 2n —an)/(1 + 2n), we choose 0 < &' < (1 — r)e/3. Then by our assumption,
it follows that there is 0 < n’ < &’ such that E satisfies the statement (d) in Proposition (6.3.3)
for (¢',n").

In order to prove that Z satisfies the AHSp we will show that condition (d) in Proposition
(6.3.3) is satisfied for (g,1n").

Assume that (z,,) is a sequence in S, and Y «,, is a convex series such that ||Y -, @z, [l >

!

1-—n7n".
Then

(59)

<I (Z iz GO, N

n=1
co

> iz (0D,
n=1 E

Combining our hypothesis that E has the AHSp with (||z,,(k)[)x € Sg for each positive integer
n, we conclude that there is a finite subset A € N and {r,,: n € A} c S such that

Z @, >1—¢ (60)

neaA

Ty 2 0, "rn - ("Zn(k)")k"E
< ¢ and thereisr* € Sy withr*(r;)) = 1,forall n€ A.  (61)
Hence from (59) and (60) we obtain that
Z anzn

neaA
For each k € N we choose an element x;, € Sy, and define for every n € A the element u,, in Z

given by

and also

1-n"-¢'< : (62)

r -8 ey 0
up (k) = |z, (I
1, (k)X otherwise .

By (61) it is clearly satistfied that
Ity — zpll = Ity = (lzn (Dl < &, ¥n € A, (63)
So in view of (62) we obtain that
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1-n'"-2&'< Z ApUn |-

neaA

By assumption, {X;: k € N} has AHp uniformly. Foreachk € NletG, c S x; be the 1-norming
set for X, satisfying Definition (6.3.10). We can also assume that G, = {Ax": 1 € K, | 1|
1,x" € G} for each k € N. By Lemma (6.3.12) there is z* € S;+ that can be written as z*
(z,) = (epxy) where e* € Sgr,e” = 0 and x;, € G, for each k € N satisfying that

1—n"—2& <Rez” <Z anun>.

neA

Now we define the set C by C = {n € A:Re z"(u,) > r}. By Lemma (6.3.4) we obtain that

n' + 2¢’
Zan>1— g >1—-e>0.

(64)

nec
For each element n € C we have that

r <Rez*(u,) = Z Re z,’;(un(k))

Z 7 (un 1))

= (66)
WA TNE]
k:
(AN IR GAE
For eachn € C and k € N we put -
The chain of inequalities (66) implies that
Z d,(k)<1—-r vneC. (67)

We now fix a positive integer k. If z, = 0, then d, (k) =0 for every n € C. If n € C and
u, (k) = 0 for some k € N then d,,(k) = 0. Otherwise it is satisfied that

zi < 1 (k) ) L d®

izl \llun (I 1z Ml GO

In what follows, for each n € C, we consider the following subset
B, = {k € N:d,,(k) < nllzgllllu, (K3

Re

(68)

By (66) we know that

r< Z Iz llen G
Z Izl GO+ > izl GO

kEB,, kEN\B,,
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<> ||z;z||||un(k)u+% > dao

KEBy, keN\By,
1
< D 1zl (Ol + (1 =) by (67)).
KEBy, 1
As a consequence,
1-—r
D lzillun ()l > 7 =——=>0 (69)
KEBy, 1
and in view of (66) we deduce that
1—-r
> Izl (ol <1-7+——, vnec. (70)
kEN\B;, 1
In view of (68), for every n € C and k € B, it is satisfied that
u,(k z, ( up(k d,(k
Rex,ﬁ(L)>=Re {f( n()>=1— *n() >1-n.
llw, (I |zl \llw, (RO |z ey, GO
Now we will use that for each k the space X, has the property AHp for the function §,n < § G)

and x; € Gy. Hence for each k €U By, there is ¥ € Sx: such thatif n € € and k € B, there
is my (k) € Sy, with
[maie) - ”Z:—gg”" <%, and Rey;(m,(k)) = 1, Vn € C, Vk € B, (71)
Let D = N\ UjecB;. For each k € D, we choose any element y; € Sy such that y; (x; ) = 1.
For each n € C, we write C,, = U;¢¢B; \ B,, and define v,, € Z by
1 (K)m,, (k) ifk € B,
vp(k) = {m(K)myuy (k)  ifk € Cy
1, (k)X ifk €D,
where p(k) = min{s € C:k € Bs}ifk € UjecB;. Itis clear that [lv, || = [|7;,1l; = 1 foreachn €
C.
We clearly have that

nAB = UnXB, Il = Z nAB
Irxs, |l = lunxs,| = Rez*(unxs,)

= Re Z z,’;(un(k))

KEB,,
= Z Re z,’;(un(k)) — Z Rez;(un(k))
k=1 kEN\B,

>7r— Z Re zj; (11, (k)) ( by (2.40))
KEN\B,,

2r— ) Izl (Ol by (70))
KEN\B,, .

bl &
>r— <1 —-r+ 7 )
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1—7r

=2r—1- ) =1-a. (72)
Since 0 < 7;, foreach n € C and {r,;:n € C} c Sg, from (72) and (58) it follows that
3
"TnXN\Bn"E = 7 (73)
For everyn € C and k € B,,, in view of (71) we have that
£
<27 (K0, (74)

Hence from (74), for every n € C we have that
lvn —unll < [|(v —udxp, || + Ve, || + ltnxwe,ll

&
< 2 Imllp + 2lmg, [, (by (74))

3¢
< T ( by (73)).
Combining with (63), we conclude that for eachn € C,
"vn - Zn" S "vn - un" + "un - Zn"

<3€+ >
s — & E.
4

Let v* be the element in Z* givenby v* = {ryy;}. By Theorem (6.3.11) it is satisfied that [[v*]| =
Ir*llzr = 1. For each n € C we clearly have that

OO IERHCH()

k=1

= ) Oy ma0) + Y im0y (mpay@0) + Y i)y Ga)
kEBy kEC, keD

= ) i) (by (71))
k=1

=1"(r) = 1 (by (61)).
From (65) we also know that ),,,cca, > 1 — ¢, so the proof'is finished.

As we mentioned above uniformly convex spaces have AHp. Indeed in this case the
modulus of convexity plays the role of the function § satisfying Definition (6.3.10) and the
identity function on the unit sphere of the dual plays the role of the function Yg [346]. So a
family {X;:i € I} of uniformly convex Banach spaces has the AHp uniformly in case that
inf{6;(¢):i € I} > 0, for any € > 0, being §; the modulus of convexity of X;. Also C (K) spaces
and L, (u) have AHp uniformly for any compact Hausdorff space K and any measure u [357].
As a consequence of Theorem (6.3.13) and [344] we deduce, for instance, the following result.
Corollary (6.3.14)[341]: Let {X,: k € N} be a sequence of (nontrivial) Banach spaces such that
any of them is either a uniformly convex space or C(K) (some compact K) or L;(u) (some
measure p). Let A={k €N:X, is a uniformly convex space } and assume that
inf{6, (€): k € A} > 0 for every € > 0, being &} the modulus of convexity of X,. Then the pair

(i’l, (D Z,?lek){)p) satisfies the BPBp for every 1 < p < co.
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We remark that in general AHSp is not stable under infinite £;-sums (see [349]). So in
order to have the stability result in Theorem (6.3.13) some additional restriction is needed. Now
we show the following partial converse of Theorem (6.3.13) that extends to some infinite sums
the necessary condition obtained in Theorem (6.3.9).

Proposition (6.3.15)[341]: Let {X,.: k € N} be a sequence of (nontrivial) Banach spaces and E
be an order continuous Banach sequence lattice. Assume that the space Z = (P Y.y Xk ) has
the approximate hyperplane series property. Then there is a function #: (0,1) — (0,1) such that
X}, satisfies the approximate hyperplane series property with the function 7 for every k € N.
One can take the function given by 7j(¢) =7 (g), where 7 1s the function satisfying Definition
(6.3.2) for Z.

Proof. It suffices to prove that X; has the property AHSp for 7j. Consider the subspace Z; of Z
given by

Z,={z€Z:z(k) =0,Vk = 2}.

Notice that the mapping from Z; into X; given by z = z(1)lleqll ; is a linear isometry, where e;

is the sequence given by e; (k) = 8¥ for each natural number k. Since AHSp is clearly preserved
by linear isometries (and the function 7 satisfying AHSp also) then it suffices to prove that Z;
satisfies AHSp with the function 7.

So let us fix 0 < € < 1. Assume that a,, = 0,u,, € Sz forevery n,}7_;a, = 1 anditis

also satisfied that
£
Z a,unll >1—nm (E)
n=1

By assumption Z has the AHSp, so there is a subset A € N such that ), c4a, > 1 —g >1-—
£2" € Sy« and {z,;:n € A} c S, such that
b5
lz,, — u,ll < > and z*(z,) =1, Vn € A. (75)
For every n € A we define the element y,, € Z; given by

yn(l) = Zn(l); yn(k) =0, Vk = 2.
Let us fix n € A. We clearly have that

£
1V — unll = Iy (k) — un, (R)IDI, < N1z (k) — un, R)IDI = N2, — upll < > (76)
Since we know that

in view of (76) we deduce that

&g
1-><lyl<1vnea (77)

As a consequence of Theorem (6.3.11) we know that z* € (@ Y., Xz )y’ and we also have

z* (1) (3, (1)) = z* (D) (2,(D)) = Nz* Dz, (DI = Iz*Wlly, (DI, ¥n € A. (78)
On the other hand, it is satisfied that

243



2 (D) =1z Gl
= |Z*(Zn)| - |Z*(yn - Zn)l
=>1- "Zn - yn"
>1- "Zn - un" - "un - yn"
2 1= 2[lzy, — unll (by (76))
>1—e>0 (by(75)).
We denote by w* the element in Z* given by
w* (1) =z"(1), w'(k) =0, ifk = 2.
Notice that [le; [l ./ lle;ll; = 1. So it is clearly satisfied
Rew"(y,) =Rez"(y,)

= liz" (W llly (DIl (by (78))

(79)

LW
lexll, eyl
= Wyl

and bearing in mind (79) we deduce that w*(y,,) # 0.
Since for each n € A we have also that

Yn Yn
u, — < Ty — yoll + [l —
TN n Il T T
E
<=-+1-|yll <&y (76) and (77)),

2
we checked that Z; has the AHSp for the function 7j as we wanted to show.

Corollary (6.3.16)[365]: Let H be a real or complex Hilbert space and assume that u;, v; € S ,]{
Then there is a surjective linear isometry ®/ on H such that &’ (u;) = vj and Z“ij —1 || =
Xlw = v
Proof. The result is obvious in the case dim H = 1. Assume that dim H > 2. Thus there is an
element vjl € S,]{' orthogonal to v; and such that [u;, v;] © [vj, vjl], where [x;, y;] is the linear
span of the vectors x; and y; in H. Let (u;)4, (1), € K such that u; = (u;),v; + (uj)zvjl and
write ui = —(w,),v; + (w),v;. It is clearly satisfied that
1=l 2= [@)1]” +|@)2|” and (uj,ut) =o.
Let M be a subspace of H orthogonal to [vj,vjl] = [uj,ujl] and such that H = [uj,ujl] P M.
Define the mapping ®/: H — H given by
dJ (zju; + Wjujl +m) = zv; + ijjl +m, VY(z,w) EK: ,meM,

which is a surjective linear isometry on H. It clearly satisfies ®/(u;) = v; and @/ (u;") = vi-.

Clearly Y(®/ - D) =X(v;— ), 2@ - D) =X(vj —ui) and X llu; —
vj | = Xy — vj"||. Also we have that

Dy —wvf —uty == (wuf) + (w,v1) = 0.

Hence @/ — I restricted to [uj, u]l] is a multiple of a linear isometry from this subspace into

itself. As a consequence 3, | @/ —1 | =Y Il uj — v; .

244



Corollary (6.3.17)[365]: Assume that {X;:i € I} is a family of Banach spaces, H is a Hilbert
space such that the pair (X;, H) has the BPBp for operators for every i € I and with the same
function 7. Then the pair ((© YierXide, H) has the BPBp.

Proof. We write Z = (© };;X;)¢,. Given 0 < & < 1, we choose positive real numbers 7, s and

t such that
£ Oy (7”)}

JE {86(1”)
r 4 S m1n4 3

where 6y is the modulus of convexity of H.
Assume that (zj)o = {(Zf)o(i)} € SZ]], and T/ € Sé(zj’H) satisfies ), "Tj ((zj)o)" >1-—

} and t < min{ ,n(s),

t2. Forevery i € I, we denote by Tij the restriction of T/ to X;, that is embedded in Z in a natural
way.

Assume that y; € Sé* satisfies that ) Re y; (Tj ((zj)0)> =) ||Tj ((zj)o)" >1—t2

Denote by B = {i € I: Y Rey/ <Tij ((zj)o(i))> >1-t)) ||(zj)0(i)||}. We clearly

have that

e <Y Ry (1 ((5),) = 3. 3 ke (1 ((2),0))

=2, 2 i (1 (@) + 2, ) revi (1 ((5)0))
IEB LEI\B

<> 2l@,0l+ Y. Y a-9l@),ol
IEB LEI\B

=1t 216,01
N OXCIEL

i€I\B
By assumption, for every i € B there is an operator Si] ES é(Xi iy and an element (xj)i € S)](i

such that
T )
ZI'SQ_ y <S'Z )
177l

16,0l -
It follows by (29) that for every i, j, € B we have that

and Z "Sl] (x])l)" =1, Vi € B.
P AEIEACR EN

Hence

(%), -

s! ((Zj)o(i)) . s/ ((Zj)o(io)) ~
(), @ (), G
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.y 7 ((@),®) | T((3),00)
I [ ||(Zj)0(i)|| 1711 (2), G
>2(1—-1t)—4s

> 2(1 — 8y (m).

As a consequence ), "Sl] ((x])l) — S]{) ((xj)jo)

Corollary (6.3.18)[365]: Let | - | be an absolute and normalized norm on R2. For every & > 0

there is § > 0 satisfying the following conditions:

(r,s) ER?, |(r,9)|=1,s>1—-6=>3teR:|(t,1)|=1and |t —7| < ¢

< r foreach i, j, € B.

and

(r,s) ER?,|r,s|=1,r>1—-6=>3teR: |1, t|=1and |t —s| < .
Proof. Of course it suffices to check only the first assertion. Assume that it is not true. Hence
there is some g5 > 0 such that

Vo > 03(T5,S5) € S(]RZ I |)'S6 >1-6

andt € Rwith |[(t, D)| =1= |t — 15| = €.
We choose any sequence {8,,} of positive real numbers converging to 0. By assumption there is
a sequence {(7;,,s,)}inS (JRZ .y satisfying for each n € N that

Sp>1—6, and |t — 1| = g Vt € R with [(¢,1)| = 1.
By passing to a subsequence, we may assume that (73, s,) — (7, s). Since [(0,1)| = 1 and the
norm is absolute on R? it is satisfied
s =1(0,8)| = [(r,s)| = 1.
Corollary (6.3.19)[365]: Let E be a Banach sequence lattice which is order continuous and
{Xi: k € N} be a sequence of (nontrivial) Banach spaces. For each natural number k assume

that C, c S} J . is a 1-norming set for Xj,. Then the set C given by

{(ek/l (x),):e" €Sle* 20,2, €K || = 1,(x]) € Ci,Vk €N}
is a subset ofSé*, a 1-norming set for Z, where K is the scalar field and Z = (@ Y -1 Xx)E-
Proof. By Theorem (6.3.11) the set C is contained in Sy-. Let z; = ((zj)k) € Z and € > 0. By

assumption we know that (" (zj)k ||) € E.Inview of Theorem (6.3.11), E* coincides with E’, so

there is a nonnegative element e* € Sé, such that ) e” <("(Z])k")> =) "("(Zf)k")"E =

% Il z; Il. Foreach k € N, Cy is a 1-norming set for X), and so there exists (zf‘)k € Cj and a scalar

/1] with |/1]| =1 such that Re A/ (z ((zj) ) "(Z]) " (e +1)2k The element Z; =
(ekxl (z ) ) € C and

Z Re(zj‘)k(zj) = Z Z Re ek/lk(z ((Zj)k)
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- &
> ek (1), - Gz = Dl -
k=1

We proved that C is a 1-norming set for Z.

Corollary (6.3.20)[365]: Let {X: k € N} be a sequence of (nontrivial) Banach spaces and E be
an order continuous Banach sequence lattice. Assume that the space Z = (D .5, Xy )y has the
approximate hyperplane series property. Then there is a function 7: (0,1) — (0,1) such that X,
satisfies the approximate hyperplane series property with the function 7j for every k € N. More

precisely, one can take the function given by 7j(g) =7 (g), where 7 is the function satisfying

Definition (6.3.2) for Z.
Proof. It suffices to prove that X; has the property AHSp for 7j. Consider the subspace Z; of Z
given by
Zl = {Z] € ZZ](k) = O,Vk = 2}
Notice that the mapping from Z; into X; given by z; = z;(1)lle |l is a linear isometry, where

e, is the sequence given by e;(k) = 5¥ for each natural number k. Since AHSp is clearly
preserved by linear isometries (and the function 7 satisfying AHSp also) then it suffices to prove
that Z, satisfies AHSp with the function 7.

So let us fix 0 < € < 1. Assume that arjl >0, (uj)n € Sél forevery n, Y=g 2 arjl =1

and 1t 1s also satisfied that
: £
a{l(uj)n >1-—n (E)

By assumption Z has the AHSp, so there is a subset A € N such that },,c4 > arjl >1-— g >1-
g, Zj‘ €S, and {(zj) n e A} C S, such that

S, - ), <5 ama Y 7((z),) =1 vnea

For every n € A we define the element (y])n € Z, given by

), (D = (), @), (3),0) =0, vk = 2.

Let us fix n € A. We clearly have that

Z 16, = (), ]l = Z 1167, - (uj)n(k)")"E
= Z (1127, 00 = (uj)n(k)")"E = Z I(z),, — (), |l < ;

S 1000 < Y 1@), =1 veea

in view of (76) we deduce that

3
1< Z ), <1 vnea

As a consequence of Theorem (6.3.11) we know that z; € (© Yz X))g’ and we also have

> 5 (0),m) =D 50 (@),m) = Y l5mlE),0]
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=Nl ®I6,), W], v € 4

On the other hand, it is satisfied that

Y 5@ (6),m)] = |5 (6n),)]
> Z 7 ((z),)| - Z 7 (), - (z),)]
=1~ Z ||(Zj)n ~ (y,-)n||
21- ) (%), = @), = D 1), = 6y,
21-2 Z I(z),, = (), || by (76)

>1—¢>0 (by (75)).
We denote by w;" the element in Z* given by

wi (1) =z (1), wj (k) =0, ifk = 2.
Notice that |le; |l ./lle;ll; = 1. So it is clearly satisfied

D> rew; ((9),) =D Rez((),)
= > 5 DI 6), D] by 78)
< Il 16w,

lesll, Tleyll,

= Z"W]*" (yj)n"’

and bearing in mind (79) we deduce that ), Wj* ((y])n) * 0.
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List of Symbols

Symbol Page
co : convex 1
WLD : Weakly Lindelof 1
diam : diameter 2
sup : Supremum 2
RN : Randon-Nikodym 6
RNP : Randon-Nikodym Property 6
min : minimum 7
PRI : Projectional resolution of identity 11
dens : dense 11
LUR : Locally uniformly rotund 11
2% : Banach space of sequences 12
inf : Infimum 12
dist : distance 15
WLD : Weakly Lindelof determined 17
supp : support space 20
LP : Lebesgue space 21
L1 : Dual of Lebesgue Space 21
BPBP : Bishop-Phelps-Bollobas Property 22
Ly : Lebesgue integral on the Real line 22
@ : Orthogonal Summand 28
NRA : Numerical radius attaining 29
arg : argument 30
Re : Real 30
Im : Imaginary 38
AHSP : Approximate Hyperplane series property 41
ess : essential 48
22 : essential Hilbert space 48
12 : Banach space 55
® : Tensor product 55
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max : Maximum 63
card : cardinality 89
ACK : Asplund and C (k) 90
ext : extreme 92
aco : absolute conves hull 111
int : interior 174
UM : Uniformly monotone 175
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