Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/24979
Title: Eigenfunctions Restriction Estimates on Riemannian Manifolds and Bilinear Kakeya–Nikodym Averages with Principal Eigenvalue of Nonlocal Operators
Other Titles: تقديرات قصر الدوال الذاتية على متعدد طيات ريمان ومتوسطات كاكيا-نيكوديم ثنائية الخطية مع القيمة الذاتية الأساسية للمؤثرات غير الموضعية
Authors: Elhassin, Kawther Bashir Mohamed
Supervisor, - Shawgy Hussein AbdAlla
Keywords: Mathematics
Nonlocal Operators
Principal Eigenvalue
Manifolds and Bilinear Kakeya
Restriction Estimates
Issue Date: 10-Jan-2020
Publisher: Sudan University of Science and Technology
Citation: Elhassin, Kawther Bashir Mohamed . Eigenfunctions Restriction Estimates on Riemannian Manifolds and Bilinear Kakeya–Nikodym Averages with Principal Eigenvalue of Nonlocal Operators / Kawther Bashir Mohamed Elhassin ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2020 .- 286p. :ill. ;28cm .- PhD..
Abstract: The 𝐿𝑝 norm estimates and an improvement of eigenfunctions restricted to submanifolds, for compact boundaryless Riemannian manifolds with nonpositive sectional curvature and constant negative curvature are studied. We show the refined, microlocal and bilinear Kakeya-Nikodym averages bounds for eigenfunctions in two dimensions, on compact Riemannian surfaces and lower bounded for nodal sets of eigenfunctions in higher dimensions with 𝐿𝑝 –norms. Simple criterion for the existence and properties of principal eigenvalue of the elliptic operators in Euclidean space and principal eigenfunctions and spectrum points of some nonlocal dispersal operators, and applications are considered.
Description: Sudan University of Science and Technology
URI: http://repository.sustech.edu/handle/123456789/24979
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Eigenfunctions Restriction Estimates.....pdfResearch3.84 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.