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Abstract

The LP norm estimates and an improvement of eigenfunctions
restricted to submanifolds, for compact boundaryless Riemannian
manifolds with nonpositive sectional curvature and constant negative
curvature are studied. We show the refined, microlocal and bilinear
Kakeya-Nikodym averages bounds for eigenfunctions in two
dimensions, on compact Riemannian surfaces and lower bounded for
nodal sets of eigenfunctions in higher dimensions with LP —norms.
Simple criterion for the existence and properties of principal eigenvalue
of the elliptic operators in Euclidean space and principal eigenfunctions
and spectrum points of some nonlocal dispersal operators, and

applications are considered.
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Introduction

We study the relationship between the extrinsic geometry of the
submanifolds and the canonical relations associated to the oscillatory integral
operators. Let (M, g) be an n-dimensional compact boundaryless Riemannian
manifold with nonpositive sectional curvature. Then we can give improved
estimates for the LP norms of the restrictions of eigenfunctions of the Laplace-

Beltrami operator to smooth submanifolds of dimension k, for p > %when k =

n—1 and p > 2 when k <n— 2, compared to the general results of Burg,
G’erard and Tzvetkov. Earlier, B erard gave the same improvement for the case
when p = oo, for compact Riemannian manifolds without conjugate points for
n = 2, or with nonpositive sectional curvature forn > 3 and k = n — 1. We give
the improved estimates for n = 2, the LP norms of the restrictions of
eigenfunctions to geodesics. The proof uses the fact that the exponential map
from any point in x € M is a universal covering map from R? =~ T,,M to M, which
allows us to lift the calculations up to the universal cover (R?, ), where g is the
pullback of g via the exponential map.

We provide a necessary and sufficient condition that LP-norms, 2 < p <
6, of eigenfunctions of the square root of minus the Laplacian on two-dimensional
compact boundaryless Riemannian manifolds M are small compared to a natural
power of the eigenvalue A. The condition that ensures this is that their L2-norms

over 0(/1_%) neighborhoods of arbitrary unit geodesics are small when A is large.
The proof exploits Gauss’ lemma and the fact that the bilinear oscillatory
integrals in Hormander’s proof of the Carleson-Sj6lin theorem become better and
better behaved away from the diagonal. If (M, g) be a two-dimensional compact
boundaryless Riemannian manifold with nonpostive curvature, then we shall give
improved estimates for the L? -norms of the restrictions of eigenfunctions to unit-
length geodesics, compared to the general results of Burg, Gerard and Tzvetkov.
By earlier results of Bourgain, they are equivalent to improvements of the general
LP-estimates for n =2 and 2 < p < 6. The proof uses the fact that the
exponential map from any point in x, € M is a universal covering map from
R? =~ Tx,M to M (the Cartan-Hadamard- von Mangolt theorem), which allows us

to lift the necessary calculations up to the universal cover (R?, §) where § is the
pullback of g via the exponential map. We extend a result to dimensions d > 3

2(a+1) to the
d—-1

amount of L? -mass in shrinking tubes about unit-length geodesics. The proof
uses bilinear oscillatory integral estimates of Lee and a variable coefficient

variant of an “c removal lemma” of Tao and Vargas. We also use Hormander’s

which relates the size of LP-norms of eigenfunctions for 2 < p <

\Y



L? oscillatory integral theorem and the Cartan-Hadamard theorem to show that,
under the assumption of nonpositive curvature, the L?-norm of eigenfunctions e,

1

over unit length tubes of width A"z goes to zero.

Two generalizations of the notion of principal eigenvalue for elliptic
operators in RY. We show several results comparing these two eigenvalues in
various settings: general operators in dimension one; self-adjoint operators; and
“limit periodic” operators. We are interested in the existence of a principal
eigenfunction of a nonlocal operator which appears in the description of various

phenomena ranging from population dynamics to micro-magnetism. We study

the following eigenvalue problem: 0 [ ](%)%dy + a(x)g = po,

where 2 < R™ is an open connected set, J a non-negative kernel and g a positive
function.

For (M, g) be a compact, boundaryless manifold of dimension n with the
property that either (i) n = 2 and (M, g) has no conjugate points, or (ii) the
sectional curvatures of (M, g) are nonpositive. Let A be the positive Laplacian on
M determined by g. We study the L?> - LP mapping properties of a spectral

cluster of v/A of width 1/logA. We show that one can obtain logarithmic
improvements of L? geodesic restriction estimates for eigenfunctions on 3-
dimensional compact Riemannian manifolds with constant negative curvature.

We obtain a (logl)_% gain for the L?-restriction bounds, which improves the
corresponding bounds of Burg, Gérard and Tzvetkov, Hu, Chen and Sogge. We
achieve this by adapting the approaches developed by Chen and Sogge, Blair and
Sogge. We derive an explicit formula for the wave kernel on 3D hyperbolic space,
which improves the kernel estimates from the Hadamard parametrix in Chen and
Sogge.

We obtain some improved essentially sharp Kakeya—Nikodym estimates
for eigenfunctions in two dimensions. We obtain an improvement of the bilinear
estimates of Burg, Gérard and Tzvetkov in the spirit of the refined Kakeya—
Nikodym estimates of Blair.

We investigate the dependence of the principal spectrum points of nonlocal
dispersal operators on underlying parameters and to consider its applications. We
study the effects of the spatial inhomogeneity, the dispersal rate, and the dispersal
distance on the existence of the principal eigenvalues, the magnitude of the
principal spectrum points, and the asymptotic behavior of the principal spectrum
points of nonlocal dispersal operators with Dirichlet type, Neumann type, and
periodic boundary conditions in a unified way. We study some spectral properties

Vi



of the linear operator £, + a defined on the space C(2) by : L, [¢] + a¢ :=
J, K, )p»)dy + a(x)¢p(x) where 2 cRY is a domain, possibly
unbounded, a is a continuous bounded function and K is a continuous, non
negative kernel satisfying an integrability condition. We focus our analysis on the
properties of the generalized principal eigenvalue A4,(L, +a) defined by
Ap(Lg+ a) := sup{d € R|3¢p € C(2),¢ > 0, such that L,[p] +agp +
Ap < 0in 2}. We establish some new properties of this generalized principal
eigenvalue 4,,.

Vil
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Chapter 1
L? Norm Estimates and Improvement on Eigenfunction Restriction Estimates

We study the growth rate of LP norms of eigenfunctions of the Laplace-Beltrami
operator restricted to submanifolds of compact C* Riemannian manifolds. The spectral
projection operators can be expressed as oscillatory integral operators, so the question
reduces to oscillatory integral operator norm estimates. We show the main estimates by
using the Hadamard parametrix for the wave equation on (R?, §), the stationary phase
estimates, and the fact that the principal coefficient of the Hadamard parametrix is bounded,
by observations of Sogge and Zelditch. The improved estimates also work for n > 3, with

p > :—_kl. We can then get the full result by interpolation.

Section (1.1): Eigenfunctions Restricted to Submanifolds

Measurements of concentration of eigenfunctions of the Laplace-Beltrami operator on
a manifold have been studied in several ways. One way is by describing their associated
semi-classical (Wigner) measures (e.g., see Shnirelman [14], Zelditch [18], etc.). Another
way is by studying the growth of the LP norms of the eigenfunctions on the manifold (see
Sogge [15], [16], Sogge-Zelditch [17], Burg, Gerard, and Tzvetkov ~ [3], [4], [2]). A recently
introduced third way is to consider the possible growth of the LP norm (2 < p < +) of
the restrictions of the eigenfunctions to submanifolds. Burg, Gerard, = and Tzvetkov [5]
obtained LP norm estimates of the eigenfunctions restricted to a curve on a Riemannian
surface and extended the estimates to some cases in higher dimension. Also see Reznikov
[13] in two dimensions.

Here we consider this last question, i.e., the growth of the LP norm of restrictions of the
eigenfunctions to submanifolds, with the help of the estimates of oscillatory integral
operators whose canonical relations have fold type singularities. Suppose that (M, g) is a
compact smooth Riemannian manifold (without boundary) of dimension n and A is the
Laplace-Beltrami operator on M associated to the metric g. Let {¢ 4;,4; = 0} be the
eigenfunctions of A such that —4@4; = Ajch?\]- and 0= Ay < 44 <1, <---. For the
simplest case when dimM = 2 and vy is a closed smooth curve in M, [5] obtained estimates,
stated in the following Theorem (1.1.3) and Theorem (1.1.7).

Turning to higher dimensions, we have the following:

The estimates in Theorem (1.1.16) can be improved in the hypersurface case, i.e., k =
n — 1, if the hypersurfaces have curvature.

We will focus on the structure of the canonical relation of the phase function of the
specified oscillatory integral operators and the geometric structure of the submanifold to get
the desired estimates.

We condensed version, supervised by Professor Allan Greenleaf at the University of
Rochester.

Consider the first order pseudo-differential operator v —A defined by the spectral
theorem: V-4 = Yi=0 A Ej, I = X7~ Ej,where E; are projection operators into the
finitedimensional eigenspace £; with eigenvalue 4; . Denote: eltV=4 = Xi=o e'th E;. Let
x € S(R) such that y(0) = 1 and the support of its Fourier transformation supp¢(t) c
(82—0 ,So) for some g, > 0. Then we can define approximate projection operators as:



o= x(V=E =) = ) (- .
J
Clearly (V=4 — 1)@, = @, forallA = A, 44,.... On the other hand,

Y(V=A - 2) = ) (3 - DE

]
= z % et (1 — ) 2(t)dtE;
]
1
27
Choosing g, small enough, in local coordinates we can represent e't=4 a5 a Fourier integral
operator (see, e.g., Hormander [11]). Applying a stationary phase argument, we have the

following theorem (see Sogge [16]):
Theorem (1.1.1)[1]: In local coordinates,

n—1 i
G0 = x(V3 = f = X7 [ WD aywf 0)dy + Ra(f),

Y€EDy
where D, = {y : :TOO lx — y|2C080}.l,l)(x,y) = —dg4(x,y) is the geodesic distance with

e—it/leit\/—_A)g(t) dt.

respect to metric g between x and y. Furthermore, a; € Cy° has uniform bounds
|02, a,(x,¥)|C,, and R, is an operator such that ||Ry [l 20 < CA™V for2 < g < +oo.
Because of this property of R;, we may henceforth ignore it and denote
NG = [ e g pf ()dy.
Y€Dy

We only need to focus on the operator
n—1

n—1 i
T = AT j MY ¢ (x,y)f (7)dy.
YEDg

Forany x, € M, we may choose the geodesic normal coordinate system about x,, such that
forx € U = {x: |x| <ce},
NG = | eME s o)dy,
YED
where D = {y: c;e|y| < cye} and a;(x,y) is supported on the set {(x,y) € U X D :
x| < ce < cie |yl £ cyel
1
Since xa(p)) = x(V=4 — V)@, = @, and x; = 22 T; + R, it suffices to consider
the operator norm estimates of T, to get the eigenfunction estimates, as R, satisfies much
better bounds than we want to prove. We will focus on the structure of the canonical relation
of the phase function of T; and the geometric structure of the submanifold to get the

estimates with the help of oscillatory integral operator estimates.
Suppose that (M, g) is a compact smooth Riemannian manifold (without boundary) of

dimension 2. Let y be a smooth closed curve in M and {<P/1j A= 0} be the eigenfunctions
of Laplace-Beltrami operator A on M, so that—A<p,—1j = /1]2 P2, and0 = 4y < 11, <4, -
-. We will refer to a general eigenfunction as ¢;.

Since xi(p1) = x(V=4 — 1)@, = ¢@,, it suffices to show the operator norm
estimates:



IxaUF ) Nlr ey €L+ DEPIIF Il 2
1

Taking into account that y; = 12T, + R; and R; is an operator whose bounds are rapidly
decreasing in A, it remains to show the norm estimates of T;:

1
T2 irgy €A + D°P7Z(If N2y,
Assume that we are in the geodesic normal coordinate system about x, € M, and y is
parameterized by arc length s and passes through x,. Partition of unity allows us to assume
that vy is contained in the coordinate patch U, i.e., |x(s)| < ce and x(0) = 0. Therefore, it
Is enough to show that

1
5 i
ITa(llrgy €A+ D72 |If |2y,
Since y stays in the annulus with inner radius c; & and outer radius c,&, we can restrict y to
the circle with radius r. In fact, we can represent y in polar coordinates as y = rw, (i.e.,
geodesic polar coordinates on M), c;e <1 < c6,wy = (w?,wd ) € S and denote:
Uy (x, w0) = Y(x, ), fr(wo) = f ), ar(x,we) = ra(x,y)and
T = [ e o0 (w0 fr(wpdon,
Sl
Then, (Taf )(x) = [.% (Tff,)(x)d r.If we have the estimates on the unit circle:
1

1
8 =
177 )llee ¢y €A+ D°PZ NI fll s,
then, by Minkowski’s integral inequality,

Cy€
1Tl < [ ITE ey dr

C1E

8( ) 1 C2€
<P [ gl dr
C1&
1
S(p)—=
< P72 |If ll 2 )

So it suffices to prove
1

177 llrey €A + DOP2 N fllz sy | 1)
where (T; f )(x) = [ e Mr(xwo) g (x, wo)f (wy)dwy, and f € L2(SY).

Because we are using geodesic normal coordinates, g(0) = Id. Suppose that
w(x,y) € T,M denotes the unit vector such that exp, (—y¥(x,y) w (x,y)) = y, and
u(x,y) € T,M denotes the unit vector such that exp, (—9(x,y)u(x,y)) = x. Clearly
w(0,y) = wy = (w?,w?) € S Then we have
Lemma (1.1.2)[1]:% = Vxyp(x(s),y) - x = glw(x(s),y),x), where
x(s) = (x.(5),x,(s)) € U € R2
Proof. Differentiating the identity exp, (—y(x,y)u(x,y)) = x with respect to s, by the
chain rule, we get
D—lp(x,y)u(x,y)(expy) ) [—Vxl,l}(x(s), y) - J'cu(x(s)) —Y(x(s),y)Dyu(x(s),y) - x]

= % (2)
On the other hand, differentiating the identity exp, (tu (x,7)) = exp, ((—=¢(x,y) —
t)w(x,y)) with respect to ¢ and evaluating at t = —,.(x, y), we have

D—lp(x,y)u(x,y)(expy) ’ u(x»Y) = DO(epr ) - (_w(x:y)) = _(U(x'y)- (3)

3



Taking the scalar product of (2) and (3), on the left hand side we have the following by
Gauss’ lemma:
—Vp(x(s),y) - xu(x(s),y) — Y(x(s),y)Dy u(x(s),y) - x,ulx,y).
Noticing that (D,u(x(s),y) - x,u(x,y)) = 0and (u(x,y),u(x,y)) = 1, we only have
-V (x(s),y) - x left. On the other hand, the scalar product of the right hand sides of (2)
and (3) gives us —g(w(x,y), x).Therefore, we have
Ve (x(s),y) - * = glw(x(s),y),%).

Theorem (1.1.3)[1]: Let ¥y : [a,b] » M be a smooth curve parametrized by arc length.
Then, for all p;

lpallLogy €L + D@ |l 2y,

1
- if2<p<4
4

5 =91 1

> if 4<p<+o

where

For 2 < p < 4, the estimates in Theorem (1.1.3) can be improved for curves with non-
vanishing geodesic curvature.

Proof. Clearly when s = 0, Lemma (1.1.2) gives us d,yr|s =0 = V. (0,wy) - X =
go(wg, X). Suppose wy, = (w?,w?) = (cos B,sin ) € S*. Consider the phase function
Y, (x(s), wy), the canonical relation associated with yr is

{(5,dsir; 8, —dgiiy)}
(5. d g1 ) (8, —dgir)).
When s = 0, ds, = x%;(0)cos8 + x%,(0)sinf and dg e, = —x,(0)sinf +

x5 (0) cos 6. So the critical point set of r; denoted by Q restrictedtos = 0 s
Dy = D]s=0 = {(s,0): dsoPr = 0}5=0
= {(0,0): — x,(0)sin6 + x,(0)cosf = 0}.
A nonvanishing kernel vector field of r; isV;, = aa—g .So,ats = 0,
V. (dsgr) = dsgopr = — %,1(0) cos 8 — x,(0) sin 6.
It is easy to see that V, (dsgr)lq, = 0. Hence £, is the set of fold points for 7r;. By the

stability of fold singularities, 7r; has at most fold singularities near s = 0 (and so we may
assume in the whole coordinate chart U) as long as we choose ¢ small enough. Then, by
Theorem (1.1.1) in [10],

1
NTT | zor < C(1 + A)‘f, if 2< p< 4,

NTi |l 2oy <C(A + ) P, if 2< p<oo.
This means that (1) holds which completes the proof of Theorem (1.1.3).
The estimates in Theorem (1.1.3) can be improved if the curve has nonzero geodesic
curvature.
For Theorem (1.1.7), similarly to Theorem (1.1.3), it suffices to show

4



~ 1
T (F)llpy €A + D°P72Ifll2sty - (4)

dw(x(s),y) e d .
= ls=0 = 0if (T2, 2(0)) = 0.

: : o : d
Proof. Since (w,, wy) = 1, taking the derivative with respect to 0, we have (% ,Wp) =

Lemma (1.1.4)[1]: We have

0.0On the other hand, (% ,%(0)) = 0, s0x(0) = cw, for some constant c. Consider
g, y),wlxy) = 1,ie,

oo (220 220 (o) = 1 ©

Since we are working in geodesic normal coordinate system, all the first derivatives of the
metric vanish at the origin and (g;; )|x=o = 1d (see [9]). In (5), take the derivative with

respect to x, and x, respectively; then, for x = 0,
Wiy, Wax, 0)5) _
(C‘)lxz “)sz) <w8> = 0. (6)
It follows from Lemma (1.1.2) that for arbitrary (x,, x,),

(alpr alpr) (X1> = (wy, w,) (911(35) 912(x)) (2)

0x;  0xy,/ \X2 g21(x)  g22(x)
So
0y
P w1911(X) + w3921 (%), (7)
X1
and
0Py
P w1912(%) + w3922(x). (8)
X2
2
Taking the derivatives with respect to x, in (7) and x; in (8), forx = 0, we see that—:xl/;’ =
142
0%y,

w1x, 911(0) + w4y, go1(0)and o, . P1n 912(0) + wox, G22(0). Then wq,, =
way, Since g;; (0) = &;; . That means the 2 x 2 matrix in (6) is symmetric. Therefore for

x =0,
Wix, Woyx, (1)5) — 0
(wlxz w2x2) 0wy
So
dw(x(s),y) (@
ds |s=0 - (d)z)
_ (wlxl wal) (xl)
wlxz waz J'CZ
= C (wlxl a)le) <w2>
wlxz waz wg
= 0.
as desired.

Lemma (1.1.5)[1]: x(0),%(0) = 0.

Proof. Recall that all the first derivatives of the metric vanish at the origin in geodesic
normal coordinates. The lemma follows immediately from differentiating g(x, x) = 1 with
respect to s and letting s = 0.



Lemma (1.1.6)[1]: | #(0)| = g ( v (0),2 y(O))

Proof. In geodesic normal coordinates, y (s) = Z] -1 X (s)( ) So the covariant

derivative of y" ats = 0'is
2

2
D i} PRI d
5Vl = ) (204 ) [y 0n0 | (57),
=1 j,k=1
where 1}-}c are the Christoffel symbols of the metric g. In the geodesic normal coordinates,
we have I},ic(O) = 0, therefore, | #(0)|* = g (% y' (0),%)/’ (0)) as desired.
Theorem (1.1.7)[1]: Suppose g (%y’ ,% v’ ) # 0. Then, for all ¢,
lpallLegy €L + D°P |l 2y,
where §(p) == ——,2< p <4

Proof. From the proof of Theorem (1.1.3) we know that nL. has at most fold singularities in
U. Now let us take a look at mR, which has the same critical point set 2 as ;. Ats = 0,

0%, dg(w,x)
A nonvanishing kernel vector field of  is V; = %. Note again that all the first derivatives
of the metrics vanish at the origin in the geodesic normal coordinates. Thus,

VR(dselpr) = dssoPrls=0 = (%,X(OD = —X1(0) sin6 + ¥,(0) cos 6.
In !20,( 2, x(0)) = Otogether with (x(0),%(0)) = 0 (Lemma (1.1.5)) yields
dw" , X (0)) 0 as long as ¥(0) = 0. Therefore, if ¥(0) = ( v’ (0) Y (0))
0 (Lemma (1.1.6)), mx has at most fold singularities at s = 0 and furthermore in U. By

Theorem (1.1.7) in [7] (also see [12]) ||T,-L Fllzgy €A + 1) 2 e||f l2s1y. BY

dw . . )
= E |S=01x(0) + a)o,X(O) = a)o,X(O)-

interpolation, [T} (f )ll.pg) C(1 + A)° w 6||f||L2(§1) which is exactly (4).

If the metric g is locally the standard Euclidian metric, e.g., in the case of the flat torus
T = R?/(2rnZ)?, we can show the following:
Theorem (1.1.8)[1]: Let X' be a smooth curvey : [a,b] — T parametrized by arc length.
Suppose that the curvature of y vanishes to at most Ith order, i.e., vt € [a,b], [y@(t)| =
o=y @ = 0, but [yU+D(e)| = 0 where j <L Here <1, and | = 1simply
means |y @ (t)| = 0. Then

1Ty (Flleeyy €L+ DPPIfll 25y,
where
(70 = [ M) o, 00)f @o)das
Sl
and
1 l

Ql+Dp 4l+2°

5(p) = - < p<4



Proof. Since the metric is Euclidian metric, the phase function of T; is ¢,.(x(s), w,) =
— (x1(s) — 7 cos B)% + (x,(s) — rsin B)2, By calculation, dsgl, =

(x4 cos B+x, sin 0—1) (XX, —Xx1X,— X7 Sin O+X, r cos )
YP
can choose small ¢ such that

.Since |x| <ceand cie <r < cye,we
(x4 cos O+x, sin 6—-r)

¥}

+ 0. So the critical point set of the
projection my is

N = {(s,0): xyx, — xy%, — Xyrsinf + x,rcosf = 0}.
A kernel vector field of Ty is Vy; = %. Denote the defining function of Q by F = x;x, —

X1Xy — X17 sin 8 + x,1 cos 68.We hope to apply Theorem (1.1.7) in [7] and it is equivalent
to check Vi (F) instead of V, (det D(dsglljr)). Noting that x(s) is the parameterization of
y', from the assumption, we know that the worst situation we have is that: [¥(0)| =...=
x® ()] =0, but [x@P©)| =0 This means that Vix(F)ls=o =...=
Vit (F)ls=0 = 0, and

VE(F) 5o = —x (0)rsind + x{ (0)rcos 6 = r(x™+1(0), wi ),
where wy = (—sin@,cos@). From the assumption of these derivatives and
(x(s),%(s)) = 1,itis easy to see that (x(0), x¢*P(0)) # 0.Ats = 0, the critical points
satisfy  (%(0),wt) =0. Thus (x*D(0),w') = 0 which means VEA(F)|sq = O.
Therefore, my has at most type | singularities. From the proof of Theorem (1.1.3), we know
that ir; has at most fold singularities. The desired estimates follow from Theorem (1.1.7) in
[7] and interpolation. From Theorem (1.1.8), we can immediately obtain the following
eigenfunction estimates on the flat torus T = R?/(2nZ)>:

1
lpallrgy €A+ D°P2 [l 2 any-
Clearly, these estimates agree with Theorem (1.1.7) when [ = 1 and Theorem (1.1.3) when
[ = 400, respectively.

Unfortunately, the estimates above or the estimates in Theorem (1.1.3) and (1.1.7) are
far from being sharp for the flat torus. In fact, ||@all;21) Cc(1 + DE|l@all2(r2) - In other
words, we have a better bound, C.(1 + 1) (see [5]).

Suppose that (M, g) is a compact smooth Riemannian manifold (without boundary) and
dimM = n. Let ¥ be a smooth submanifold in M with dim2X = k. Suppose

{q)lj,lj = O} are the eigenfunctions of Laplace-Beltrami operator A on M such that
_A(pl] == /1]2 g0/1] and O = AO < Al S AZ oo
n-—1
As in 83, since x,(p) = x(V=4 — 1)y = @zand x;, = Xz Ty + R;, where
R, is an operator which satisfies rapid decay in 2, it suffices to show the norm estimates of

T,. Assume that in the geodesic normal coordinate system about x, € M,X is
parameterized by x(uq, u,,...,u;),x(0) = 0and

0x; 0x, d0x,
dup du, T 0wy
dx, 0x, dx,
Yo = | 0w du; T du
ox, dx, | ox,
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has maximal rank. By means of a partition of unity, we can assume that X is contained in
the coordinate patch U, i.e., |x(u)| < cg,x(0) = 0 which forces c;e < |y| < c,e. We
may introduce the polar coordinates for y (i.e., geodesic polar coordinates on M),y =
Tw, 1€ < T < c8,wp = (0f,w9,...,wd) € S 1. It is enough to consider one
projection coordinate patch where S = /1 — (w?)2 —- — (w9)2 = 0. Then it
suffices to estimate the L? to LP operator norm of

@@ = [ e a6 w0)f (@o)doy,

Sn—l
where f € LA(S™ V), ¢, (x,w) = P(x,y)and a,(x,wy) = r" ta(x,y). Similar to
Lemma (1.1.2), we have the following:
Lemma (1.1.9)[1]:

Vi = Vap(x(u),y) - (x,)
= (9(0@@,y),x, ), g(@G@), ), %y, )., g (@@, 1), 1, )

where x(u) = (W), x;(W),...,x, (W) € U c R2

O0x; . ..
Lemma (1.1.10)[1]: Denote a—u‘ by x;u; . Ifthe k X (n — 1) matrix A is given by
J
0 0 0 0 0 0
X1y, Wp T Xpy, W1 —Xoy, W + —Xpy Wy . —Xp_qy, Wp T Xny, wn—l\
0 0 0 0 0 0
A = —X1u,Wn + Xnu, W1 —Xoyu, W2 + Xnu, W2 e T Xn—1u,Wn + Xnu, Wn-1 | )
0 0 0 0 ' 0 0
X1y, Wn T Xpy, W1 — Xy, W T Xy, W3 e T Xpo1y,Wn T xnukwn—1/

then, rank (4) > k — 1.
Proof. We perform the following elementary column operations on the matrix x :

u -
xlul x2u1 xnul\
T _ xluz x2u1 xnuz
Xy = i . .
xluk xZuk xnuk
0 0 _ 0
Xqu,Wn "Xy, Wp Xn—1u, Wn xnul\
0 0 _ 0
N | _xluz wWn _x2u1(,l)2 xn_luz Wn xnuz |
0 o 0
\_xlukwn —X2u, Wn e Xn—1u, Wn xnuk/
0 0 0 0 _ 0 0
/_xlul Wy + Xnu, W1 Xy, Wn + —Xpu, Wz - Xn—1u; Wn + Xnu, Pn-1 Xnu,
0 0 0 0 _ 0 0
N | —X1u,Wn + Xnu, W1 —Xou, W2 + Xnu, W2 Xn—1u, Wn + Xnu,Wn-1 Xnu, |
0 0 0 o 04 . 0
\_xlukwn + Xnuy, W1 —X2u, Wn + Xnu, W2 e T Xn—1u, Wn + Xnu, Wn-1 xnuk/

The last matrix has rank k since x,, does. Matrix A comes from the last matrix by deleting

the last column, so rank(4) > k — 1.

Lemma (1.1.11)[1]: Suppose that rank (A) = k — 1 and the top left(k — 1) X

(k — 1) block of A, denoted by B, is nondegenerate, i.e., rank (B) = k — 1, where

_xlulwg + xnulwg _xk—lulwroz + xnulwlg—l
B = : : :

0 0 0 0
—X1uy_, Wn + Xnup_ W1 = “Xg—1up_, Wn + Xnuy_, Pk-1



Replace the j th column in B by the (i + k — 1)th column in A (first k — 1 components
in that column) and denote it by B;; where i = 1,...,n — kandj = 1,...,k — 1. Ifwe
denote A= (w?)~*=2) det B and A;; = (w3)~*=2 det B;;, then the solution space of
the linear system of equations Az = 0 is spanned by {v;} where

-A
vi = (Ail’Aizl"')Aik—l’Ol'"lO;i+k_ 1 ,0,.--,0)-

Proof. Since rank(4) = k — 1andrank(B) = k — 1,Az = 0isequivalent to
(Zl> —X1u1w3 + xnul(‘)g _xk—lulwg + xnulwg—l ( Zk )
Bl : : : : :

0 0 0 0
Z7 X1y Wn F Xy W1 T Xg—quy,, On T Xny, Wk-1/) \En-1
On the right hand side, fix z;,,_; = 1 and all other components to be zeros in

(zk --+)Zn_1), by Cramer’ rule,

A A A _r
zZ = (i 2 k=t 0i+k—1 ,0,---,0>,

A" A’ A
which yields
-A
—
V; = Ail,Aiz,...,Aik_l,O,...,O,l+k—1,0,...,0
as desired.
Lemma (1.1.12)[1]: Suppose that A and A;; are defined as in Lemma (1.1.11). Then,
N 0 0 '
w1 Wg_q1 Wn
A= xlul xk—1u1 xnul
xluk_l en xk—IUk_l xnuk_l ka
and
0 0 0 0 0 0
| w3 Wj_q1 Witg—1 Wjp1 - Wp_q Wp
. . e Xp— X
Aij — xlul xj—lul xl+k—1u1 x]+1u1 k—1u, nu,
X X; X X; e Xk—1uy_ Xnu_
TUp—q e J—1up_1 I+k—1up_q jH1ug_q k-1 k-1 Kkxk
Proof.
I —Xqy 0O + X, @ —X wl + x,,, W2
1lu, *n nu, 1 k—1u;%n nu; k-1
0 0 0 0
_ — X1y W Xpqy. @ — X1y, W Xnqy. @
(wg)k 2\ = 1lu, n.+ nu, 1 k—-1u, n.+ nu, k-1
0 0o 0 0
—X1uy_, Pn + Xnup_,®P1 ... “Xk—1up_,Pn + Xnuy_, Vk-1
0 0
' —X1u, Wn —Xk—1u, Wn I
0 0
—X1u, Wn ~Xk—1u, Wn
o 0
X1up_,Pn ... TXk—1up_, Pn



0 0 _ 0
—Xnu, W1 —X2u, Wn Xk—1u, @n

0 0 _ 0
+ —Xnu, W1 —X2u,Wn Xk—1u, Wn
0 0 0
_xnuk_la)l _x2uk_1 Wp v TXg—1u,_, Wn
0 0 0
|—x1u1€0n —Xg—2u,Wn —Xpu,Wg_1 |
0 _ o _ 0
+ | X1, On - Xk —2u,Wn Xnu, Wk-1
0 0 0
“Xiup_On ... T Xk—2up_, On T Xnu,_, Wg-1
_x1u1 - _xk—1u1
—X1u o T Xk—1u
— k-1 0\k—1 2 2
- (_1) (C‘)n) : . .
_xluk_l aen _xk_luk_1
—Xnu, —Xk-1u,
—X —X
0 k=2, 0\k—2 ni; k—1u,
+w1(_1) (C‘)n) : :
Xnup_y; .. " Xk—1lugp_,
| —X1u, —Xk—2u; Xnu, |

—X —Xk—2u Xnu
+w2_1(_1)k—2(w3)k—2 :1u2 2 2

—Xlup_; .. “Xk—2up_; Xnug_y
1 0 0 0 '
Wy Wp_1 W
— (wo)k_z x1u1 nen xk—1u1 xnu1
n .
Xlup_y o Xke—1up_;  *nuy_q ek

as desired.
Similarly we can show that
(w20

0 0 0 0 0 0
| w1 Wj_q1 Wiyg—1 Wi - WDp_q Wp '
= (w0)k2 X1y, - Xj—qu, Xitk-1u, Xj+1iu, Xe-1u;  Xnu,
- n . . . . . .
X1u Xj—1u Xit+k—1u Xj+1u v Xty Xnug
k-1 g) k-1 k-1 g) k-1 kxXk
Lemma (1.1.13)[1]: Suppose that
Ji 0
0
B —Xitk—1u, ¥n + Xnu, Witk-1
— (0= (k-1 .
= (wp)~*Y .
— X1y, WY + Xy, 09 . — X wl + x,,, 02 —X; wd 4 x,, ©?
1up*n nugp“*1 - k—1u;%n nup“k-1 i+k—1u;*%n nup*i+k—-1

I.e., the determinant of the k X k matrix which comes from the first k — 1 columns and
the (i + k — Dthcolumnof A.Herei = 1,...,n — k. Then

10



0 0 0 0
Wy - Wg—1 Wiyk-1 Wn

f' _ xlul xk—lul xi+k—1u1 xnu1
i — .
X X1 — Xi+k—1u Xnu
Luy k=l " e+ Dxk+1)
Proof. Similarly to the proof of Lemma (1.1.12),
0 k-1
(W )7 f;
0 0 0 0 0 0
I_xlulwn + xnulwl _xk—lula)n + _xnulwk—l _xi+k—1u1(‘)n + xnulwi+k—1|
0 0 0 0 0 0
_xluzwn + xnuzwl _xk—luza)n + xnuzwk—l _xi+k—1u2(‘)n + xnuz Witg-1
0 0o 0 0 0 0
X1, Wn + Xnu, W1 ... TXk-1u,Wn + Xnu Wk-1  ~Xitk—1u; Pn + Xnu Di+k-1
0 0 0
I_xnulwl e T Xg—1u, Wn _xi+k—1u1 Wn |
0 0 . 0
“Xnu, W1 e T Xg—1u,Wn Xitk—-1u, Wn
0o 0o _ 0
“Xnu W1 ... T Xk—1u, Wn Xi+k—1u, Wn
0 0 0
Xnu, W1 - —Xk—1u, ®n _xi+k—1u1 Wn
0 0 . 0
+ [*nu, @1 - —Xk—1u,¥n Xi+k—1u, ®n
0o 0o _ 0
Xnu W1 ... ~Xg—1u, Wn Xi+k—1u, ®n
— 0 —X 0 X, W)
xnulwl k—1u1wn nu, *“i+k-1
0 0 0
+ —Xnu,W1 - T Xg—1u,Wn Xnu, Witk-1
_ 0o 0 0
xnukwl _xk—lukwn xnuk Witk-1
1X10, Xg—1u, Fitk—1u
x.
_ k 0 k xlu en xk_lu l+k_1u2
= (- D*(Yk [F1 2
X X Xitk—1uy
Tuy k—1uy
I Xna, Xg—1u, Fitk—1u
x.
0 k-1(,,0Nk—1 [Xnu Xk—1u i+k—1u,
+wi (=) wy) Uz 2
Xnwe oo Xk—1u Xitk—1uy
lxlul e Xg—1u, Xnu,
X
0 k-1(,,0Vk—1 [X1u Xk—1u nu,
Food g (CDF @k [Fin :
xluk s xk—luk xnuk
N 0 0 0
S Wi—1 Wjpg—1 Wn

Xitk— X
. (wO)k—l xluz xk_lul i+k—-1uq; “‘nuq
- n .

xk_luk xi+k—1uk xnuk

X1uy (k+1)x(k+1)
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as desired.
Lemma (1.1.14)[1]: If A= Oand f; = 0,i = 1,...,n — k,wehavew, = Y2y a;xy,
where a; € R. Furthermore, i; = (-1)/ agbi;,j = 1,...,k — 1, where

X1u, Xj+1u, Xk—1u; Xitk—-1u; *nu,
b.: = : : : :
H xluk_l xj+1uk_1 xk—luk_1 xi+k—1uk_1 xnuk_1 ’
xluk xj+1uk xk—luk xi+k—1uk xnuk kxk
and = (—1)*"1q,b where
I X1u, Xk—1u, Xnu, i
p = : : o
xluk_l xk_luk_l xnuk_1 ’
X1u X Xnu
k k—1uk k kxk

a, # 0and b # 0since A+ 0.
Proof. A+ 0and forall i, f; = 0 implies that the following matrix has rank k:

w) ... W \
Xy w Xnu
L ©))
xluk xnuk (k+1)>(7'l
However,
x1u1 xnul
xluk xnuk kxn

has maximal rank, therefore, in (9), the first row can be expressed as the linear combination
of the other rows, i.e., wg = YF ., a;xy, -a; = 0 follows from A # 0. Furthermore,

0 0 0 0 0 0
Wy Wj_q Witg—1 Wj+1 - W3 Wp
. Xy — X
A= [X1ug e Xj—1u,  Xitk—1u, Xj+lu k=1luy  “nuy
u—l o, c.
. Xy — X
Xtug oo Xj—1wy,  Xitk—1uy Yj+1ug_ k=1ug—1  *nug—y
0 0 0 0 0 0
Wy e Wj_q Witg—q Wj+1 - @Wg_3 Wp
; ; X Xk—1u Xnu
= ay Xy, - Xj—1u, Xitk—1u, *j+1lug 1 1
. X — X
Xtug e Xj—1wy,  Xitk—1uy Yj+1ug— k=1ug—1  *nug—y
0 0 0 0 0 0
e (_1)k—1ak . X X
Xup_y o Xj—1up_, Xitk—1up_4 Xj+1up_4 k=1ug—q NUk_q
X , X — X
1t Xj-1u, Xitk-1u, Yj+1ug k=lu  “nug

Since (—1)*-D+k=j-1) = (_1)~J = (=1)/, the proof for ij is complete. A similar
argument applies for A.
Lemma (1.1.15)[1]: Suppose that w, = ¥, a;xy, , then
—(@) (D) + -+ Agowpoy — Awdyy) = (=D tagby,
where

12



Xy, - Xk=1uy  Xitlk-1u,
b, =1 : P
X1y, o Xk—1u,  Xnu,
Proof.
—(w) A0 + -+ Agoqwp_y — APy g_q)
ar (D (D" wlby + - + (—D*wp_1by—1 + (D w),, _1b)

N 0 0 0
w1 .. Wp—1 Witg—1 Wn

X Xi+k—1u,; *nu
_ 0y-1 |X1u k—1u, 1 1
= Qg ((Un) . 2
xluk xk—luk xi+k_1uk xnuk
| O 0 0w |
n
X X
X Xk—1 i+k—1u; *nuq
0y\—1 |[*Mu U
—ag ((Un) . 2
xluk xk—luk xi+k_1uk xnuk
Xy, o Fh-1uy  Xitik—1u,
= (=1)**1q, Pl
xluk xk—luk xnu1

= (=D aybp.
Theorem (1.1.16)[1]: Let (M, g) be a smooth compact Riemannian manifold of dimension
n and X be a smooth submanifold of dimension k (1 < k < n).
() Ifk = n — 1, we have, forall ¢;,

lpallezy C(1 + DPr=1P™ gyl 2 an),

where
n—-1 n-—-2
R 2 if2<p<
p"‘l(p’n):{n -1 n—-1 _ 2n
k > T > 1fn_1SpS+00.

(i) Ifk = n — 2, we have, for all ¢,

1 1
loall 2 €1 + D2 (logB + D)2ll@all 2y,
lpallecsy C(A + DPr-z @M@, ][ 20,

where p,,_,(p,n) = nT_l —nT_Z ,2 < p < Hoo,
(i) If1 < kn — 3, we have, for all
o1 l@allLesy C(A + A)PE (b.n) loall L2
where p, (p,n) = nT_l —S ,2< p < +oo,

Proof. Consider the left projection of the canonical relation C :

o (wo,..., 0l ) - (4 dy, Wy, dukz,br).
Since the projection in the u variable is the identity,
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du1w(1) l/Jr dulwg lpr dulw%_l l/Jr
Duwolpr = duza::(l) lpr duza:g lpr ..“ duzw%_l lpr

DT[L ~

dukw‘l’ Yy dukwg YL dukw%_l lpr/
Lemma (1.1.9) yields
Vu¥rlu=0 = V- (0, @) - xy
= (go(worxul)rgo(worxuz)r rgo(worxuk))
= ((C‘)o: xu1> ’ (C‘)O:xuz e (“)Orxuk> )
Xiu, Xgu, - Xw
X1u, Xou, xzuk\

(10)

= (w?, ..., 0d)

Xnu;,  Xnu, ... Xnuy

So
\T
0 xlul x2u1 xluk\

D _ 0 1 w 0 —— X1u, Xou, X2uy
Tplu=0 = wn, : : :

S 0 Xnu, *nu, .. xnuk/
Wp-1
0 0 ..1 ——
wn

0 0 0 0 _ 0 0
/_xlulwn + Xnu, W1 —Xy, Wn + “Xnu, Wz - Xn-1u, Wn + Xnu, Wn-1 Xnu,
1

__Ol _xluzwg + xnuzw(l) _x2u1(1)2 + xnuzw(z) _xn—luzwg + xnuzwg—l Xnu, |
Wy : : : :
\_xlukwrol + xnukwg _x2uk(1)2 + xnukw(z) _xn—lukwg + xnukwg—l xnuk/
L A
=4
From Lemma (1.1.10), rank(4) > k — 1, which means dim ker (Dm, )™ *.The critical
points of nL are the points where rank(4) = k — 1. Assume that the top left (k — 1) X
(k — 1) block of A is nondegenerate, i.e., A# 0 (see Lemma (1.1.11)). Then the critical
point set 2 at u = 0 is 2, = {(0,...,0,wy,...,0%_): fi = 0,i = 1,...,n — k},
where f; is defined in Lemma (1.1.12). Furthermore, by Lemma (1.1.11), the kernel vector
field isspanned by V;,i = 1,...,n — k,

d d d 0 . .
where Vv, = Aila_w‘; + A"Za_aﬁz) + -+ A PP — Aaw?+k_1 Afi # I
0y—1 0 0 0
1A v Ager 0 —(@R) M (Apw) 4+ 4+ Ajoq0f_y — Awfyy4)]
Xittr— X
Vlf} — x1:u1 xk_11.11 ]+fc 1u, n.ul

xluk xk—luk xj+k—1uk xnuk
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by . (=D*Zby_; (=D*by,

X1y, - Xk—1u, Xj+k-1u; *nu,
= —ag . . . .
xluk xk—1u1 xj+k—1uk xnuk
= —ag (bllb] 1 + - + bik—lbj k—1 + blnb] n)
Ifi =,
0y—-1 0 0 0
[0 o Ageq =& —(0) (A0 + -+ + Ay qwp_g — Awyp )]
— |[*1u Xk-1u Xj+k-1u; Xnuy
Vify =M S |
X1up .. Xk—1uy, Xj+k—1u,  Xnuy
[] k—2 k 1
biy .. (D" by (=1)"biy
X1y, - Xk—1u, Xj+k—1u; *nu,
= —ag . . . .
X1up oo Xk—1uy; Xj+k—-1u,  Xnuy

= —ag (bllb] 1 + - +bik—1bj k—1 + binbjn)'
Therefore, (V;f; ) = —ay (AA" + b*I), where a;, # 0 and

b11 b12 blk—l bin
A= : : P
b

n—k1i bn—kz bn—kk—l bn—kn
Clearly (Vifj) Is positive definite or negative definite (up to the sign of —a; ), so

det(V;f;) = 0. Thus, the singularities of 7, are at most submersions with folds when u =
0 (or in the coordinate chart by continuity and stability). For k <n — 2, the desired
estimates in [10] (r < 1) and the relation y; = nT_l Ty + Ry. For k = n — 1, we are
trying to apply Theorem 2.2 in [10]. It suffices to check that Ly = {(dy, ¥r...., du, ;) :
u=20andf; =0i=1,....,.n — k} iIs a hypersurface with nonzero principal
curvatures. In fact, (10) implies that atu = 0,dy, ¥, = (wg,xy). By Lemma
(1.1.14), dui Y = Z?:l A Xy » Xy S0

dulwr a;
duklljr ak

(xul rxu1> (xul :xuk>

Where

B = : : :
(xuk rxu1> <xuk ) xuk>

On the other hand, (wy, we) = landwy = Y=y a;xy, yield

a;
(a,...,a; )B ( : > = 1.
Ay

Therefore,
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dullpr
(du,¥r ..., dy P )B'BB7Y = 1.
dy, Yr
This implies that £, is a hyperellipsoid and hence all its n — 2 principal curvatures are
nonzero (by continuity, one get the same result nearby). "T_l T, + R;, we get the desired
estimates fork = n — 1.

When k = n — 1, the estimates in Theorem (1.1.16) can be improved if X satisfies
some curvature condition. For Theorem (1.1.21), similarly it suffices to show

n—1
IT7 Gl gy €A+ VPP 7T |l 2 (snny. (11)
Lemma (1.1.17)[1]: Consider the linear equation system A’z = 0 where
A

0 0 0 0 _ 0 0
—X1u, Wn + Xnu, W1 —Xou,Wn + —Xnu, W2 - Xn—1u, On + Xnu, ¥n-1 Xnu,
0 0 0 0 0 0
—X1u,Wn + Xnu, W1 — Xy, W2 + Xnu, W2 e T Xp—1u,Wn + Xnu,Wn-1 Xnu,
0 0 0 0 ' 0 0
—X1u, Wn + Xnu, V1 —X2u, Wn + Xnu, W2 e T Xn—1u, Wn + Xnuy, Wn—-1 xnuk/

as in Lemma (1.1.10). Suppose det A = 0 and the top left (n — 2) X (n — 2) block of
A is nondegenerate, i.e., rank (B) = n — 2 where

—X1y, Wp F Xy, ©F ~X1y,_, W + Xny, 07
B = ; : : ,
_xm—Zulwgl + xnulwg—z _xn—Zun_z w;)z + xnun_z wg—z

Replace the j th column in B by the n — 1st column in A (first n — 2 components in that
column) and denote it by B; where j = 1,...,n — 2. 1fwe denote = (w3)~ "> det B; ,
then the solution space to the linear equation system A’z = 0 is spanned by {w} where
w = (A, Ay,..., A 5, —N).
Proof. Sincedet A = Oandrank (B) = n — 2,4'z = 0is equivalent to

0 0
_ Z1 _xlun_lwn + xnun_lwl
B : = — Zn—l-
0 0
22 —Xn—2u,_, Wn T Xnyu,_, Wn—2
i i i A A A .
On the right hand side, fix z,_; = 1, by Cramer’ rule, z = (—f ,—fz, ”ZZ ) 1) which

yieldsw = (Ay,4,,...,A, 5, —A), as desired.

Lemma (1.1.18)[1]: Suppose A and A; as in Lemma (1.1.17) where j = 1,...,n — 2. If
dt A =0 when u =0 we have w0 = Y ax, (0), where a; €R.
Furthermore, A; = (=1)"2a; band A = (—1)""2a,_,b where

xlul xn—Zul xnu1
b — . .
xlun_z xn—Zun_z xnun_z
xlun_l xn—Zun_l xnun_l

as in Lemma (1.1.14).
Proof. Ifdet A = 0, we have
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0 0 0 0
w1 Wp-2 Wp-1 Wn
oyn-2 | X1u xn—2u1 Yn-1u; Xny,
detd = (w2) R o =0. (12)
xlun—1 xn—Zun_l xn—lun_1 xnun_1

Since

( X1u, Xnu, >
xlun_1 xnun_1 (n—-1)xn

hasrank n — 1, the first row in (12) can be expressed as the linear combination of the other
rows, i.e, wy = Y15 ajxy,, , Wherea; € R.
Similarly to the proof of Lemma (1.1.12), we obtain

0 0 0
| wq Wp_p Wy
A | X1u, Xn—2u, Xnu,
A=
X
Xlup_q e Xn—2uy_, NUp—1
xlun_1 xn—Zun_1 xnun_1
=0an—
xlun_z .en xn—zun_z xnun_z
=(-D"2q, . b
and
0 0 0
w1 Wp—oy Wn
x1u1 xn—2u1 xnu1
Y 1u;_ Xn—2u;_ Xnu;_ -
Aj: J-1 J-1 71 = (—1)n 2aj b.
xlun_l xn—Zun_l xnun_l
xluj+1 ':' xn_zu]'+1 x?’LUj+1
xlun_z xn—Zun_z xnun_z

Lemma (1.1.19)[1]: Let W = ¥} a,i. If det A = 0 when u = 0, we have

aul
W (w(x(u),y))|y-0 = 0.
Proof. Consider g(w(x,y), w(x,y)) = 1,1.e,

g1 (x) . g\ /@1
(w1, .. ,wn)< : : : >< : >= 1. (13)

In1(x) . Gnn(x)/ \Wn
Since we are working in geodesic normal coordinate system, all the first order derivatives
of the metric vanish at the origin and (g;; )|x=o = Id. In (13), taking the derivatives with

respect to x4, ..., x, respectively, then for x = 0,

wlxl wnxl (1)8
S =0 (14)
wlxn wnxn a),g

It follows from Lemma (1.1.9) that
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In (15), taking the derivatives with respect to x,...,

(al/)r 0P,

ox; =~ ox,

) = (0)1:---:(011)(

g1 () . gin(x)
: : : ) (15)

In1 (x) gnn(x)
x,, respectively and keeping in mind

that all the first order derivatives of the metric vanish at the origin and (g;; )|x=o = Id, we

have for x = 0,

0, 0,
0x,0x;  0x.0x, (“’lxl “)nx1>
azlpr azl/Jr/ Wix, = Wnx,
0x,0x; =~ 0x,0x,
So the matrix
Wix, - Wny,
( S > (16)
Wix, - Wnx,
Is symmetric when u = 0. (14) and (16) yield
Wix, = Wng\ [@f
( : : : > i ]=0.
Wix, - Wnx, w,g
Therefore, atu = 0,
n-1 dw n-1 w%x1 a),?xl
W(wlkxw),y)) = z a5 = z az( = = = )xul
=1 “ =1 Wix, = Wnx,
Wix, = Oneg\ [@?
:( : : : ) =0
Wix, = Wnx, wg

as desired.
Lemma (1.1.20)[1]: Suppose that the second fundamental form of X' is (positive or negative)
definite. Then, at u = 0, the matrix A, is (positive or negative) definite where
(xululr N) (xulun_1» N)
A = : : : ,

(Xup_yu, N)
and N is the unit normal vector of 2.
Proof. If the second fundamental form of X is definite, we have that

g (Dxu1xu1 ! N) ) (Dxu1xun 1’ N)

9 (Dxun—.1xu1’N) g( Xup—1Xup—1’ )
suffices to show that at = 0,

<xun—lun—l’ N>

is definite. It g(Dxu. Xu]-,N) =

Xy Noi=1,...,n — landj = .,n — 1. Since g(O) = Id, it is enough to show
that
- d
Dxui Xy; = ; xl“i“ja_xl' (17)
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In fact,

D =D zn: o) _ Zn: (D )a tx D, 2
xu Xy = Py Xl dx, | Xu; Xlu dx, Ky Py dx;

=1

=) (1 5 )
B Mg 0x; Xy Py dx;)

=1
Since we are working in the geodesic normal coordinate system, all the Christoffel symbols

vanishat u = 0, so that Dxu.ai = 0. Therefore, (17) follows.
l

iox

Theorem (1.1.21)[1]: Let (M, g) be a smooth compact Riemannian manifold of dimension
n and X be a smooth submanifold of dimensionn — 1. Suppose that the second
fundamental form of X' is (positive or negative) definite. Then, we have, for all ¢,
loallrzy €A + PP |1all 2 s
~ _ n_—l _ 2n-3 . 2n
where p(p,n) = . v if2<p< —
Proof. From the proof of Theorem (1.1.16), we know that L has at most fold singularities
in U. Now consider mp which has the same critical point set 2 as m; : (u,wy) —

(wg, —dw? Yy, ..., —dwl_; ,). Since the projection on w, part is identity,
da)gul Yy dw‘l’uz Yr dw(l)un—l ¥r \
o d
Dr, ~ Da)oulpr = dwgifl ¥r dwglfz Vr ) wgu,}_l Vr |
dwg—ﬂh ¥r dw%—ﬂiz broo dw%—1un—1 %/
From (10), it is easy to see thatat u = 0,
0
w1
/ 10 .0 —— \
Wn x
w0 Xu, Xou, 1un—1\
D — 0 1 wnn O - _2 xluZ x2u1 e xzun_l
= 0
TR Wy . . . .
:0 Xnu;,  Xnu, ... Xnu,_,
Wn-1
00 .1 ——
wTL
—x + 9 0 4 0
1u1wn xnulwl Xn—1u; Wn T Xpy, Wp-1
0 0 0
- — i —Xqu,Wn + Xnu, W1 Xn—1u, Wn + Xnu,Wn-1
0 .
W :
0 0 0 0
\_xlu 1 Wn T Xny L W1 Xn—1u, Wn + xnukwn—1/
1 T
——AL (18)
wn

When u = 0, the critical point set is 2, = {(0,...,0,w?,...,w3_,) : detd = 0}.

WLOG, assume that A # 0. By Lemma (1.1.17) and (1.1.18), a nonvanishing kernel vector

fieldof g is = Y wi(x,y) %,Where w; = a;whenu = 0. Note again that all the
l

first order derivatives of the metrics vanish at the origin in geodesic normal coordinates.
Thus, in £2,,
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%
a g11(x) .. gln(x)>
. H xu

aa) /<gn1(x) gnn(x)
dwp_4

dw
=)
= : Xy
dw
aa)n 1/ /

6_«»
dwy \ 911(x) e G1n(X) \ 1

+ : /( >xu/+W<det<—w—A >>
aw In1 (x) e Gnn(X) n

dwn_q

W (det(Duyuttr)) = W

N~

1 n—1
— (- F) W (det(4")

n
So we only need to focus on W (detA4) when we stay in £2,. Recall that
1 0 0 0 0
w1 Wp_y Wp_1 Wy

xn_Zul Xn— 1u, xnul

detA = (O)n2| 1w
Xlup_q e Xn—2up_q Xn—1un_; *nu,_,
Denote N = (Ny,...,Ny,) =% (My4,..., My,), where My is the corresponding minor of
detd and M = M? + - + M2?,.Clearly M = 0 since

( X1u, Xnu, )
Yy - Xnan, (n—-1)xn

has maximal rank. So detA = (wd )" 2M(N,w,)anddetA = 0 & (N,w,) = 0. Since
we have detA = 0in £,
(W) 2W (detd) = W(M)(N wo) + M (W(N), w,)

M<Z Gy, ) =
(xulul N) (xulun_lr N) aq
P

M (aq,...,a,-1) :
(xun_luly N) .. (xun_lun_l: N)

a;
ap-1

where A; is defined in Lemma (1.1.20) since it is easy to see that (Nui,xu].) =
— (N, xuiuj). Clearly A # 0 implies that a,,_; # 0. Lemma (1.1.20) guarantees that A,

n—1
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is positive definite or negative definite in £2,, then W(detd) # 0 which means that
w (det(Dwoulpr)) =0.So0W (det(DwOulpr)) = 0 in 2 as long as we choose € small
enough. Therefore, my has at most fold singularities in U. By Theorem (1.1.7) in [7] (also

-1

see [12]), ITy (F)llpzsy C(1 + A) ™ 2 +g If Il 2(sn-1- (11) follows by interpolation.
If dim M = 3 and dim 2 = 2, W|th a locally Euclidian metric g, we can show
Theorem (1.1.23).
Lemma (1.1.22)[1]: If a regular surface in R3 is parameterized by x(u) = x(uq,u,) =
(uq, h(uq,uy), u,), then the differential matrix of the Gauss map N is
dN Zi(huﬂh hu1u2><g:11 9:12)_1

huzuz huzuz 912 Y22

(X, » Xy, ) -

Proof. This follows simply by calculations from differential geometry (e.g., see [6] §3.3).
Theorem (1.1.23)[1]: Let X be a smooth surface in M. Suppose that either the second
fundamental form of X' is definite or X' has exactly one zero principal curvature. Let K be
the Gauss curvatureof Yand y = {P € XY : K(P) = 0}. Suppose VK # 0Osothatyisa
C™ curve. If the tangent vector corresponding to the zero principal curvature is not tangent
to 7, then for all ¢,

lpallecsy €A + DPP @l 2
where p(p) =% —%,2 <p<3.

Proof. The proof of Theorem (1.1.16) shows that 7r; has at most fold singularities. So we
only need to consider my:

Mg ¢ (Uy, Up, wo) — (wOr —d 0 Yy, —d 9 ‘l’r)
~ W up) = (=deg Y —dyg Py):
Since our metric is Euclidian, WLOG, we may choose coordinate system such that x(u)
x(uq,uy) = (uq, h(uq,u,), u,) for some smooth function h where h(0,0) = 0 andy

r(w),wd, w3) where w§ =+/1 — (0?)2 — (w2 = 0. The phase function of T} is

\Yr(x(ug, uz), wg) = _\/(u1 - rw1)2 + (h(ug,up) — 7”602)2 + (u, — ng)z
So by Lemma (1.1.9),

dw

—d, o Y —d, o Y dw9
DnR _ ( dwl u; *r w3 Uy r> _ | w1 | (xul ’xuz)
Y0l uy Yy _dwgz U, Yr Jw

/ (=—=5 _(_6 )\
, X , X
6 ° ul awf he |

ow '
\ (2 )~ (Gog )
In the critical point set 2, rank(D,,) = 1. WLOG, assume that

a - - H H
—{ a_a‘:’o , Xy, ) # 0; then, a nonvanishing kernel vector field is
1
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auZ
Note  that  x, = (1, hy, ,0),x,, = (0,hy,,1), %, = (0,hyq,,0) xu1u2 =
(0, hu1u2 0) and x,,,, = (0,hy,,,,0). By calculation, at u = O,W = (09) 5— -+

2

2
+ (w3 )2 . Another calculatlon

2
(w$ ) — and W? = (w? )2 + 2wdw? p 9
2

1 uq0uy
tells us that
1 u; — wd + hy h — h, o
det(Dy,) = —5— detG — ! . 0u14 122 detG,
wSI»gr 0 (‘)311)7”
—u® — w3 + hy, h = hy 4,9 detC
2
w3}
Where
w) wd wd w) w) wd 0! w) )
G = 1 hu1 0 ,G1 = W hu1 Uz |, Gy = 1 hu1 0
0 hy, 1 0 hy, 1 U hy, U

If det(D,,) = Oatu = 0, we have det(G) = 0 which means w{ = a; and w3 = a?

where a? # 0 by Lemma (1.1.18). So, at u = O, W = a, % + a, %,and W, =
2 02 0 1 2

! ou? a4z ou,0u, 4 auz '

Then, W(det(DnR)) = Ow W(det(G)) when u = 0 and det(G) = 0 since

W (det(G,)) = W(det(G,)) = det(Gy) = det(G,) = 0 at u = 0. If the second
fundamental form of X is definite at u = 0, then W(det(G)) + 0atu = 0 (and hence
nearby) as in Theorem (1.1.21), therefore, there are at most fold singularities for g which
means that we can obtain even better estimates than we want to prove. At u = 0, when

det(G) = W(det(6)) = 0,W; (det(Dy,)) = — o Wa(det(©)) since W (det(6)) =

W (det(G,)) = W,(det(G,)) = W,(det(G,)) = Oatu = 0.

We focus on W, (det(G)) when det(G) = W(det(G)) = 0 at u = 0. Calculation
shows us that W (det(G)) = afhy,,, + 2a;a;hy,,, + a3hy,, . If T has exactly one
zero principal curvature, Lemma (1.1.22) implies that hﬁluz — hy,u, hu,u, = 0and one
of hy v, and hy, ., must be nonzero, otherwise, det (N) = 0 would imply that N = 0
which yields two zero principal curvatures. Assume h,, ,, # 0. Then

w(det(G)) = hgl, ((alhulul + aghy )

= By — P i) ) - W (Aet(6))um = 0

: d a .
forcesajhy ., + azhy ., = Oatu = O0whichmeansthat W = a, P + a, a_uz's an
eigenvector corresponding to the zero eigenvalue atu = 0. Since the eigenvector

corresponding to the eigenvalue 0 is not tangent to 7, i.e., W(hulu2 — hyu, huyu, ) # 0,
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keeping in mind that a, h,, ,,, + ayhy ,, = Oatu = Oanda, # 0, wehavethatatu =
0,

Wz(det(G)) = W(h;llul ((alhu1u1 + aZhu1u2 )2 - a%(hﬁzhuz o hulul huzuz))>

= hﬂful a%W(hiluz - hu1u1 huzuz) + 0.
So W, (detmg) # 0, which implies that  has at most type 2 singularities at u = 0 (and thus
nearby). By Theorem (1.1.1) in [7],

1

IT7 (Fllzzy €A+ D7EIS Nz,
and Theorem (1.1.23) follows from interpolation. From Theorem (1.1.23), we immediately
get the following eigenfunction estimates:

loallr ) CAL + PPyl 2 (ary.
Section (1.2): Compact Boundaryless Riemannian Manifolds with Nonpositive
Sectional Curvature

For (M, g) be a compact, smooth n-dimensional boundaryless Riemannian manifold

with nonpositive sectional curvature. Denote 4, the Laplace-Beltrami operator associated
to the metric g, and d4(x,y) the geodesic distance between x and y associated with the
metric g. We know that there exist 2 > 0 and ¢, € L*(M) such that —4,¢; = A°¢;, and

we call ¢, an eigenfunction corresponding to the eigenvalue A. Let {ej (x)}jEN be an L*(M)-
orthonormal basis of eigenfunctions of ./—4,, with eigenvalues {Aj}jeN, and {E; (x)}jEN be

the projections onto the j-th eigenspace, restricted to X, ie. Ejf(x)=
e;j(x) fM e;()f ()dy, forany f € L*(M),x € X. We may consider only the positive A’s as
we are interested in the asymptotic behavior of the eigenfunction projections. We have the
following.

Theorem (1.2.1)[19]: Let (M,g) be a compact smooth n-dimensional boundaryless
Riemannian manifold with nonpositive curvature, and ¥ be a k-dimensional smooth

submanifold on M. Let {Ej (x)}jEN be the projections onto the j-th eigenspace, restricted to
. Given any f € L?(M), we have the following estimates: When k = n — 1,

25@) -
Eif s tlflizan,  ¥p>—F  (19)
|2;-2|<(log 1)~ P (log 4)2
When k <n — 2,
216
Eif = Tl lizany, VP> 2, (20)
|2,-|<Cog 1)1 . (log1)2
n-1 k
where §(p) = <

Note that we may assume that (M, g) is also simply connected in the proof.

The following corollary is an immediate consequence of this theorem.
Corollary (1.2.2)[19]: Let (M,g) be a compact smooth n-dimensional boundaryless
Riemannian manifold with nonpositive curvature, and £ be a k-dimensional smooth sub
manifold on M. For any eigenfunction ¢, of 4, s.t. —4,¢; = A2¢;, we have the following

estimate:
23



When k =n — 1,

Ipallrsy S ——x Nballizary VD > — (21)
(logl)(f)
Whenk <n— 2,
26(@)
lpallirsy S ——x l@allizry, VP > 2. (22)
(logﬂ)(i)
where §(p) = nT_l — S.

In [26], Reznikov achieved weaker estimates for hyperbolic surfaces, which inspired this
current line of research. In [5], Theorem 3, Burq, G’erard and Tzvetkov showed that given
any k-dimensional sub manifold ¥ of an n-dimensional compact boundaryless manifold M,

forany p >%whenk =n—1and forany p > 2 when k < n — 2, one has

lpallecsy S 2PN pall 2y, (23)
while for p = %whenk =n—1and for p = 2 when k = n — 2 one has
1
Ipallrez) < 2°P (og D2l pall 2 ury- (24)
Later on, Hu improved the result at one endpoint in [1], so that one has (23) for p = %

when k = n — 1. Itis very possible that one can also improve the result at the other endpoint,
where p = 2,k = n — 2, so that we also have (23) there. Our Theorem (1.2.8) gives an

improvement for (23) of (logA) 2z for p = 2 for certain small k’s (see the remark after
Theorem (1.2.8)).
Note that their proof of Theorem 3 in [5] indicates that for any f € L*(M),

Eif < 22PNl ary, (25)

LP(Z)
for any p > % whenk =n—1and p = 2 when k < n — 2 except that there is an extra

|2;-2]<1

(log /1)% on the right hand side when p = 2 and k = n — 2. In the proof, they constructed
xa=x(/—44— 1) from L2(M) to LP(X), where y € S(R) such that y(0) =1, and

showed that y;(x,)" is an operator from LP (X) to LP'(3) with norm 0(/126(?’)). That means
there exists at least an € > 0 such that

E;f < 5P fll oy (26)
|2;-2]<e LP (D)
The reason why (26) is true can be seen in the following way. Consider the dual form of

(2= [-a0)f| = 2PUfNz 0, @7)
LP(2)

D x(=W)E | S 2Plgle, (28)
J

L2(M)

which says
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where E; is the conjugate operator of E; such that E;' g(x) = e;(x) fz e;(y)g(y)dy, for any

g € L2(2) and x € M. There exists an £ > 0 such that y(t) > % when |t| < & because we
assumed that y(0) = 1. Therefore, the square of the left hand side of (28) is

> G -EglL, + Y (G =2)EglL,,
|A-2;]<e |A-2;]>¢
1 . 112
= Z 157 gl 0y (29)
|A-2;]<e
That means
Eig < 2°PIgllr(z), (30)
|A-2;|<e (M)

which is the dual version of (26).

If we divide the interval (A — 1,4+ 1) into i sub-intervals whose lengths are 2¢, and
apply the last estimate é times, we get (25). Thinking in this way, our estimates (19) and
(20) are equivalent to the estimates for

Ej
|A;-2|<elog=12
for some number € > 0, which is equivalent to estimating

I« (12~ /~9)

- LP(2), (31)

L2(M)

L*(M) L@, (32)

for T ~ log™! A.

1
The estimates (23) and (24) are sharp (except for the (log A1)z loss) when M is the standard
sphere S™ and X is any submanifold of dimension k, when it is saturated by the zonal
spherical harmonics. It is natural to try to improve it on Riemannian manifolds with
nonpositive sectional curvature. Recently, Sogge and Zelditch in [30] showed that for any
2-dimensional compact boundaryless Riemannian manifold with nonpositive curvature one
has

1
supllgallrg)/Idallizn =0 (1), for2<p <4, (33)
ye

where IT denotes the space of all unit-length geodesics in M. Our result implies that on 2-

11

dimensional manifolds, we have sup|[@allLr g/l dallzn) = 0( z p1> for p > 4. This
YEI (logA)2

together with (33) improves (23) for the whole range of p in dimension 2 except for p = 4.
Note that (25) is sharp for any compact manifold, in the sense that we fix the scale of the
spectral projection (see [5]), but if we are allowed to consider a smaller scale of spectral

1
projection, then our Theorem (1.2.1) is an improvement of (log 1)z for (25), with the extra
assumption that M has nonpositive curvature, and the corollary is an improvement of (23).
Theorem (1.2.1) is related to certain LP-estimates for eigenfunctions. For example, for 2-
dimensional Riemannian manifolds, Sogge showed in [28] that
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pallran _ ) (A%@_%)) 34
lpallzqn
forsome 2 < p < 6 ifand only if

1
suplipall ooy /ldall iz = 0 (AZ). (35)
YEII

This indicates relations between the restriction theorem and the LP-estimates for
eigenfunctions in [15] by Sogge, which showed that for any compact Riemannian manifold
of dimension n, one has

;1(1_1) 2(n+1)
I#allran = 4 2 52 Pliallizan,  forz<ps=——7— (36)
And
n(l_l)_l 2(n+1)
Ialliran = A2 P2 2Mallizquy,  for ——7—=p=c. (37)
There have been several results showing that (37) can be improved for p > (n+ ) (see

[29] and [17]) to bounds of the form

n(l_l)_l
lpallocan/Nall 2y = 0 (A 27 )
for fixed p > 6. Recently, Hassell and Tacey [23], following B erard’s [20] estimate for

p = oo, showed that for fixed p > 6, this ratio is 0(A (5_5)_5/,/105; A) on Riemannian
manifolds with constant negative curvature.

We first analyze the situation for any dimension n.

Take a real-valued multiplier operator y € S(R) such that y(0) = 1, and #(t) = 0 if

[t] = % Let p = y?;then p(t) = 0 if |t] = 1. Here, 7 is the Fourier transform of y.
For some number T, which will be determined later, and is approximately log A, we have

X (T(/l — 1/—Ag)) ®, = @;. The theorem is proved if we can show that for any f € L?(M),

5(p)

A
X4 1oy S — 1 lizaany (38)
(log 4)2

where y4 = y (T(/l — ,/—Ag)) is an operator from L?(M) to LP ().
This is equivalent to saying that for any g € LP'(Z),

26(p)
Lp(z) 1 g gl o 5y, (39)
where p’ is the conjugate number of p such that —+ — =1, and (x4)" is the conjugate

operator of y#, which maps LP'(2) into L2(M).
If {e; (x)}jEN is an L?(M) orthonormal basis of eigenfunctions of ./—4, with eigenvalues

{/1-} jen’ and {E-(x)} ____is the projection onto the j-th eigenspace restricted to X, then I|5 =
SienE o and \J=Agly = Xjen 4By 1 we set pf = p (T(A— [=4,)): L2(M) - LP (%),

then the kernel of y7 ()(T) is the kernel of p#, which is restricted to X x X. This can be seen
in the foIIowmg way.

Expand 7 and (x2),
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w0 = Y x (10-1)) 0 [ g0IF 0y, vfel2on, o)

and e
(x#) () = zx(T(z — 1)) €i(x) f e Nfdy, vf €p'(D), (41)
c X
Then e
A6 00 = Y (10 =101 (T(1-2)) 6 | ¢01e0) | a@g@dzdy
i,JEN z
z (T(A A) e](x) je](z)g(z)dz
JEN
z (T(/l A ) ej (x)je](z)g(z)dz (42)
On the other hand, /e
1 (! .
ID% = Z P (T(A - A])) E] = z E_[ ﬁ(t)elt[T(A_Aj)]Ejdt
JEN JEN -

- e ) (g

= % _TTﬁ (%) cos (t\/TAg) e'ttdt — p (T (’1 + \/TAQ)> (43)

Here, p (T(/l + ,/—Ag)) is an operator whose kernel is 0(1™"), for any N € N, so that we

only have to estimate the first term. We are not going to emphasize the restriction to X until
we get to the point when we take the LP norm on X.

Denote the kernel of cos(t \/—4,) as cos(t \/—4,) (x,y), for x,y € M. Then for any
g €L,

() 90 = = J J cos /—Ag) (x,y)eg(y)dtdy + 0(1). (44)

Take the LP(2) norm on both S|des
”XT()(T) g” (LP(2) )

cos —A, ) (x,y)etrg(y)dtdy|Pdx
<z ([ pF)es(e ) i

+ 0(1) (45)
We are going to use Young’s inequality (see [16]) with % =1- [(1 — %) — %] = % , and

K(x,y) = —f cost \/7) (x, y)e't dt. (46)

Denote K as the operator with the kernel K(x y) from now on.
Since K (x,y) is symmetric in x and y, once we have

/125(19)
sup||KCe, )| irsy S ——,
xelz)ll Ml s Tog A
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where r = p/2, then by Young’s inequality, the theorem is proved.

We can use the same argument as in [30] to lift the manifold to R™. As stated in Theorem
IV.1.3 in [25], for (M, g) with nonpositive curvature, considering X to be a fixed point on
Y, there exists a universal covering map p = exp,: R™ —. In this way, (M, g) is lifted to
(R™, g), with the metric § = (exp, )*g being the pullback of g via exp, . § is a complete
Riemannian metric on R™. Define an automorphism for (R", §), a: R™ - R", to be a deck
transformation if

pea =D,

when we shall write @ € Aut(p). If ¥ € R™ and a € Aut(p) (let us call a(X) the translate
of ¥ by o), then we call a simply connected set D ¢ R™ a fundamental domain of our
universal cover p if every point in R™ is the translate of exactly one point in D. We can then
identify our submanifold X in (M, g) uniquely with a submanifold in D < R™ with one-to-
one correspondence. Likewise, a function f(x) in M is uniquely identified by one f,(X) on
D if we set f, (%) = f(x), where % is the unique point in D n p~1(x). Using f, we can
define a “periodic extension”, f, of f to R™ by defining f(#) to be equal to f, (%) if ¥ = ¥
modulo Aut(p), i.e. if (X, @) € D x Aut(p) are the unique pair so that y = a(%).

We shall exploit the relationship between solutions of the wave equation on (M, g)
of the form

{(ag —4,)u(t,x) =0,(t,x) € Ry X M, (48)
u0)=f,  0u0,) =0,
and certain ones on (R, §),
{(ag - A9u(t, %) = 0,(t, %) € R, X R", 49)
#(0,) = f,0,a(0,-) = 0.

If (f(x),0) is the Cauchy data in (48) and (f(%),0) is the periodic extension to (R", §),
then the solution 7i(t, X¥) to (49) must be a periodic function of % since § is the pullback of
gviap and p o a = p. As a result, we have that the solution to (48) must satisfy u(t,x) =
t(t,x) if x € D and p(X¥) = x. Thus, periodic solutions to (49) correspond uniquely to
solutions of (48). Note that u(t, x) = cos(t,/—4,) f (x) is the solution of (48), so that

cos (t\/TAg) (x,y) = Z cos (t\/:qg) (% a(3), (50)

acAut(p)
if ¥ and ¥ are the unique points in D for which p(%) = x and p(y) = y.

While we can prove Theorem (1.2.1) for any dimension n, we will prove the case
when n = 2 first separately, as it is the simplest case, and does not involve interpolation or
various subdimensions. Here is what it says.

Theorem (1.2.3)[19]: Let (M, g) be a compact smooth boundaryless Riemannian surface
with nonpositive curvature, and y be a smooth curve with finite length. Then for any f €
L?>(M), we have the following estimate:
11
A2°p
Eif S 7 Ifll 2y, VO > 4. (51)

|2,-2|<(og )~ o) (log 1)2

We will prove Theorem (1.2.3). By a partition of unity, we can assume that we fix x to be
the midpoint of y, and parametrize y by its arc length centered at x so that

y =v[-11Jand y(0) = x, (52)
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and we may assume that the geodesic distance between any x and y € y is comparable to
the arc length between them on y. We need to estimate the L (y) norm of

j_TTﬁ <%> <cost\/j> (x,y)ettdt
Z j costr) (%, a(9))e'*dt. (53)

acAut(p)
We should have the following estimates:

Up to an error of 0(171) exp (O(dg”(f, 37))) + 0(eT) or
02 Y exp (0 (d g(%, a(fz)))) + 0(e") respectively,

fT ﬁ(%) (cost\/qu) (%, Petrdt = 0()when ds(X,9) < %, (54)
-T

1

f_TTﬁ (%) (cost \/—T\g) & )eltdt = 0 (dg (; }7)>§ when dg (%, 9) = /11 (55)

1

a # 1d, f_TTﬁ (%) (cost\/—iAg) (J?,a(y))ei”dt =0 (W)E .(56)

To prove (55) and (56), we need the following lemma.
Lemma (1.2.4)[19]: Assume that w(X, X") is a smooth function from R™ x R" to R™,and
@ € S$™~1. Then there exist constants a, such that

B tilw(%,2)]
j eWEDOGg — o ay ¢
gn— 1

—-n—1
-+ 0 (lw(a?, %) 2 ‘1), (57)
w2 7 T
when |w (X, X)| = 1. The proof can be found in Chapter 1 of [16]. Let us return to estimating
the kernel K (x,y). Applying the Hadamard Parametrix,

cos (tﬂ) (%,a(3)) = WO((’; 6;(3]))2_[ el®(Za®)sxitlel gg
RP

N
+ z wy (%, a()E, (£, dy(%, a(y))) + Ry (t,x, @), (58)

v=1
where |@(%, a())| = dg(%, a()),€,,v=1,2,3,... , are defined recursively by
26,(t,1) = —t [ €,_1(s,)ds , where €,(t,x) = 2n)™" [, e*$cos(t|E))dE , 3 and
w, (%, a(5)) equals some constant times w,, (%, a(§)) that satisfies

(% () = 072(a(®)),

1 4 (59)
Uy 1(%,a(@) = 6(a () f sY02(%)Azu, (X, %5)ds,v = 0,
0

1

where (a(§)) = (det gl-j(oz(yz)))5 , and (%s)se[o,17 is the minimizing geodesic from % to
a(y) parametrized proportionally to arc length (see [20] and [30]).
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First note that for N > n + ; , by using the energy estimates (see [27] Theorem (1.2.3).5),

one can show that |RN(t, X, a(fz))| = 0(e”dt) , for some constant d > 0, which is at most
0(e4T) = O(Adﬁ) after we choose T to be approximately g logA, so that it is small
compared to the first N terms, since we may choose f3 as close to 0 as possible.

Theorem (1.2.5)[19]: Given an n-dimensional compact Riemannian manifold (M, g) with
nonpositive curvature, and let (R™, §) be the universal covering of (M, g). Thenif N > n +

3 . .
> N local coordinates,

(cost [~a5) £ = [ Ky @5 P @AV + [ Ry (65 FGIAV0), 60)

where

N
Kn(t,59) = ) wyEDE, (t,dsE. 7)), (61)
v=0

with the remainder kernel Ry satisfying
IRy (&, % 9)| = 0(e?) (62)
for some number d > 0.
This comes from equation (42) in [20]. The proof can be found in [20].

By this theorem,
T

T
j |Rn (8, %, a())|dt < Cf edtdt = 0(e4"). (63)
-T 0

Moreover, for v = 1, 2, 3,..., we have the following estimate for €, (t, r).
Theorem (1.2.6)[19]: Forv = 0,1, 2,...and €,(t, ) defined above, we have

| j p(D)eltAe (t, r)dt‘ =0(1), A>1. (64)
Proof. Recall that

H(t) o
Eo(t, 1) = el ®PENE cost|E|dE, (65)
0 (Zﬂ)n R™
so that
. 1 . o
A itA — 5 it(AxlED+ie(X,3)-§
| j 5(t)e So(t,r)dt| ‘Z(ZW j jRnp(t)e dedt

~
~

j [p(A+1ED) +p(A— IEI)]ei‘I’(’?’”'fds“
Rn

< | lp@+EDI+Ip@—1EDId¢ = 0@ ). (66)

]Rn
By the definition of €, such that % = %81,_1 and integrating by parts, we get that for any
v=123,..,

f B(0)elAE, (¢, r)dt = 0(W-1-2Y), 67)

The following theorem has been shown by Berard in [20] about the size of the coefficients
Uy (.55, :)7)

Theorem (1.2.7)[19]: Let (M, g) be a compact n-dimensional Riemannian manifold and let
o be its sectional curvature (hence, there is a number I' such that —I'? < g). Assume that
either
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(i) n = 2, and M does not have conjugate points;
or
(i) —I'? < o < 0; i.e. M has nonpositive sectional curvature.
Let (R™, §) be the universal covering of (M, g), and let @i,,v = 0,1, 2,..., be defined by
the relations (59). Then for any integers 1 and v

251,(%,5) = 0 (exp (0 (52, ))). (68)
The proof can be found in [20], Appendix: Growth of the Functions u,; (x, y).
Since wy, (%, a(3)) is a constant times #,(% a(5)), this theorem tells us that
lwy, (%, 2(3)| =0 (eXp (cvdg (%, a(f/)))), for some constant ¢,, depending on v.
Moreover, denote that Y (t) = p (%), and 1 is the inverse Fourier transform of y. Thus

we have Y € S(R) such that
[b@®)| <T@ +TtD™Y,  forallN €N, (69)

Therefore,
N

w, (%, a(y))J ‘”18 (t dg(x a(y))) dt

'V:

= z (T(Tl)n—l—zvexp (Cvdg(f, a(f/))))
v=1
=0 (T"_ZA"_3 exp (CN ds (%, a(y)))), (70)
for some Cy depending on cq, ¢y, ..., Cn—_1.
All in all, taking n = 2, and disregarding the integral of the remainder kernel,

‘ j cos /—Ag> (% a())elAdt
T Ly ~

J ,5(£>Maz(y))2f eitD(f,a(f/))-fiitlfleitzdfdt
_r \T 41 i Sy

+0 (A‘l exp (CN ds(%, a(f/)))). (71)
On the other hand, wy(X,7) has a better estimate. By applying Giinther’s Comparison
Theorem [21], with the assumption of nonpositive curvature, we can show that |w, (%, ¥)| =
0(1). The proof is given by Sogge and Zelditch in [30] for n = 2. Let’s see the case for any
dimension n. In the geodesic polar coordinates we are using, t@,t > 0,0 € S*1, for
(R™, §), the metric g takes the form
ds? = dt? + A%(t,0)d6?, (72)
where we may assume that A(t, ®) > 0 for t > 0. Consequently, the volume element in
these coordinates is given by

avy(t,0) = A(t, ©)dtdo, (73)
and by Gunther’s Comparison Theorem [21] if the curvature of (M, g), which is the same
as that of (R, §), is nonpositive, we have

A(t,0) =t 1, (74)
where t™~1 is the volume element of the Euclidean space. In geodesic normal coordinates
about x, we have
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1
wo(x,y) = det g;;(y) 4
(see [20], [22] or §2.4 in [27]). If y has geodesic polar coordinates (t, @) about X, then t =
dg(x,y), so that wy(x,y) = \/t"‘l/A(t, P) <1.

Therefore,
T
2f f ei¢(f.i)'€iitlfl+itlﬁ(£) dtd&
T CROT !

fRn"mm (PO + 1D +HQ - 1D) dg|

< [ [+ ignlag + [ [5G 1¢Dlds. (75)
]RTI. Rn
Note that (2 + [£]) = O(T(1 + A + [¢]) — N), forany N € N, s0 [.,,[(4 + [€])|d¢ can
be arbitrarily small, while (1 — |£]) = O(T(1 + T|A — |f||)_N) ,forany N € N,

~ -N .
so that [o.|0(d —[E])|d¢ < Tf/’l—lslflsl+1(1 +T[A—|€]|) "d& = 0(a), provided that
A=>1.50

j_TTﬁ (%) (COSt\/TAg> (%, yedt =0() + 0 (/1_1 exp (Cng(f, 37))) ,(76)

disregarding the integral of the remainder kernel.
However, this estimate can be improved when dg(X,7) = /11 As we can see, the main term

f
o cos( \/_) (%, 9) = O(x y) ]Rneiqb(a?,i)-fiitlfldf

+ z wy (%, 9)E, (t,dg(%, 7)) + Ry (t,%,3) (77)
v=1
is the first term, and the corresponding term in f_TTpA(%) (cost,/—Ag)(g,y,)eitAdt is

bounded by

L<I>(x y)-Exit|€| lt)ldtdf

Rn

2
2f f f " lrdb(xy) @+Ltr+1tlrdtdrd9

Integrate with respect to t flrst, then the quantity above is bounded by a constant times
00 2T
Z f f YA+ 1r)elm*ENOrqodr. (79)
T 0 0

Because (A + ) S T(1 + TIA + )N for any N > 0, the term with ¥(A + ) in the
sum is 0(1), while the other term with ¥)(1 — r) is significant only when r is comparable
to A, say c;A < r < c,A for some constants c¢; and c,. In this case, as we assumed that

dg(%,y) = %; we can also assume that d; (%, y) = % :

(78)
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. 1 i 3
By Lemma (1.2.4), foz"elW'@de =\2r|w| 23y aet™ + 0 (|w|‘5),|w| > 1,

where w = r® (%, y). Integrating up 0, the above quantity is then controlled by a constant
times

N 52/1~ _3
j - Dy )| e 5 4 [ G- Dy )|
ci A

c A

ORI = 1 o (_i) - 1
< dz(%,9) chz |1/J()l—r)|r2dr+dg(x,y) 2 -[cz |¢(A—r)|r 2dr
a b0 () ol —of (A
= dy(%,7) 0(/1 )+0(dg(x,y) ) =0 <dg(9?,)7)> | (80)

Note that these two equalities are still valid when ¢, and c, are changed to 0 and .

Therefore, when d;(%,7) > %

wo (%, ) o1 P(EF)-ELitlE] Hith
dé| =
47T2 Rn
We have finished the estlmates for a = Id. For a # Id, note that we can find a constant C,
that is different from 0, depending on the universal cover, p, of the manifold M, such that
d;(%,a(3) > C,, (82)
forall @ € Aut(p) different from Id. The constant C,, comes from the fact that if we assume

that the injectivity radius of M is greater than a number, say 1, and that x is the center of
some geodesic ball with radius one contained in M, then we can choose the fundamental
domain D such that x is at least some distance, say C,, > 1, away from any translation of D,
which we denote as a(D), for any a € Aut(p) that is not identity. Therefore, we may use

the estimates for d4(X,¥) = % before assuming A is larger than 1/C,. Use the Hadamard
parametrix (see [30]), similarly as before, estimating only the main term:

J_TTﬁ (%) (wst\/I) (%, a(}’;))eitldt

s |(2m)~ J j ld’(x a())-§ cos(t|€) et dt
Rn

onf f le)(xa(y)) Otitr+itA p ( )rdtdrdé?‘

2T
f P —r)ereFe®)ordodr

N[~

x )
J YA —1)|rds(%,a())| 2" (%) gy
0

SZ
t

0 3
+ f YA —1)|rd;(%,a()| 2rdr
0
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1

( : )2

=0\ |-—F7—7=) |- (83)
d; (%, a(3))

Now we have shown all the estimates (54), (55), and (56). Totally, K (x, y) is

1
(Ve S ot ) o) o
T 3 T\dg(%,a(3)) T
(/1—1 + dg(f; }7)) Id=a€Aut(p)
where E = max{Cy ,d} + 1.
Note that, by the finite propagation speed of the wave operator 97 — 4 §r dg (52 a(y)) <
T in the support of cos(t./—4,) (% a(3)). While M is a compact manifold with

nonpositive curvature, the number of terms of o’s such that d (f, a(f/)) < T is at most 7,
for some constant ¢ depending on the curvature, by the Bishop Comparison Theorem (see
[25], [30]).

We take the L (y) norms of each individual term first; then by Minkowski’s inequality,
|K Cx, )|l 7 (y[-1,17) IS bounded by the sum. Also note that we may consider the geodesic
distance to be comparable to the arc length of the geodesic. The first term is simple, and it
is controlled by a constant times

1
T p=2

1 2 \2 AP
?L(z—lﬂ) ar) =0l | (85)

Accounting for the number of terms of those a’s, the second term is bounded by a

constant times
1

1 T T 1
g jl ) ar) =0 er 22 86
e ), \c; T| = e 7 | (86)
Therefore,
p—2 1
Y T/li e(c+E)T
WK Ce ) pp-1,17) = O — |t 0 e’ 7 |0\
=1+ 1 +1I1 (87)
Now take T = 8 log A, where § < . (’;;)p. (Note that we can assume that ¢ # 0; otherwise,
there is only one o that we are considering, which is @ = Id.) Then
p-2
AP
I=1=0|——|, 88
logh (88)
and
p—2
AP
I = — 89
? logh (89)

Summing up, we get that
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p—2

AP

1K Ce, )l pp-1,17) = O Togh |’ (90)

Now applying Young’s inequality with r = g, we get that

1-2
( + 1)
Lp(y) log A ”f”L”'(y)'

Therefore, Theorem (1.2.3) is proved.
We move on to the case for n > 3. While we want to show Theorem (1.2.1) for the

full range of p directly, we can only show it under the condition that p > :—_kl using the same

method. Although we only need p = oo later to interpolate and get to the full version of
Theorem (1.2.1), we will show the most as we can for the moment.

Theorem (1.2.8)[19]: Let (M,g) be a compact smooth n-dimensional boundaryless
Riemannian manifold with nonpositive curvature, and £ be a k-dimensional compact;
smooth sub manifold on M. Then for any f € L?(M), we have the following estimate:

25®) Ak
E;f S 1 S 2y Vp > 1 91D
|2,-2|<(log »)~1 P (log 1)2
where
n—1 k
ey _— 2
6(p) =—; p (92)

For n > 3, for the sake of using interpolation later, we need to insert a bump function.
Take ¢ € Cy°(R) such that ¢(t) = 1 when |t| < % and ¢(t) = 0 when [t| > 1. Then we
only have to consider the following kernel:

K(x,y) = %j_TT(l —o®)p (%) (cost \/TAQ) (x, y)eltrdt, (93)

. . 1 . . . .
which is nonzero only when |t| > 5 In the following discussion, we may sometimes only

show estimates for K(x,y) when t > % as the part for t < —% can be done similarly.

The reason why we only consider the above kernel K (x, y) is because of the following
lemma.

We show Theorem (1.2.8), which is essentially the same as the lower dimension case,
and what we need to show is (47). By a partition of unity, we may choose some point x € X,
and consider X to be within a ball with geodesic radius 1 centered at x, and under the
geodesic normal coordinates centered at x, parametrize X as

I ={(t0)|y = exp,(t0) € Z,t € [-1,1],6 € Sk1}.
Applying the Hadamard parametrix, for any a € Aut(p),

cos (t \/TAg> (J?, a(f/)) Yo (é O;Ely)) Z f o i®(Xa()- SHitlél ge
R7

+ Z w, (%, 7)€, (t, dg(%, a(y))) + Ry(6,%,a(), (94)
=1
where @ (%, a(3))| = dg(f,rx(y/)), and €,,v = 1,2, 3, -, are those described.
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By Theorem (1.2.7),

T T
J IRy (£, % a(3))]|dt sf edtdt = 0(e). (95)
-T 0
Moreover, by (64), forv =1,2,3, -,

T t\

j (1-9®)p (?) e'tre, (t,dy(% a())) dt
-T

Since |wy, (%, a(3))| =0 (exp (cvdg(f,a(y)))) by [20], for some constant ¢, depending

onv,
N

v=1

= O(T(TA)™172Y), (96)

wwﬁa@Dfiﬁ—¢@Dﬁejﬂ%g@ﬂdza@nyu

_ Z 0 (T(TA)"‘l‘ZV exp (cvdg(f, a(f’))))

v=1
=0 (T"‘ZA"_3 exp (Cng (%, a(f/)))), (97)
for some Cy depending on ¢4, ¢y, ..., Cn—_1.
All in all, disregarding the integral of the remainder kernel,

J_TT(l —o(t))p <%> cos (t — \/Zg) (%, a())etdt
f_z(l a 9”(’5))/3 (%) W(OZ(:;X) Z .[Rnei‘l’(f,a(i))-fiitlfleimdfdt

+0 (T"_ZA"_3 exp (Cng(f, a(f/)))). (98)
On the other hand, |wy(X,7)| = 0(1) (see [30]) by applying Gunther’s Comparison
Theorem in [21], and for

Z JRn J_i(l — ¢(t))ei‘p(’?'a(?))'fiitlflﬂtﬂﬁ (%) dtdé

as we may assume as before that dg(f, a(y)) > % by the stationary phase estimates in [16].

Denote that ¥ (t) = (1 — ¢(t))p (%) and v is the inverse Fourier transform of .
Again we have

, - (99)

PA+ED =0T+ 2+1END™Y),
for any N €N, s0 [o.[¥(2+ |€])|d¢ can be arbitrarily small, while ¥(2—[¢]) =

o(r(r+T1ja-1g)™")

Integrate (99) with respect to t first; then it is bounded by a constant times
Z f DA + r)elre(@ad) o 14394y (100)
— Jo Jsn1

Because p(1+ r) < T(1 + TIA + )~V for any N > 0, the term with (1 + r) in the
sum is 0(1), while the other term with ¥)(1 — r) is significant only when r is comparable
to A, say c;A < r < c,A for some constants c¢; and c,. In this case, as we assumed that

d;(%, a(5)) = D; we can also assume that d;(% a(5)) = % for large A.
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n+1

. bl n-1 .
By Lemma (1.2.4), [i,_, e°d0 = Ne T 1|W|‘Tzi arer™l 4+ 0 (|w|‘T), lw| >

1, where w = r@ (JZ, a(y)). Integrating up to ©, the above quantity is then controlled by a
constant times

A _n-1
ZJ YA — r)|rdg(f,a(37))| 2 otirdg(%y)yn—1q4,
T ci A

24 _n+1
n f B —Drdy(£,a@)|” 2 ridr
ci A
n=1 (¢4 _ n-1
< dg(x,y)” 2 . YA —=r)|r 2 dr
€1
_n+l el n-3
+dy(%.a() 2 j GG =Pz dr
=
aE)
=0|(———— . (101)
dg(x,a(y))
Therefore, disregarding the integral of the remainder kernel,
[ (- 0)p(2) (cost [-,) (z.a)e LE
1—(t) ﬁ(—) (cost —A~) X a(y))et dt =0 <f>
_T T g dg(x,a(y))
+0 (1772273 exp (Cudy (%, a()) ) (102)
Now K (x,y) is
n—1
Gwen) )+ o(F)
= |—= +0(— ||, (103)
T \dy(%,«®) T

acAut(p)
where E = max{Cy,d} + 1.

We still have: the number of terms of o’s such that dg (55, a(f/)) < T is at most eT,
for some constant ¢ depending on the curvature, and there exists a constant C,, such that
d;(%,a(5)) > C, for any a € Aut(p) different from identity.

We take the L' (X)) norms of each individual term. By (82), and accounting for the

number of terms of those a’s, the first one is bounded by a constant times
1

n-1 = n-1
eCT/'l 3 1 _(n;l)‘r - T B eCT/1 >
T fo Cp ™t =0 T ) (104)
Therefore,
e<T ) > o (C+E)T
K, sy =0 +0 =I1+1I. (105

) T T

"__1_&_5
Now take T = S log A, where g = - Cé , where 0 satisfies 0 < § < nT_l — %. Note that
n-1 2

nol_zZky 0 whenp > 2£ Then
2 1Y n-1

37



_ -1 2k -1 2k
ABerTg 17 p s AT
1=0 =0 = . 106
log A log A 0 log 4 (106)
and
ﬁ(C+E) n__l_%_é‘ Tl—l—%
A A2z P A p
I1=0 =0| ——— | = 107
( log A ) log A 0 log A (107)
Summing up, we get that
An—l—z?k
IK G = 0| o (108)

Now applying Young’s inequality, with r = g, together with the estimate in Lemma (1.2.9),

we have

n-1-2K

VfeLP(2),]

230) fllogsy S Iflle. (109

log A
Therefore, Theorem (1.2.8) is proved.
Lemma (1.2.9)[19]: For ¢ € Cy°(R) such that ¢ (t) = 1 when |t]| < %and @(t) = 0 when

[t] > 1, let
K(x,y) = . jl (t)“(t)( t/ A )( et Adt 110
Xy) == _lgo p\7)\cos g ) (x,y)e : (110)
Then
_ 226()
Proof. With similar approaches as in the previous discussions, we can show that K (x, y) is
n—1
1 A 2
O ==z —=
T\A™ ! +d5(%, 5)
n-1
+ z 0 1( A >2 + 0(eET) (112)
— ————————————————— e ,

I d#a€eAut(p)

where E = max{Cy ,d} + 1.

Note that |t| < 1 for ¢(t) = 0, and the number of terms such that dg(f,a(y)) < 1lisat
most e, so that

_ 226()
”K(x’ y)“LT(E) =0 <W>' (113)

if we take T = log A and calculate as before.
To show Theorem (1.2.1), we need to use interpolation. Recall that

K(x,y) = %f;(l —p(D)p (%) (costﬁ) (x, y)e'tdt
= %j_i(l —p(D)p (%) (eit‘/__“g + e‘t\/__Ag) (x, y)etrdt (114)
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is the kernel of the operator
1 - - 1 _
20T Z P(A—4)E; + Z P(A - 4)E | = 7T Z P2 = 1)E|+0Q)
J j 7

1
=P~ [~4) +0(D), (115)

where (t) is the inverse Fourier transform of (1 — @(t))p (%) so that |1,l7(t)| <
T(1+ |t])~N forany N € N.
We have the following estimate for (1 — ,/—4,).
Theorem (1.2.10)[19]: For k # n — 2,
@ =P)gllp) S TA*PlIgllizs),  forany g € 2(D),  (116)
and for k = n — 2,
[ = Pg| 25y S TA?*Plogaligliszesy,  for any g € *(2), (117)

where P = ,/—Ag.

Proof. Recall the proof of the corresponding restriction theorem in [5]. They showed that

for y € S(R), and defining
X1 = x( /—Ag - /1) = zx(aj - A)E;, (118)
J

we have
Ixall 2oz = 0(2°@), (119)
fork #n — 2, and
1
lxallzny-izc) = 0(AS@ U082, (120)
fork =n— 2.
Now consider /(1 — P) as SS*, where
-M
s=> @+ (121)
Jj
and
~ M ~
§= 2 (1+ -3 - D8, (122)
Jj

where M is some large number.
Recall that |1/7(r)| < T( + |t|)™" forany N € N. We then have
M ~ -N
|1+ 14 =) Py = )| < T2+ - 2]) (123)
forany N.
By (25), which we deduced from the proof of Theorem 3 in [5], for a given A,

E; =0(2%®),  ifk+n-2 (124
/1]-6(/1—1,/1+1) L2(M)>L2(5)
and
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1
E, —0 (/15<2>(1ogx)i), ifk+n—2 (125)

Aj€(A-1,A+1) 12 (M)—12(5)

so that for any f € L?(M),

D a+-A"Er <[ D> B

j 12(2) Aj€E(A-1,141) 12(5)

+ Z (1413 -2 Ef
A; €(A=8,1+6)

L2(2)
PN fllzan + Z (1 14 = 2D NEf gy if k% n—2
A;€(A=1,A+1)

1 -
PO og el lan+ . (U [y =A) B gy if k=2
2je(A—1,2+1)

(126)

As
M
1+ =) 7
AjE(A—1,4+1)
r Z 5O+ - /1|)_M||Ejf||L2(M),if k#n-—2,
AjE(A—1,4+1)

|E]f||L2(2)

<A 1 " (127)
8 3 - .
20D (10g )21 + 12 = A) " |Eif N gy i k= -2
\ 1;&(A-1,A+1)
which can be made arbitrarily small when M is sufficiently large,
oy POV fll 2y if k #n =2,
Y+l -aA™ME s 1 (128)
- 2°@ (1og 2| fll 2y, if k =n— 2.
L2(2)
Similarly, we have
M\ ~
22(1+¢@ ~A")$( - DES
PONfll 2oy if k#n -2,
< 1 (129)
2@ Uog D2IIf |2y, if ke =1 — 2.

Therefor~e,
”l/)(/l - P)'g”LZ(Z') = ||SS * g”Li(E) =< ”S”LZ(M)—)LZ(Z)||S*||L2(2)_)L2(M)”g”LZ(E)
= ”S“LZ(M)—)LZ(Z')”SHLZ(M)_)LZ(E)”g”LZ(E)
_ { T2\ gll 2y if k #n—2,

TA3@1og A If ll 2y if k =n — 2.
Now we may finish the proof of Theorem (1.2.1).

(130)
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Recall that we denote K as the operator whose kernel is K (x, y). The above theorem tells
us that

K|l < {0(/128(2))’ fork#=n=2 30
2 572 <
L@=L5) 0(A**@logA), for k =n — 2.
Interpolating this with
-1
eCT}{nT
K1 (zy)s10z) = O T (132)
by Theorem (1.2.8) respectively, we get that forany pand k + n — 2,
"—_1(1—3) cT(1—3) 28(2)-2
A2 p/e p/) p
”K”Lp’(g)_)Lp(g) =0 1-2
T P
-1 n-1,468(2) 2
Anz np v p eCT(l_E)
=0 — , (133)
T »
and for k = n — 2,
n-1 n—-1,46(2) 2 2
N VR (1 P)(logxl)l’
||K”Lp’(2)_>LP(2) =0 1-2
T »
n-1 n—1,46(2) 2 2
AT F el P)(logxl)l’
=0 - (134)
T' P
Itk =n—1, then §(2) = =. Thus
-1 n-2 2
A“T—nTeCT(l—a)
KW o (51 = O 7z - (135)
T »
Since nT_l - nT_Z < 258(p) if > % , say nT_l - nT_z + 68 < 28(p) for some small number
d > 0, then taking g = ﬁ ,and T = B log A, we have
o(1-2
P
2
228@)-6 128@)-617p 225®)
Kl 1pesnipes = O =0 = , (136
IKlLp(5)-P () Tl_% Tog A 0<log/1> (136)
which indicates Theorem (1.2.1).
Ifk =n-2,
n-1 n-1 45(2) 2 2
N P (1 P)(logA)p
N ot 5y ey = O 12
T »
n—-1 n-—-1 2 2 2
P G
=0 . . (137)
.



Now since "—_1 — "_'1 + E <(mn-1)- 2(n-2)

Tl +6<(n—1) D

when p > 2, we can take § > 0 such that
,andtake g =6 /c 1——) T = B logA. Then

226()— 5(]Ogl)p 226()
KM o 5y = —° < log > (159)
(log )" »
which is the what we need
Ifk<n—-3,62)=——- then
1 1 46(2 2
” 2y ()ecT(1—5)
||K||Lp(2)—>Lp(2) 1__
n 1 n-— 1 Z(n 1)-2k 2
D eCT(l—E)
_ . (139)
=
Since n; - n;l + Z(n_;)_ZR <(n-1)-== 25(p) forp > 2, we can take § > 0 such
that "> — ";1 + 2("‘;)‘2" +85<(n- 1) — 2 and take f = 6/c (1 - —) T = B log A
Then
126(p)-6
1Kl gy iy = O| =2 | = 0 (1°@log D)), (140)
(logd) P

which finishes Theorem (1.2.1).
Corollary (1.2.11)[246] Forv =0,1,2,...and E, (t, %) defined above, we have

. 1+e
U p(t)eltre, (tT) dt‘ = oA 172), A=>1. (141)

Proof. Recall that

1+6 H(t) el r(X,x+e€)-&
£, (t, ) = Gy jan L cost|€|dE, (142)

so that

. 1+e€ 1 . e
U '\ 2 22m)" ) Jgn £

> [pu+|f|>+p@—|f|>]ei¢r<ftf+f>fde‘
Rn

r

(Up@+ 1§D+ 1p(2 = 1EDDdE = 0(A" ™). (143)

Rn

By the definition of €, such that % = %8,,_1 and integrating by parts, we get that for any
v=123,..,
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j p()etre, (t, %) dt = 0(A"172Y), (144)

Corollary (1.2.12)[246]: For ¢, € C;°(R) such that Y, ¢, (t) =1 when [t S% and
Xr ¢r(t) = 0 when [t] > 1, let

K(x,x+¢€) = ninl Z @, (t)p (%) (cost\/jgr) (x,x + €)e'tAdt. (145)
—14

Then

(146)

/’128(2+6)
log A >

SPIR ] ey, = 0(

Proof. [19] With similar approaches as in the previous discussions, we can show that
K(x,x+¢)is

n—1

1 A 2
Z 0 ?(A—l +(1+e),; &+ e))

T

1 A 2
* z 0 ?<(1 + e)gr(f,a(f + e))>

€e(n+3)+4
1 d:taEAut(T)

+0(efT) |, (147)

where E = max{C,,.,1+ €} + 1.

Note that |t|] <1 for ), ¢,.(t) =0, and the number of terms such that (1 +
)5, (% a(% +€)) < 1 isat most e, so that

6(n+3)+4>

_ 200
||K(x,x + E)||L4;-(er(li+i;l)(2) =0 log/l

) (148)

if we take T = log A and calculate as before.
Corollary (1.2.13)[246]: For € # 0,
D 18:G = PGl STAD Y Nigrllizgey,  forany g, € 1(D),  (149)
T r
and for e = 0,

D 180G = Pgill sy S TAD Y logallgyllzey,  forany g, € 12(2), (150)
T r

where P = ~/_Agr-
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Proof. Recall the proof of the corresponding restriction theorem in [5]. They showed that

for y € S(R), and defining

X = X(\/jgr— /1) = Zx(/lj - Ej,

we have
”XAHLZ(M)_)LZ(Z) = 0(16(2)),
for e # 0, and
1
”XA”LZ(M)_)LZ(Z) = 0(15(2)(10g/1)2,
fore = 0.

Now consider 1,.(1 — P) as SS*, where
s=>(+y-a)"E
Jj
and

S= ZZ (1 + 4 = 2", (3 - D),

where M is some large number.

Recall that 3., [, (0)| < T(1 + |7])~@*+9 for any (1 + €) € N. We then have
Do+ 1= 2D 5 = D < 71+ (2 - AT
r

forany 1 + €.
By (25), which we deduced from the proof of Theorem 3 in [5], for a given A,

E:

f =0(2%@), if e#0
A;€(A-1,4+1)

L>(M)-L?(2)

and

1
E; =0 (/15(2>(1ogx)i), ife 0

4€@=12+1) | 25120

so that for any f. € L?(M),
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(153)

(154)

(155)

(156)
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zz (1+14 -2 55

T L2(2)

IA

2, B
Ae(=1a+1) 7 (3
-M
s> D (+ -5
A e(i=04+6) T

L*(2)
I( Z BDNfll 2y + Z Z (1+|/1]-—,1|)‘M||Ejﬁ”L2(E), ife # 0,
AE(A-LA+1) T
4 » (159)
|Z 25C) (log VI foll 2 oy + Z Z @+ =2) "lEA ., ife=0.
kr Aj€¢(A-1,A+1) T

as

-M
> @+ =D NE A,
1jg(A-1,+1) 1
-M .
( Z z 2P (1+ 4 -2]) ”EffT”LZ(M)' ife # 0,

Aje(A—1,A+1) 1
< L (160)

= -M .
52 10g )21+ 14 = 2) NEfill oy ifE=0,

\ ;g(A-1,A+1) 1

which can be made arbitrarily small when M is sufficiently large,

> 1+l - Ef
j r L2(2)

D Bl e+,

< X (161)
D BDog 2N fillzan,  ife =0.
T
Similarly, we have
MY
> (I =A") a4 - VES,
j r L2(2)
Z Dl 2y if € # 0,
(162)

(
-]
'kz 2 log AV2I ;2 i € = 0.

r
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Therefore,
z ”l/;r(l - P)gr”Lz(Z') = Z ”SS~ * gT”LZ(z)
T r
< ISz lS s ), 1oz
T
= ||S”L2(M)—>L2(2)||§||L2(M)—>L2(Z')z 1grlli2 )
T

> TBDlg ey,  ife#0,
r

(163)
\Z T log Al fllzay,  ife = 0.
T
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Chapter 2
Kakeya-Nikodym Averages and Eigenfunction Restriction Estimates

We show that the results are related to a recent work of Bourgain who showed that
L?-averages over geodesics of eigenfunctions are small compared to a natural power of the
eigenvalue A provided that the L* (M) norms are similarly small. Our results imply that QUE
cannot hold on a compact boundaryless Riemannian manifold (M, g) of dimension two if
LP-norms are saturated for a given 2 < p < 6. We also show that eigenfunctions cannot
have a maximal rate of L?-mass concentrating along unit portions of geodesics that are not
smoothly closed. We show the main estimates by using the Hadamard parametrix for the
wave equation on (R?, §) and the fact that the classical comparison theorem of Gunther for
the volume element in spaces of nonpositive curvature gives us desirable bounds for the
principal coefficient of the Hadamard parametrix, allowing us to prove the main result.
Using by an estimate, we deduce that, the LP-norms of eigenfunctions for the above range
of exponents is relatively small. We can slightly improve the known lower bounds for nodal
sets in dimensions d > 3 of Colding and Minicozzi in the special case of (variable)
nonpositive curvature.

Section (2.1): LP-Norms of Eigenfunctions

We slightly sharpen a recent result of Bourgain [36] concerning two-dimensional
compact boundaryless Riemannian manifolds. We shall be able to provide a natural
necessary and sufficient condition concerning the growth rate of LP -norms of eigenfunctions
for 2 < p < 6 and their L?-concentration about geodesics.

There are different ways of measuring the concentration of eigenfunctions. One is by
means of the size of their LP-norms for various values of p > 2. If M is a compact
boundaryless manifold with Riemannian metric g = g;k(x) and if A, is the associated

LaplaceBeltrami operator, then the eigenfunctions solve the equation — A, e;; (x) =
/1]? eyj (x) for a sequence of eigenvalues 0 = 15 < A4; < A,....Thus, we are
normalizing things so that A; are the eigenvalues of the first-order operator ,/— A, . We
shall also usually assume that the e;; have L?-norm one, in which case {ea; } provides an

orthonormal basis of L?(M, dx) where dx is the volume element coming from the metric.
Earlier, in the two-dimensional case, we showed in [15] that if M is fixed then there is a
uniform constant € sothatfor2 < p < wandj = 1,2,3,...

leaj |1LP 1) < €A% 5 12(M) 1)

(1 (1 1) ) < p <6
PI=3y 1 2 <
—_—— — w .
k 2 p' T p =
These estimates are sharp for the round sphere S2, and in this case they detect two
types of concentration of eigenfunctions that occur there. Recall that on S2 with the

canonical metric the distinct eigenvalues are k% + k,k = 0,1, 2, ..., which repeat with
multiplicity d, = 2k + 1.1f H;,, the space of spherical harmonics of degree k, is the space

of all eigenfunctions with eigenvalue vVk? + k, and if Hy(x,y) is the kernel of the
projection operator onto Hj,, then the k-th zonal function at x, € S? is Z,(y) =

with
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1

(Hk(xo,xo))_EHk(xO,y). Its L2- norm is one but its mass is highly concentrated at +x,

where it takes on the value /% . Explicit calculations show that ||Zk||Lp(52) ~ k%®) for

p = 6 (see e.g. [53]), which shows that in the case of M = §?2 with the round metric (1)
cannot be improved for this range of exponents. Another extreme type of concentration is
provided by the highest weight spherical harmonics which have mass concentrated on the
equators of S2, which are its geodesics. The ones concentrated on the equator y, =

{(x1,%2,0); x% + x% = 1} are the functions Q , which are the restrictions of the R3

1
harmonic polynomials k= (x; + ix,)* to 2 = {x; |x| = 1}
One can check that the Q, have L?-norms comparable to one and LP-norms comparable to

1/1 1
k2 G) when 2 < p < 6 (see e.g. [53]). Notice also that the Q, have Gaussian type
concentration about the equator y,. Specifically, if 7, 1 (y,) denotes all points on 52 of
2

1
distance smaller than k™2 from y0 then one can check that

limkinf j |0k (x)|?dx > 0. (2)
—00 T 1
k 20r0)
Obviously the Q; also have the related property that
1
| tokras < iz, 3)
Yo

if ds is the measure on y, induced by the volume element.

Thus, the sequence of highest weight spherical harmonics shows that the norms in (1)
(for 2 <p < 6),(2) and (3) are related. We show that this is true for general two-
dimensional compact manifolds without boundary.

We remark that, although the estimates (1) are sharp for the round sphere, one expects
that it should be the case that, for generic manifolds, and L?-normalized eigenfunctions one
has

lim sup /'lj_a(p) ||e,1j|| LP =0 (4)

Jj—oo
for every 2 < p < oo. This was verified for exponents p > 6 by Zelditch and [17] by
showing that if there are no points x through which a positive measure of geodesics starting

at x loop back through x then |le;llc = 0 (AE). By interpolating with the estimate (1)

forp = 6, this yields (4) for all p > 6. Corresponding results were also obtained in [17]
for higher dimensions. Recently, these results were strengthened by Toth and Zelditch [29]
to allow similar results for quasimodes under the weaker condition that at every point x the
set of recurrent directions for the first return map for geodesic flow has measure zero in the
cosphere bundle S, M over x.

Other than the partial results in Bourgain [36], there do not seem to be any results
addressing when (4) holds for a given 2 < p < 6 (although Zygmund [37] showed that on
the torus L?-normalized eigenfunctions have uniformly bounded L*-norms). Furthermore,
there do not seem to be results addressing the interesting endpoint case of p = 6, where
one expects both types of concentration mentioned before to be relevant. Recently have
studied the L? norms of eigenfunctions over unit-length geodesics. Burg, Gérard and
Tzvetkov [5] showed that if IT is the collection of all unit length geodesics then
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su J |e |2 ds < A% ”e ”2 L2(M), § = 1,2,3 5)
yeg v A ~ A , 1 =1,2,3,..,

which is sharp in view of (3). Related results for hyperbolic surfaces were obtained earlier
by Reznikov [26], who opened up the present line of investigation. The proof of (5) boils
down to bounds for certain Fourier integral operators with folding singularities (cf.
Greenleaf and Seeger [42], Tataru [56]). We shall use ideas from [42], [56], and [40], [46],
[29], [17] to show that if y € II and

_1 2
limsup A 2 f |e;\j | ds > 0,
j—oo Y

then the geodesic extension of y must be a smoothly closed geodesic. Presumably it also
has to be stable, but we cannot prove this. Further recent work on L?-concentration along
curves can be found in Toth [57].

In [36], Bourgain proved an estimate that partially links the norms in (1) and (5), namely
that forallp > 2

2 % 2
swp | e[ as 7 [l ©)

For p = 2, this is just (5); however, an interesting feature of (6) is that the estimate for a
given 2 < p < 6 combined with (1) yields (5). Thus, if e, Is a sequence of

eigenfunctions with (relatively) small LP (M) norms foragiven 2 < p < 6, it follows that
its L2-norms over unit geodesics must also be (relatively) small. Bourgain [36] also came
close to establishing the equivalence of these two things by showing that given € > 0 there
is a constant C, so that forj = 1,2, ...

%+e % —% 2 8
ety = € (8 Nenll ) (87500 [ JenFas].
Since §(4) = 1/8in (1), if the preceding inequality held for e = 0 one would obtain the
linkage of the size of the norms in (5) for large energy with the size of the L* (M) norms.

Our main estimate in Theorem (2.1.1) is that a variant of (7) holds, which is strong
enough to complete the linkage.

Bourgain’s approach in proving (7) was to employ ideas going back to Cérdoba [39]
and Fefferman [41] that were used to give a proof of the Carleson-Sj6lin Theorem [37]. The
key object that arose in Cdérdoba’s work [39] was what he called the Kakeya maximal
function in R?, namely,

Mf((x) =sup_(x€T 1 |T_
172 p)

| =

B fT L @y € PR, ®

2
1

with the supremum taken over all A" z-neighborhoods 7, _: of unit line segments containing
2

1

x,and |T,_1| ~ A zdenoting its area. The above maximal operator is now more commonly
2

called the Nikodym maximal operator as this is the terminology in Bourgain’s important
[33]-[35] which established highly nontrivial progress towards establishing the higher
dimensional version of the Carleson-Sj6lin Theorem for Euclidean spaces R™",n = 3. One
could also consider variable coefficient versions of the maximal operators in (8). In the
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1
present context if y € II is a unit geodesic, one could consider the A 2-tube about it given
by

1
T (V)={y € M;chrelﬁ dy (x,y) < 4 2}-
with d; (x,y) being the geodesic distance between x and y. Then if Volg <:7:1_% (y ))

denotes the measure of this tube, the analog of (8) would be

M f(x)= sup
XEYEH VOlg (T_l ()/ )) Tl—%
A2

These operators have been studied before because of their applications in harmonic analysis
on manifolds. See e.g. [48], [54]. As was shown in [47], following the earlier [35], they are
much better behaved in 2-dimensions compared to higher dimensions.

As (7) suggests, it is not the size of the L?-norm of Mf for f € L*(M) that is relevant
for estimating L* (M) —norms of eigenfunctions but rather the sup-norm of this quantity with

If O)ldy .

2
f = |e,1j | , Which up to the normalizing factor in front of the integral is the quanitity

2
Sup jT |eA]. (x)| dx .

Y €l 1
A—5)
If the ey, are L2-normalized this is trivially bounded by one. In rough terms our results say

that beating this trivial bound is equivalent to beating the bounds in (1) foragiven 2 <p <
6.

Let us now state our variant of (7):
Theorem (2.1.1)[28]: Fix a two-dimensional compact boundaryless Riemannian manifold
(M, g). Thengiven e > 0 there is a constant C, so that for eigenfunctions e, of ,/—A, with

eigenvalues A > 1 we have

1 1
”31”24(1\4) = 5/12”31”24(1\4) + Cg/lzllealllz,z(M) Sug f |lea(x)]*dx
Y€ T 1

A 2(y)
+ Clleallfzquy 9)
with C being a fixed constant which is independent of A and «.

We shall prove this not by adapting Cordoba’s [39] proof of the Carleson-Sjolin
Theorem but rather that of Hormander [45]. He obtained sharp oscillatory integral bounds
in R? that provided sharp Bochner-Riesz estimates for L*(R?) (i. e., the Carleson-Sjélin
Theorem), which turns out to be the endpoint case for this problem in 2-dimensions.
Hormander’s approach was to turn this L*-problem into an L?-problem by squaring the
oscillatory integrals and then estimating their L2-norms. As his proof shows, the resulting
bilinear operators that arise are better and better behaved away from the diagonal, and this
fact is what allows us to take the constant in front of the first term in the right side of (9) to
be arbitrarily small (at the expense of the 2nd term).

Stein [55] provided a generalization of Hormander’s oscillatory integral Theorem to
higher dimensions in a way that proved to be sharp because of a later construction of
Bourgain [35]. Bourgain’s example and related ones in [47] suggest that extending the
results to higher dimensions (where the range of exponents would be 2 <p < 2(n+

50



1)/(n — 1)) could be subtle. On the other hand, since the constructions tend to involve
concentration about hypersurfaces as opposed to geodesics, their relevance is not plain.
We shall prove Theorem (2.1.1) by estimating an oscillatory integral operator, which
up to a remainder term, reproduces eigenfunctions. The remainder term in this reproducing
formula accounts for the last term in (9), which we could actually take to be <
Cy A7V |ley||5 for any N, but this is not important for our applications. Also, we remark that
the proof of the Theorem will show that the constant C, in (9) can be taken to be 0(¢72) as
e - 0.
We state an immediate consequence of Theorem (2.1.1) which states that the size of
L*-norms of eigenfunctions is equivalent to size of L?-mass near geodesics.
Corollary (2.1.2)[28]: Let ex, be a sequence of eigenfunctions with eigenvalues 1; <

4j, <...and unit L*(M)-norms. Then

2
lim sup sup j |e,1. (x)| =0 (10)
k—oo y€Ell T 1 Tk
e
'k
if and only if
1
- 8 —
llmlilg )Ijk ||eAjk||L4(M) = 0. (11)

To prove this, we first notice that if we assume (10), then (11) must hold because of (9).
Also, by Holder’s inequality

1 1

(fg" Ly IeA(X)lz dx) < (VOlg (ﬂ_%(Y))) ”eA”Lél-(M)
22
1

S A8 ||e/‘L||L4(M) )
and so (11) trivially implies (10).
If we use Bourgain’s estimate (6) and (1) we can say a bit more.

Corollary (2.1.3)[28]: Let {e,ljk }k—l be as above and suppose that 2 < p < 6. Then the
following are equivalent

lim sup /'l sup f|e,1 (s)| (12)
k—oo yEH
lim sup sup f |e,1. (x)| dx =0 (13)
k- yel T 1 Tk
220
lim sup /'l (p) ” ” = 0. (14)
k—o0 Ak Lp (1.14)(M)

To prove this result, we first note that, by the M. Riesz interpolation Theorem and (1) for
p = 2and p = 6,(14) holds for a given 2 <p < 6 if and only if it holds for p = 4,
which we just showed is equivalent to (13). Clearly (12) implies (13). Finally, since
Bourgain’s estimate (6) shows that (14) implies (12), the proof of Corollary (2.1.3) is
complete.

By describing one more application. Recall that a sequence of L?-normalized eigenfunctions

{e,ljk }:)_1 satisfies the quantum unique ergodicity property (QUE) if the associated Wigner
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2
measures |e,1jk | dx tend to the Liouville measure on S*M. If this is the case, then one

certainly cannot have
2
lim sup sup f |eA. (x)| dx > 0,
k—-oo yeEll T 1 Tk
A @)
since the tubes are shrinking.
In the case where M has negative sectional curvature Schnirelman’s [14] Theorem

e}

says there is a density one subsequence {efljk }k—l of all the {e,lj } satisfying QUE. Rudnick

and Sarnak [50] conjectured that in the negatively curved case there should be no
exceptional subsequences violating QUE, i.e., in this case QUE should hold for the full
sequence {e,lj } of L?-normalized eigenfunctions. On the other hand, by Corollary (2.1.3),

we have the following.
Corollary (2.1.4)[28]: Let M be a two-dimensional compact boundaryless Riemannian
manifold. Then QUE cannot hold for M if for a given 2 < p < 6 there is saturation of LP
norms, i.e.,
lim sup /1]._8(27) ||e,1j|| LP(M) > 0,
]—)OO

with e; being the L? -n ormalized eigenfunctions.

See e.g. [59] for connections between QUE and the Lindel6f hypothesis, and see [38]
for recent developments regarding the QUE conjecture.

As in [36] and [5] we shall prove our estimate by using certain convenient operators
that reproduce eigenfunctions. Specifically, we shall use a slight variant of a result from
[16], Chapter 5 that was presented in [5].

Lemma (2.1.5)[28]: Let § > 0 be smaller than half of the injectivity radius of (M, g).
Then there is a function y € S(R) with y (0) = 1 so that if dg (x,y) is the geodesic
distance between x,y € M

of 0= x(J=8 — 1) f @)
= 7 [P oy, f W)y + Ref (), 015)
Where "
IRAfINLZ(M) < €, w I L'(M)forallN = 1,2, ...,
and @« € C® has the property that

|6,‘§fya(x,y,/’l)| < C, forall a,

and, moreover,

)
alx,y,A) = 0if dy (x,y) & (5,6). (16)

Since y,e, = e, and since the 4th power of the L*-norm of R;e; is dominated by the
last term in (9), we conclude that in order to prove Theorem (2.1.1) it is enough to show
that, given ¢ > 0 there is a constant C, so that when 1 > 1

1 . 2
j 2 j e1249 Vg (x, y, ) f dy| 1f GOI2dx
M M

1
< el4||f ||12,2(M)||f||1%4(M) (17)
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1
FCANf ysp | 1f @,
Y €ll T 1

1 2@y)
1
for, if f = ey, the first term in the right is bounded by a fixed constant times 8/15||e,1||22(M),

because of (1).

After applying a partition of unity, we may assume that in addition to (16), a(x,y, 1)
vanishes unless x is in a small neighborhood of some x, € M and y is in a small
neighborhood of some y, € M with§/2 < dg (xg,y0) < 108}. As mentioned before, we
are also at liberty to take 6 > 0 to be small. To simplify the calculations to follow, it is
convenient to choose a natural coordinate system. Specifically, we shall choose Fermi
normal coordinates about the geodesic y, which passes through x, and is perpendicular to
the geodesic connecting x, and y,. These coordinates will be well defined on B (x,, 106) if
o 1s small. Furthermore, we may assume that the

A
Mo

]

Figure (1)[28]: Fermi normal coordinates about y,.
image of y, N B(x,, 106) in the resulting coordinates is a line segment which is parallel to
the 2nd coordinate axis and that all horizontal line segments s — {(s, t,)} are geodesic with
the property that d, ((s1,to), (S2,t0)) = |s1 — sz
If we use these coordinates and apply Schwarz’s inequality, we conclude that, in order
to prove (17), it suffices to show that given ¢ > 0 we can find C, < oo so that when 1 >

T

1 1
< &5 1 W I Wy + €2 W Bgysup [ 1 GOP ax.
Y T 1

2
/1% J eifdg (x(s0)) o (x, (s,t),)f (s,0)dt| |f (x)lzdx> ds

nn
A2 @)
This, in turn would follow if we could show that given ¢ > 0
1 _ 2
f 2z j ety (560 g (x, (s, £), Dh(E)de| |f ()|2dx

1
< lelhIIfZ(dt)”f”%z}(M)
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1
+ Cgﬁ||h||fz(dt) sup ] |f (x)|?dx, (18)
y €1l T 1

A 2()
with C, dependingone > Obutnotonsoroni > 1.

We shall establish this estimate for a particular value of s, which, after relabeling, we
may assume to be s = 0. Since the proof of (18) for this case relies only on Gauss’ lemma
and the related Carleson-Sj6lin condition, it also yields the uniformity in s, assuming, as we
may, that a has small support.

To prove this inequality, let us choose a function n € C;° (R) satisfying n(t) =
0,]t|] > L,and ¥72_, n(t — j) = 1.Given A = 1 fixed, we shall then set

1
nj (6 = ma; @) = nazt — j).
Then, given N = 1,2,..., we have that

1 ,
Az J eitdg (x(00) oy (x, (0, 1), D) h(t)dt

vy

j
+ | 1 f f ei/l(dg (X,(O,t ))dg(x,(O,t’)) aN (X, t, t,)h(t)h(t,)dtdt,| ’

2

2

(19)

/1% j ei’ldg(x'(o't))nj (Ha(x, (0,t), Dh(t)dt

Here
aN (6, 6) = D" 1y (©atx 0,0, D (¢)atx, (0,6, 1)
|j—k|>N

1
anishes when |t — t' | < (N — 1)A "z The first term in the right side of the preceding
inequality comes from applying Young’s inequality to handle the double-sum over indices
with |j — k| < N. Because of (19), we onclude that (18) would follow if we could show
that there is a constant independentof A > 1and N = 2,3,4... so that

||/1 J J eil[dg (x,(O,t))dg(x,(O,tl)] aN (X, t, t’)h(t)h(t,)dtdt,

L2(dx)
1 1
< 23 NZ||hI% g (20)
and also that there is a constant C ndependentofj € Zand A > 1 so that
1 _ 2
j 2z j ¢y OOy (Dax, (0,0, DOt |f (0)Pdx
1
< C;li||h||§z(dt) sup f If (x)|? dx . (21)
y €l T 1

12 @w)
Indeed, by using the finite overlapping of the supports of the n; , if we sete = CN 2, then

we see that these two inequalities and (19) imply (18) with C, =~ &72. Since the proof of
(21) only uses Gauss’ lemma and the fact that coordinates have been chosen so that s —
(s, to) are unit speed geodesics for fixed t,, we shall just verify (21) for j = 0, as the
argument for this case will yield the other cases as well.

The next step is to see that these two inequalities are consequences of the following
two propositions.

We need to introduce one more coordinate system, which finally explains where the
L? norms over small tubular neighborhoods of geodesics comes into play. Since we are
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1 1
proving (21) with j = 0 and since n, is supported in the mall interval [-4 2,4 2], it is
natural to take geodesic normal coordinates bout (0, 0). If we recall that the 1st coordinate
axis is a unit-speed eodesic in our original Fermi normal coordinates, we shall naturally
choose the geodesic normal coordinates x — x(x) that preserve this axis (and its
orientation). Such a system is unique up to reflection about this axis, and we shall just fix
one of these two choices.

Proposition (2.1.6) would imply (20) if ¢(x,t) = d, (x,(0,t)) satisfies the
CarlesonSj6lin condition. The fact that this is the case is well known. See [16]. It follows
from our choice of coordinates and the fact that if x, € M is fixed then the set of points
{Vedg (x,¥); x = xo,dg (x0,y) € (6/2,8)} is the cosphere at xo,Sx, M =
{& ;ngk (%9)¢; & = 1}, where gfk (x) is the cometric (inverse to g (x)). If we choose
geodesic normal coordinates x(y) vanishing at x, then the gradient becomes x(y). This
turns out to be equivalent to the usual formulation of Gauss’ lemma, saying that this
exponential map y — k(y) is a local radial isometry. It says that small geodesic spheres
centered at x, get sent to spheres centered at the origin and small geodesic rays through x,
intersect these geodesic spheres orthogonally and get sent to rays through the origin, which
is what allows Proposition (2.1.7) to be true.

We see that Proposition (2.1.7) implies (21) for j = 0. If we take p(t; x) =
no(t)a(x, (0,t), A), then p satisfies (27). Also, if we let

1 1
5 = {y; 0 (y) e (/rz A0+ 1)]},
where 68 (y) € [0,2m) is defined so that y = |y|(cos 8 (y),sin 8 (y)), then, if y =

k(x) are the geodesic normal coordinates about (0, 0) in the Proposition (2.1.7), then the
left side of (21) is dominated by

1 .
z | 2 j e M) 5t x)h(t)dt
j

1 .
<sup I Wrgesson ), || 22 | 000 oh@a ,
K 7 12(k71(s;))

where K is the x-support of p. Since the first factor on the right is dominated by the last
factor in the right-hand side of (21) (the sup can just be taken over (0,0) € y € II here),
we conclude that we would obtain this inequality if we could show that there is a uniform
constant so that for all choices of x; € k™*(S; )

/1%2 | f ei’w’("f't)p(t; x; Jh(t)dt
J

This inequality is an estimate for an operator from L?(dt) — £2. The dual operator is the
one in Proposition (2.1.7). Therefore since, by duality, (22) follows from (29) we get (21).
To verify this assertion, we use the fact that if p has small support then the terms in (22)
with p(¢; x; ) = 0 will fulfill the hypotheses in Proposition (2.1.7).

To finish the proof of Theorem (2.1.1) we must prove the two propositions. Let us
start with the first one since it is pretty standard. It is based on the well known fact that the
bilinear oscillatory integrals arising in Hormander’s [45] proof of the Carleson-Sjolin [37]
Theorem become better and better behaved away from the diagonal.

2

12 e s,
LOO(K_l(Sj )) L ( (S] )ﬂK)
2

2
< CllAllZ2egey (22)
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Proposition (2.1.6)[28]: Leta(x,t,t'),x € R%t,t' € R satisfy |0% a| < Ca for all
multiindices @ and a(x,t,t') = 0if |x| > Sor|t — t'| > & here § > 0 is small.
Suppose also that ¢ € C*(R? x R) is real and satisfies the Carleson-Sj6lin condition on
the support of a, i.e.,

det( x1t ‘l’x”) + 0. 23
Sree Drree (23)

Then if the § > 0 above is sufficiently small, there is a uniform constant C so that when
AN > 1

2
Hf f | MO g(x ¢ t)F (¢, t)dtdt’
lt—t |=NA"2

5 L*(R?)
< A2NTH|F||1 2 ey, (24)
Proof. Let ¢p(x;t, t") = ¢p(x,t') + ¢p(x,t") be the phase function in (24). Then @ is a
symmetric function in the (¢, t") variables. So if we make the change of variables
u=(t-—-t,t+t),
then since |du/d(t,t' )| = 2, we see that (23) implies that the Hessian determinant of ¢

satisfies
ot 0%
€ dxou

for some ¢ > 0 on the support of a, if the latter is small. Since @(x; ) is an even function
of the diagonal variable u, it must be a C* function of uZ. So if we make the final change

of Variables
1 2
v = (g ube)

then since |dv/du| = |u,|, it follows that

> cluql,

3%
dxov
for some ¢ > 0. This in turn implies that if v and © are close then
Ve [@(x,v) — &(x,D)]| = c'|lv — 7],
for some ¢’ > 0, and since x,v — @ is smooth, we also have hat
105 [@(x,v) — @(x, D)]| < Culv — 7],
for all multi-indices a. Therefore, if we let
Ky(v,9) = f a(x,t,ta(x, i) eHeCm=e@xDl gy
RZ
then by integrating by parts, we find that if the number § > 0 in the statement of the
Proposition is small then for j = 1,2,3,...
Ky, M) < ¢ (A + Ay — B)7%
SCGA+AE+E)-(E + T 7
1+ At —t')2 = F —F)2D7. (25

det

> C

)

Note that the left side of (24) equals
f f . K6, t'E, 8 )F (¢, t)F (8,8)dtdt'did T .
[t—tr |,|E —Er |ZNA™

2

We next laim that there is a uniform constant C sothatforA, N > 1
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su J . |K;ldtdt’,sup j . |K;ldtd t
t,t' [t—t'=NA"2 t,t |t —&r |2NA"2
1
A2 A2
< CA 4|l — . 26
= (26)

This follows from (25) and the fact that if t = s? then 2sds = Tt and so, given t, € R,
we have

1 dt
j . (1 + As? — t0])7%ds == j . A+ AT - D=
S=NA1 2 2 VT=NA"2 \/?
1
Az ** 1
< N f (1 + A|t])%dr < A71(4Z/N).

Since (26) and Young’s inequality yield (24), the proof s complete.

We need to prove the other Proposition, which is a straightforward application of
Gauss’ lemma.
Proposition (2.1.7)[28]: Let ¥ (x,t) = dg4 (x,(0,t)), and suppose that p € Cy° (R X

R?) satisfies
m

07" p(t; )| < G (22) and p(t; x) = 0,]t] 2 272 (27)
Suppose also that p vanishes when x is outside of a small neighborhood V' of a fixed point
(—sp, 0) (in the Fermi normal coordinates) with s, > 0. If x — k(x) = (k;(x), Kx,(x))
are the coordinates described above, assume that points x; € V" are chosen so that
K2 (xj ) Ko () 1 s
- >cA 2 |j — klif|j — k|l = 10, (28
kG )l TG J KT (9)
with ¢ > 0 fixed. It then follows that, if V" is sufficiently small, then there is a uniform

constant €, which is independent of the {x; } chosen as above, so that
2

1 , .
A2 j Z eI (¢ xj)aj| dt < CYlaj |2 (29)
J
Proof. The support assumptions on the amplitude will allow us to linearize the function t —
Y in the proof, which is a tremendous help. Specifically,

Ylx,t) = P(x,0)+ t (6t¢(x, O)) + r(x,t),

where
0 r(x, t)| < Cplt]>™™,0 < m < 2,and |0/* 7| < C,,,,m = 2. (30)
Our choice of coordinates implies that
K (x)

0P (x,0) = (v, m),

where the inner-product is the euclidean one and v € R? is chosen so that (v, V) is the
pushforward of d/dx, at (0,0) under the map x — k(x)—i.e., tangent vector to the
curve t — k((0,t)). Since the pushforward of d/dx, is itself under this map, it follows
that the second coordinate of v is nonzero. (See Figure 2 below.) Therefore, if & (sy, 0) is
small enough, then our assumption (28) implies that
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1
|0:9(x;,0) — 0, (xx, 0)| = ¢'A2 (217)|j — klif |j — k| = 10, and x;,x; €N,
for some constant ¢ > 0.
It is easy now to finish the proof of (29). If we get
p(xj ,xk;t) — p(t; X )—p(t; xk)e(i/l(l,b(xj,O))+T(xj,t)e—iﬂ(w(xk,0)+r(xk,t)),
it follows from (27) and (30) that

|6}" p(xj , Xie; t)| < Cmﬂ%,
1

and (xj xk;t) = 0,if [t| = A 2,x; €N ,orx, €N .
We can use this since the left ide of (29) equals

1 ,
12 z |aj ak| (f elt/'l(aﬂ/’(xj '0)‘at’/’(xk'0))p(xj ) Xkes t)dt) ,
Jk
which, after integrating by parts N = 1, 2, 3 ... times, we onclude is dominated by a fixed
constant Cy times

> lgada + 1 = kD,

Jk
ince, by Young’s inequality, this is dominated by the right side of (29) hen N = 2, the
proof is complete.

Figure (2)[28]: Image of {(0, t)} in geodesic normal coordinates about (0, 0).
We have shown above that if {eﬂjk }k—l is a sequence of L%-normalized

eigenfunctions satisfying
1

= 2
lim sup sup /’ljz f |e,—1j | ds = 0, (31)
k—oo yEll k ¥ k
then A;.,f(p) ||e/1jk|| = 0,2 <p < 6.While it seems difficult to determine when this

LP (M)
holds, one can show the following.
Proposition (2.1.8)[28]: Suppose that y € II is not contained in a smoothly closed

geodesic. Then if {3,1,- } is the full sequence of L2-normalized eigenfunctions, we have
1

_1 2
lim sup 2,2 f |e,-l.| ds = 0. (32)
jow 4 ), T
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In proving this proposition we may assume, after possible multiplying the metric by
a constant, that the injectivity radius is more than 10. This will allow us to write down
Fourier integral operators representing the solution of the wave equation up to times || <
10. More important, though, is that we shall use an observation of Tataru [56] that the map
from Cauchy data to the solution of the wave equation restricted to y X R is a Fourier
integral operator with a one-sided fold. Using this fact and the standard method of long-time
averages (see e.g. [40], [46], [17], [29]), we shall be able to prove Proposition (2.1.8).

To set up our proof, let us choose Fermi normal coordinates about y so that, in these
coordinates, y becomes {(s,0); 0 < s < 1}. Note that in these coordinates the metric

takes the form g,; (x)dx? + dx3 . As a consequence if p(x,&) = \/Zgik (x)&; & is the

principal symbol of P = /= A then p((s,0),§) = \/gll((s, 0))&Z + &2 is an even
function of &,.

To proceed, let us fix a real-valued function y € S(R) with y (0) = 1and ¥ (t) =
0,|t] > % Then if e; is an eigenfunction with eigenvalue A4 it follows that

x (N(P - 2))e; = ey. Thus, in order to prove (32), it would suffice to prove that given
AN > 1

1 1
|lx (NP — D)f IILZ(Y) < CN 224|f |l 2oy + Cn If 2y (33)
Note that

X (NP = D)f 0= N7 1 ()e (e f) e, (34)

and because of the support properties of the y the integrand vanishes when |[t| = N/2.
The operator

f- (")
is a Fourier operator with canonical relation

{(t,8&t;9,m); (x,§) = (ym), £t = p(x,§)},
with @, : T*M — T*M being geodesic flow on the cotangent bundle and p(x,¢ ), as

above, being the principal symbol of ,/— A . Given that we want to restrict the operator in

(34) toy = (5,0),0 < s < 1, we really need to also focus on the the Fourier integral
operator

f - (e*f) (s,0).
Given the above, its canonical relation is
C = {M,xg(x,t,&1; y,mM) € T*(y X R)X T*M; &(bx,&) = (y,n), +7
= p(xl,O;f)},
with IT, «g being the projection map from T*(M X R)toT*(y X R). Note that the
projection from the latter canonical relationto T*(y X R) is the map

(s,t,6) = (s,t,6,0((s,00,¢))
which has a fold singularity when &, = 0 but has surjective differential away from this set
(given the aforementioned properties of p).
Because of this, given the xplicit formula in Fermi coordinates, if we choose y € C;° (M)
equaltoneony and a € C;° (R) satisfyinga = 1on[-1/2,1/2] but a(t) = 0,|t |,
then
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be(x,§) = e (S2)

equals one on a conic neighborhood of the set that projects onto the set where the left
projection of C has a folding ingularity. This means that

Be(x,§) = p(x) (1 - “%l))

has symbol anishing in a conic neighborhood of this set and consequently the map

f - (Be ePf) ((5,0),0<s <1
is a nondegenerate Fourier integral operator f order zero. Therefore, Hormander’s Theorem
[44] about the L? oundedness of Fourier integral operators yields

) 1
f | (Be €™ f) (8,0)|2 dsdt < CN,Be |If Il75qm)-
v Jo

Therefore, an pplication of Schwarz’s inequality yields
67 F ) < Cus, 1z
Therefore, an application of Schwarz’s inequality yields
N,B¢ I}
”)(,1 f ”Lz(y) < CN,BS Il f ”LZ(M);
if
t . .
X3 f = Beox(N(P = 2))f =N [ 2 (N)e_lt’l (B, e'F) fdt.
Therefore if we similarly define )(/Ilv’bsf = beox (N(P-D)f, then x3" f +
X3P f = x (NP - 2))f and since » = 1 ony , the proof of (33) would be complete

if we could show that if € > 0 is small enough (depending on N) then for A > 1 we have
for a constant C independent of e, Nand 4 > 1

11
16" F N2,y < ENTZ22IF iz + Coobe IIf Nlizany (35)
In addition to taking € > 0 to be small, we shall also take the support of ¥ about y to be
small.
It is in proving (35) of course where we shall use our assumption that y is not part of
a smoothly closed geodesic. A consequence of this is that, given fixed N, if € and the support
of y are small enough then
b.(y,n) = 0 whenever
(v,m) = @(x,§),(x,§) €supb,,2 < [t| < N. (36)
In what follows, we shall assume that € and iy have been chosen so that this is the case. The
point here is that if y (s),s € R, is the geodesic starting at (0, 0) and containing {y (s) =
(5,0); 0 < s < 1}, points on the curve y (s),|s| < N + 1 might intersect y, but the
intersection must be transverse as s — y (s) is not a smoothly closed geodesic. Then if ¢
Is chosen to be a small multiple of the smallest angle of intersection and if i has small
enough support about y , then we get (36). Using the canonical relation for eitP , we can
deduce from this that
b. 0 e*f 0 b} is a smoothing operator when2 < |t| < N + 1. (37)
I.e., for such times this operator’s kernel is smooth.
Let T be the operator )(iv'bg f |, ,i.e. the truncated approximate spectral projection

operator restricted to y . Our goal is to show (35) which says that

60



11
”T”LZ(M)—)LZ(Y) S CN 2).4 + CN,bE'
This is equivalent to saying that the dual operator T* : L?(y ) — L?*(M) with the same
norm, and since

IT* 9l 2y = j T*gT g dx = f TT g gds < ITT"gllzg)llgllze )y
M Y
we would be done if we could show that

1
ITT"glizgy < (CN72 + Cup, )l gllizgry (38)
But the kernel of TT* is K(y (s),v (s')), where (x,y),x,y € M is the kernel of the

operator b, 0 p(N(P — 1)) o bi with (z x (z ))2 being the square of y. Its Fourier
transform, p, is the convolution of y with itself, and thus p(t) = 0,|t|] = 1.Consequently,
we can write

t : .
beop(N(P — D))ob; = N7! j ﬁ(ﬁ) e " (b,0e' ob;)dt (39)
Thus, if @ € Cy° (R) is as above, then by (36) and (37), the difference of the kernel of the
operator in (39) and the kernel of the operator given by

N7t j a (%) p (%) e "2 (b0 e o b; )dt  (40)
is 0(A7/ Yfor any J . Thus, if we restrict the kernel of the difference to y x y, it contributes
a portion of T T* that maps L*(y ) = L*(y ) withnorm < Cy,_ .

To finish, we need to estimate the remaining piece, which has the kernel of the
operator in (40) restricted to y X y . Since we are assuming that the injectivity radius of M
is 10 or more one can use the Hadamard parametrix for the wave equation and standard
stationary phase arguments (similar to ones in [16], Chapter 5, or the proof of Lemma 4.1
in [5]) to see that the kernel K (x, y) of the operator in (40) satisfies

1

1 =
KGey)l < CNT2A7 (dg (63)) * + o,

The first term comes from the main term in the stationary phase expansion for the kernel

and the other one is the resulting remainder term in the one-term expansion. Since this kernel

restricted to y X y gives rise to an integral operator satisfying the estimates in (38), the

proof is complete.

While as we explained before the condition that for the L?- normalized eigenfunctions
1

= 2

lim sup sup /’ljz f |e,—1j| ds = 0
j—ooo yEll y

Is a natural one to quantify non-concentration, it would be interesting to formulate a

geometric condition involving the long-time dynamics of the geodesic flow that would

imply it and its equivalent version that /’lj_‘s(”) ”e/b-”p - 0,2 <p < 6.Presumably if y €

I1 and
_1 2
lim sup Ajz f |e,—1j | ds > 0 (41)
j—oo y
then y would have to be part of a stable smoothly closed geodesic, and not just a closed

geodesic as we showed above. Toth and Zeldtich made a similar conjecture to this in [58],
saying that, in n-dimensions, if y is a closed stable geodesic then one should be able to find
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n-1

a sequence of eigenfunctions on which sup-norms are blowing up like A7 . In [32], [49], it
was shown that there is a sequence of quasimodes blowing up at this rate.
It would also be interesting to formulate a condition that would ensure that

1
leallsany = 0(2%®) = o ()IE),for L?-normalized eigenfunctions. Presumably, such a

condition would have to involve both ones like those and conditions of the type in [29], [17].
Since L% is an endpoint for (1) one expects that one would need a condition that both
guarantees that LP bounds for 2 <p < 6and p > 6 be small. Formally, the proof of
Theorem (2.1.1) suggests that L*-norms over geodesics might be relevant for the problem
of determining when the L%(M) norms of eigenfunctions are small. This is interesting
because the L*-norm is the unique L”-norm taken over geodesics that captures both the
concentration of the highest weight spherical harmonics on geodesics and the concentration
of zonal functions at points. Indeed, the highest weight spherical harmonics saturate these
norms for 2 < p < 4, while the zonal functions saturate them for p > 4 (see [5]).

Also, it would be interesting to see whether the results here generalize to the case of
two dimensional compact manifolds with boundary. Recently, Smith and [52] were able to
obtain sharp eigenfunction estimates in this case. In this case, the critical estimate was an L8
one. So the results here suggest that size estimates for the Kakeya-Nikodym maximal
operator associated with broken unit geodesics and applied to squares of eigenfunctions
could be relevant for improving the bounds in [52], which are known to be sharp in the case
of the disk (see [43]). An observation of Grieser [43] involving the Rayleigh whispering
gallery modes suggests that in order to obtain a variant of Corollary (2.1.2) for compact

2

domains one would have to consider L?-norms over/1j3—neighborhoods of broken

geodesics. Smith and [51] also showed that for compact manifolds with geodesically
concave boundary one has better estimates than one does for compact domains in R™. For
example, when n = 2(1) holds. Based on this and the better behavior of the geodesic flow,
it seems reasonable that the analog of Corollary (2.1.2) might hold (with the same scales) in
this setting.

Finally, as mentioned before it would be interesting to see to what extent the results
for the boundaryless case extend to higher dimensions. The arguments given here and in
[36], though, rely very heavily on special features of the two-dimensional case.

Section (2.2): L*-Bounds for Compact Surfaces with Nonpositive Curvature

For (M, g) be a compact two-dimensional Riemannian manifold without boundary.
We shall assume throughout that the curvature of (M, g) is everywhere nonpositive. If A,
Is the Laplace-Beltrami operator associated with the metric g, then we are concerned with
certain size estimates for the eigenfunctions

—Agey(x) = A*e;(x),x €M,
Thus we are normalizing things so that e, is an eigenfunction of the first order
operator ,/—A, with eigenvalue A. If e, is also normalized to have L? -norm one, we are

interested in various size estimates for the e, which are related to how concentrated they
may be along geodesics. If IT denotes the space of all unit-length geodesics in M then our
main result is the following “restriction theorem” for this problem.

Theorem (2.2.1)[30]: Assume that (M, g) is as above. Then given € > 0 there isa A(¢) <
oo S0 that
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YEII
with ds denoting arc-length measure on y, and L?(M) being the Lebesgue space with
respect to the volume element dV,, for (M, g).
Earlier, Burgq, G’erard and Tzvetkov [5] showed that for any 2-dimensional compact
boundaryless Riemannian manifold one has

1/2 1
(f leal? dS) < CA% lleall 2y (43)
Y

ith C independent of y € II. The first such estimates were somewhat weaker ones of
Reznikov [26] for hyperbolic surfaces, which inspired this current line of research. The
estimate (43) is sharp for the round sphere S? because of the highest weight spherical
harmonics (see [5], [28]). Burg, G erard and Tzvetkov [5] also showed that

1/4 1
(f leal* dS) < CA% lleallzquy, v € 10,
Y

and so by interpolating with this result and (42) one concludes that when M has nonpositive

1/2 .
sup (J leal? dS) < el lell 2y, A > A(e), (42)
¥

1
curvature sup [lexllpq/lleall iz = 0o(4+) for 2 < p < 4. An interesting but
yEIl

potentially difficult problem would be to show that this remains true under this hypothesis
for the endpoint p = 4.

Theorem (2.2.1) is related to certain LP -estimates for eigenfunctions. [15] proved that for
any compact Riemannian manifold of dimension 2 one has for 4 > 1,

1/1 1

leallran < C2T) fleyllzgn 2 <p <6 (@44)
and

1 1 1

leallran < €2 2 llegllzgny, 6 < p < @ (45)
These estimates are also sharp for the round sphere S? (see [53]). The first estimate, (44), is
sharp because of the highest weight spherical harmonics, and thus, like (42) or (43), it
measures concentration of eigenfunction mass along geodesics. The second estimate, (45),
is sharp due to the zonal functions on S2, which concentrate at points. The sharp variants of
(44) and (45) (with different exponents) for manifolds with boundary were obtained by H.
Smith and [52], and it would be interesting to obtain analogues of the results for this setting,

but this appears to be difficult.
In the last decade there have been several results showing that, for typical (M, g), (45)
can be improved for p > 6 (see [29], [17]) to bounds of the form |lell.» )/ llexll 2oy =

1/1 1
0(15(5_5)) for fixed p > 6. Recently, Hassell and Tacey [23], following B’erard’s [61]

1 1 1
earlier estimate for p = oo, showed that for fixed p > 6 this ratio is 0(/12(5_5)_5/
J/log 1), which influenced the present work. Also, in [66] the authors showed that if the
geodesic flow is ergodic, which is automatically the case if the curvature of M is negative,
then (42) holds for a density one sequence of eigenfunctions.

Except for some special cases of an arithmetic nature (e.g. Zygmund [60] or Spinu
[67]) there have been few cases showing that (44) can be improved for Lebesgue exponents
with 2 < p < 6. In [28], using in part results from Bourgain [36], it was shown that
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1(%_%))

leall e/ lleall 2y = 0(42
forsome 2 < p < 6ifand only if

1
sup lleall ¢,/ lleallzary = 0(22).
YE

Thus, we have the following corollary to Theorem (2.2.1).
Corollary (2.2.2)[30]: As above, let (M, g) be a compact 2-dimensional manifold with
nonpositive curvature. Then, if e > 0and 2 < p < 6 are fixed there is a A(g, p) < oo so that
1/1 1
leallLrmy < 812(2 ) lexllieny, 4 > A(e, p)-
We remark that an interesting open problem would be to obtain this type of result for the
case of p = 6. It is valid for the standard torus T? = R?/Z? since Zygmund [60] showed

that there one has ||e; || +(r2)/llexll 2(r2) = 0 (1) and the classical theorem of Gauss about

1
lattice points in the plane yields |ley|l o (12)/lleall2(r2y = O(4+) Since p = 6 is the
exponent for which concentration at points and concentration along geodesics are both
relevant, proving a general result along the lines of Corollary (2.2.2) would presumably have
to take into account both of these phenomena. One expects, though, such a result for p = 6
should be valid when M has negative curvature. This result seems to be intimately related
to the problem of trying to determine when one has the endpoint improvement for the
1
restriction problem, i.e., suplley |l +y/llexll 2y = O(49).
yEIl

[28] showed that if y, € II is not part of a periodic geodesic then

1

lleall 2y / lleallizny = 0(A%).

The proof involved an estimate involving the wave equation associated with Ag and a bit of
microlocal (wavefront) analysis. The main step in proving Theorem (2.2.1) is to see that this
remains valid as well if y, is part of a periodic orbit under the above curvature assumptions.
We shall be able to do this by lifting the wave equation for (M, g) up to the corresponding
one for its universal cover, which by a classical theorem of Hadamard [63] and von Mangolt
[68], is (R?, g), with the metric g being the pullback of g via a covering map, which can
be taken to be exp, for any x, € M. By identifying solutions of wave equations for (M, g)
with “periodic” ones for (R?, §)we are able to obtain the necessary bounds using a bit of
wavefront analysis and the Hadamard parametrix for (R?,g). Fortunately for us, by a
classical volume comparison theorem of Gunther [6], the leading coefficient of the
Hadamard parametrix has favorable size estimates under our curvature assumptions. (It is
easy to see that the contribution of the lower order terms in the Hadamard parametrix to (42)
are straightforward to handle.)

Since the space of all unit-length geodesics is compact, in order to prove (42), it suffices
to show that, given y, € IT and € > 0, one can find a neighborhood N (y,, €) of y, in IT and
a number A(y,, €) so that

1
j le;12ds < 22 el (M), y € N (roy ), > Ayore).  (46)
Y

In proving this we may assume that the injectivity radius of (M, g) is ten or more. We recall
also that, given x, € M, the exponential map at x,, expy, : T M = R? — M is a universal
covering map. We shall take x, to be the midpoint of our unit-length geodesic y,. We also
shall work in geodesic polar coordinates about x.
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If § is the pullback to R? of the metric g via the covering map then (R?,g) is a
Riemannian universal cover of (M, g). Like (M, g) it also has nonpositive curvature.
Additionally, rays t — t(cos 0,sin 8),t = 0, through the origin are geodesics for g. Such
a ray is the lift of the unit speed geodesic starting at x,, which in our local coordinate system
has the initial tangent vector (cos 6, sin 8). Note that in these coordinates vanishing at
X, t = t(cos 8,sin 0),|t| < 10 are also geodesics for g. We may assume further that we
have

Vo={(t,0):—%StS%}. (47)

To prove (46) it will be convenient to fix a real-valued even function y € S(R) having the
property that y(0) = 1and y(t) =0, |t] = i, where } denotes the Fourier transform of y.

We then have that for T > 0
)((T( /—Ag —).)) ey = €y,

and, therefore, to prove (46), it suffices to show that if T is large and fixed then there is a
neighborhood N = N(y,, T ) of y, so that

[ (= -)]

where C (but not Cr ) is a uniform constant depending on (M, g) but independent of T and
N . To prove (48), we shall be able to use the wave equation as

e R

= %fTT/Z)z(t/T)e‘i” costJ—Agf dt +)((T(,/—Ag + ) f, (49)

using the fact that y(t) is even and supported in |t]| < i. Since the kernel of the last term

satisfies
Ox.y X (T ( /_Ag + A)) (x, )

for any N in compact subsets of any local coordinate system, to prove (48) it suffices to
show that

1
d < CT22|fll7z(M) + Cry IfI2(M), v € N, (48)

< CpyA7V (50)

2

T/4
1 .
J — f 7(t/T)e " cost —Ayf dt| ds
14 ~T/4
1
< CT 22+ Cry Ifllzgny ¥ € N (v, T). (51)

If y, iIs not part of a periodic geodesic of period < T, then we can easily prove (51) just by
using wavefront analysis and arguments that are similar to the proof of the Duistermaat-
Guillemin theorem [40]. This was done in [28], but we shall repeat the argument here for
the sake of completeness and since it motivates what is needed to handle the argument when
Yo IS a portion of a periodic geodesic of period < T .

To handle the latter case we shall exploit the relationship between solutions of the wave
equation on (M, g) of the form
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{(6? — Ag)u(t, x)=0,(t,x) ER, XM (52)
u(O,-) = fl atu(oi') = 0;
and certain ones on (R, §)
{(af — A)(t, %), (¢, %) € Ry x R?
_ 2 (53)
u(O,-) = fl atu(ol') = 0;

Note that u(t, x) = (cos(t,/—A4)f) (x) is the solution of (52).

To describe the relationship between the two equations we shall use the deck
transformations associated with our universal covering map

p = expy, R* > M. (54)
Recall that an automorphism for (R?, §),a : R* - R?, is a deck transformation if
po a=np.

In this case we shall write a € Aut(p). In the case where T? is the standard two-torus, each
o. would just be translation in R? with respect to some € Z? . Motivated by this if ¥ € R?
and a € Aut(p), letus call a(%) the translate of % by a. then we recall aset D c R? is called
a fundamental domain of our universal covering p if every point in R? is the translate of
exactly one point in D. Of course there are infinitely many fundamental domains, but we
may assume that ours is relatively compact, connected and contains the ball of radius 2
centered at the origin in view of our assumption about the injectivity radius of (M, g). We

can then think of our unit geodesic y, = {(t,0) : |t| < g}(written in geodesic polar

coordinates as above) both as one in (M, g) and one in the fundamental domain which is of
the same form. Likewise, a function f(x) on M is uniquely identified by one f,(X) on D if
we set f, (%) = f(x), where % is the unique point in D N p~1(x). Using f;, we can define a
“periodic extension”, f, of f to R? by defining f () to be equal to fD (%) if ¥ = ¥ modulo
Aut(p), i.e. if (%, ) € D x Aut(p) are the unique pair so that § = a(%). Note then that f is
periodic with respect to Aut(p) since we necessarily have that f(%) = f(a (%)) for every
a € Aut(p). We can now describe the relationship between the wave equations (52) and
(53). First, if (f(x),0) is the Cauchy data in (52) and (f (%), 0) is the periodic extension to
(R?, §), then the solution 7i(t, %) to (53) must also be a periodic function of % since g is the
pullback of g viap and p = p o a. As a result, we have that the solution to (52) must satisfy
u(t,x) = 1i(t, %) if ¥ € D and p(¥) = x. Another way of saying this is that if £ is the
pullback of f via p and t is fixed then i (t,) solving (53) must be the pullback of u(t,-) in
(52). Thus, periodic solutions to (53) correspond uniquely to solutions of (52). In other
words, we have the important formula for the wave kernels

cos(t |—Ay(x,y) = Z cos(t |-b; (Za@), (55
acAut(p)

if X and ¥ are the unique points in D for which p(%¥) = x and p(J) = y.
Note that the sum in (55) only has finitely many nonzero terms for a given (x, y, t) since,
by the finite propagation speed for § = 92 — Ag, the summands in the in the right all vanish
when dg (%, a(y)) > t. For instance, if x =y = x, the number of nontrivial terms would
equal the cardinality of p ~1(x,) N {¥ € R? : |%| < t} where |%| denotes the Euclidean
length, due to the fact that d;(0, X) = |X|. Despite this, the number of nontrivial terms will
grow exponentially in ¢ if the curvature is bounded from above by a fixed negative constant.
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We review one last thing before focusing more closely on the proof of our restriction
estimate. As we shall see, even though there can be an exponentially growing number of
nontrivial terms in the right hand side of (55), which could create havoc for our proofs if we
are not careful, this turns out to be related to something that will actually be beneficial for
our calculations.

These facts are related to the fact that in the geodesic polar coordinates we are using,
(t cos 0,tsin 6),t > 0,0 € (—mu, ], for (R?, §), the metric g takes the form
ds? = dt* + A%(t,§)do?, (56)
where we may assume that A(t,8) > 0 for t > 0. Consequently, the volume element in
these coordinates is given by
avy(t,8) = A(t,0)dtdo, (57)
and by Glinther’s [6] comparison theorem if the curvature of (M, g) and hence that of
(R?%, §) is nonpositive, we have

A(t,0) > t. (58)
Furthermore, if one assumes that the curvature is < —x? , with k > 0 then one has
1
A(t,0) > - sinh(kt). (59)

Since the volume element for two-dimensional Euclidean space in polar coordinates is
tdtdd and that of the hyperbolic plane with constant curvature -x? is

isinh(ict) dtdf, Giinther’s volume comparison theorem says that in geodesic polar

coordinates the volume element for spaces of nonpositive curvature is at least that of R? with
the flat metric, while if the curvature is bounded above by - k2 the volume element is at
least that of the hyperbolic plane of constant curvature - k2 . In the latter case, as we warned,
the number of nontrivial terms in the sum in the right side of (55) will be at least bounded
below by a multiple of et as t — +oo. Let us now turn to the proof of (51) and hence
Theorem (2.2.1). Giveny € [T we letT*y € T*M and S*y < S*M be the cotangent and unit
cotangent bundles over y, respectively. Thus, if (x,§) € T*y then &, is a tangent vector to y
at x if TM23¢ —» & € TMis the standard musical isomorphism, which, in local
coordinates, sends &= (§,%;) € TyMto & = (§ ,&) with & =X g1“(x) §.Then if
®.: S*M — S*M denotes geodesic flow in the unit cotangent bundle over M, and (x,¢) €
S*y we let L(x, &) be the minimal t > 0 so that @;(x, §) = (x, &) and define it to be 4o if
no such time t exists. Then if y is not part of a periodic geodesic this quantity is 4+oco on S*y,
and if it is then it is constant on S*y and equal to the minimal period of the geodesic, (y)
(which must be larger than ten because of our assumptions). Note also that L(x, &) can also
be thought of as a function on $*M, and that, in this case, it is lower semicontinuous. Recall
that we are working in geodesic polar coordinates vanishing at x,, the midpoint of y,, and

that y, is of the form (47) in these coordinates. Let us choose 8 € C,°(R) equal to one on

[—%,%] but O outside [—1,1]. We then let b.(x,D) and B.(x,D) be zero-order

pseudodifferential operators which in the above local coordinates have symbols

be(x,$) = B(IxDB($2/¢el¢]), and B (x, ) = B(IxD(1 — B (&2/elSD),

respectively.
Our first claim is that if e > 0 and y € IT are fixed, then we can find a neighborhood
N (yy, €) of y, so that
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T/4- 2
j j B, o cos(t |~A,)f| dsdt < CrolIfI%M),y €N (vo, ), (60)
-T/4Jy

which, by an application of the Schwartz inequality, would yield part of (51), namely,
d < Cr lIfII2 (M),

1 T/4 N 2
il 5 —idt p o ,_
jy — J T/4)((t/T)e B, o cos (t Ag)f dt
Y €N (¥5,8). (61)

If R, denotes the restriction to y € II, then (60) follows from the fact that the operator

f = R,(Aeocos(t [-4,)f),

regarded as an operator from C*(M) - C®(y X [-T /4,T /4]), is a Fourier integral
operator of order zero which is locally a canonical graph (i.e., nondegenerate) if supp
A(x,&) n S*y = @, and hence a bounded operator from L*(M) to L*(y x [T /4, T /4]).
since B.(x, &) vanishes on a neighborhood of S*y,, we conclude that this is the case A =
B, for y € I close to y,, which gives us (60). The L? -boundedness of nondegenerate
Fourier integrals is a theorem of Hormander [44], while the observation about R, (A o

cos(t,/—A,)) is one of Tataru [56]. It is also easy to check the latter, because, for fixed ¢, e
it,/—Ags: C*(M) — C*(M)is a nondegenerate Fourier integral operator, and, therefore,

one needs only to verify the assertion when t = 0, in which case it is an easy calculation
using any parametrix for the half-wave operator.

The estimate (61) holds for any y, € I1. Let us now argue that if £(y,), the period of
Yo. 1S larger than T or if y, is not part of a periodic geodesic, then we have also have
favorable bounds if B is replaced by b,, with € > 0 sufficiently small. To do this, we recall

that the wave front set of the kernel of b, o cos(t,/—A,) o b is contained in
{661 y,—m): Dy (x,8) = (y,0), 7% = Ng7* (0)&;éy, (x, ), (y,n) € supp b, }.(62)
To exploit this, let I, be the operator
1 T/4 . —i
W,f =R, (% [ Rt/ TYe % b, cos(t [=Ry) f dt).  (63)
Our goal then is to show, that under the present assumption that £(y,) > T
1 1
||VVV||L2(M)—>L2(]/) <CT 224+ CT,bS
for y € IT belonging to some neighborhood N (y,, T, €) of y,. This is equivalent to showing
that the dual operator W, : L?(y) — L*(M) with the same norm, and since
2 . - %
-~ f W Wy gg ds < Wy gl 2., I9llzq)
14
we would be done if we could show that
. N2 _q1.1
W91l 2y < (€T 722 + Crp, ) Nlgllizgy: (69
But, by Euler’s formula, the kernel of 4W, W," is K|, ,, where K(x,y),x,y € M is the
kernel of the operator b, o p(T (,/—Ag — A)) o bi + b, o p(T(,/—A4 + 1)) ° bZ + 2b, o
X(T(\[=Bg — )x(T(J—A, + 1)) o bZ,if p(x) = (;((r))2 .The last two terms satisfy

bounds like those in (50) (with constant depending on T and b,), and the first term is
1 T/2 A —i *
— J / *,p(t/T)e™ ™ (b, o cos(t=Bg) o b;) (x,y)dt. (65)

5 g
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We are using the fact that p = y = y is supported in [—% ,%]. In view of (62), if e > 0 is
sufficiently small, since we are assuming that #(y,) > T , it follows that we can find a
neighborhood N of y, in M so that (b, o cos(t,/—A,) o bi )(x,y)is smooth on N X

N whent > 2. Thus,on N X N the difference between (64) and
T/2

1 .
K@y == | BE/SW@E/e (bocos(e [-ag) bz ) .y de
-T /2
is Or p, (1). But, by using the Hadamard parametrix (see below) one finds that
1

1 =
K (x,y)] < €T 7122 (dy(x,y)) 2
3

+Cp, 7 (1 +2 (1+2dy(x, ) * > %,y €N, (66)

for some uniform constant C, which is independent of ¢, T and A. Since, by Young’s
inequality, the integral operator with kernel K|, is bounded from L?(y) — L?(y) with

norm bounded by CT ~*Az + C,,_r if = N, we get (64), which finishes the proof that (48)
holds provided that £(yy) > T.

The above argument used the fact that if (y,) > T , with T fixed, then if ¢ > 0 is small
enough and (x, &) € supp b, with x € y, then ®,(x,&) & supp b, for 2 < [t| < T /2. In
effect, this allowed us to cut the effect of loops though y, of its extension of length T from
our main calculuation, since they were all transverse. If y, € II is part of a periodic geodesic
of period < T, i.e., £(yy) < T , then this need not be true. On the other hand, if T is fixed
and (x, &) is as above, then for sufficiently small £ we will have

Dy(x,8) & supp b, if x €y, and t & Ujezli€(vo) — 2,j£(vo) + 2] (67)
Note that our assumption that the injectivity radius of (M, g) is 10 or more implies that
£(yo) = 10.
To exploit this, we shall use (55) which relates the wave kernel for (M, g) with the one for
its universal cover using the covering map given by p = exp, with x, being the midpoint
of y,. Note that the points a(0), a € Aut(p) exactly correspond to geodesic loops through
x,, With looping time being equal to the distance from «(0) to the origin in R? . Just a few
of these correspond to smooth loops through x, along the periodic geodesic containing y,.
Since we are assuming that we are working with local coordinates on (M, g) and global
geodesic polar ones on (R?, §) so that y, is of the form (47), the automorphisms with this
property are exactly the a; € Aut(p),j € Z for which
aj(o) = j£(¥o,0). (68)
Note that G,, = {“f}jez is a cyclic subgroup of Aut(p)with generator a;, which is the

stabilizer group for the lift of periodic geodesic containing y,. Consequently, we can choose
¢ > 0 small enough and a neighborhood N of y, in M so that

(bs ° COS (tJTAg )) obi(% a(¥)) € C°N X N

if Aut(p) 2 a € Gy, .
Therefore, by (67)—(69), if we repeat the arguments that were used to prove (64), we
conclude that we would have

X [j€(vo) — 2,j€(yo) + 2], (69)
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2
1 «© .
n—Tj_oo)ﬁ(t/T)e At p. o cos (t /—Ag)f dt| ds

J
1 1 2
< (T4 28+ Crp) Wy NGO T, (70)

for some neighborhood N(y,, T ) in I, if we could show that if the a; are as in (68) and

e}

1 .
ke == [ B je0)/5)pi/me
€Ly jt(yo)sT/2} -0

X (bg © cos s,/[—A; o b}) (9?, a; ()7)) ds, (71)

1 5 11
|K(x,y)| < CT ~12z (dg(x,y)) + T 222
3
+Crp,(1+A(1 +2dg(x,3)) 2 1,y €N, (72)
with N being some neighborhood in M of y, (depending on T ). The second term in the
right side of this inequality did not occur in the previous steps. It comes from the terms in
(71) with j # 0. Also, the fact that (72) yields (70) just follows from an application of
Young’s inequality. To prove (72), it suffices to see that we can find N as above so that

¥ <<s — J8(r0))/5)D(s/T)e 5% (b o coss [~Ag o b:) (%.0;5)) ds

Then

1 _1
< C22(max{dy (%,4;(5)), e % (%, a;(7)}) 2 + Crp,
x,y €N,0#|j[,(yo) <T. (73)
Cassuming that the curvature of (M, g) is everywhere < —k? ,k > 0, while for j = 0, we

have
jﬁ (s/5)0(s/T)e ™5 (b, o cos's_[~ ;) Gey)) ds

1 _1 _3
< €27 (dg(x,y)) 2+ C(T,b_e) 1+ (1+2dy(x,))
X,y € N. (74)
Note that d4(X, a;(¥)) € [j¥(yo) — Ljf(yo) +1] when x,y €ypand hence
dg(%,a;(9)) = |j| when x,y € N with N being a small neighborhood of y, in M. We shall

assume that this is the case in what follows. We then get (72) by summing over j. (Observe
that if the curvature is assumed to be bounded below by a negative constant, we get
1

something a bit stronger than (72) where in the second term we may replace T zby T™1.)
Both (73) and (74) are routine consequences of stationary phase and the Hadamard
parametrix for the wave equation.
To prove (74) let ¢(x,y) denote geodesic normal coordinates of y about x. Then if
|t| <5, by the Hadamard parametrix (see [64] or [27]) and the composition calculus for
Fourier integral operators (see Chapter 6 in [16])

(bs o COS (t \/TAQ> o b;) (x,y) = z fRzeiQ(x,y)-fiitl'fl a.(x,y,)dé + 0.(1), (75)
+

where a. € S, depends on —A, and b, but satisfies
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lag| < C,and |0 ,07 a.| < Ceoo(1 + €D (76)
The first constant is independent of C and only depends on the size of the symbol of b,
which is < ”,B”ioo(R) . Recall (see [16]) the following fact about the Fourier transform of a
density times Lebesgue measure on the circle ST = {@ = (cos8,sin 8)},

21

. 1 ]
f e %a, (x,y,0)d0 = I2nw|_fzeillwl ag (x,y, tw)
) -

3
+0.(lw| 2),|w| =1, (77)
where the constants for the last term depend on the size of finitely many constants in (77).
Since |p(x, y)| = d4(x,y), if we combine (75) and (76), we find that, modulo a O, (1) term,

if (s) = B(s/5)p(s/T), then when d,(x,y) = 17", the quantity in (74) is the sum over
+ of a fixed multiple of
l [0 0]
(dg (x, y)) 2 f YA —1)+ P4 + r)etirdgy) ag(x, y, +r@(x, y))r% dr
0
30 ) 1
+ 0. ((dg(x,7)) j (8@ -] +[p@+m]) A+ Zdr

0
1

By (76), the firstterm in is O(lla. 1o (1dg(x,)) ), since [P(2)] < Cy(1 + []) ™ forany
3

N. Since the last term is 0.(1~1/2 (dg(x,y))_g), we have established (74) when

dy(x,y) = A71. The fact that it is also O(1) + 0.(1) is a simple consequence of (75) and
(76) which gives the bounds for d,(x,y) < A1 and concludes the proof of (74).

To prove (74) we can exploit the fact that, unlike the case of t = 0, if t # 0 then cost
\/—_Ag: C*(M) — C*™(M) isaconormal Fourier integral operator with singular support of

codimension one. Based on this and (62) we deduce that if (x,t, &, t; y,n) is in the wave
front set of

(cos(t |=D8g)) (%, a;(3)),] # O,

and both x and y are on y, then both ¢ and n must be on the first coordinate axis. Therefore,
since the symbol, b, (x, &), of be equals one when x € y, and ¢ is in a conic neighborhood
of this axis (depending on &), we conclude that there must be a neighborhood N of y, in M
so that

(be o cos(t c) » by) (%, (7)) — cost \/—Tg (203) € c2W x N,

0 #|jl¢(ro) = T.
Because of this, we would have the remaining inequality, (73), if we could show that

L(s—jt’(yo)/S)ﬁ(S/T)e‘m COSS\/TAg (55 aj (ﬁ)) ds

1 ~ ~ Kd (J?a-(fl)) 1
< CA2(max{d,(% a; (§)),e" 9\ TV N2+ Cr
x,y €N,0 # [jl€(yo) < T. (78)
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To prove this, we shall use the fact that on (R?, §) we can use the Hadamard parametrix
even for large times. Recall that the Hadamard parametrix says that if we set

go(t, x) = (2m) 72 f e%) cos(t|€]) d¢,
]RZ

and define ¢,,v = 1,2,3,...recursively by 2&,(t,x) = tfot &-1(s,x)ds, v=1,2,3,..,

then there are functions w,, € C*(R? x R?) so that we have

N
(cos(t |[=-8)(07) = ) wy( ey (6.dg( 7))+ Ru(t,%,7),

v=0
where forn = 2,Ry € L% .(R x R* x R?) if N > 10. We are abusing the notation a bit by
putting &, (t, r) equal to the radial function ¢, (t, x) for some |x| =r. The¢,,v =1,2,3,..,,
are Fourier integrals of order —v; for instance,

. tsin t|&|
— - ix-&
g (t,x) = (2m) 72 ije 21|

As a result of this, we would have (78) if we could show that
wo (20,3 J I BGs — €(re)/5)p(s/Te 5 (=) cos(se)) g ds

1 ~ ~ Kd (fa-(y)) 1
< CAz(max{d,(%,a; (§)), e 9\ )2, j=1,2,...,(79)

as well as
| [ B(s = j£(yo)/5)p(s/T)e e, (s,dg (%, a;(7))ds| < C,,0 # j€(y,)
<Tv=123... (80)
Here we are using the fact that |w, (x,y)| < Crfor |x|,|y| < T
. If we repeat the stationary phase argument that was used to prove (74), we see that the left

side of (79) is dominated by a fixed constant times
1

A% Wo (f, a; ()7)) (dg (f, a; ()7)))_E ,

and, consequently, we would have (74) if
1

. - .0\ 2 N N £ (7)) n L
Wy (x, a; (y)) (dg (x, aj(y))> < C(max{d, (%, a; (7)), ¢dy(20;) D7z (81)
assuming, as above, that the curvature of M is < —«k?,k > 0. The last inequality comes

from the fact that in geodesic normal coordinates about x, we have
1

Wo(x,y) = (det gl](y)) * ’
(see [61], [22] or §2.4 in [27]). If y has geodesic polar coordinates (¢, 8) about x, then t =
dg(x,y),and if A(t, 8) is as in (57), we conclude that w,(x, y) = /t/A(t, 8), and therefore

(81) follows from Giinther’s comparison estimate (59) if - k? < 0 and (58) if k = 0.
The second estimate (80) is elementary and left for the reader, who can check that the

1
terms are actually 0(Az™"). (This is also just a special case of Lemma 3.5.3 in [27].) This
completes the proof of (78), and, hence, that of Theorem (2.2.1).
We see that the proof of Theorem (2.2.1) shows that one can strengthen our main
estimate (42) in a natural way. Specifically, if y, is a periodic geodesic of length £(y,) and
if we define the 6-tube about y to be

Ts(vo) = {y € M: disty(y,v0) < 6},
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with § > 0 fixed, then there is a uniform constant Cg so that whenever € > 0 we have for
large 1

1 1
- 2 = 2 2
2(vo) Jyole/ll ds < SAZHQAHLZ(TS()/O)) + Cy0‘5‘£||e/1||L2(M)_ (82)

Thus, (42) essentially lifts to the cylinder IRZ/G,,0 , With, as above, G, , being the stabilizer
group for the lift of y, to the universal cover (R?, §). To prove this, we as before write I =
Be + b, with b.(x, &) equal to one near T*y, but supported in a small conic neighborhood

of this set. Since the analog of (61) is valid, i.e.,
2

T/4—
1 .
Jy e f 2(t/T)e " B, o cos(t —Ay)f dt| ds < C%,s,yo”f”iz(m)» (83)
0 —-T/4
it suffices to show that
T/4 2
1 1 ) N
7 )f T f x(t/T)e " b, o cos (t /—Ag) eydt| ds
Yo Yo /4

is dominated by the right side of (82).
If K.(x,s),x € M,s € y, denotes the kernel of this operator then, if § > 0 and T are
fixed, it follows that
|Ke(x, )| < Cyy 160X € Ts(¥o), (84)
provided that b, is supported in a sufficiently small conic neighborhood of T*y,. This is a
simple consequence of the fact that when b, is as above, by (62), b ° cost,/—A, (x,s) is
smooth when x & Ts(y,),s € Yo and |t| < T . Since (66) is valid, we conclude that there is

a uniform constant C so that for large A we have
2

T/4
1 1 .
7 j P j £(t/T)e ™ b, o cos (t /—Ag) e,dt| ds
(vo) J,,, T_T/4
1
< CT 2 lleall 2 (ry ) + Cropollealliz (85)

which along with (83) gives us (82). This is because we can dominate the quantity in (85)
by the sum of the corresponding expression where e, is replaced by 1r,(y,)®* and

Lrg (Y0)¢* and use (66) and our earlier arguments to show that the first of these terms is

dominated by the first term in the right side of (85) if A is large, while the second such term
Is dominated by last term in the right side of (85) on account of (84). We would also like to
point out that it seems likely that one should be able to take the parameter T in the proof of
either (42) or (82) to be a function of A. This would also require that the parameter ¢ to also
be a function of 4, and thus the argument would be more involved. It would not be surprising
if, as in B’erard [61] or Hassell and Tacey [23], one could take T to be ~ log A, in which
case the L? -restriction bounds in Theorem (2.2.1) and the L* -estimates in Corollary (2.2.2)

could also be improved to be 0(Ax(log A)~%t and 0(A= (log A)~%2, respectively, for some
8; > 0. It is doubtful that these bounds would be optimal, though—indeed if a difficult

conjecture of Rudnick and Sarnak [50] were valid, both would be 0 (A%) for any € > 0. One
of the main technical issues in carrying out the analysis when T depends on A would be to
determine the analog of (60) in this case. One would also have to take into account more

73



carefully size estimates for the coefficients w,,v > 0, in the Hadamard parametrix, but
B’erard [61] carried out an analysis of these that would seem to be sufficient if T = log A.
On the other hand, we have argued here that the w, coefficient is very well behaved, and so
perhaps there could be further grounds for improvement.
Section (2.3): LP -Norms and Lower Bounds for Nodal Sets of Eigenfunctions in Higher
Dimensions

For (M, g) be a smooth, compact boundaryless Riemannian manifold of dimension
d = 3. Let A, be the nonnegative Laplace-Beltrami operator and consider eigenfunctions

ey satisfying Agey = A% e; with 2 > 0. IfTI denotes the space of unit length geodesics and
dz the volume element associated with the metric g, then our main result is the following
generalizations of [28]:

Theorem (2.3.1)[69]: Let ey, 4 = 1, be an eigenfunction and 2d+2) q < 2(d+1) . Then
there is a uniform constant C < oo so that given € > 0 we can find a constant C so that

q (T)@7) e, 17 q
”el”LCI(M) < ert 2 Z 4 ”eA”LZ(M) + C”e/lllLZ(M)
-2
q2
(F)z5) 2
+CA” 7 \leallfzqyy Sup X lea(2)|%dz |, (86)

ell
14 1 5()’)

1

T 1, = {x € M: dy(x,y) < /1_5} (87)
2172 ¢

1

denotes the A"z -tube about y, with d, (- ,-) being the Riemannian distance function.
Corollary (2.3.2)[69]: The following are equivalent for any subsequence of L? -normalized

eigenfunctions {elfk} :
k=1

2
limsup sup j |e,1. (Z)| dz = 0 (88)
k—oo Yen Jy 4 Tk
Z_E(Y)
jk

lim sup A__ “_ ” = Oforany2<p < 2(d+1) . (89)

k—o0 LP (M)
Proof. Given Theorem (2.3.1), it is routine to verify that (88) implies (89) for 2(d+2) <

2(d+1)

— . The remaining values of p then follow from interpolation. For the converse,
observe that Holder’s inequality gives

d—1 2
e@Pdz s 27020 e 2,00,

T 1
12™

and the implication follows.

In the case when (M, g) has nonpositive sectional curvatures, we shall be able to show
that (89) holds for the full sequence of eigenvalues and hence extend the two-dimensional
results of the second author and Zelditch [30] to higher dimensions:

Theorem (2.3.3)[69]: Let (M, g) be a compact boundaryless manifold of dimension d >
2. Assume further that (M, g) has everywhere nonpositive sectional curvatures. Then if

0 =24 <A <1 < 4;...arethe eigenvalues of /A, we have
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2
limsup | sup f |e,1j| dx\= 0. (90)
T 1

]
Consequently, if 2 < p < Z(djll) , We have, in this case,
_4-1 (1 _1)
. 2 27p _
h;rjl_?olip Aj ||e,1j||Lq(M) = 0. (91)

d—-1 (1 1

In [15] the first author showed that [le;ll ey = O (AT 57)) when 2 < p <

Z(d_ﬂ) , and that these estimates are sharp on the standard sphere S¢ because of the highest

weight spherical harmonics. We should point out that for the complementary range p >

2d+1) improved LP -estimates under the above curvature assumptions follow, by

interpolation from the aforementioned p = 2:1+11) and an improved L*-estimate which is

implicit in Berard [61] (see also Zelditch [17] and [28]). Hassell and Tacy [82] have recently
obtained further results for this range exponents. Improvements for p > Z(d_“) are a bit

more straightforward than (91) due to the fact that everything follows from pointwise
estimates, while, to obtain (90) and consequently (91), we have to use oscillatory integrals
and a finer analysis involving the deck transforms of the universal cover. We should point

out that there are no general LP-improvements for the endpoint p = 221:’11) of the results in
[15], which on the sphere are saturated by eigenfunctions concentrating at points as well as
ones concentrating along geodesics.

The special case of d = 2 of Theorem (2.3.3) is in [30]. When d = 3, if one
assumes constant nonpositive curvature, (90) follows from recent work of Chen and [73],
who showed that if ds denotes arc length measure on y, then

sup j ley|> ds = o(Q)as 1 - oo. (92)
YEII Jy

In dimensions d > 4, Burg, Gerard and Tzvetkov [5] showed that one has the

following bounds for geodesic restrictions

f le;|> ds = 0(2972), (93)
14
Improving this to 0(1¢72 ) bounds as in (92) ford = 3 is not strong enough to obtain

(90) when d = 4. This comes as no surprise since, in these dimensions, (93) is saturated
on the round sphere S¢ not by the highest weight spherical harmonics which concentrate
along geodesics, but rather zonal spherical harmonics, which concentrate at points. By our
main result, Theorem (2.3.1), we know that (90) is relevant for measuring the size of L? -

normsintherange 2 < p < zgz:) , which are saturated on S¢ by highest weight spherical
harmonics. These eigenfunctions saturate the Kakeya-Nikodym averages in (90), by which
we mean that the left side of (90) is Q(1), but they do not saturate the restriction estimates
(93) ford = 4.

Fortunately, we can adopt the proof of the aforementioned improvement (92) of Chen

and the second author [73] to obtain (90) in all dimensions under the assumption of
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nonpositive curvature. Additionally, even for d = 3, unlike the stronger estimate (92), our
techniques do not require that we assume constant sectional curvature.

By recording some applications of Theorems (2.3.1) and (2.3.3). First, using (90) we
can improve the lower bounds for L! -norms of Zelditch [85] under the above assumptions:
Corollary (2.3.4)[69]: Let (M, g) be a d-dimensional compact boundaryless manifold with
d = 2. Then

d—-1
As pointed out in [85], no such improvement is possible for the sphere. The proof of (94) is
very simple. For, by Holder’s inequality, if p > 2,

_pb-2 2
1= llegllz < lleall?@72 ) An“p v
whence
__b_
leall 772 < lleall 2, » > 2.
As a result,

p

a1 1y P2 d-1
A2 2P lelle < 14 el

meaning that (91) implies (94).

Let us now see how (94), along with an estimate of Hezari and [83] improves the
known lower bounds for the Hausdorff measure of eigenfunctions on manifolds of variable
nonpositive curvature.

To this end, for a given real eigenfunction, e;, we let

Zy ={x € M: e(x)= 0}
denote its nodal set and 7%~ (Z,) its (d — 1)-dimensional Hausdorff measure. Yau [91]
conjectured that 41 (Z;) =~ A. This was verified by Donnelly and Fefferman [78] in the
real analytic case and so, in particular, if (M, g) has constant sectional curvature. The lower
bound %1 (Z;) = c, was verified inthe C*® casewhend = 2 by Bruning [72] and Yau,
3

but much less is known in this case. An upper bound H%~1(Z;) = 0(Az) is also known
by Dong [77] and Donnelly and Fefferman [79] when d = 2, but the best known upper
bounds for d > 3are 47t (Z;) = 0((cA)Y), which are due to Hardt and Simon [81].

Until recently, in higher dimensions for the C* case, the best known lower bounds
for #2021 (Z,) were also of an exponential nature (see [80]). Recently, Colding and
Minicozzi [74] and the second author and Zelditch [85] proved lower bounds of a
polynomial nature. Specifically, the best known lower bounds for d > 3 inthe C* case are

those of Colding and Minicozzi [74] who showed that
a-1
AT < KA1 (Zy). (95)
Subsequent proofs of this using the original approach of the second author and Zeldtich [85]
were obtained by Hezari and [83] and Zelditch [86]. The latter works and the earlier one
[85] were based on a variation of an identity of Dong [77]. The proof of (95) in [83] was

based on the following lower bound

2
cA (f |e,1|dx> < K1 (Z). (96)
M
Indeed, simply combining (96) and the L! -lower bound of Zelditch [85]
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d-1
A4 < ellp (97)

yields (95). Similarly, by using the improvement (94) of (97), we can improvel the known

lower bounds (95) under our assumptions:

Corollary (2.3.5)[69]: Let (M, g) be a compact boundaryless Riemannian manifold of

dimension d > 3 with nonpositive sectional curvatures. Then

d-1
lim inf AT 1A (7)) = oo (98)

In particular, when d = 3,32 (ZA) becomes arbitrarily large as A — oo,
By a simple argument (see [28]) one always has (88) and consequently (89) as A ranges over
a subsequence of eigenvalues {4} if the resulting eigenfunctions form a quantum ergodic

2
system (i.e. |e/1,-z| dx converges in the weak™ topology to the uniform probability measure
dx/Voly(M)). Consequently, by the above proof, we also have the following

Corollary (2.3.6)[69]: Let {e/ljk} be a quantum ergodic system on a compact Riemannian
manifold of dimension d > 3. We then have
d-1

, W7 ord-1 _
lim 2, 2 H (22,,) = . (99)

In particular, if the geodesic flow is ergodic, we have (99) as {4;, } ranges over a
subsequence of eigenvalues of density one. The last part of the corollary follows from the
quantum ergodic theorem of Snirelman [14] / Zelditch [18] / Colin de Verdiere [75] (see
also [28]).

We shall present the proof of our main result, Theorem (2.3.1). We shall go through
the essentially routine step of reducing matters to proving certain bilinear estimates, and this
step is very similar to the argument for the two-dimensional case of one of us [28]. It gives
partial control of the left side of (86) by the last term in the right. The needed bilinear
estimates, which lead to the first term in the right side of (86). We show the bilinear estimate
we require follows, up to an ¢ loss, from one of Lee [84]. We then are able to remove this
loss using a variable coefficient version of the “e- removal lemma” of Tao and Vargas [88]
(see also Bourgain [70]). We prove Theorem (2.3.3) which says that we have o(1) bounds
for L? -norms over shrinking tubes under the assumption of nonpositive curvature, and

consequently, by Theorem (2.3.1), improved LP (M)-norms for 2 < p < Zgljll) of the
estimates in [15].

We Dbegin the proof of Theorem (2.3.1), reducing matters to estimates on oscillatory
integral operators. Let y; denote the operator x(,/A; — A), where x is a smooth bump

function with y(0) = 1 and sufficiently small compact support. Hence y,e; = e;. Recall
(see Sogge, Chapter 5 [16]) that the kernel of this operator can be written as

0f@ = x( o= 2) @ = 27 [ M y)f0) dy + Raf@)

where a,(z,y) is supported in§ < d,(z,y) < 26 forsome § > 0 sufficiently small and
less than half the injectivity radius of (M, g). Moreover, ||[Ryf |l LagnSIf 2y -

Using a sufficiently fine partition of unity, we may assume that the support of «; is
sufficiently small. In particular, we may assume that supp(a;) < {|z — zo|l + |y — yol| K
g} for some points z,,y, € M with |z, — yo| = 6. Let y, denote the geodesic
connecting z,,y, and suppose that > is a suitable codimension 1 submanifold passing
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through y, such that y, is orthogonal to X. Now let (t,s) € R%"1 x R denote Fermi
coordinates for X~ with (0,0) = y,, (0,s) parameterizing y,, and (t, 0) parameterizing 2.
This means that for any fixed t, (t,, s) locally parameterizes the geodesic passing through
(t0, s) orthogonal to X
It suffices to prove that

f(f |/1%f e"’ldg(Z.y)a/l(Z,(t,s))f(t’s)dt2

d-11_1) 2
< ¢ (A 2\ q ||f”L2(M)> “f”Lq(M)

f ()72 dZ) ds

q—2

d—-1
+ a7 )G q)nfnLZ(M)sup [ vere

T 1
1_5(”)

Indeed, using Young’s inequality for products applied to the Holder conjugates 1 S 92" we
(q-2)

may absorb the contribution of ¢ 4 ||f||Lq(M) from the first term into the left hand side, for
¢ sufficiently small, yielding (86) when f = e;. It suffices to prove that for each s the
expression in parentheses on the left hand side is bounded by the right hand side. For
convenience, we will show this for s = 0 as the argument below works for any value of s
and does not use the structure of X~ once Fermi coordinates are given.

FixAand let Th(z) = [ e™¥@Day(z, (t,0))h(t) dt where y(z,t) = dy(z (t,0)).
We will show that

d- 1(1 l) 2 i
[ 7| roia < - (A 7 &7 ||h||L%> 1%
+c/1 z ||h||Lzsup f(T 1 F @17 2dz. (100)
YEII
Holder’s inequality with conjugates Tz , : will then imply that
! ! q-2
2
d—1 -1 /d-1 q
AT F@I2dz < 27 (2 ) F@I dz

T T i

and it is Veriﬁed that the exponent of A on the right is the same as the one in (86). Observe
that

(T h(®)" = j e MbEDE) o (0 aa(z, tRORE) dt dt

Suppose &, is a small dyadic number such that supp(a,(z,)) < [—¢&o, &]? for all z. Let
N > 0 be a sufficiently large dyadic number (which will essentially play the same role as

the integer N in [28]) and let j, be the largest integer such that 27/ > 2172 . Take a
Whitney-type decomposition of [—ey, £5]¢ X [—&o, £0]¢ away from its diagonal D into
almost disjoint cubes
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[—&o, go]d X [_So»go]d\D

_ U U Q) % QJ,

go22/>N2-Jo d(Qi,Qi,)zz—j

v ) o xed
a(el’ ,Qi‘,) )sN2-io
where each Q{,' has sidelength 277 and is centered at a point v € 27741, Set h{;(t) =
1 o) (t)h(t) where the first factor denotes the indicator of the cube Q{,' . Hence

(Th(z))2 = Z Z Thf;(z) Thi (2)
go227I>N27Jo  (vV')EE;
+ Z Thi (2)TR),(2) (101)
wvhegj,
where E; denotes the collection of (v,v") indexing the cubes satisfying d(Q,{ ,Qi,) ~
277 (or < N27Jowhenj = j,).
Theorem (2.3.7)[69]: Suppose T = T; is the oscillatory integral operator defined by

Th(z) := j ezt g, (2,5, t)h(t) dt

where a; is smooth and supp(a;,) is contained in a sufficiently small uniform compact set
and whose derivative bounds can be taken uniform in A. Assume further that ¢(x, s, t)
satisfies a Carleson-Sjélin type condition that 72.¢ is invertible and that if 8 is a unit vector
for which V.(V(x,s)¢,08) = 0, then
V2(V(x,s)¢,0) has eigenvalues of the same sign. (102)
Then
. . j M—(d—l)) _2d
Thy, Thl, | =<2 ( e A a ||h||2L% . (103)
(vv)EE; L%
It can be verified that setting z = (x,s) € R%™! x R, the phase function in question
P(x,s,0) = dy((x, ), (t,0)) =p((x,5),¢t) satisfies the Carleson-Sjolin condition given

2(d+1)

here. Moreover, our assumption that g < ensures that the exponent of 2/ in (103) is

positive. Hence this estimate yields

L —(M —(d—1)) _d-1_d-1
Th), Th!, || sN \ ¢ A a2 ||h||f% .
Since HOlder’s inequality with conjugates % : quz , and the triangle inequality yield

gl s2i<N—12J0 ||(v,V')EE;
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Ad‘lj > > THTHL| If1?dz

j (wvEeg;

< Ad‘lz z Ty TRL || 11F1%
j (vv)eg; L% ‘

the contribution of this sum is bounded by the first term on the right hand side of (100) by
taking N suitably large. This estimate can be considered as analogous to [28].

Our main tool in proving (103) will be a bilinear estimate due to Lee [84] along with
a refinement of arguments of that same work. Indeed, the estimate (103) should be compared
with [84]. [84], prove bilinear estimates which can be thought of as a variable coefficient
versions of bilinear restriction estimates due to Tao [87] for elliptic surfaces (inspired by
prior work of Wolff [90] and Tao-Vargas-Vega [89]). Lee then showed that these bilinear
estimates in turn implied linear estimates on oscillatory integral operators whose phase
function satisfies the Carleson-Sjolin type condition (102) (more generally called the
“Hormander problem”). However, his estimates suffer losses when compared to the optimal
estimate predicted by scaling.

We cannot afford such losses. Hence one of the central tasks is to prove a variable
coefficient version of the e-removal lemma for bilinear estimates in [88] (see also Bourgain
[70]) and refine the almost orthogonality arguments in [84].

i 1
We now turn to the second sum in (101); since 2770 ~ A 2 it will be treated
essentially the same way as in [28]. Observe that

. , : 2
Thi(2) Th], ()| 5 N1 Y [Thi ()]
%

(wvEeEj,
The main estimate for this term is then
d-1 ) 2
| |7 i | @iz
-1 .2
s Az [, sup f f (2192 dz (104)
L yen Jr 4
A_E(Y)
.
Since Y, ||h{,°||L2 = ||h||§% , We may sum in v to see that the contribution of these terms
t

Is bounded by the last term in (100).

To see (104), we will use geodesic normal coordinates centered at the point on M
corresponding to (v, 0) in the Fermi coordinates (recall that v € 2770 Z¢~1) and let x >
k(x) denote the diffeomorphism which makes this change of coordinates. WWe may assume
that k(v,s) = (0, s) (parameterizing the geodesic orthogonal to X through (v, 0)). We now

1

let {w,;}; denote a A"z -separated collection of points in a neighborhood of (0, ..., 0, 1) on
S$%=1 indexed by a subset of Z %=1 so that

1
|(,()l — O)kl = A_Ell — kl
Now let

4 1
2| =i
|z|

S, = {23
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and observe that the left hand side of (104) can be dominated by

S b

d-1 . 2
<sup IS s ), 27 T(H)@)
l

where the z, are chosen to maximize |T(h/°)(z)| as z ranges over k= (S;) and K is a small

set containing the x-support of a; (x, y). It thus suffices to see that for some suitable bump
function v,

d—1 . 1 .
z Az j e M@, (z,,(0,0))Y (AE (t — v)> hl° (t)dt
l
After a translation in t, it suffices to assume that v = 0 and the desired L?> — #? estimate
follows from the one dual to (106) below.

Theorem (2.3.8)[69]: Suppose Y (z,t) is as defined above and p(z,t) is a smooth bump

( -1(s, ) ”f”Lq 2(k=1(SNK)

2

d=1 2
S

a 1
function satisfying |07 p(z,t)| <, Alz_l and supp(p (-, z)) < {|t].A 2} . Assume also that p
vanishes when z is outside of a small neighborhood N of (sy, 0) with sy = § with§ > 0
(in the Fermi coordinates described above). Let z; be a collection of points in N indexed by
7. %=1 such that whenever |l — k| is sufficiently large,

(K1(Zl); ---:Kd—1(Zz)) (K1(Zk); yKa— 1(Zk))

(2] - [z
z M@ 5z, a;| dt S Z la; 2. (106)

a-1
A2 j
l l

The proof of (106) is the same as the one in [28], once it is observed that

1
Ve (21,0) = Vip(zi, 0)] = A 2|1 — k.
But since the pushforward of d/dz; under z — k(z) is itself, this is a consequence of
(105) and the identity
0., 9(2,0) = (vi, k(@) /K@), i = 1,...,d- 1

where v; is the pushforward of d/0z;.

We begin the proof of Theorem (2.3.7). We first appeal to [84] (which follows results
of Bourgain [35] and Hormander [45]) and the ensuing remark, which states that after a
change of coordinates and multiplying Th, h by harmless functions of modulus one, we may
assume

1IN — k. (105)

Then
2

d(x,s,t) = x - t +% s|t]? + E(x, s, t) (107)
where

E(x,s,t) = 0 (x| + [sD?[¢]* + oC (x| + [sDIt[®). (108)
Let 1 be a smooth bump function supported in [—1,1]% 1 satisfying ¥, cza-1 W2 (x —
k) = landsetA,(x) = p*(2/ (x — W) withp € 2772471,
Lemma (2.3. 9)[69] Suppose 1 < p < 2andthat T is as in Theorem (2.3.7). There exist
amplitudes a,,,, a,r, both with x-support contained in supp(A4,) and satisfying derivative
bounds of the form
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0% a,,(x,5,t)| sq 2717 (109)
such that if T, , is the oscillatory integral operator with phase ¢ and amplitude a,,,

T, u(R)(x,5) = j ePstg,  (x,s,t)h(L) dt

]Rd—l
then
P
. . ; i\ (|P
R COL ]| I Y G LT )] [
V,V'€EE; LP(R%) V,V'EE;

Proof. For a given s, consider the slice of T(h) at s T* (h)(x) = T(h)x,r|,=s. It suffices

to show that
p

J j j j
A, Z Ts (h)T° (g2,) < Z | 75.(n)TS, (gv,)”Lp _—
VV'EE; LP(R3-1) v,V EE;
and hence we shall assume that s is fixed throughout the proof. Now let ®(x,t,t") =
¢(x,5,t) + ¢(x,s,t") and observe that A,T* (h})T* (g.,) can be written as

Au(x)f eMPCtt) g(x s t)a(x, s,t’)h{; (t)gi, (t") dtdt’,

Treating D, = —il, as a vector-valued differential operator we want to write
N2 , N . .

(1 + (1712) o v,v) — D2 ) AT (BT (g))

= 75,(W)TS  u(g)) (110)
for some N large based on d and each operator on the right satisfies (109). It thus suffices
to see that this can be done for any monomial of

17120 AV, @ (wv,v") — D),
which in turn will follow by induction. To this end, observe that products of functions
satisfying (109) satisfy the same condition as do weighted derivatives (cd,)® of such

functions provided |c|] < 27/.0n Supp(4,) X Qj X Qi, we have that
27127 (20, @(wv,v") — 29, P(x,¢t,t")

1
satisfies (109). Moreover, since 2712/ < 277 | it is seen that for any a, (17? 21'6x)aAf1
satisfies (109). The claim then follows.

It now suffices to see that if P, ,, is the Fourier multiplier
1 H7\2 : -N
Pv,v’ (Dy) = (1 + (A 12]) |)l‘7xq)(u;v;v) - Dxlz) )

then for any sequence of {fv,v’} of Schwartz class functions defined on R4~1
2

2
Z Pv,v’fv,v’ 5 z ”fv,v' ”Lz(Rd_l) )
VVV'EE; 12 (]R{d‘l) VV'EE;
Z Pv,v’fv,v‘ 5 z ”fv,v' ”Ll (]R{d‘l) .
V,V'EE; L1(RA-1) VV'EE;
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The latter follows from the triangle inequality and Young’s inequality for convolutions, so
it suffices to treat the former. But Vx®(pv,v") = 2Vp(ws,v) + 0(277), so the
invertibility of V2¢, , gives

2 |V, (W v,v") — Vx®(w¥,7)| = 2/ v — 7.
Recall that for each v, the number of v’ such that (v,v") € E; is 0(1). Therefore since the

v range over a regularly spaced 27/ lattice, the desired bound follows from a routine
computation using Plancherel’s identity.
Returning to the proof of Theorem (2.3.7), fix a pair (v,v') € &; . Set hy(t) =

h{; (277 ¢t), ajy,(x,s,t) = a,,(x, 5,271, ¢ (x,s,t) = 2/¢p(x,5,277t) so  that
rescaling variables t +— 27/ t in the integral defining Tw(h{, )(x,s) yields

Tjyu(h)(x,s) = J e27j(xst) ay,,(x,s,t)hy (t)dt

= Zj(d‘l)Tv'u(h{;)(x,s).
Also set h,(t) = h{; , (Z‘f t)and define Tj,, ,(h;)(x,s) analogously, noting that ¢
remains independent of,, v' . Moreover, we may assume that a; ,, ,,(x, s,) (resp. a; ,» ,,(x, s,°))
is supported in a slightly larger cube containing supp(h,) (resp. supp(h,)). It is helpful to
observe that given (107), (108)
¢j(x,5,t) =x -t + 2—j—15s|t|2 + 2jE(x,5,2 —jt).

Lemma (2.3.10)[69]: There exists an amplitude a;,,, (x, s, t) satisfying bounds of the form
(109) such that

. . N i
(1 +2% 271 2/p, — u|2) eh27i st | (x,5,t) = e s, (x,5,1).
Proof. Observe that .
e—i)LZ‘quj 2] (A—l Zthk _ uk)eiAZ‘quj aj,v,u
‘ = 2/ (atk d)] - uk)aj,v,u + A_l ZZJDtk aj,v,u.
Since 1712%/ < 1, second term satisfies (109). Moreover, by (107), (108)

(atk ¢] (xr S, t) - l-lk) = X — Uk + 0(2_])
and thus by the support properties of a; ,,, the first term satisfies (109) as well. The lemma

then follows by an inductive argument a;, in to that in Lemma (2.3.9).
Given this lemma we let B, = P, (D,) be the Fourier multiplier with symbol P, ({) =

. , -N
(1 + 2H|27120 ¢ + u|2 ) and observe that by self-adjointness of P,(—D,), we have

Tiyu(h)(x,s) = f g2 ~ib;(est) Ajvu(x, s, 8)(Bhy)(E) dt
Thus if we can show that

||7}',v,u(h1)7}',v’ n(ha) | 12 (RY)
_2d 2j(d+1)
SR ||Puh1||Lz(Rd_1)||Puh2”Lz(Rd—l) (111)
taking a sum with respect to p and applying Cauchy-Schwarz will give
1
2

a 2d 2j(d+1) 7 2 q
D sty = (75270 ) T2 1B

u i=1 u

83



2 a
and by almost orthogonality of the P,h;, (Z“ ||Puhi||z2 )2 S |lh;]l%, . Rescaling therefore
yields

. o4
> T ()T (W) Iz
u

q
2d . (2(d+1)\ . \\2 .4 .4
5(/1 7 (57)- 1>> B0 gy N oy 112)

Hence Lemma (2.3.9) and Cauchy-Schwarz mean that the left hand side of (103) is
dominated by

|

1

2 (2 (o) w 1 1 a
AN D ey | (D IR sy )

% %
The desired estimate (103) now follows from the embedding #2 ,— £9 .

We are left to show (111). At this stage, d(supp(hl),supp(h2)) = 1, but we want
to exhibit the uniformity of the phases and amplitudes. To this end, observe that

1
d(x,s,t +v)=(x + sv) -t +§ s|t]?

+E(x,s,t + v) + s2 v + x - V.
The last two terms here can be neglected. A Taylor expansion gives
E(x,s,t +v)=E,s,v)+ ViE(x,s,v) -t
+% z of E(x,s,v)ta + R,(x,s,v).
la|=2
As observed in [84], we may change variables y = x + sv + V.E(x,s,v) and,
neglecting terms which can be absorbed into either T (h;) or h; , we can write
o(y,s,t +v) =y -t + 12s|t|2 + Ev(y,s,t),
where &, (y, s, t) will also satisfy (108) (with y replacing x). Hence
qu (y,s,t + 2/ v) = 2j¢(y,s,2_jt + v)
=y -t+ 277 s|t]? + 2/ E,(y,5,277).
Also define o, = pn + sv + V.E(y,s,v) (recalling that p is the center of the x-support of
d;vw @) and observe that linearizing the change of coordinates gives that if |[x — p| <

27, then |y — a5| <277 . We next set
¢y, s,t) = 28¢; (27 y + a,5,t)
1 : : ,
=y t+s sle]? + 2Y E,277y + 0,527t + v)

and define

T.(g)(,s) = f 27 d(st) aj,vlu(z—f y + ag,5,t)g.(t) dt
and T, (g,) in the same way except with amplitude djlvf,u(Z‘fy + 0o, 5,t). The bound (111)
will then follow from

2d
17072092 8 oy = (A275) T Ngillz(ua-nlgall- (12 (RTD . (113)

This estimate in turn follows from one of Lee [84] along with e-removal lemmas. We state
this using his hypotheses.
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Fori=1, 2, let T; be oscillatory integral operators

T.f(2) = j e 1912q, (7, 8)f (£)dé

z = (x,s) € Rt xR, ¢ € R4?
with a; smooth and of sufficiently small compact support. Assume that \73?5(1)1- hasrank d —
1 and that & — V,¢;(x,s,&) is a diffeomorphism on supp(a;). Take g;(x,s,§) =
059i(x, 5, [Vepi(x, 5,017 (§)) s0 that ds¢p;(x,5,8) = qi(x,s,Vetpi(x,5,§)). Suppose
further that VfoCIi(Z, V.di(z, &)) is nonsingular for (z,&;) € supp(a;).
Theorem (2.3.11)[69]: Fori = 1,2, a;, ¢; satisfy the hypotheses outlined in the preceding
discussion. Setu; = Wy (z, &) and 8(z,¢1,€2) = Veqi(z,uy) — Veqa(z,uy). Then if

(Vx2€¢(ZJ Ei)S(ZJ 511 52): |Vx2§:¢(z, fl)] -1 [szfql(zr ui)]_l S(Z' {:1' {:2))
>c >0 (114)
fori =1, 2, then for any % <p

d
||T1f1T2f2||Lp(Rd) S AP ||f1||L2(]Rgd—1)||f2||L2(]Rd—1) - (115)
Moreover, if T,, T, are members of a family of operators whose phase and amplitude
functions satisfy these hypotheses uniformly and are uniformly bounded in C* with
amplitudes supported in a set of uniform size, then the implicit constant in (115) can be
taken independent of each operator in the family.

We postpone the proof of this theorem until. It is then verified (see [84]) that if one
takes & = t,z = (x,5),P(x,5,t) = Pp.(x,5,t) = Pp,(x,s,t) and a;, a, as the
amplitudes in T, T, respectively, then the left hand side of (114) satisfies

& — &l + 0(g) + 0(277).
Therefore since |t; — t,| = 1, the desired bound follows by taking (115) with A replaced
by 12727 .
Remark (2.3.12)[69]: As a consequence of Theorem (2.3.11) and the almost orthogonality
arguments, we obtain the bound
_d 2(d + 2)
”Th”Lq(Rd) S A4 ”h”Lp(]Rd—l) when g > —Qa and

d+1 d-1
7 < o (116)
for operators T satisfying the hypotheses of Theorem (2.3.7). In other words, we obtain
Lee’s estimate [84] without the &-loss. Indeed, the Whitney-type decomposition of (Th)? in

the previous is essentially the same as that in his work, and the estimate over the (v,v’) €
i is treated on p. 85 there. Since Holder's inequality gives |hj|

_j@-v1 1 :
G ||h{,||Lp(Rd_1),(112) and the almost orthogonality arguments above yield the

following variation on (103)

<
12 (]Rd_l) ~

_ . .2(d+1)
Thi, Th!, <274

(vv)EE; L%(Rd)
(since it suffices to treat the cases where ¢ = p). Taking a sum in j then yields (116).

1 2d
—2(d-1)(1-=) ,-=&
() 270 Iz gy
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We also note that when p = oo, the estimate in (116) is valid for a larger range of g
by a recent work of Bourgain and Guth [71].
Turning to the proof of (115), the estimate

d

”TlflTZfZ”LQ(]Rd) < Ca)' q+a ”fl”LZ(]Rd—l)”fz”LZ(Rd—l) (117)
for arbitrary « > 0 and % < q is due to Lee [84]. Moreover, as observed in [84], the
constant C, is stable under small perturbations in ai and ¢; . In particular, if families of
amplitudes and phase functions are considered and these functions are uniformly bounded
in C* then C, can be taken uniform within the family of operators. The rest will be
dedicated to the following lemma, a generalization of [88] which completes the proof of
Theorem (2.3.11).
Lemma (2.3.13)[69]: Suppose T, T, satisfy the hypotheses of the previous theorem and that

they satisfy the estimate (117) forsome 1 < g < g and some o > 0. Assume further that

1(1+8“)<1+4“ 118
p d—1"q d+1 (118)

Then the scale-invariant estimate

d
ITifiT2foll r(mey S A 7 I fill 2(ma-1)ll f2ll 2 (ra-1) -
is also valid forany r > p.
The hypothesis (118) is stronger than the one appearing in [88] (corresponding to

o = ? there)

1 4o 1 2a
p(1+d—1)<q+d+1’ (119)

but is sufficient for our purposes. Let f;, £, be unit normalized functions in L? (R¢™1).
By a Marcinkiewicz interpolation argument, it suffices to see that

[{x : T i T2 fo(x)] > B S 27977

Denote the set on the left by E. Observe that since ||T;fiT> />l S 1, it suffices to assume
that B <1. Hence we may assume that |E| = A~% throughout since the desired bounds are
guaranteed otherwise. Moreover, we know from (117) and Tchebychev’s inequality

|E| s A-9+aap-a.
qa

Consequently it suffices to assume that 8 > A »-a . This gives the a priori bound
—d+qa(1+i)

E| S 2 p—a/ (120)
Since B|E| S [ 1gT1fiT2f5 |l , it suffices to show that
d 1

1eT1fiTofollis S AP |EIP
We deduce this by showing that for any unit vectors g4, g, in L? (R%™1)
d 1

11T191T29:00 S A P |E|F.
where it should be stressed that E is dependent on f;, f, above, but that g,,g, are
completely independent of these functions. Fix g, and let T = Tg ;. be the linear operator

Tg, = 15T,9,T,9,. It suffices to show that
d 1

IT * Fllz(ga-1y S AP |EP IF |l oo (e
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d 1
since duality then implies that ||[Tg,]l;2 S A » |[E|*" . We may assume ||F||_(L®) S 1. Set
F := 1;T,g,F. By a duality argument, we square the left hand side of the previous

inequality to see that it suffices to show that
2d 2 2

(T B F) < A7P |E[P" = 2724 A |E|)P, (121)
where the inner product on the left is with respect to L2 (R%). The integral kernel of T1T; is

K(w,z) = f e M1 =:1D)q, (w, ) ay (z,€) dé.

and satisfies estimates
d—1
IKw,2)| s (1 + Alw — z|)” 2 .

This bound follows from the invertibility of ngascpl when w — z is inside a small cone
about (0,...,0,1). Otherwise, stronger estimates result from integration by parts and the
invertibility of V,z¢;. We now let R > A~" be a parameter to be determined shortly and
write K(w,z) = KR(w,z) + KR(w, z) where KR(w, z) is smoothly truncated to |w —
z| = R and K®(w,z) is supported in |w — z| < 2R. Observe that by Stein’s
generalization of Hormander’s variable coefficient oscillatory integral theorem (see [55] or

[16])
B d+3 d+3 d(d-1)
1711 ey S TEIPED T g, ] IFlloo(gay S |E[2@¥D 4 26@+D),

| S (me)
Thus the contribution of K® to (T, T; F, F) is bounded by

_d-1  d+3 dd - 1) a1 a+3
(AR) 2 lEldHAA(_d—ﬁ—l = (AR)" 2 (A% |E])a+1 1722,

It is now verified that taking

2 d+3
R =27t (BN =

1 (d +1
ensures that the contribution of K is acceptable towards proving (121) (by scaling, this is
consistent with the choice of R in [88]). We also remark that another computation reveals

1
that (120) along with the hypothesis (118) ensuresthat R < 1 z.
It remains to control the contribution of K& to (121). Let {1 },, be a partition of unity
over [—¢&y, £5]% such that supp(y,,) is contained in a cube of sidelength 2R centered at a
point w, € RZ% . Let Py be the operator determined by the integral kernel K* and observe
that its contribution to the left hand side of (121) is dominated by

> [ Pa (i) o). (122)

k.k'
Given a fixed k, the number of k' for which (Pg(y,F), ¥, F) # 0is 0(1) and satisfies
d(supp(yr),supp(i,r))S R. Hence we will restrict attention to the sum over the diagonal
k = k' ,asaslight adjustment of the argument below will handle the off-diagonal terms.
At this stage it will be convenient to use the semiclassical Fourier transform with h =

> (cf. [92])

2
__,) Z 1_1;
p

F1(G)(m) =f e”"MWNG(w)dw,
A R4

d
Fii(9)w) = / dj e™1G () dn. (123)
21 (27'[) R4
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Since F1 is related to the usual Fourier transform by F1(G)(n) = F(G)(An), we have the
A A

2

Plancherel identity (2m)®||G||7 = A¢ | (cf. [92]). We now have
LZ

F1(G)

@O PR(YiF) YicF) = 28 (F1PriF) FL (b)), (124)
and the right hand side can be written as

1 ~ ~
2m)@ f f lk(n,C)T-%(ka)(i)T%(zka)(n)dcdn,

where

Jie(, )
= Ade f f e~ w=b1W+d1Z-2m),. (2, w)a, (W, E)ay(z, &) dz dw dé,

for some ¥, supported in |z — wy|,|w — wy| S R satisfying |0 ;9| S R7'¥.
Strictly speaking, one needs to justify the use of Fubini’s theorem here, but this can be done
by passing to Schwartz class approximations to ' and employing crude L? continuity bounds
for Pr. Therefore over supp(yy),

V1 (Wi, &) — Vo (W, )| + V01 (Wi, &) — Vzep1(2,6)|
< RS (AR,

1
where we use that R < A 2 in the second inequality. Hence integration by parts gives for
any N and some uniformcube Q ¢ R%!

Uk s N (AR)? f (1 + AR[n = Rp1(Wi, )| + AR[T — Fyps (Wi, 1)
Q

— N dé,
as the domain of integration in (w, z) is of volume R2% . Let S¢ denote the hypersurface
{(Vp1(wy, &) + &€ € Q}. This inturn allows us to deduce that
U@ Ol Sy AR + AR d(n,Si) + ARY((,S) + AR|C — D)7V
Consequently, by using Cauchy-Schwarz in (124) we have that

~ ~ -N ~
[(PawP) )| sy 2R [ (1 + aRIdG,SH)™ |FrwFan
Now let S;;; denote the (AR)~*2" neighborhood of S;; . We have that

DI
1=0

| F1 (lpkﬁ )
i i A L2 (Sky)

We examine the case [ = 0, the other cases are similar and aided by the factor of
27V . Let{g, .}, be a sequence of functions with supp(gy «) < Sk o for each k and

2
dn.

2

Y ||g1,k||i2(5£'0) = 1. To finish the proof and show that (124) is dominated by the right

side of (121), it suffices to see that
- B _d I
D WP ATF(G)) S AT QR ZIER IF (g
7
k
which in turn follows from

_a I
> | waea (@) Teg s AT GRZIED
A
k
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Now reverse the roles of g; and g, from the previous step, treating {gl'k}k as a fixed

sequence and redefine T = Tg,{g1x} by Tg, = {z/)klETfl(ng)ngz} so that it
A k
suffices to show

_d 1 1
”T“Lz(Rd_l)—)llLl(Rd) < Ad p (AR)_g |E|p’

Let {F.}, be any sequence of functions satisfying supy ||Fl| 2(Rd) < 1 and set F, =
Vi 1gA™4F (Jyx ) Fie- By duality, the desired bound on T will follow from
A

(3 &)

k

_a 1 1
< A P(AR) 2 |E|P'

12 (Rd_ 1)

or equivalently

d 1 1\?
2 (T, T, (Fk),ﬁkr>s<ﬂ (AR)2 |E|p’> :

kk'
Observe that
> dlsgaey < D Wiy [ [e1sd 7 (gu)| dw
K K A
d+3
2(d+1)\2(d+D _
= f z lpkd+3 A” dg:l (glk) 2(d+1) 2(d+1) (125)
E % A 2,47t L a1 (RY)

By finite overlap of the supp(yy), the first factor on the right is seen to be bounded by

d+3

|E|2@+v . Similar to before, an application of the Stein-Tomas theorem for S} gives

d(d 1)
Hz (g1 < 272G (AR)Z || gy

2(d+1) 3(d+1)

€2L251 )
fdlLdl(]R) (k,O)

2(d+1)
(cf. the formula for T{l in (123)) where we use that £2 < £, . Decomposing the integral

A
kernel of T2T, as a sum KR + Kj as before, we may handle the contribution of K% by
using (125) to reason analogously to the argument above. We are thus reduced to handling
the contribution of K, and denote the corresponding operator as Pr. As before, we restrict
attention to the diagonal terms, and are thus reduced to seeing that

1 12
Z (A4 T1(PR(Fk)) T1(Fk)) S (‘/\ P (\g) 2 |E|P> :
Since supp(F,) supp(tpk), this analogously reduces to showing that
2
j:l(ﬁk)
7

Z Z 2—”V| < (/1 P (AR)™ 1|E|P> ,
kX 1=0 L*(S%,)

where this time SZ, denotes the (AR)~'2! neighborhood of the hypersurface S7 =
{V_¢p2(wi ) : & € Q). We again restrict attention to the [ = 0 case, and let {g&k}k be a

sequence such that supp(gaox) € SZoand X || g2, k”L2(52 ) = 1. Observe that
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2.

k

d 1
and it suffices to show that the right hand side is bounded by 2 » (AR)~! |E|?" . But each
term on the right is bounded by
1

1 T \a
E| ( f A2 F (Gui)Fr ' (Gan) dw) :
7 2
Rescalingw ~ Rw and applying the bilinear estimates (117) (or even those in [87]) shows

the preceding term is bounded by
1 d

1 4d _da
IEIT RT AR 0™ AR | Guel o sp 12l sz

Taking the sum in k and applying Cauchy-Schwarz completes the proof once we observe
that

dw,

(F, l_dfl_l(gz,k ))
2

= Z 1 Ficll oo (et f |A'2dz/zk1E:F%‘1(gl,k)f%‘l(gz,k)

k

R 14
|E|a" A @ "R* S |E|P'A P,
_ 2 (&3_2) 2 (2_dy o
Recalling that R = A~1 (A% |E|)d-1\a+1 »") = A71(A¢ |E|)a-1\p a+1/ this inequality is

equivalent to
d 2a (2 d— 1) 1 d

|E| qxl a(Q*|E|)a-1\p a+l) g |E| PA P,

which in turn can be rearranged as
2a (2 d-1

(¢ |Enat b Ew ) < (¢ |y .
But since A4 |[E| = 1, this follows once it is observed that (119) is equivalent to
2 (2 d -1 1 1
d—l(p d+1) q p
Even though we only need the weaker condition (119) to conclude the argument, the
stronger hypothesis (118) is used above in a significant way to ensure that AR? < 1.
By Corollary (2.3.2), (91) follows from (90). Therefore, if , as before, IT denotes the
space of unit length geodesics, we must show that if (M, g) has nonpositive sectional

curvature, then if ¢ > 0 is fixed there isa A, < oo so that
j ley|?dx <&, A= A,y € I (126)
T 1)

12
Here, as before, we are denoting the volume element associated to the metric simply by dx.
We shall first fix y € IT and prove the special case

ley|?dx <&, 1= A, (127)

T 1
A 2

After doing this we shall see that we can adapt its proof using the compactness of I to obtain
the estimates (126) which are uniform as y ranges over this space.

To prove these estimates, we shall want to use a reproducing operator which is similar
to the local one, yx,, that was used to prove Theorem (2.3.1). This operator was a local one,
but to able to take advantage of our curvature assumptions and make use of the method of
time-averaging, it will be convenient to use a variant that is in effect scaled in the spectral
parameter.

To this end, let us fix a real-valued function p € §(R) satisfying
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1
p(0) =1 p(O) = 0if|t] =7 andp(t) = p(-t).  (128)
Then for a given fixed T > 1 we have

(o= 1) =

As a result, we would have (127) if we could show that there is a uniform constant A =
A(M, g) so that whenever T > 1 is fixed there is a constant Ay < cosothatforA > 1

(o= )]s

Sincep(T(/l - \/A_g)): 12 (M) - I2 (M) is self-adjoint, by duality, (129) is equivalent
to the following

p<T(,1 _ \/Tg))h

1 1

< (AT‘Z + ATA‘§) Wfllzon-  (129)
L2<T 1 (y))

12

1 1
< (AT-z + ATA_ﬁ) Rz »

L?(M)
ifsupph c T;rl (y). (130)
2

If we now let

m(r) = (p(x)), (131)

we can square the right side of (130) to see that whenever h is supported in the tube

T,r% (y) we have
= (T - \[@))h»

o(r(a- fa))r
L*(M)
Al :
L2<T 1()/)) L2<T 1 (V)>
A_E A 2

2

<

(= fo))s

Whence we deduce that our desired inequalities (127), (129) and (130) would all follow
from
(- o)
ifsupph c Tf ), (132)

with C and C; being equal to A% and A% , respectively.
Since, by (128),

1 1
< (CT72 + Cp 274 ||hll 2y »
L2<T 1 (Y))

A 2

m(r) = @)~ (P * p)()
Is supported in |t | < 1, we can write

1 T N . .
_ — ~ (_\ it —it /A
m(T (/1 ’Ag>> =5 B m (T) e e 9 dr.

After perhaps multiplying the metric, we may assume that the injectivity radius of the
manifold is larger than 10. Let us then fix an even bump function § € C,° (R) satisfying
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B(t) =1, ITIS;and,B(T)=0, IT| = 2.

m<T(/1 - \/At,)) =R, + W,

where (suppressing the T-dependence)
1 (T N . .
— _ ~(_\ jilt ,—it,/A
W, i f_T (1 B(t ))m (T)e e "2 dT,

and, if r; (7 )denotes the inverse Fourier transform of T —» B(t )m( )

z
T
Ryh = T™'rp (/1 - /Ag) h.

Clearly, |rr (t)| < B for some B independent of T > 1, and therefore,

IR f 2y < BT HIfllizony, T 2 1.
As a result, we would obtain (132) if we could show that (133)

1 1
) < (CT_E + CTA_Z) |h|| ;2 ,if supp h T;rl (y). (133)
2

We then can split

T 1(y)
A 2

WAl (
LZ

By Euler’s formula, if i denotes the inverse Fourier transform of T~ (1 — g(z)) (%)
we have

Wy =% j_TT (1 - Bz ))fﬁ(%)ei’hcos (T\/AZ) dt + My (/1 + \/A;)

Since iy (A + ,/Ay) has a kernel which, for T > 1, is 07 ((1 +)™") for every N =
1,2,...asm; € S(R), we conclude that we would obtain (133) if we could prove that

1 1
1SRl < (CT_f + Cr /'I_Z) |hll2,if supph © T _1(y),(134)
L2<T P (y)) Ao

A 2

With

S3 =% J_TT (1 - px))m (%) e** cos (T\/g) dr. (135)

It is at this point that we shall finally use our hypothesis that (M, g) has nonpositive sectional
curvature. By the Cartan-Hadamard theorem (see [25], [76]), for each point P € M, the
exponential map at P, expp , sending TpM, the tangent space at P, to M is a universal
covering map. It is natural to take P to be the center of our unit-length geodesic segment .
Thus, with this choice, if we identify R¢ with Tp M, we have that

kK =expp : RE=TpM > M (136)
IS a covering map.

If § = x* g denotes the pullback via x of the metric g to R? , it follows that  is a
local isometry. We let dg(y, z) denote the Riemannian distance with respectto g of ,z €
R? . By the Cartan-Hadamard theorem there are no conjugate points for either (M, g) or
(R%, ). Also, the image under k of any geodesic in (R%, §) is one in (M, g). If {y(¢t) :
t € R} denotes the parameterization by arc length of the extension of our geodesic segment
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y € I, lety = {y(t): t € R} denote the lift of this extension, which is the unique geodesic
in (R, ) that passes through the origin and satisfies k(7(t)) = y(t),t € R.

Next we recall that the deck transforms are the set of diffeomorphisms @ : R¢ —» R¢
for which

Ko ax = K.

The collection of these maps form a group I'. Since a* § = §,a € I, any deck transform
preserves angles and distances. Consequently, the image of any geodesic in (R%, §) under
a deck transform is also a geodesic in this space. As a result, the collection of all « € T for
which a(¥) = ¥ is a subgroup of I', which is called the stabilizer subgroup of y that we
denote by Stab (). If {y(t) : t € R} is not a periodic geodesic, i.e., if thereisno t, > 0
so that y(t + ty;) = y(t),t € R, then Stab(7) is just the identity element in I". If the
extension of y € I is periodic with minimal period t, > 0 then Stab(7) is a cyclic
subgroup which we can write as {a, : £ € Z}, where a, is determined by a,(¥(t)) =
7(t +£ty),? = 0,%£1,12,.... Thus, restricted to 7, a, just involves shifting the geodesic
7(t) by ¢ times its period, and Stab(¥) is generated by ;. Next, let

Dpir = {7 €R%: dz(0,7) < dg(0,a(®)), Va € I'a # Identity}
be the Dirichlet domain for (R%,g§). We can then add to Dp; a subset of dDp; =
Dpir\Int (Dp;,) to obtain a natural fundamental domain D, which has the property that R¢
is the disjoint union of the a(D) as o ranges over I and { € R? : dz(0,7) < 10} c
D since we are assuming that the injectivity radius of (M, g) is more than ten. Given x €
M, let X € D be the unique point in our fundamental domain for which k(%) = x. We
then have (see e.g. [28]) that the kernel of cos (7 ,/A,) can be written as

cos (T \/E) (x,y) = z (cos szg) (%, a(3), (137)

a€er
where cos(t /A;): L* (R*,§) » L* (R, §) is the cosine transform associated with g.

Thus, if dVj is the associated volume element, we have that when f € C° (R%)

u(t, x) =J (cos T /Ag) (%,2) f(2)dV (2)
R4
is the solution of the Cauchy problem (with D, = —id,)
(D? — Ag)u = 0, Ul;=o = f,0;ul;=¢ = O.
Therefore, by Huygens principle,
(Cos v [ng )(m) = 0ifdy(%.2) > |7|. (138)
Also, this kernel is smooth when d;(%,2) # |t |,i.e,
sing
supp(cos 7. /A; (-,) c {(£,2) € R* x R?: dg(%,2) = |t1}.(139)
To proceed, we need a result which follows from the Hadamard parametrix and stationary
phase:
This lemma is standard and can essentially be found in [73], [30] or [28]. So let us

postpone its proof and focus now on using it to help us to prove (134).
If we combine (135) and (137), we can write the kernel of our operator as

S;{(x, y)
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=507 2. J (1 = @) (7)™ (cos 7[5 ) (2.a)) dr, (140)

a€erlr
with, as in (137), ¥ and ¥ being the unique points in our fundamental domain having the

property that x = k(X) and y = k(¥), respectively. In view of (138) the number of
nonzero summands in (140) is finite, but, if the sectional curvatures of (M, g) are strictly
negative, the number of such terms grows exponentially with T. Therefore, as in [30] and
[73], it is convenient and natural to split the sum into the terms in the stabilizer group for y
and everything else. So let us write

S1(6,y) = S (x,y) + SP°¢ (x,y), (141)
where
1 T
Sftab (x, y) — ZT[_T Z j (1
a€eStab(y) -T
- B(x))m ( ) (cos T \/ZQ) (%, a(9)) dr, (142)
and
1 T
=5z 2 D] @
a€r\Stab -T

_ ﬂ(r)) ( ) (COS T\/@) (f,a(y))dr, (143)

We shall also call the operator associated with the second term in the right side of (141)
S95¢ since we shall be able to use oscillatory integral operator bounds to control it. The other
piece is very easy to estimate. We claim that

IISft“bhH( ) <(cr72 + ¢ 1) il
L2

T 1(y)
A2
if supph c Tz‘l ). (144)
2
By Young’s inequality, this would be a consequence of the following estimate for the kernel
1 d-1 d 1
S59%° (x,y)| < CT 2242 + Cp A2 2 (145)

since we may restrict to (x,y) € T/rl (¥y) Xx T_(A 2 (y). If our y € ITis not a segment
2

of a periodic geodesic in (M, g) then Stab(y) is just the identity element, in which case
(145) follows trivially from Lemma (2.3.16). Otherwise, if the geodesic has period t, > 0
then as noted before Stab(y) = {a,;}pez Where a,(¥(t)) = y7(t + €ty). Since
dg(a(w),a(Z))is uniformly bounded as w and Z range over D and o over I', Lemma

(2.3.16) also yields, in this case,
a-1 a-1 d—1
S5 (x,y)| < cT™? Z AZ (1+80)72Z +Cr Az 7%, (146)
1<fty<2T

using (156) (with j = 0) to obtain the first term in the right and (157) to obtain the other
term. Since d > 2, (146) implies (145). For later use, note that, since the period t, must be
larger than 10, in view of our assumption on the injectivity radius of (M, g), the constants
in (144) can be chosen to be independent of y € II. In view of (144), the proof of (134)
would be complete if we could show that
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T 1(y)
272

1
|s25¢n|| ( ) < Cr A% ||h||2,ifsupp h © T 1 ). (147)
LZ

By Lemma (2.3.16),
a-1

2
SP° (5,9) = p(x,y) Z at (4T dg(%a()))

T a€er\stab(y)
etMdg(Ba®) 4 Ra(x,y), (148)
where, with bounds independent of y € 11,
d—1
IRy, )| < Cr A% 2, (149)

By invoking Young’s inequality one more time, we find that by (148) and (149) we would
have (147) if we could show that

1
2 2
j f p(x,v)a + (A, T; dg(x, a(y))) e Thdg(xa®) p(y)dy| dx
T 1) T 1)
A 2 A 2
_a-1 1
< CA7 7 il € I\Stab({). (150)

Here, to simplify the notation to follow, as we may, we are identifying T;r(l) (y) with its
2

preimage in D via x. So we have lifted our calculation to R , and dy denotes the volume
element coming from the metric g.
To prove this we shall use the following result which is an immediate consequence
of Hormander’s L? -oscillatory integral theorem in [45] (see also [16]).
Lemma (2.3.14)[69]: Let
d(z; x,y) € C*°(R™ x R4t x RY)
be real and
a(z; x,y) € € (R™ x R4 x R%).
Assume that the mixed Hessian in the (x,y) variables of ¢ satisfies

62
Rank ( o (z; x,y)) = d — 1onsuppa.

0x;0yy
Then there is a uniform constant C so thatfor A > 1
1

2 2 d—
(J J e i (z;x,y)a(z; x,y)f (y)dy dx) <7 1Nl 2 (may
Rrd-1  |JRd

where all the integrals are taken with respect to Lebesgue measure.
We also require the following simple geometric lemma so that we can use Lemma

1
(2.3.14) to exploit the fact that our tubes are only have width A 2 to obtain (150).
Lemma (2.3.15)[69]: Suppose that « € I'\Stab(y) and that xy, y, € ¥ N D. Then either
a(y,) & vora~t(x,) & ¥ or both.
Proof. Since « € I'\Stab(y), it follows that ¥ and a(¥) are distinct or intersect at a unique
point P = P(¥,a) (by the Cartan-Hadamard theorem). In the first case both a(y,) ¢ 7
and a1 (xo) & 7. We also have the desired conclusion if P = a(y,), for then we must

have a(y,) € 7 asa(y,) € a(¥).
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Suppose that we are in the remaining case where ¥ Nna(y) = {a(y,)}. Since
X0, Yo € Dand D n a(D) = @, it follows that x, # a(y,). Therefore, as x, € ¥, we
must have that

alyp) = 2

Figure (1)[69]: Transversal intersections
xo & a(¥). Thus, in this case, we must have a~! (x,) € 7, meaning that we have the
desired conclusion for this case as well.

To use these two lemmas we require some simple facts about the Riemannian distance
function dg(x, z). We recall that (R%, ) has no conjugate points. Thus, the d x d Hessian
62
0x;0zy

dg(x, z) has rank identically equal to d — 1 away from the diagonal.

With this in mind, let us fix points x, and y, on our unit geodesic segmenty < D.
We shall now prove a local version of our remaining estimate (150). By Lemma (2.3.15),
for our given a € I'\Stab(¥), we know that either a(y,) € 7 or a™! (x,) & 7. For the
moment, let us assume the former, i.e.,
a(yo) € 7. (151)
We then have that the geodesic passing through z, = a(y,) and x, € y € ¥
intersects v transversally. We may therefore choose geodesic normal coordinates in R%
vanishing at x, so that ¥ is the first coordinate axis, i.e.
7 = {(t,0,...,0): t €R},
and, moreover, if x, = (x4,...,x4_1) are the first d — 1 coordinates of x in this coordinate

system then
2

ax;azk

Rank ( dg ((x’,O),z)) =d — latx’ = 0and

z = zo = a(yo). (152)
By Gauss’ lemma this will be the case if the geodesic through the origin and z, intersects
the hyperplane {x : x,, = 0} transversally as shown in Figure (1) below, which can be
achieved after performing a rotation fixing the first coordinate axis if needed. Since « :
R? — R%is a diffeomorphism it follows that in given our fixed points x5, 5, € ¥ € 7N
D, we can find 6 > 0 so that, in the above coordinates,

2
ifx € Bs(xp)and y, € Bs(yo),
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with Bg(w) denoting the geodesic ball of radius § about x € R4,
Next, it follows from (148) and Lemma (2.3.14) that, in our coordinates, for each
fixed value of x,,, we have

J | p(x, @) as (AT dy(x,a))
{x’:(x’ Xn)ET 1 (Y)ﬂBa(xo)} T 1 ()NBs(yo)
A2 A 2
1
2 1

x et (xa) AOay|ax' | < ca” 7 ([ oI @y’

1
Since |x,| < A zin 7;_1 (v), from this, we deduce that, under our assumption (151), we
2
have that

f N Bs(x,) J p(x,a(y))ai (A, T; dg(x,a(y)))
T 1(y) T 1 ()NBs(yo)

12 12

1
2
x etitdg(xa()) h(y)dy| dx
1
_4a-1 1 2
< C A 2 14 (j |h(y)]? dy) : (153)
Lemma (2.3.15) tells us that if we do not have (151) then
at(x) €. (154)

We claim that for our fixed points x,, y, € y we canfind § > 0 so that (153) remains valid
for this case as well. To do this, we just use the fact that our « € I'\Stab(y) is an isometry
and therefore

dg(x,a()) = dg(a™ (%), y).
Consequently, since a1 € I'\Stab(¥), we obtain (153) under the assumption (154) since
it is essentially just the dual version of the case we just handled, and so follows from the
above argument after taking adjoints.

Since we have shown that (153) holds either under assumption (151) or (154), Lemma
(2.3.14) tells us that given any two fixed points x,,y, € y we can find a § > 0 so that
(153) is valid. By the compactness of our unit geodesic segment vy, this implies (150), which
completes the proof of the estimate (127) for our fixed y € II.

It is straightforward to see how to obtain the stronger estimate (126), which involves
uniform bounds over I1, by using the proof of (127). We use the fact that if T > 1 is fixed
and if y € II is fixed then there is a neighborhood N (y)of y in ITso that if a €
I'\Stab(¥) and the geodesic distance between our fundamental domain D and its image
a(D) is < 2T, then we also have that « /€ I'\Stab (7,) for any y, € N (y). This follows
from the fact that there are only finitely many a« € I" for which the distance between D and
a(D)is < 2T, and if a is not a stabilizer for “y then it is also not a stabilizer for nearby
geodesics.
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Because of this and the uniform dependence on the smooth parameter z in Lemma
(2.3.14), if we define S;°°" to be the operator whose kernel is given by (143), we have the
uniform bounds

|59 | < Cr AT Rl
L2<T 1 (V))

A 2
1
ifyo €V (y)and supph c T_(A72 ().

If then S/f taby — Sy — Sf ¥ is then defined using vy, then the proof of (144) clearly also
yields the following variant

Stab,y _1 )
1S, || < CT7Z + CpA72 ||Rll 2,
L2<T 1 (Y))
A 2

ifyo, € NV (y)andsupp h C :7:1_1 (Yo)-
2

Together these two estimates imply the analog of (126) where, instead of having the
geodesic segments range over I, we have them range over NV (y) and A, = A.(V (y))
depends on V' (y). By the compactness of I1, this in turn yields (126).

We need to prove Lemma (2.3.16).
Lemma (2.3.16)[69]: Let m be as in (128) and (131), and, as above, assume that § €
Co’ (R) satisfies p(r) = 1,|t| <§ and B(t) = 0,|t| = 2. Then if 4, T > 1 and

%9 € R%, we have
L jT (1 — B(t ))ﬁ (Z)ei’“ (cosr Az )(3? y)dt
2nT J_; T N ’

a-1
A2 o
— ) 0t (AT ds(E ) (%)
+

+R AT, %,9), (155)

where p € L*(R? x R%) n C*®(RY x R%),

, d—1 .

a;(L,T; )= 0,r ¢ [1,T], 07 ay(A,T; r) < Cr 2z 7, (156)

with constants C; independent of 7,4 = 1, and

R(A,T; %,7) = 0ifds(%,7) > T,and

d—1
IRALT; %) < CrxA™ 272 ,if%,7 € KeR% (157)

Proof. Since m(t) = 0when |t | > 1/2 it follows that the left side of (155),

1 ' (T ilt = 5

ﬁJ—T (1 - ,B(T))m(?)e (cos T\/Zg) (%,y)dt, (158)
vanishes when dg(%,y) > T. Since p(r) =1 for |t| < 3/2, by (139), it is
Onr ((A4+)7V) forany N = 1,2,3,... if d;(%,7) < 1. Therefore, we need only to
prove the assertions in Lemma (2.3.16) when1 < d_g(x,y) < T.

To prove this, we shall use the Hadamard parametrix (see e.g. [64] and [28]). Since
(R%, §) has nonpositive curvature, for 0 < 7 < T we can write
g

d
(cost () @) = pG @D [ @i cos elelag
R

= p(x,y)
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= Z j ) e'iGyaa, (1,%, 7, |E)et™ ¥ de + R(1,%,7), (159)
R

where the leading Hadamard coefficient, p, 1S smooth and uniformly bounded (by the

curvature hypothesis), and if m € N is fixed we can have a{ R(t,%,¥)EL™ loc,0 < j <
m, and also

af_ 61a+(r,f,)7,r)| < Crkp, r=2-J,

T,X,y

ifr >1,0<t<T,j=012..and%jeEK € R*. (160)
We also recall (see e.g. [16]) that we can write the Fourier transform of Lebesgue measure
on the sphere in R% as

. a-1 . .
f e¥*?®do(w) = |x| 2 (c+(|x|)e‘|"| + c_(lxl)e_‘lxl),(161)
Sd—l
where foreachj = 0,1, 2,..., we have
|af (M| + |afc | <¢r/,r=1 (162)

Ifin (158) we replace (cos t \/_g) (%, ¥) by the first term in (159), the resulting expression
equals p(%, y) times a fixed multiple of

et idg(%,9)¢;
Zan de cos (t]é]e dédrt

z ZnTj j e cos (T71)

a-1

r 2
et (%,9) ¢y (d (%, y)r)—d_l drdt (163)

_ (dgezn) >
minus

z LJZ joo B(t)m (Z) e cos (tr)er(+irdg (Cx,y")
- 2nT J)_, J, T
- a-1
r 2
c:(dg Cx,y)r) - drdr. (164)
| (dgCxy)) 2

If we replace cos (t ) by e™**" in the right side of (163), the resulting expression equals
the sum over + of

a-1

J m(T(/l — r)) C+ (dg(f,f/)r )e“rdg(xy) e — dr
0

d-1
(dsx) °

a-1
A2 . o -
= —T eilldg(x'y) ai (/1, T; dg(jcv, y)):
where, using the fact that m € S(R) and (162), a, satisfies (156). If in (163) we replace

cos (tr) by e, then this argument also implies that the resulting expression is
Onr (1 + A)7N) forany = 1,2,3,.... Thus, modulo such an error p times the terms in
(163) can be written as the first term in the right side of (155) with (156) being valid. Since
this argument shows that the same is the case for (164), we conclude that the first term in
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the right side of (159), up to Oy 7 ((1 + A)™N) errors, gives us the first term in the right
side of (155).

This argument and (160) also shows that if in (155) we replace (cos r\/A_g) (%,7) by
the second term in the right side of (159), then we get a term obeying the bounds in (157).
Since, as noted we can take the remainder term in (159) to satisfy for a given m €
N,0!R(z,%,%) € LY., j = 0,1,...,m, we also see that if we choose m large enough, the
same is true for it.
Corollary (2.3.17)[246]: (See [69]) The following are equivalent for any subsequence of L?

-normalized eigenfunctions {e?“f)jk} :
k=1

limsup sup f Z |e(1+6) (z)| dz = (165)
T

k—o YEII
_5 y) n
(1+e)

li _(%) n
imsup (1+ e)jk ||e(1+e)j

k—oo

4
2+ = Oforany0 <e < Tre (166)

n
Proof. Given Theorem (2.3.1), it is routine to verify that (165) implies (166) fore > 0. The
remaining values of 2 + € then follow from interpolation. For the converse, observe that
Hoélder’s inequality gives

) (2+e )( 4+3€+€? _
[ Y eh@r s s a+o77 lowsa 2 el prsescs
T

(y) n T 3+e (M)

(1+€) 2
and the implication follows.
Corollary (2.3. 18)[246]' Suppose 0 <e <1landthat T is as in Theorem (2.3.7). There
exist amplitudes a,,,,a,r, both with x-support contained in supp(4,) and satisfying
derivative bounds of the form
|ot+€ @, (x,5,t)| Sy4e 27117 (167)
such that if T, , is the oscillatory integral operator with phase ¢ and amplitude a,, ,

z Tv,u(hn)(x’ S) — J2+ Z ei(1+6)¢(X,S,t)nav,u(x’S’ t)hn(t) dt
n Re™e n

then

1+€
. , . : 1+€
> > TrMT(el) s D0 D T (08
VV'EE; n LI+E(R3*E) VV'EE] n

Proof. For a given s, consider the slice of T(h™) at),,, sT5 (h")(x) =), T(h™)x, 1|, =s.
It suffices to show that

1+€
S )
v,V'EE; n L1*E(R2*€)
in jn 1+e€
S Z || T ll(h ) ll(g ) L1+6(R2+6)’
V,V’EE]'

and hence we shall assume that s is fixed throughout the proof. Now let ®(x,t,t") =
¢(x,s,t) + ¢(x,s,t") and observe that A,T* (h)")T* (g.;') can be written as

100



4,00 j D el OREOn o, 5, DaCe,s, O] D)) () dedt’
n

Treating D, = —iV, as a vector-valued differential operator we want to write
. N , ,
(1 + (A+e72) 1+ ORdGuv,v) = D) Y 4,15 (W7 (o)
n
= (W (gl (168)

for some N large based on (31}|— €) and each operator on the right satisfies (167). It thus
suffices to see that this can be done for any monomial of
(1+e)7 2/ (1 + eV P(wv,v) = D),
which in turn will follow by induction. To this end, observe that products of functions
satsifying (167) satisfy the same condition as do weighted derivatives (cd,)!*€ of such
functions provided |c| < 277.Onsupp(4,) x Q, X QJ, we have that
1+e) 12/ (1+e)d®P(v,v) — (14 € P(x,¢tt"))
satisfies (167). Moreover, since (1+¢€)~2/ < 27/ | it is seen that for any 1+

1
&((1+e)! Zfax)HEAf1 satisfies (167). The claim then follows.
It now suffices to see that if P, ,, is the Fourier multiplier

Py () = (1 + (1 + 07 2) 1A+ %D, v) — D7)

then for any sequence of {f;",;} of Schwartz class functions defined on R**€,
2

2
§ § n E E n
Pv,v’fv,v‘ = ”fv,v’ ||L2(]R2+6) ’
VVWEE; n L2 (R2+€) VV'EE; n
§ § n E E n
Pv,v’fv,v‘ < ”fv,v’ ”Ll (R2+€) *
VVWVEE; n L1(R2+€) VV'EE; n

The latter follows from the triangle inequality and Young’s inequality for convolutions, so
it suffices to treat the former. But Vx®(pv,v) = 2V,¢(ws,v) + 0(277), so the
invertibility of V2¢, , gives

27 |7, 2(wv,v) — Vx®(W¥,7)| = 2/ v — ¥].

Recall that for each v, the number of v’ such that (v, v’) € E; is 0(1). Therefore since the
v range over a regularly spaced 27/ lattice, the desired bound follows from a routine
computation using Plancherel’s identity.

Corollary (2.3.19)[246]: (See [69]) There exists an amplitude a;, ,(x,s,t) satisfying
bounds of the form (167) such that

. , N . _i
(1 +2¥|a+e)12/D, - u|2) Z el(1+e270; (xsiing, (x5, ¢)
n

_ i(1+€)27 7 ;(x,5,t)n ~
—z el(+e279;sting,  (x,s,t).

n

Proof. Observe that
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Z o—i+en27ig; o] (1+e)2/D,, - uk)ei(1+e)n2-1¢>j G
n
= 2J (atk ¢; — uk)aj'v,M + (14+€)71 22D, ajy,.
Since (1 + €)~12%/ < 1, second term satisfies (167). Moreover, by (3.1), (3.2)
(0¢, &) (x,5,8) — W) = x — W + 0(27)
and thus by the support properties of a; ,,, the first term satisfies (167) as well. The lemma
then follows by an inductive argument akin to that in Corollary (2.3.18).
Corollary (2.3.20)[246]: Suppose that « € I'\Stab(y¥) and that x,,y, € ¥ N D. Then
either a(y,) € yorat (x,) & 7 or both.
Proof. (See [69]) Since @ € I'\Stab(y), it follows that ¥ and a(7) are distinct or intersect
at a unique point P = P(7,a) (by the Cartan-Hadamard theorem). In the first case both
a(y,) &€ 7anda™! (x,) € 7. We also have the desired conclusion if P = a(y,), for then
we must have a(yy) € 7 as a(yy) € a¥).
Suppose that we are in the remaining case where ¥ N a(7) = {a(y,)}. Since xy,y, € D
andD n a(D) = @, itfollowsthatx, # a(y,). Therefore, asx, € ¥, we must have that
al¥yo) = 20

Figure (2)[246]: Transversal intersections
xo & a(¥). Thus, in this case, we must have a~! (x,) € 7, meaning that we have the
desired conclusion for this case as well.
Corollary (2.3.21)[246]: Let m be as in (128) and (131), and, as above, assume that § €

¢ (R) satisfies f(r) = 1,|r| <Zand B(r) = 0,|r| = 2. Thenif 1+ €T > 1 and
%9 € R3¢ we have

% J_TTZ (1 _ ﬁ(r))fr\l(%)ei(l%)m (COST\/rgn )(f,y)dr

2+€

= p(x,y)% ZZ a
+ n

+(1+6T; dgn(%,5)) X9 (2,5) + RA+6T.%5), (169)
where p € L*¥(R3*€ x R3*€) n C®(R3*¢ x R3*€),
2+€

a;(1+eT;r)=0r & [LT], 08lay(1+eT;7) < Gr 2z 7, (170)
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with constants C; independent of T, (1 + €) = 1, and
R(1+¢€T; %) = 0ifdgn(X,9) > T,and |[R(1 +¢,T; X,5)|

6+¢€

< Crx(1+e)7 2, ifx,j € KeR3*, (171)
Proof. Since r’ﬁ(r) = Owhen |t | > 1/2 it follows that the left side of (169),

s [, 2, (1= BE)(F)earom (cos 7 o) e

vanishes when d; n(x y) > T. Since f(r) =1 for |t| < 3/2, by (5.14), it is
Onr ((24+€)7N) forany N = 1,2,3,... if dgn(%,7) < 1. Therefore, we need only to
prove the assertions in Corollary (2.3.21) when 1 < dgn(%,7) <

To prove this, we shall use the Hadamard parametrix (see e.g. [64] and [28]). Since
(R2*€, g™) has nonpositive curvature, for 0 < t < T we can write

24€ o
Z (cosr /Ag‘">(9?,)~’)= p(%,7)(2m) ~(2+e) j}R Z eldgn BN oo 118\ dE
n
=Y [ et (15,5, ¢De ™ g + R(%,9),(172)
R2+E

T n
where the leading Hadamard coefficient, p, is smooth and uniformly bounded (by the

curvature hypothesis), and if m € N is fixed we can have 3, R(7,%,7) € L.,0 < j <

m, and also

0725 a{+ea+(r,f,y,1 +6)| < Crxr-e; 1+6)7277,ife 20,0 <7 <T,j
=0,12,... and %, 7 € K € R?**¢, (173)

We also recall (see e.g. [16]) that we can write the Fourier transform of Lebesgue measure

on the sphere in R2*€ as

] 1+€ ) .
j z e " do(w) = |x|_Tz (ce(lxDef™™ + c_(JxDe=i*n ), (174)
Sl+6
n n
where foreachj = 0,1, 2,..., we have
0], . c,(1+ )|+ |al+€ cc(l+e)| < ¢A+e)7,e =0. (175)

If in (158) we replace (cos 7./Azn)(%,§) by the first term in (172), the resulting
expression equals p(X, )7) times a fixed multiple of

J J Z ¢! O™ cos (z [¢])e! "N dedr
27TT R2+€

Z f f Z l(1+6)TnCOS (’L’(l
2nT
1+€

- 1+¢€)2
+€))eF 9% (%, 5) ¢y (dgn(E, 7)1 +€) ) (1+e) — d(1 + e)dr

(dgnzs) 2

minus
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1+€

S L [ son) vomes o
+ - n
(1+e)z

+ €))eti@reagnEmn | (dgn(f, N+ e)) wed(l+e)dr.
. dgn(fl 37) 2
If we replace cos (t (1+€)) by e ¥™™(%€) in the right side of (163), the resulting
expression equals the sum over + of

1+€

fooz m (TO)) ¢ (dgn(®, 7)1 + )eii(1+e)dgn(f,37)n 1+ E)TE d1+o
° (dgnz3)
B 1+ e)¥

ti(1+e)dn(X,y)n e don(7
- Z e g aL (1 +¢€T; dg (x,y)),

n

where, using the fact that m € S(R) and (175), a, satisfies (170). If in (163) we replace
cos (t(1 + €)) by e"™(1*€) then this argument also implies that the resulting expression
isOyr ((2+ €)™ )forany N = 1,2,3,.... Thus, modulo such an error p times the terms
in (5.38) can be written as the first term in the right side of (169) with (170) being valid.
Since this argument shows that the same is the case for (134), we conclude that the first term
in the right side of (172), up to Oy 1 ((2 + €)™ errors, gives us the first term in the right
side of (169).

This argument and (173) also shows that if in (169) we replace (cos 7,/Agn)(%, )
by the second term in the right side of (172), then we get a term obeying the bounds in (171).
Since, as noted we can take the remainder term in (172) to satisfy for a given m €
N,0/R(z,%,9) € LS., j = 0,1,...,m, we also see that if we choose m large enough, the
same is true for it.
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Chapter 3
Principal Eigenvalue and Simple Criterion

We indicate several outstanding open problems and formulate some conjectures. We
establish a criterion for the existence of a principal eigenpair (4,, ¢,). We also explore the
relation between the sign of the largest element of the spectrum with a strong maximum
property satisfied by the operator. As an application of these results we construct and
characterise the solutions of some nonlinear nonlocal reaction diffusion equations.

Section (3.1): Elliptic Operators in RY and Applications

The principal eigenvalue is a basic notion associated with an elliptic operator. For
instance, the study of semilinear elliptic problems in bounded domains often involves the
principal eigenvalue of the associated linear operator. To motivate the results of the present,
we recall some classical properties of a class of semilinear elliptic problems in bounded
domains.

Let L be a linear elliptic operator acting on functions defined on a bounded and
smooth domain c RN:

Lu = a;; (x)0;j u + b; (x)0; u + c(x)u
(the summation convention on repeated indices is used).
Consider the Dirichlet problem

{—Lu ig(x, u), x € 1, 1)
u=20 on ().
We are interested in positive solutions of (1.1). Assume that g is a C; function such that
g(x,s) < gs(x,0)s, Vx €
and
AM > O such that g(x,s) + c(x)s < 0,V,= M
Then existence of positive solutions of (1) is determined by the principal eigenvalue p, of
the problem linearized about u = 0:
{_L(p - 8s(x, O)q) = Mg in Q, 2)
@ = 0 on 01
Recall that p, is characterized by the existence of an associated eigenfunction ¢ > 0 of (2).
It is known indeed that (1) has a positive solution if and only if u; < 0 (see e.g. [96]). Under
the additional assumption that s — g(x,s)/s is decreasing, one further obtains a uniqueness
result [96]. Problems of the type (1) arise in several contexts, in particular in population
dynamics.

The problem is set in an unbounded domain, often in RN,

Clearly, extensions to unbounded domains of the previous result, as well as others of
the same type, require one to understand the generalizations and properties of the notion of
principal eigenvalue of elliptic operators in unbounded domains. We indicate some new
results about such a semilinear problem, extending the result for (1).

Another example of use of principal eigenvalue is the characterization of the existence
of the Green function for periodic linear operators (see Agmon [94]). See [114] and to its
bibliography for details on the subject. In [111], Kuchment and Pinchover derived an
integral representation formula for the solutions of linear elliptic equations with periodic
coefficients in the whole space, provided that an associated generalized principal eigenvalue
Is positive. It can be seen that the generalized eigenvalue in [111] coincides with (6) here.
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This result yields in particular a Liouville type theorem extending those of [95], [112] for
periodic self-adjoint operators. Moreover, the principal eigenvalue of an elliptic operator
has been shown to play an important role in some questions in branching processes (see
Englander and Pinsky [103], Pinsky [115]). Very recently, the principal eigenvalue of an
elliptic operator in RN is being introduced in the context of economic models [105].

Some definitions of the notion of principal eigenvalue in unbounded domains have emerged
in the works of Agmon [94], Berestycki, Nirenberg and Varadhan [100], Pinsky [114] and
others. With a view to applications to semilinear equations, in particular two definitions
have been used in [97], [98], [99]. We will recall these definitions. We examine these
definitions and further investigate their properties.

We are interested in understanding when the two definitions coincide or for which
classes of operators one or the other inequality holds. We also further explain the choice of
definition. We review the relevant results from [99].

We define the class of elliptic operators (in nondivergence form) as the elliptic
operators —L with

Lu = a;; (x) 03 u + b; (x) 9 u+ c(x)u in RN
Self-adjoint elliptic operators —L are defined by
Lu = 9;(a;;(x) d;u) + c(x)u in RN,
Throughout, (95;);; will denote an N X N symmetric matrix field such that
Ve § € RN, al8|? < a;;(x)E;§; < alg|? 3)
where a and a are two positive constants, (b;); will denote an N-dimensional vector field
and c a real-valued function. We always assume that there exists 0< a < 1 such that

ai]-,bi, cE Cg'a(RN) (4)

in the case of general operators, and
aj; € Cy(RY), c € C*(RY) (5)

in the self-adjoint case. C{j’“ By (RN), we mean the class of functions CX(RN) such that ¢
and the derivatives of ¢ up to order k are bounded and uniformly Holder continuous with
exponent a Notice that every self-adjoint operator satisfying (5) can be viewed as a
particular case of a general elliptic operator satisfying (4).

It is well known that any elliptic operator —L as defined above admits a unique principal
eigenvalue, both in bounded smooth domains associated with Dirichlet boundary conditions,
and in RN provided that its coefficients are periodic in each variable. This principal
eigenvalue is the bottom of the spectrum of —L in the appropriate function space, and it
admits an associated positive principal eigenfunction. This result follows from the Krein—
Rutman theory and from compactness arguments (see [108] and [107]).

We examine some properties of two different generalizations of the principal
eigenvalue in unbounded domains. The first one, originally introduced in [100], reads:
Definition (3.1.1)[93]: Let —L be a general elliptic operator defined in a domain Q € RN,
We set

A (=L, Q) = sup{A|34€ C*(QCL. (Q),|¢ > 0and (L +21)d < 0inQ}. (6)
Here, C{..(Q) denotes the set of functions ¢ € C*(Q) for which ¢ and V4can be extended
by continuity on 9, but which are not necessarily bounded. The generalized principal
eigenvalue A;given by (6) is the same as the one used in [111]. Indeed, in [111], the
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eigenvalue is defined with equality in formula (6). Using the existence of a generalized
principal eigenfunction (which follows from the same arguments as in [99]) one sees that
the two notions actually coincide. Berestycki, Nirenberg and Varadhan showed that this is
a natural generalization of the principal eigenvalue. Indeed, if Q is bounded and smooth,
then A, (—L, Q) coincides with the principal eigenvalue of —L in Q with Dirichlet boundary
conditions. As we will see later, the eigenvalue A; does not suffice to completely describe
the properties of semilinear equations in the whole space, in contrast to the Dirichlet
principal eigenvalue in bounded domains for problem (1).

We also require another generalization, whose definition is similar to that of A;.

This generalization has been introduced in [97], [99] and reads:

Definition (3.1.2)[93]: Let —L be a general elliptic operator defined in a domain Q € RN,
We set
A (L, Q) = inf{d |34 € C2(Q) N C. ()N W2 (Q)

¢>0and — (L+A)p <0inQ,¢ =00ndQ # 0} (7)
Several other generalizations are possible, starting from Definition (3.1.1) and playing on
the space of functions or the inf and sup inequalities. We will explain why Definition (3.1.2)
Is relevant.

If L is periodic (in the sense that its coefficients are periodic in each variable, with
the same period) then A, (=L, RN) > A} (=L, RN), as is shown by taking ¢ equal to a positive
periodic principal eigenfunction in (6) and (7). If there exists a bounded positive
eigenfunction ¢, then A; > A7 . But in general, if the operator L is not self-adjoint, equality
need not hold between A; and A; even if L is periodic. It is then natural to ask about the
relations between A, and A7 in the general case. We review a list of statements, most of them
given in [99], which answer this question in some particular cases. We state our new main
results as well as some problems which are still open. We motivate our choice of taking (6)
and (7) as generalizations of the principal eigenvalue.

We describe how the eigenvalues A, and A] are involved in the study of the following
class of nonlinear problems:

—a;;(x) 9jju(x) du(x) = f(x,u(x)) in RN. (8)
This type of problem arises in particular in biology and in population dynamics. Here and
in what follows, the function f(x,s): RN x R — R is assumed to be in Cg'“ (RN) with respect
to the variable x, locally uniformly in x € RN, and to be locally Lipschitz continuous in the
variable s, uniformly in x € RN, Furthermore, we always assume that

vx € RN f(x,0) =0,
38 > 0 such that s — f(s,x) belongs to C*([0, 8]), uniformly in x € RN,
fs(x,0) € Cp“(RN)
We will always denote by L, the linearized operator around the solution u = 0 associated
to the equation (8), that is,
Lou = a;;(x)0;ju + b;(x)9;u + fs(x,0)u in RV

In [97] it is proved that, under suitable assumptions on f, if L, is self-adjoint and the
functions
aj; and x — f(s, x) are periodic (in each variable) with the same period, then (8) admits a
unique positive bounded solution if and only if the periodic principal eigenvalueof - L is
negative (see Theorems (3.1.3) and (3.1.6) in [97]). This result has been extended in [99] to
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nonperiodic, non-self-adjoint operators, by using A; (—Lo, RN) andA} (—L,, RY) instead of
the periodic principal eigenvalue of - L, . The assumptions required are:
IM >0,vx e RN ,v,> M, f(x,s) <0 (9)
vx € RN ,vs > 0,f(x,s) < f,(x,0)s (10)
The existence result of [99] is:
Theorem (3.1.3)[93]: Let L, be the linearized operator around zero associated to equation
(8).

(i) If (9) holds and either A;(—Lo, RN) < 0 or A} (=Ly, RY) <0, then there exists at least
one positive bounded solution of (8).

(i) If (10) holds and A} (—Lo, RN) > 0, then there is no nonnegative bounded solution of
(8) other than the trivial one u = 0. Theorem (3.1.3) follows essentially from Definitions
(3.1.1), (3.1.2) and a characterization of A; (see [99]). In [103], Engl ander and Pinsk
proved a similar existence result for a class of solutions of minimal growth (which they
define there) for nonlinearities of the type f(x,u) = b(x)u —a(x)u? with infa > 0 (see also
[102], [115]). Since the theorem involves both A; and A7, one does not have a simple
necessary and sufficient condition. This is one of the motivations to investigate the
properties of these two generalized eigenvalues. In particular, it is useful to determine
conditions which yield equality between them or at least an ordering.

From the results we can deal in particular with the case that the operator is self-adjoint and
limit periodic. The notion of limit periodic operator is defined precisely below. Essentially,
it means that the operator is the uniform limit of a sequence of periodic operators. In this
case, we still have a condition, extending that in Theorem (3.1.3), which is nearly necessary
and sufficient.

Theorem (3.1.4)[93]: Let - L, be a self-adjoint limit periodic operator.

(i) If (9) holds and A;(—Ly, RN) < 0 , then there exists at least one positive bounded
solution of (8). If, in addition, (11) below holds, then such a solution is unique.

(i) If (10) holds and A} (—L,, RN) > 0, then there is no nonnegative bounded solution
of (8) other than the trivial one u = 0 The same result holds in dimension N = 1 if L, is an
arbitrary self-adjoint operator. The case of equality: A; (—Lo, RN) = 0 is open.

For uniqueness, in unbounded domains, one needs to replace the classical assumption that s
s — f(x,s)/s is decreasing by the following one:

f(X, Sl) _ f(X' SZ)) > 0 (11)

S1 S2

The uniqueness result of [99] is more delicate and involves the principal eigenvalue of
some limit operators defined there. It becomes simpler to state in case the coefficients in
(8) are almost periodic, in the sense of the following definition:

Definition (3.1.5)[93]: A function g: RN — R is said to be almost periodic (a.p.) if from
any sequence (x,) ey in RN one can extract a subsequence (Xn, Jxen Such that g(x,, +x)

converges uniformly in x € RN,
Theorem (3.1.6)[93]: (Theorem 1.5 in [99]). Assume that the functions a;; , b; and f; (-, 0)

are a.p. If (11) holds and A, (—L,, RY) < 0, then (8) admits at most one nonnegative bounded
solution besides the trivial one u = 0. Theorems (3.1.3) and (3.1.6) essentially contain the
results in the periodic self-adjoint framework (which hold under the same assumptions (9),
(10) and (11)). In that case, in fact,

V0 < sq <y, inf, cpn (

A1 (—Lo, R)
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AL (—Lo, RN) coincide with the periodic principal eigenvalue of —L, (see Proposition (3.1.9)
below) and then the only case which is not covered is when the periodic principal eigenvalue
Is equal to zero.

Unless otherwise specified, —L denotes a general elliptic operator. When we say that
L is periodic, we mean that there exist N positive constants 1, . . ., Iy such that

vx € RN, vk € {1,...,N}, a;(x + Ixey) = a;(x)
bi(x + Ixer) = bi(x), clx+ Iker) = c(x)
where (ey, ..., ey) is the canonical basis of RN. The following are some of the known results
concerning A; and A7 Actually, in some statements of [99], the coefficients of L were in
CORN) N L®(RY), and the “test functions” @ in the definition of A were taken in
C2(RN) n W (RN)instead of C2(RN) n W2 (RN). However, one can check that the
following results—as well as Theorem (3.1.3)—can be proved arguing exactly as in the
proofs of the corresponding results in [99].
Proposition (3.1.7)[93]: ([100] and Proposition (3.1.12) in [99]). Let Q be a general domain
in RN and
(Q,)n, be a sequence of nonempty open sets such that
0 € Oy, | 00 =0

neN

Then 2, (—L,Q,) VYA (—L,Q) asn - oo,

Proposition (3.1.7) yields A, (—L, RY) <co. Furthermore, taking @ = 1 as a test function in
(6), we see that A;(—L,RN) > —||c||_. Thus, 2, is always a well defined real number.

In the case of L periodic, the periodic principal eigenvalue of —L is defined as the unique
real number A, such that there exists a positive periodic ¢ € C2(RV) satisfying (L + Ao
in RN, Its existence follows from the Krein—Rutman theory.

Proposition (3.1.8)[93]: (Proposition 6.3 in [99]). If L is periodic, then its periodic principal
eigenvalue A, coincides with AL (=L, RN) It is known that, in the general non-self-adjoint
case, A; = A;. Indeed, as an example, consider the one-dimensional operator —Lu =

14

—u’ 4+ u’, which is periodic with arbitrary positive period. Then it is easily seen that
1
M(-LR)=0< i A (=L, RN)

In fact, since @ = 1 satisfies - L, = 0, it follows that the periodic principal eigenvalue of

—L is 0 and then, by Proposition (3.1.8), A; (—L, R)= 0. On the other hand, for any R > 0,
the function

@r(x) = cos (%X) eX/?
satisfies - L,r=(1/4+1*/4R?),,., which shows that @g is a principal eigenfunction of —L
in (—R,R), under Dirichlet boundary conditions. Therefore, by Proposition (3.1.7),
1 1
ML R) = 11m (4 4R2> Z>7\ (-L,R)
Proposition (3.1.9)[93]: (Proposmon 6.6 in [99]). If the elliptic operator —L is self-adjoint
and periodic, then A, (=L, RN) = A (=L, RN), where Apis the periodic principal eigenvalue
of —L. For the rest it is useful to recall the proof of the last statement.
Proof. First, from Proposition (3.1.8) one knows that A, = A} (—L, R).
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Now, let 'p be a positive periodic principal eigenfunction of —L in RN, Taking ¢ = @p N
(6), it is straightforward to see that A, (—L, R) = A, To show the reverse inequality, consider

a family (xg)r = 1 of cutoff functions in C2(RN), uniformly bounded in W2* (RN) such
that 0 < yg < 1 supp xg € BRand yg = 1in Bg — 1. Fix R > 1 and let Agbe the principal
eigenvalue of —Lin Bg. It is obtained by the following variational formula:

fBR(ai]- (x) 9;v 0;v — c(x)v?)
Jg, V2
Taking v = @pxg as a test function in (12), and writing Cg = Bg \ Bg_;, we find
Jo (Llopxr))@pxr  2p fi @B — Jo (L(@pXr))PpXR
o0& Js, 3%k
Ap fcR PPXR + fcR(L((PPXR)) PpXR
Jg, @5x&
Since min @p > 0, it follows that there exists K > 0, independent of R, such that
f PPXR ZJ @p = KR - DN
B

R Br 1

Ar = min v € H}(BR),v # 0¢. (12)

R =

— /\p

Consequently,
RN—l
(R—1N
where K’ is a positive constant independent of R. Letting R go to infinity and using
Proposition (3.1.7), we get A; (—L,RN) < Ap, and therefore A, (—L,RN)= Ap.

The next result is an extension of the previous proposition. It is still about periodic
operators, but which are not necessarily self-adjoint. A gradient type assumption on the first
order coefficients is required.

Theorem (3.1.10)[93]: (Theorem 6.8 in [99]). Consider the operator

Lu = Oi(ai]- (%) aju) + b;(x) dju + c(xX)u, x € RN

where a;; , b; , c are periodic in x with the same period (L4, ... Ly), the matrix field A(x) =
(aij(x))1<ij<n is in CY*(RN), elliptic and symmetric, the vector field b = (b, ...by) is in
CH*(RN), and c € CO*(RN), . Assume that there is a function B € C>*(R"), such that a;;
d;B =Db; foralli=1,..,Nand the vector field A~1b has zero average on the periodicity
cell C= (0,1;) X ..x(0,1y). Then A, (=L, RN) = 2Ap = AJ (=L, RN), where Ap is the
periodic principal eigenvalue of —L in RN,

Next, the natural question is to ask what happens when we drop the periodicity
assumption. Up to now, the only available result has been obtained in [99] in the case of
dimension one. It states:

Proposition (3.1.11)[93]: ([99]). Let —L be a self-adjoint operator in dimension one. Then
M(—L,R) < A (—L,R), This type of result will be extended below.

We will examine three main classes: self-adjoint operators in low dimension, limit
periodic operators and general operators in dimension one.We seek to identify classes of
operators for which either equality or an inequality between A,and A holds.

Our first result is an extension of the comparison result of Proposition (3.1.11) to
dimensions N = 2,3 in the self-adjoint framework.

A < Ap + K’
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Next, we examine the class of limit periodic operators which extends that of periodic
operators. In a sense, this class is intermediate between periodic and a.p. here is the
definition:

Definition (3.1.12)[93]: (i) We say that a general elliptic operator —L is general limit
periodic if there exists a sequence of general elliptic periodic operators

—Lpu = —ajj dju — bi' dju — c"u
such that af} - a;;,b! - b; and ¢ - cin Cy™(RV) as n goes to infinity.
(if) We say that a self-adjoint elliptic operator —L is self-adjoint limit periodic if there exists
a sequence of self-adjoint elliptic periodic operators

—Lyu:=— 6i(a{} aju) —c"u

such that af} - a;; in Cy'*(RN) as n goes to infinity.
Clearly, if all the coefficients of the operators L, in Definition (3.1.12) have the same period
(14, ..., Ly) then L is periodic too. It is immediate to show that the coefficients of a limit
periodic operator are in particular a.p. in the sense of Definition (3.1.5). One of the results
we obtain is:

We make use of the Schauder interior estimates and the Harnack inequality. One can
find a treatment of these results in [104], or consult [109], [110] and [117] for the original
proofs of the Harnack inequality.

Going back to the nonlinear problem, owing to Theorem (3.1.19), the existence and
uniqueness results in the limit periodic case can be expressed in terms of A; (or, equivalently,
A7 only, which is the statement of Theorem (3.1.4).

We establishe a comparison between A; and A; for general elliptic operators in
dimension one:

The notions of generalized principal eigenvalue raise several questions which still need
an answer. Some of them are:

Conjecture (3.1.13)[93]: If —L is a self-adjoint elliptic operator, then A;(—L, RN) <
(=L, RY).. in any dimension N. Note that should the answers, then we would have A; =
A, in the self-adjoint case, in arbitrary dimension.

We present various definitions which one could consider as generalizations of the
principal eigenvalue in the whole space. Then we explain the choice of (6) and (7) as the
most relevant extensions. Here, —L will always denote a general elliptic operator (satisfying
(3) and (4)). The quantity A, given by (6) is often called the “generalized” principal
eigenvalue. It is considered the “natural” generalization of the principal eigenvalue because,
as already mentioned, it coincides with the Dirichlet principal eigenvalue in bounded
smooth domains. Also, the sign of A; determines the existence or nonexistence of a Green
function for the operator (see [113]). The constant A; has been introduced, more recently,
in [97]. If Q is bounded and smooth, then. A7 (—L, Q) < A, (—L, Q) Moreover, as we have
seen in Proposition (3.1.8), in the periodic case A; coincides with the periodic principal
eigenvalue. The quantity A; is the largest constant for which - (L + A) admits a positive
subsolution. The definition of A} is based on that of A, with two changes: first, we take
subsolutions instead of supersolutions (and we replace the sup with inf); second, we take
test functions in W<, If we introduce only one of these changes, we obtain the following
definitions:

n1 (=L, Q) = sup{A|3g€ C*(Q) N CHOOW>*(Q)
é>0and (L+AM)Pp<0inQ,b=0and dQ +#0 (13)
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or

Wi (L, Q) == inf{A|34 € C*(Q)Clpe (), >0and — (L+ NP <0inQ (14)

The quantity p, is not interesting for us because, as is shown by Remark 6.2 in [99], if we

replace A7 with y, , then the necessary condition given by Theorem (3.1.3)(ii) fails to hold.

The proof of Theorem (3.1.15) consists in a not so immediate adaptation of the proof

of Proposition (3.1.9). It makes use of the following observation, which holds in any
dimension N.

Lemma (3.1.14)[93]: Let ¢ € C2(RN) be a nonnegative function. Let A(x) be the largest

eigenvalue of the matrix (9;;¢p(x);; and assume that A := sup A(x) < . Then
x€RN

vx €RN |V, )|° < 244() (15)
Proof. First, if A < 0then d;;¢ < 0 for everyi=1,...,N. This shows that is concave in
every direction xi and hence, being nonnegative, it is constant. In particular,
(15) holds. Consider the case A > 0. The Taylor expansion of ¢ at the point x € RN gives

1
vy €RY, $() = ¢() + V() —x) +59;b@D (Y — 2y — X);
where z is a point on the segment connecting x and y. Hence,

1
0= ¢() < G + VMY —x) +5 Aly —xI’
If we take in particular y = x — V(x)/A we obtain

2
osq@—%

and the statement is proved. Note that if ¢ is a positive function in W2* (RN), then Lemma

(3.1.14) shows that its gradient is controlled by the square root of ¢. Actually, this is the

reason why in (7) we take test functions in W (RN).

Theorem (3.1.15)[93]: Let —L be a self-adjoint elliptic operator in RN, with N < 3. Then
M(-LRY) <A (-LRN),

The assumption N < 3 in Theorem (3.1.15) seems to be only technical, as was the
assumption N = 1 in Proposition (3.1.11). That is why we believe that the above result holds
in any dimension N. But the problem is open at the moment.

Proof. Let A € R be such that there exists a positive function ¢ € C2(RY) n W2*(RY)
satisfying - (L +A)4 < 0. We would like to proceed as in the proof of Proposition (3.1.9),
with @preplaced by ¢, and obtain (—L, RY) < A This is not possible because, in general, ¢
IS not bounded from below away from zero. Lemma (3.1.14) allows us to overcome this
difficulty. Consider in fact the same type of cutoff functions (xg)rs1 @S in Proposition
(3.1.9) and let Ax be the principal eigenvalue of —L in Bg with Dirichlet boundary
conditions. The representation formula (12) yields, for

J5, [200 0:(@xR) 9;(dxXR) — cCOD? ]
<
: Js, $2R
Hence, since Ay = 1 on Bg_4, We get
N fCR[zaij () (0 (9;xr) Pxr + 9;(a;;(x) 9;xr ) P*Xr]
° Jo, ¥*XR
Our aim is to prove that by appropriately choosing the cutoff functions (xgr)r>1 We get
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fCR[Zaij () (0:9) (9;xr ) dxr + 9i(ai) (X) 0jxr) P*Xr]
Jg, P*XR

lim Ssupg_ e >0 (16)

Choose xg so that

1
Vx € Br/Br-1/2, Xr(x) = exp <|x| _ R)
VX € Br_y/z, Xp(x) = e71/2

By direct computation, we see that, for X € Br/Br-1/2

Vxr(x) = — ﬁ (R =[x ~%exp(

|x| — R)

and

iXj 0
9y () = [(TXT; . l)u Xl = R)? + 20 (I =

Consequently, using the usual summation convention, we have
Vx € Br/B, 1, ai(aij (%) anR) > [a— C(]x| = R)](Ix] — R)_4exp(|x| — R)
2

where C is a positive constant depending only on N and the W%* norm of the ajj (and not
on R) and a is given by (3). Therefore, there exists h independent of R with 0 <h < 1/2
and such that 9;(a;;(x) djxg = 0 inBg\Bg_p. Since xg > exp(—h™") in Bg_y, it is possible
to choose C’ large enough, independent of R, such that d;(a;;(x)9;xgr = —C'xg in Bg. On
the other hand, owing to Lemma (3.1.14), we can find another constant C" > 0, depending

||¢||W2,°°(RN)and ||XR||W2'°°(RN)) (which does not depend on R,

—R)” eXp( R

||2

only on N,||ai]-||
such that

LoRY)’
1
2;; () (0;) (9xr) = —C" Y}
Assume, by way of contradiction, that (16) does not hold. Then there exist € > 0 andR, =
1 such that, for R = R,
—Sj (I)ZXZR = J [Zaij (X)(aiq))(anR)d)XR + ai(aij(x) anR)q)ZXR]
Br Cr

3 3
) (C'xk ¢* + 2C" 2x3)
R
Since ¢ and xg are bounded, the above inequalities yield the existence of a positive constant
k such that, for R > R,,

3
OB < f 63122

Notice that, since ¢ > 0, we can choose k > 0 in such a way that the above inequality holds
for any R = 1. Using the Holder inequality with p = 4/3 and p’ = 4, we then obtain

3 1 N-1
R21 [ ¢u <k (| oPTICIT <k RT ([ ot
B CR CR

where k is another positive constant. For n € N set a, := (f d2x3 )4 Since for n € N, we
have

R
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o3 oo [z [

1N 2
o, = Kn 4 Za]?. (17)

j=1
We claim that the sequence (a,),en grows faster than any power of n. This contradicts the
definition of ay,, because

SIREONE 101 2 g o < B3 C80

for some positive constant H. To prove our claim, we use (17) recursively. At the first step
4

it follows that

we have Oln > KonPo | where K, = Kai and By = (1 — N)/4. At the second step we get

0 > KK3 A=N)/2 30 j*Pe/3 If By > —3/4 (i.e. if N < 4) then T, j*Po/3 ~ ntho/3+1,
Hence, in thls case there exists K, > 0 such that a, > K,,nPm, where. B; = 4B,/3 +(5 —
N)/4 Proceeding in the same way we find, after m steps, thata,, > K,,mPm, where K, is a
positive constant and B,, = 4By-1/3 +(5 — N)/4, provided that B, ..., Bpy—1 > —3/4if
Bm—1 > —3/4, we have

Bm > Bm—l = Bm—l > 3/4’(N - 5)
Since
Bo > m = N<4
it follows that for N, <3 the sequence (Bm)men IS Strictly increasing. Thus,
lim B, = +o if N, because if the sequence had a finite limit, it would have to be 3(N —

m-—oo

5)/4 which is less than [,. Therefore, as n — oo, a,, goes to infinity faster than any
polynomial in n.
We consider limit periodic elliptic operators —L. According to Definition (3.1.12), we let
either
Lpu = aj(x) dju + bi'(x) dju + c"(X)u

if —L is a general operator, or

Lyu = 0; (a (x) 0; u) + c"(x)u
If —L is self-adjoint. We denote by A,, and «,, respectively the periodic principal eigenvalue
and a positive periodic principal eigenfunction of - L,, in RN. Our results make use of the
following lemma.
Lemma (3.1.16)[93]: The sequence (A,) ey IS bounded and

—Lne
lim || ————= || =N = 0.
n
Proof. We can assume, without loss of generality, that the operators - L, —L,, are general

elliptic. Since the operators L, are periodic, from Proposition (3.1.8) it follows that
_llcnlloo =< }\,1(_]-1’ ]RN) = }\n =< ||Cn||oo
Hence, the sequence (A,) ey IS bounded because c™ — cin Cg'“. For all n € N the functions
A satisfy - (L, + An) ¢, - Then, using interior Schauder estimates, we can find a constant
C,, > 0 such that
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VX € RN ||(Pn|| ZOC(B x) — =C ||(pn||L°°(B (%))

o My |Ib in||cmx 1| co gy We know

that the are A, bounded in n € N, and the same is true for the C,"* norms of ajj and c"

because they converge in the Cb norm to aj;;, b; and c respectively. Thus, there exists a

positive constant C such that C > C,, for every n € N. Moreover, applying the Harnack
inequality for the operators - (L, + A, ), we can find another positive constant C’ which is
again independent of n (and x), such that

VX ERY, [1@nl] wo(g, ) < C'0n

where the C,, are controlled by A,, and ||a

ij | (RNY

Therefore,
sup (L= L) &) sup (||aij ‘1|| + “b bn” + “C B Cn” ) ||(Pn|| CE%(B; (%))
x€RN ©Pn (X) x€RN ©Pn (X) -

< CC'((fay; - L b =PI+ fle =],

which goes to zero as n goes to infinity.
Theorem (3.1.17)[93]: Let —L be a general limit periodic operator. Then A} (=L, RN) <

A (=L, RY).
Another result obtained concerns self-adjoint limit periodic operators. It extends Proposition
(3.1.9).
Proof. For n € RN define
L-L
— ‘ﬂ _ (18)
L% (RN)

By Lemma (3.1.16), we know that lim H,, = 0. Since [(L + A,)@,| < Hp@,, it follows
n—oo

that (L + A, — Hy)@, < 0and - (L + A, + Hy) o, < 0. Hence, using ¢,, as a test function
in (6) and (7), we infer that A, (=L, RN) > A, — H and A (-L,RN) < A, + H,, for every
n € N. The proof is complete because, passing to the lim inf and lim sup as n goes to infinity
in the above inequalities, we get

M (=L RN < lim infAy < lim lim sup, < A (=L, RN). (19)

The proof of Theorem (3.1.19) is divided into two parts, the first one being the next lemma.
LLemma (3.1.18)[93]: The sequence (A,)qen CONVerges to A (—L, RN) asn goes to infinity.
Proof. Proceeding as in the proof of Theorem (3.1.17), we derive (19). So, we only need to
show that lim sup A, < A} (—L, RY) To this end, consider a constant A > A} (=L, RN) such

n—-oo
that there exists a positive function ¢ € C2(RN) n W2*(RN) satisfyin —(L + A)¢ < 0. Fix
n € N and define ¢, = 0 .=k, 0, — d where K,, is the positive constant (depending on n)
such that inf yr,, = 0 (such a constant always exists and it is unique because 'n is bounded
from below away from zero and _ is bounded from above). From the inequalities
_(L + }\)Lpn = _kn(L + )\)gon = kn(Ln - L)(Pn + knO\n - }\)(Pn

and defining H, as in (18), we find that

—(L+ )\)Ll—'n 2 knO\n o Hn)(Pn- (20)
Since inf Y, = 0, there exists a sequence (X, )men iN RN such that rlrgn)1 n(x,,) = 0.

For m € N, define the functions
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Om(x) = PYp(x) + Up(xpm)|x — X|2 ,x € RN
Since 0,,(x) = ¢, (x) + ¥, (%) and 0,,(x) = P,(xy) for x € 0B, (xy,), for any m € N
there exists a point y,,, € B; (x,,) of local minimum of 6, . Hence,

0= Vem(Ym) = Vlljn(Ym) + lejn(xm)(Ym — Xm)
and

0= (2580m)), = (¥nGm)), + 20 Ceen)!
where | denotes the N x N identity matrix. Thanks to the ellipticity of —L, we then get
_(L + A)"—’n()’m) < Zq}n(xm)aii(Ym) + an(xm)bi(Ym)(Ym - Xm)i
_(C(Ym) + }\)Lpn(Ym) (21)
Furthermore, since em(Ym) - lIJn(Ym) + L|Jn(xm)|ym - Xm|2 = em(Xm) = qJn(Xm)’ we
see that U, (V) < U, (x,). Consequently, taking the limit as m goes to infinity in (21), we

derive lim sup,,e —(L + )W, (yyn) < 0 Therefore, by (20), lim sup ¢,(A, — A —

m-—0oo

Hy)@on(ym) < 0 which implies that A, — A — H, < 0 because infgng, > 0. Since by
Lemma (3.1.16) we know that H,, goes to zero as n goes to infinity, it follows that
A > lim sup(A, — H,) = lim sup?,
m-oo n—-oo

Taking the infimum over A we finally get A7 (—L, RN) > lim sup,_e Ay

Theorem (3.1.19)[93]: Let —L be a self-adjoint limit periodic operator. Then
A (=L RN ) = A (-L,RY).

Proof. Owing to Theorem (3.1.17), it only remains to show that A; (=L, RY) < A} (=L, RN).
To do this, we fix R> 1 and n € N and proceed as in the proof of Proposition (3.1.9),
replacing the test function 'p by 'n. We thus get

\o(-L Ba) < — S, (L(@nXR)) PnXr
I, PhXR
Jo, (O + Lo = 1) @n) @n = i (Le@nXR))Pn Xw
B Jg, 03Xk
o L (W= L)en)en + fo (L + M) @nXr) @nxr
o Js, 93&

Setting H,, as in (18), we get
Hn fBR—l (P% + Knlch
Jg, PRXR
where |Cg| denotes the measure of the set Cg and K, is a positive constant (independent of

R because the A are uniformly bounded in W2 (RN)). Therefore, since n%nin > 0 there
"n

}\1(_]_4, BR) S )\n +

exists another constant K,, > 0 such that

~

Ky
}\1(—[‘, BR) < )\n +H, + ?

Letting R go to infinity in the above inequality and using Proposition (3.1.7) shows
thatA; (—L, RN) < A, + H,,. By Lemmas (3.1.16) and (3.1.18), we know that H,, — 0 and
Ay = AL (=L, RY) as n — oo. Thus, we conclude that A; (=L, RN) < A} (=L, RM).

We are concerned with general elliptic operators in dimension one, that is, operators
of the type
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—Lu=—-ax)u”" = bx)u'—c(x)u, x€R
with the usual regularity assumptions on a, b, c. The ellipticity condition becomes a <
a(x) < a for some constants 0 < a < a.
Theorem (3.1.20)[93]: Let —L be a general elliptic operator in dimension one. Then
AL (=L, RN) < A, (—L, RN).Notice that, by Theorems (3.1.17) and (3.1.20), if - L, is limit
periodic or N = 1, then we can state Theorem (3.1.3) without mentioning A;. Hence, only
the sign of 271 is involved in the existence result.
Proof. Fix R > 0 and denote by Az and @y the principal eigenvalue and eigenfunction
respectively of —L in (—R, R), with the Dirichlet boundary condition.
Then define

h
Yr(x) = Ee_k(X_R),X €ER
where h, k are two positive constants that will be chosen later. The function i satisfies

—(L+2R)Pg = (—a(x)k + b(x) — (c(x) + AR) %) he k(&-R)

There exists k, > 0 (independent of h) such that - (L + Ag){g < 0 in R for any choice of
k > k,. Our aim is to connect smoothly the functions ¢gr and g in order to obtain a
function ¢pr € C?([0, 0)) N W ([0, 00)) satisfying - (L + Ag)p, < 0. To this end, we set
gr(®) ==n(x—R+8)3, withn, 5 > 0 to be chosen. Since

—(L+2AR)gr = [-6a(x) —3bx)(x—R+8) — (c(x) + \AR) (x—R + 8§)2In(x—R+§)
we can find a constant §, > 0 such that - (L + Ag)ggr < 0 in (R — §, R), for any choice of
0 < 6 < §,. Then we define

@r(x) for 0 <x<R-3§,
Pr(x) = {Pr(x) + gr(x) forR—8 <x <R, (22)
Yr(x) for x > R.

It follows that if k > k, and 6 < §,, then - (L + Ag)dg < 0in (O,R—8)U(R—-§,R)U
(R, +00). In order to ensure the C? regularity of ¢, we need to solve the following system
in the variables h, n, &:
né83 = h/k

@r(R) +3n8% = —h

@r(R) + 6n6 = hk
One can see that if h < —@i(R) (notice that g (R) < 0 by the Hopf lemma), the previous
system becomes, after some simple algebra,

( v(h) = @r(R)S

Sk = 3h
1 —er® —h (23)
_hk—@r(®)
=7 6s
Where
2
h) = — + 2(h + exr(R

We want to show that there exists 6 small enough such that the system (23) admits positive
solutions §, hg, kg, ns satisfying
60 < 60 ,h5 < _(Piz(R) ;kg = kO (24)
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Let 0 < §; < &, be such |@g(R)|8; < —@gr(R). Thus, if § < §,, the first equation 0f23))
yields |y(h)| < —@g. Since y(0) = 2¢x(R) and . lir,n(R) —vy(h) = 4+oo there exists a
—)(I'_)R

constant 0 < —@g(R) such that, for any choice of § € (0,8;), the first equation of (23)
admits a solution hg € [h; — @g(R). For 6 € (0,8;) and h = hg, the second equation of
(23) gives
ks = — 3hg 51> 3h,
—@r(R) — hg —pr(R) — hy
Hence, for & small enough, we have kg = k. Finally, by the last equation of (23), for § €
(0,8,), we have

1. (25)

hsks — @r(R) _ hiks — @r(R)

noé = = )
66 66
and so, since kg satisfies (25) ns > 0 for 6 small enough. Therefore, there exist four positive
constants h, k,n, 6 solving (23) and satisfying (24).With this choice of h, k,n, 6 the function
b is in C2([0,0)) N W2([0, ).
Proceeding as above, we can extend @g(x) for x negative, and get a function C%(R) n
W2 (R). such that - (L + Ag) dg < 0 in R. U sing ¢ras a test function in (7), we find that
A1 (—L,R) < Ax Thus, passing to the limit as R — oo, by Proposition (3.1.7), we derive
M (—L,R) < A, (—L,R). The proof is thereby complete.
Hence, by uniqueness of the principal eigenfunction up to a constant factor, it follows

that @r(x) = @r(Mx) that is, g is a radial function. Since for any radial function u =
u(|x|) the expression of Lu reads

Lu = a(|xDu” + (b(lxD +

X a(IX|)> u’ + c(|xu,

we can proceed as in the one-dimensional case and build a radial function g € CZ2(RN) n

W2*(RN) such that - (L + Ag)dg < 0. Therefore, A} (=L, RN) < Az and then, passing to

the limit as R — oo, we obtain the stated inequality between A;and A;.

Section (3.2): Existence of a Principal Eigenfunction of Some Nonlocal Operators
Much attention has been drawn to the study of nonlocal reaction diffusion equations,

where the usual elliptic diffusion operator is replaced by a nonlocal operator of the form

Mu] = jﬂ k(x,y)u()dy — b, 26)

where 2 < R™ k > 0 satisfies fRn k(y,x)dy < o forall x € R" and b(x) € C(2);
see [119]-[121], [125]-[127], [129]-[131], [134], [137]-[139], [148], [149], [153]. Such
type of diffusion process has been widely used to describe the dispersal of a population
through its environment in the following sense. As stated in [144], [145], [147] if u(y, t) is
thought of as a density at a location y at a time t and k(x, y) as the probability distribution
of jJumping from a location y to a location x, then the rate at which the individuals from all
other places are arriving to the location x is

fﬂ kCey)u(y, )dy.

On the other hand, the rate at which the individuals are leaving the location x is
—b(x)u(x,t). This formulation of the dispersal of individuals finds its justification in many
ecological problems of seed dispersion; see = [124], [128], [140], [148], [149], [153].
We study the properties of the principal eigenvalue of the operator M, when the
kernel k(x, y) takes the form
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kGey) = J ((’“ Y )> - 27)
’ g ) g"()’

where ] is a continuous probability density and the function g is bounded and positive. That
Is to say, we investigate the following eigenvalue problem:

x — v\ uy) .
Jﬂ ] (g(y) ) 76) dy — b(x)u Au in 0. (28)
Such type of diffusion kernel was recently introduced by Cortazar et al. [129] in order to
model a nonhomogeneous dispersal process. Along, with no further specifications, we will
always make the following assumptions on (2, /, g and b:

N < R™is an open connected set, (H1)

J € C.(R™),] =0,/(0) > 0, (H2)
g €EL°(),0< a<g<p, (H3)
b € C(2) n L®(), (H4)

where C. (IR™) denotes the set of continuous functions with compact support.
The existence and a variational characterisation of the principal eigenvalue 4, of M
Is known from a long time, see for example Donsker and Varadhan [141]. However, as
Donsker and Varadhan [141] have already noticed, 4, is in general not an eigenvalue, that
is to say, there exists no positive function ¢,, such that (Ap, ¢p) Is a solution of (28). We are
interested in finding some conditions on M ensuring the existence of a principal eigenpair
(15, ¢,) of (28) such that ¢, € C(2) and ¢, > 0. Such type of solution is commonly
used to analyse the long-time behaviour of some nonlocal evolution problems [125], [129]
and had proven to be a very efficient tool in the analysis of nonlinear integrodifferential
problems; see [136], [146].
Besides some particular situations the existence of an eigenpair (xlp, gbp) for Eq. (28)
is still an open question and many of the known results concern these two cases:
(i) b(x) = Constant.
(ii) The operator M satisfies a mass preserving property, i.e. Vu € C(R2),

J j xg(—y)y n((y;) dy dx —f b(x)u(x)dx =

In both cases, the principal eigenvalue problem (28) is either reduced to the analysis of the
spectrum of the positive operator £, defined below:

- = »\ uly)
Lalul := f(z / ( g > 7o “

or the principal eigenvalue is explicitly known, i.e. 1, = 0 and the principal eigenfunction
¢, is also the positive solution of the following eigenvalue problem

) e o

Note that even in these two simplified cases, showing the existence of an eigenfunction is
still a difficult task when the domain £2 is unbounded. As observed in [134], Eq. (26) shares
many properties with the usual elliptic operators

€ := 0yj(x)0;; + Pi(x)9; + c(x).

In particular, acting on smooth functions, we can rewrite M

Mu] = Elu] + R[u]
with R an operator involving derivatives of higher order that in £.

119




Indeed, we have
=Lkmwu@%wmmw—d@w

with c(x) := b(x) — fﬂ k(x,y)dy. Using the change of variables z = x-y and
performing a formal Taylor expansion of u in the integral, we can rewrite the nonlocal
operator as follows

j k(x,x — 2)[ulx — z) — ux)]dy = o0;;(x)0;ju + B;(x)0;u + R[u]
x—0

where we use the Einstein summation convention and o;;(x), B;(x), and R are defined by
the following expressions

1
0;;(x) == j k(x,x — z)z; z; dz,
2 Jy_p
) = [ kGux - Dada
x—1
1 1 1
=f f f f k(x,x — z)z; zt sal]ku(x + tstz)dt ds dt dz.

o Jo Jo Jx-n

For the second order elliptic operator &, the existence of a principal eigenpair (Ap, ¢>p) IS
well known and various variational formulas characterising the principal eigenvalue exist,
see for example [100], [141], [143], [151]-[152]. In particular, Berestycki, Nirenberg and
Varadhan [100] give a very simple and general definition of the principal eigenvalue of €
that we recall below. Namely, they define the principal eigenvalue of the elliptic operator €
by the following quantity:
Ai=sup {1 €R|Ip € C(2),¢ > 0,suchthat E[¢p] + 1¢p < 0}. (29)

We adopt the definition of Berestycki, Nirenberg and Varadhan for the definition of
the principal eigenvalue of the operator M. The principal eigenvalue of the operator M is
then given by the following quantity:

A,(M) :==sup {1 ER|[I¢p € C(2),¢ > 0,suchthat M[¢] + A¢ < 0}.

To make more explicit the dependence of the different parameters and to simplify the
presentation of the results, we shall adopt the following notations:

* Let A and B be two sets, we denote A € B the compact inclusion A cc B.

*a(x) := —b(x).

0 :=sup a(x).
0

« dy is the measure defined by := :Z‘x) .
. —y\ xO)
Laluli= Iy 1(555) 6 & = o 1 (555) wodu

M = MQ = Ly + a(x)Id.
With this new notation the principal eigenvalue of M, can be rewritten as follows
Apy(My) :=sup {4 €R[|3I¢ € C(12),¢ > 0,suchthat L, [¢] + (a(x) + D¢
< 0}. (30)
Under the assumptions (H1)- (H4), the principal eigenvalue 1, (M) is well defined.
Obviously, 4, is monotone with respect to the domain, the zero order term a(x) and J.
Moreover, 4, is a concave function of its argument and is Lipschitz continuous with respect
to a(x). We have
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Theorem (3.2.1)[118]: (Sufficient condition). Assume that 0,]/,g and a satisfy
(H1)- (H4). Let us denote o := sup a(x) and assume further that the function a(x)
0

satisfies G_:l(x) 2 L}m(ﬂo) for some bounded domain 2, c 2. Then there exists a

principal eigenpair (4,, ¢,,) solution of (28). Moreover, ¢, € C({2),¢, > 0 and we
have the following estimate
-0’ < 4, < —o0,

where o := sup [a(x)+f ]( ) yg"(x)]

XEN
Note that the theorem holds true whenever 2 is bounded or not.
The condition U_Cll( M(QO) Is sharp in the sense that |f ( ) € L} du 1oc({2)

then we can construct an operator M, such that Eq. (28) does not have a principal
eigenpair. This is discussed, where such an operator is constructed. We want also to stress
that the boundedness of the open set 2 does not ensure the existence of an eigenfunction.
In contrast with the elliptic case, the sufficient condition has nothing to do with the
regularity of the functions a(x), / or g. This means that in general improving the
regularity of the coefficients does not ensure at all the existence of an eigenpair.

However, in low dimension of space n = 1,2 the condition ﬁ(x) ¢ L}w(ﬂo) can be

related to a regularity condition on the coefficient a(x). Indeed, in one dimension if a is
Lipschitz continuous and achieves a maximum in 2 then the condition G_i(x) ¢

L%w((zo) is automatically satisfied. Similarly, when n = 2 the non-integrability
condition is always satisfied when a(x) € CY1(Q) and achieves a maximum in £2. We
have the following:

Theorem (3.2.2)[118]: Assume that £2,], g and a satisfy (H1)- (H4), that a achieves a
global maximum at some point x, € (2. Then there exists a principal eigenpair (1p, ¢,,)
solution of (28) in the following situations

@n = 1,a(x) € CO(N),

(b)n = 2,a(x) € CY1(N),

(©n=>3,a(x) € C"(2),Vk < n,0%a(xy) = 0.

One of the most interesting properties of the principal eigenvalue for an elliptic
operator &€ is its relation with the existence of a maximum principle for E. Indeed,
Berestycki et al. [100] have shown that there exists a strong relation between the sign of
this principal eigenvalue and the existence of a maximum principle for the elliptic
operator €. They have proved the following theorem
Theorem (3.2.3)[118]: (BNV). Let 2 be a bounded open set, then £ satisfies a refined
maximum principle ifand only if 1, > 0.

It turns out that when the principal eigenpair exists for M, we can also obtain a similar
relation between the sign of the principal eigenvalue of M and some maximum principle
property. We define the maximum principle property satisfied by M:

Definition (3.2.4)[118]: (Maximum principle). When £ is bounded, we say that the
maximum principle is satis-fied by an operator M, if for all function u € C(2)
satisfying

M, [u] <0in 0,
u=>0in 00,
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thenu = 0in Q.

With this definition of maximum principle, we show
Theorem (3.2.5)[118]: Assume that 2 is a bounded set and let /,g and a be as in
Theorem (3.2.1). Then the maximum principle is satisfied by M, if and only if
A,(Mp) = 0.

Note that there is a slight difference between the criteria for elliptic operators and for
nonlocal ones. To have a maximum principle for nonlocal operator it is sufficient to have
a non-negative principal eigenvalue, which is untrue for an elliptic operator where a strict
sign of 4,, is required.

The last result is an application of the sufficient condition for the existence of a
principal eigenpair to obtain a simple criterion for the existence/non-existence of a
positive solution of the following semilinear problem:

My [u] + f(x,u) = 0inf, (31)
where f is a KPP type nonlinearity. Such type of equation naturally appears in some
ecological problems when in addition to the dispersion of the individuals in the
environment, the birth and death of these individuals are also modelled, see [146]-[149].
On f we assume that:

f € C(R X [0,9) and is differentiable with respect to u,
fu (-, 0) is Lipschitz,
f(,0) = 0and f (x,u)/u is decreasing with respect to u,
there exists M > 0 such that f (x,u) < 0 forallu > M and all x.
The simplest example of such a nonlinearity is
fw = ululx) — ),
where u(x) is a Lipschitz function.

Such type of problem has received recently a lot of attention, see [122], [147]-[149].
In particular, for 2 bounded and for a symmetric kernel / Hutson et al. [147] have shown
that there exists a unique non-trivial stationary solution (31) provided that some principal
eigenvalue of the linearised operator around the solution O is positive. This result can be
extended to more general kernel J using the definition of principal eigenvalue (30). We
show that:

Theorem (3.2.6)[118]: Assume 2, ], g and a satisfy (H1)- (H4), 2 is bounded, a(x) <
0 and f satisfies (32). Then there exists a unique non-trivial solution of (31) when

Ay (Mg + f,(x,0)) < 0,
where 4, is the principal eigenvalue of the linear operator M, + f,,(x,0). Moreover, if
A, = 0 then any non-negative uniformly bounded solution of (31) is identically zero.

As a consequence, we can derive the asymptotic behaviour of the solution of the

evolution problem associated to (31):
ou

Fr M, [u] + f (x,w)in RT x 0, (33)

u(0,x) = uy(x)in 0. (34)

Namely, the asymptotic behaviour of u(t, X) as t — +oo is described in the following
theorem:

Note that this criterion involves only the sign of A, and does not require any
conditions on the function £, (x, 0) ensuring the existence of a principal eigenfunction.
Therefore, even in a situation where no principal eigenfunction exists for the operator
M, + f,(x,0) we still have information on the survival or the extinction of the
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considered species. Observe also that the condition obtained on the principal eigenvalue
of the linearised operator is sufficient and necessary for the existence of a non-trivial
solution.
The above results can be easily extended to the case of a dispersal kernel k(x,y)
which satisfies the following conditions:

kGoy) € C, (@ x ),k = o,f k(e y)dy < 4+,  Vx € 0, (A1)
K9)

dcy > €p,0 > 0 such thatmin ( min k(x,y)> > co. (H2)

XEN VEB(x,€q)
An example of such kernel is given by

k(xy)zj(xl_yl'xz_yz' _xn_yn) 1
’ g " g*» T g /-y g’
with0 < a; < g, < B; -

We want also to emphasize that the condition that J or k has a compact support is
only needed to construct an eigenpair when 12 is unbounded. For a bounded domain, all the
results will also hold true if J is not assume compactly supported in 0.

Note that the assumption J(0) > 0 implies that the operator £, is not trivial on any
opensubset w © N, 1.e. Vo € 2,Vu € C(N), L, [u] = 0 for x € w. This condition
makes sure that the principal eigenfunction ¢, is positive in 2, which is a necessary
condition for the existence of such principal eigenfunction. Indeed, when there exists an
open subset w < 2 such that £, is trivial, there is no guarantee that a principal eigenpair
exists. For example, this is the case for the operator M, where 2 := (—1,1),] is such that

supp(J) c (% ,1) and 3 < g < 4. In this situation, we easily see that for any x €

(—i %) and for any function u € C(2), we have L, [u](x) = 0. Therefore, the

existence of an eigenfunction will strongly depend on the behaviour of the function a(x) on

this subset, i.e. (Ap + a(x))qb = O0forx € (—i i) If (xlp + a(x)) #0then¢p = 0

in (—%,%). In this situation there is clearly no existence of a positive principal

eigenfunction. However, the condition J(0) > 0 can still be relaxed and the above
theorems hold also true if we only assume that the kernel J is such that there exists a positive
integer p € Ny such that the following kernel J,(x,y) satisfies (H 2) where Jp(x,y) is
defined by the recursion

X — y) 1
gy /g (y)’
mﬂwyy=£fmxab@mwﬂmpzl

The above condition is slightly more general that J(0) > 0 and we see that J(0) >
0 implies that J; satisfies (H2). In particular, as showed for example in [132], for a
convolution operator K(x,y) := J(x — y), this new condition is optimal and can be
related to a geometric condition on the convex hull of {y € R" | J(y) > 0}:

There exists p € N*, such that J,, satisfies (H2) if and only if the convex hull of {y €
R™ | J(y) > 0} contains 0.

Gy = J (
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We also want to stress that we can easily extend the results of Theorems (3.2.5) and
(3.2.6) to a periodic setting using the above generalisation on general non-negative kernel.
If we consider the following problem

ou
Fre M R" [u] + f (x,uw)in R" x R¥, (35)

where g and f (.,u) are assumed to be periodic functions then the existence of a unique
non-trivial periodic solution of (35) is uniquely conditioned by the sign of the periodic
principal eigenvalue A, e (MR™ + f,(x,0)), where A, ... is defined as follows:
Adpper(M):=sup {(1 € R)|FYP > 0,7 € Cp(R™) such that MR" [¢] + Ay < 0}.
Using the periodicity, we have
Apper(MR™ + f,(x,0) = 4, (Ly + f,(x,0),0Q),
where @ is the unit periodic cell and £, [y] := fQ k(x, y)u(y)dy with k a positive kernel

satisfying (H1) and (H 2). Hence the analysis of the existence/non-existence of stationary
solutions of (35) will be handled through the analysis of the existence/non-existence of
stationary solutions of a semilinear KPP problem defined on a bounded domain.

Finally, along the analysis, provided a more restrictive assumption on the coefficient
a(x) is made, we also observe that Theorem (3.2.1) holds as well when we relax the

assumption on the function g and allow g to touch 0. Assuming that g satisfies

1 _ .
g € L“(Q),OSgS,B,g—n e I (2)withp > 1(H3)

loc

then for a bounded domain 2, we have the following result:

As a consequence the criterion on the survival/extinction of a species obtained in
Theorems (3.2.5) and (3.2.6) can be extended to such type of dispersal kernel. We have
Theorem (3.2.7)[118]: Assume Q, J and g satisfy (H1), (H2), (H3), Q is bounded and f
satisfies (32). Then there exists a unique non-trivial solution of (31) if

A (M + f,(x,0)) < 0,
where 4, is the principal eigenvalue of the linear operator M, + f,(x,0). Moreover, if
A, = 0 then any non-negative uniformly bounded solution is identically zero.
Theorem (3.2.8)[118]: Let £2,], g, b and f be as in Theorem (3.2.7). Let u, be an arbitrary
bounded and continuous function in 2 such that uy, = 0,u, # 0. Let u(t, x) be the solution
of (33) with initial datum u(0,x) = uy(x). Then, we have:
(i) 1f 0 is an unstable solution of (31) (that is 1, < 0), then u(t,x) — p(x) pointwise as
t — oo, where p is the unique positive solution of (31) given by Theorem (3.2.7).
(ii) 1T O is a stable solution of (31) (that is 4, = 0), then u(t,x) — 0 pointwise inast -
+00.

The existence of a simple sufficient condition for the existence of a principal eigenpair
when £ is an unbounded domain is more involved and we have to make a technical
assumptionontheset Y := {x € 2| g(x) = 0}. We show
Theorem (3.2.9)[118]: Assume that 2,] and a satisfy (A1), (H2),(H4) and g satisfies
(H3). Let us denote o :=sup a(x) and let I", X be the following sets

0

r:={x € 2lalx) = o},

Y:=(x € N]glx)=0}.
Assume further that 2 N X € 2 and I' = @. Then there exists a principal eigenpair
(Ap, qbp) solution of (28). Moreover, ¢, > 0 and we have the following estimate
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-0’ < 1, < —o,
L y—X dy
where o := )ch}z) [a(x) + fﬂ Ji (E) prreeik

We review some spectral theory of positive operators and we recall some Harnack’s
inequalities satisfied by a positive solution of integral equation. Then, we prove Theorems
(3.2.25) and (3.2.24). The relation between the maximum principle and the sign of the
principal eigenvalue Theorem (3.2.5) and a counterexample to the existence of a principal
eigenpair are obtained respectively. We devoted to the derivation of the survival/extinction
criteria (Theorems (3.2.5), (3.2.6), (3.2.20)).

We first recall some results on the spectral theory of positive operators and some
Harnack’s inequalities satisfied by a positive solution of

Lo [u] — b(x)u = 0, (36)
where L, is defined as above and b(x) is a positive continuous function in . Let us start
with the spectral theory.

Let us recall some basic spectral results for positive operators due to Edmunds, Potter
and Stuart [142] which are extensions of the Krein—Rutman theorem for positive non-
compact operators. A cone in a real Banach space X is a non-empty closed set K such that
forall x,y € Kandalla > 0onehasx + ay € K,andifx € K,—x € Kthenx = 0.
A cone K is called reproducing if X = K — K. A cone K induces a partial ordering in X
by the relation x < y ifand only if x — y € K. A linear map or operator T : X — X is
called positive if T (K) < K. The dual cone K* is the set of functional x* € X™ which are
positive, that is, such that x*(K) < [0, o).

If T: X — Xis a bounded linear map on a complex Banach space X, its essential
spectrum (according to Browder [123]) consists of those A in the spectrum of T such that at
least one of the following conditions holds: (1) the range of AI — T is not closed, (2) A is a
limit point of the spectrum of A, (3) U%=; ker((AI — T )™) is infinite dimensional. The
radius of the essential spectrum of , denoted by 7, (T ), is the largest value of |A| with A in
the essential spectrum of T . For more properties of 7, (T") see [150].

Theorem (3.2.10)[118]: (Edmunds, Potter, Stuart). Let K be a reproducing cone in a real
Banach space X, and let T € L(X) be a positive operator such that T? (u) = cu for some
1

u € K with ||u|]] = 1, some positive integer p and some positive number c. Then if c» >

1

r,(T.),T has an eigenvector v € K with associated eigenvalue p > c» and T* has
eigenvector v* € K™ corresponding to the eigenvalue p. Moreover, p is unique.

A proof of this theorem can be found in [142].

We present some Harnack’s inequality satisfied by any positive continuous solution
of the nonlocal equation (36).
Theorem (3.2.11)[118]: (Harnack inequality). Assume that 2,/,g and b > 0 satisfy
(H1),(H2),(H3), (H4). Let w € 2 be a compact set. Then there exists C(J, w, b, g) such
that for all positive continuous bounded solutions u of (36) we have

u(x) < Cu(y) forallx,y € w.

When the assumption on g is relaxed the above Harnack’s estimate does not hold any more
but a uniform estimate still holds.
Theorem (3.2.12)[118]: (Local uniform estimate). Assume that 2,/ ,g and b > 0 satisfy
(H1), (H2),(H3),(H4). Assume that 2 N X € N and letw < 2 be a compact set. Let
2 (w) denote the following set
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2@ = | Beup).

Then there exists a positive constant n* such that, for any 0 < n < n*, there exist a
compact set w’ € 2(w) N N2 and a constant C(J, w,2,w’, b, g,n) such that the following
assertions are verified:

(i) {x € N(w) N W, | d(x,a(ﬂ(a)) N Wn)) > n} c o' , where W, := {x €

02| g(x) > n},
(i) for all positive continuous solution u of (36), the following inequality holds:
u(x) < Cu(y)forall x € w,y € o' N w.
We present a contraction lemma which guarantees that when 2 is bounded then any

continuous positive solution u of Eq. (36) is bounded in 1.
Lemma (3.2.13)[118]: (Contraction lemma). Let 2 < R™and u € C(R) be respectively
an open set and a positive solution of (36). Then there exists €* > 0 such that for all €*,
there exists 2 and C(a, B, ], €, b) such that

fﬂ u(y)dy = Cj u(y)dy.

¢ 0
Moreover, 2 satisfies the following chain of inclusion

ae
{x € 01d(x,00) > ae} < 0. c{x € Qld(x,60)>7}.

A proof of these results can be found in [134].

We prove the criterion of existence of a principal eigenpair (Theorems (3.2.25),
(3.2.24) and (3.2.8)). That is, we prove the existence of a solution (4,, ¢,,) of the equation

Ly |¢p] + alx)p, = —21,¢,in0 (37)
with ¢, > 0,¢, € C(2) and 4, is the principal eigenvalue of L, + a(x) defined by
(30). We first restrict our analysis to the case of a bounded domain 2 and then prove the
criterion for unbounded domains. Each of them dedicated to one situation.

We will first concentrate our attention on the construction of a principal eigenpair
when J, g, b satisfy the assumptions (H2)—(H4) (Theorem (3.2.1)). Then we provide an
argumentation for the construction of a principal eigenpair when the assumptions on g are
relaxed (Theorem (3.2.20)).

In a first step, let us show that the eigenvalue problem (37) admits a positive solution,
I.e. there exists (44,0, ¢,) with¢; > 0,¢; € L (02) n C(2) solution of (37). We show
Theorem (3.2.14)[118]: Let 2 < R™ be a bounded open set and assume that J, g, and
a(x) satisfy (H1)—(H4). Let us denote o :=sup a(x)and (g := {x € 2|d(x,002) >

0

0}. Assume further that the function a(x) satisfies #(x) ¢ Lbu (2). Thenthere exists 8, >

0 such that forall & < 6, the operator L,, + a(x) has a unique eigenvalue ;g in C(£2g),
that is to say, there is a unique u; o € R such that
Lo, _[¢1] + a(x)p1 = —H19¢P1in Ly (5:8)
admits a positive solution ¢p; € C(£24). Moreover, u, 4 is simple (i.e. the space of C ()
solutions to (37) is one-dimensional) and satisfies
Hip < —max a(x).

To conclude the proof of Theorem (3.2.1) which establishes the criterion of existence
of an eigenpair, we are left to show that the principal eigenvalue defined by (30) is the same
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as the one obtained in Theorem (3.2.14) for 8 = 0. Namely, we are reduced to prove of the
following results.
Lemma (3.2.15)[118]: Let a(x) be as in Theorem (3.2.14) then we have 4, = u;, Where
A, and 4 o are respectively the principal eigenvalue of £, + a(x) defined by (30) and the
eigenvalue of £, + a(x) obtained in Theorem (3.2.14).
Before proving Theorem (3.2.14), let us prove the above lemma.
Proof. First, let us define the following quantity
Ay :=sup {4 €R|Ip > 0,¢ € C(2)sothat L, [p] + alx)p + Ap < 0in 2}.

Obviously A, is well defined and is sharing the same properties than 4, . Moreover, we
have A, < A, . Let us now show that 1, = p; ,. First by definition of 4, we easily have
Ay = 0. Now to obtain the equality 1, = p, o we argue by contradiction. Assume that
Ay > pyo. By definition of 2}, there exists p > 0,1 € C(2) such that

Lo[pl+ (alx)+ 1) ¥ < 0in . (39)
Observe that we can rewrite £, [¢;] + a(x)¢, as follows

Lo [p1] + a()p; = jﬂ ] [x - y] $1()

g 1 gi) dy + a(x)¢,

_ x — y] Y1) b1 (2)
B fg / [gm 2ty ¥ Ty

a(x)y — Lo [¥] — 4

X =y 11’(}’) ¢1()’) ¢1(X) ¢1(X)
Laldal + “(x)"’lsjn / [g(y) Pe) Lb(y) 0] RO

By using the definition of 1, 4, we end up with the following inequality

X = y1v0) [¢10) ¢ ()
Jn / [g(y) 9() Ll)(y) - ¢(x)] dy > (A = mo)ps > 0. (40)

Let us denote w := %. Observe that by (39) w € L n C(f2), therefore w achieves a

P(x).
From (39), we find that

and it follows that

P(x).

global maximum somewhere in £2, say at x. By using the inequality (40) at the point x, we
find the following contradiction

x =y v©») _
0 < jn / [g(y) g wG) = wDldy <0.

Thus py 9 = 45 .

Observe now that if there exists a positive eigenfunction y € C(2) N
L* () associated to the principal eigenvalue 4,, , i.e. £, [$] + (a(x) + 4,)¥ = 0, then
we have € C(£2). Therefore, using the definition of 4, it follows that A, < A, = ;0 <
A, . To conclude the proof, we are left to show that such bounded function y exists.

So let (6,,),,cn be a positive sequence which converges to 0 and consider the sequence
of set (an)nEN defined in Theorem (3.2.14). By construction, using the monotonicity

property of the principal eigenvalue with respect to the domain ((i) of Proposition (3.2.25))

we deduce that </1;, (Lgen + a(x))) is @ non-increasing bounded sequence. Namely,

neN
we have foralln € N
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Mp(Lo + a(@) <% (Lo, + a@) < Ay (La,, + (),
Thus, as n goes to infinity Ag(ﬁgen + a(x)) converges to some 4 > Ap

On another hand since 8,, tends to 0, by Theorem (3.2.14), there exists n, so that for
all n = ny, a principal eigenpair (u4,¢ , ¢r) eXists for the operator Lo, + a(x). Arguing

as above, we conclude that y; o = A;O(ngn + a(x)). We claim that:

Assume for the moment that the claim holds. Then the final argumentation goes as

follows. Next, let us normalised ¢,, so that sup ¢,, = 1. With this normalisation (¢,,),en
.an
Is a uniformly bounded sequence of continuous functions. So by a standard diagonal
extraction argument, there exists a subsequence still denoted (¢,,),en Such that (¢,)nen
converges locally uniformly to a non-negative bounded continuous function 1.
Furthermore, i satisfies
] +(a(x)+ /'l)t/) =

Now recall that (uy6, , $y,) satisfies
L.an [¢n] + a(x)¢n + U106, ¢n =0

Using the above claim, we have pyg9 < —0 = —sup a(x)- sup a(x) for n big
oy,
enough, so sup (a(x) + pyp, ) < 0 and the uniform estimates i.e. Theorem (3.2.12)
2o,

applies to ¢,,. Thus we have for n > 0 small fixed independently of n

1< Cppforallx €{x € Qg | d(x,000,) > n} .
Therefore ¥ is non-trivial and (4, y) solves the eigenvalue problem (37). Using once again
the equation satisfied by i and the definition of 4, , we easily obtain that 1< Ap < y)
which proves that 1 is our desired eigenfunction associated to 4,, .

Let us turn our attention to the proof of Claim (3.2.17). But before proving the claim
let us establish the following useful estimate.
Lemma (3.2.16)[118]: There exist positive constants r and ¢, so that

— x
Vx € (), j 2 u(y)du(y) = f u()du().
B (x)rm ( ) B, (x)nn
Proof. Since J is continuous and J(0) > 0, there exist § > 0 and ¢, > 0 so that for all
z € B(0,8) we have J(z)c,.
Observe that for all (x,y) € 2 X B,.(x)with < 570‘ , using thatg = a > 0, we

have

7o)
9()
Thus, forr < —and y € B,(x) we have]( (y)) > cq, and the estimate follows.

Claim (3.2.17)[118]. There exists n; € Nsuchthatforalln =n, wehave y,9 < —0 =
—sup a(x).
0

Ex

Proof. Let us denote by o the maximum of a(x) in 2. By assumption, we have G_(ll(x) ¢
d# 10c(2). So there exists x, € 2 such that 65 LbM(BT(xO) N 2)and for small

enough, say 0, we have
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J -
Cc
0 2nB(xy,1) _(a(X) — 0 + E)
Choose n, big enough, so that for all n = ny, B.(xo) N 2y = @. For 0, since 29— 1,
we can increase n, if necessary to achieve for all n > n,
du
Co J > 2
2¢,NB(x0,1) —(a(x)— 0 —¢€)

Recall now that for n big enough, say n = n,, there exists (uq,9_, ¢,) that satisfies the
equation

(41)

L.an [pn] + alx)p, + H1,6, $n =0
Since ¢,, is positive we have
LﬁgnnB(xo,r)[¢n] - a(x) + .U1,9n d)n-

Using Lemma (3.2.16), we see that
Co

S (M dp < P (x).
_(a(x) + #1,9n) 2¢,NB(x0,1) " "
Integrating the above inequality on 24 N B(x,, ) it follows that

Co
f_ - dn(y) du | du < f b, (x)du,
annB(xO,r) _(a(x) + .ul,Gn ) annB(xo,r) .annB(xO,r)

C
f ( - )du j dn(y) dp < f dn(x)dp.
¢, NB(x0,r) _(a(x) + H1,0, ) 2¢,NB(x0,1) ¢, NB(x0,r)

J ( n > <
—

From (41), it follows that for all n > sup (n4,n,) we have
I/ll,gn < —0 —E€.
Let us now turn our attention to the proof of Theorem (3.2.14).
For convenience, in this proof we write the eigenvalue problem
Lo, [u] + a(x)u = —uu

in the form
Lo, [u] + a(x)u = pu (42)
where
a(x) = a(x) + k, p=—-u-+k
and k > 0 is a constant such that mf a > 0.

Let us now prove the following useful result:

Observe that the proof of Theorem (3.2.14) easily follows from the above lemma.
Indeed, if the lemma holds true, since under the assumptions (H1)—(H4) the operator L, :
C(2g) » C(Qy)is compact, we have 7, (LQG +a‘(x)) = r,(a(x)) = a(@). Thus
(@(0) + 6) > 1r.(Ly, + a(x)) and the existence theorem of Edmunds et al. (Theorem
(3.2.10)) applies.

Finally we observe that the principal eigenvalue is simple since for a bounded domain
1 the cone of positive continuous functions has a non-empty interior and, for a sufficiently
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large p, the operator (Lﬂen + a)p Is strongly positive, that is, it maps u = 0,u # 0toa
strictly positive function, see [154].

Lemma (3.2.18)[118]: Let £2,], g and a be as in Theorem (3.2.14). Then there exists 6, >
0 so that forall 8 < 6, there exist § > Oandu € C(2g),u = 0,u = 0, such that in 2,
Lo, [ul + ax)uz= (@ + o),
where 6(0): = max a(x).

(2]

Proof. Let us denote by I' the closed set where the continuous function a takes its maximum
g in (2

r:={z € 0|a(z) = &} .
Since a is a continuous function and 12 is bounded, I" is a compact set. Therefore I' can be
covered by a finite number of balls of radius r, i.e. ' € UY_; B,(x;) with x; € I' . By

i 1 _ _ 1 1
construction, we ha\_/e e 1/(c —a(x)) & Lgyu0c(£2). Therefore P ¢
L%w(U’}’:1 B,.(x;) N ) and there exists —1, > ¢ so that for some x; we have

J -
B.(xpna —Ao — alx)
Since 2y — 2 as O tends to O there exists 6, so that for all 8 < 6, we have

du > 4. (43)

Co
— _du>2 (44)
'[Br(xi)ﬂﬁg _AO - a(x)

Let us fix x; such that (44) holds true and let us denote wy := B,(x;) N 0y . We consider
now the following eigenvalue problem

c0 j w)duly) + aGuG) + ulx) = 0, (45)

where ¢, is the constant obtained in Lemma (3.2.16). We claim that:
Observe that by proving this claim we end the proof of the lemma. Indeed, fix 8 < 6, and
assume for the moment that this claim holds true. Then there exists (4, ¢;) such that

o [ G0 + AW + Li) = 0. (46)
Wg
Obviously, for any positive constant p, (14, p¢,) is also a solution of Eq. (46). Therefore
without any loss of generality we can assume that ¢, is such that ¢, < 1.Set ¢, :=
Co fwe @1 (y)du(y). From Eq. (46), sinced < ¢, < 1 we see easily that

Therefore there exists a positive constant d, such that
¢, =dyinw (47)

and
- (4 +30) = ¢ > 0. (48)
Let us now consider a set w, € wg Which verifies
J dolAy + a(6)]
du :
wg\we ZCO

(49)
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Since by construction 2, \wg and w are two disjoint closed subsets of 24 , the Urysohn’s
lemma applies and there exists a positive continuous function n such that0 < n <
1L,n(x) = linw,n(x) = 0iny \ wg .

Next, we define w := ¢,n and we compute L, [w] + b(x)w.
Sincew = 0infy \ wg , We have

Lo, W]+ aGw = | 1(Say) ) 2 GO + Hw = 0

forany 6 > 0.
On another hand, in wg , by using Lemma (3.2.16) we see that

Lo, W1+ aCow = | 1 (S) woddut) + atow (50
>c [ WO+ aw 51)

26 [ B0 + aww. (52)

Since ¢, satisfies Eq. (46), using the estimates (47), (48) and (49) we deduce from the
inequality (52) that
Lo, W]+ a(x)w = — (/11 + c_l(x)) ¢, + alx)w

—a | D) 53)
W+ 50)] 6

¢1 + (6(0) — a(x)) ¢, + alx)w

Gl + 0O [ sown e
2 wp \We

> (Ml +25(8)'>¢1 +(6(0) — aw)y + atow,  (55)

where we use in the last inequality, that ¢p; < 1 and the estimate (49).

Since (6(0) — a(x)) and@ are two positive quantities and ¢; = w, we

conclude that

A, + a(8)|
2

Lo, W] + d(x)w( + 5(0)) w. (56)

Hence, in 24 , w satisfies
Lo, W]+ a(x)w = (a(0) + &) w,
_ 4+a(0)l

with = > , Which proves the lemma.

Let us now prove Claim (3.2.19).

Claim (3.2.19)[118]: There exists (44,¢;) solution of (45) so that ¢; € L*(wg) N
C(wg) and ¢p; > 0.

Proof. Fix 8 < 6,. For A < —a(8), consider the positive function

Co

¢, = . Let us substitute ¢, into Eq. (45), then we have

- —A-a(x)
COJ $adp — co = 0.
we
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Therefore, we end the proof of Claim (3.2.19) by finding A such that fwg ¢ du =
Observe that the functional F (1) := fwe ¢, du is continuous and monotone increasing
with respect to A in (—oo, —a). Moreover, by construction, we have:

Alir_n F() = 0andF (4,) = 2.

Hence by continuity there exists a A; such that F (1,) = 1.
Now we expose the argumentation for the construction of a principal eigenpair when
the assumptions on g are relaxed and prove Theorem (3.2.20). To show Theorem (3.2.20)
we follow the scheme of the argument developed above.
Theorem (3.2.20)[118]: Assume that ,] and a satisfy (H1), (H2),(H3),(H4), Q is
bounded and g satisfies (H3). Let us denote o := sup a(x) and let I' be the following set
)

r:={x € 2| ax) = o} .
Assume further that I' = @. Then there exists a principal eigenpair (Ap, d)p) solution of
(28). Moreover, ¢, € C(2),¢, > 0 and we have the following estimate
-0’ < 1, < —o0,

_ y-x\ dy
where ¢’ : )Scle,l}z) [a(x)+ J, ]( (x)) )
Proof. As above, we can rewrite the eigenvalue problem (37) as follows
Lo, [u]l + a(x)u = pu (57)

with
a(x) = alx) + k, p=—u+k

and k > 0 is a constant such that i!glf a > 0.
’]

Observe that under the assumptions (H1), (H2), (H3), (H4) the following family
Loy B):={Loy [f1/f: 2 - IR%,IIfIIoo <1
is equicontinuous. Indeed, lete > 0 be fixed. Since g—ln € (2y), there exists n >

0 such that

loc

J 4y < ; (58)
Rgn{g<n} g () 40/

From the uniform continuity of J in the unit ball B(0, 1), we deduce that there exists y >
0 such that for |w — w| < y /n,

Jw) — Jw)| < en™/2|0gl. (59)
A short computation using (58) and (59) shows that for [x — z| < y

Lo, LF1GO) = Lo, [£1(2)] —f W] -J [Zg(_wy] | ;n((yy)> v
Szlljlloo frzgn{g<77} n(y)
1
+5_n-fnen{gzn} 4 [Q(Y) ] [g(y)]dySE

Hence, Ly, (B,) is equicontinuous and Ly, : C(y) — C({2y) is a compact operator.
We show the following
Lemma (3.2.21)[118]: Let 2,/ , g and a be as in Theorem (3.2.20). Then there exists 8, so
that forall 8 < 6, there exists § > Oandu € C(2y),u = 0,u # 0, such that in 2,
Lo, [ul + ax)u= (@ + o)u.
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As above the existence of a positive eigenpair (p, @) easily follows from Lemma (3.2.21).
Arguing as above, we see that u; o = A,(L, + a(x)), which concludes the proof of
Theorem (3.2.20).

Proof. First let us recall that by assumption I # @ where I' := {x € 2 |a(x) = o} and
let us define the following set X, := {x € 2 |g(x) = n}.

By construction, we easily see that I'' = @ where I'' := {x € 0 |a(x) = &}.
Therefore, there exist x, € Qand e > 0 suchthat B, (x,) < (I n Q). Moreover, for 6
small, say 8 < 6, we have B, (xo) © (I' N 0y).

Let us define w,, := B, (xo) N ;. By assumption we have 1/g™ € LP(02), so forn
small enough w,, is a non-void open subset of 24 for 6 < 6.

Let us now consider the eigenvalue problem (57) with 2 = w,), i.e.

Loy, [u] + a(x)u = puin wy,.
By construction, in B (x,) we have a(x) = & . So the above equation reduces to:
Lo, [u] = puin wy, (60)
where p = (p — 0).

Since Loy, is a compact strictly positive operator in C(w,), using Krein—Rutman
theorem there exists a positive eigenvalue p; > 0 and a positive eigenfunction ¢, €
C(@,) such that (py, ¢,) satisfies (60), i.e.

Lwn [p1] = Pps.
Arguing as in Lemma (3.2.18), for all & < 6, we can construct a non-negative test
function u such that in 2,
Lo, [u]l + alx)u= (6 + o,
foraé > 0 small enough.
In particular, we can extend the criterion of existence of a principal eigenpair for an
operator T + a(x) where 7 is an integral operator with a kernel k(x, y) that only satisfies

that there exists a positive integer N, so that the kernel ky (x, y) satisfies (H2) where ky, is
defined by the recursion:

ki(x,y):= k(x,),
kyii(x,v):= J k,(x,z)ky(z,y)dz for N > 1.
0

Indeed, in this situation the construction of a test function u (Lemma (3.2.18) or Lemma
(3.2.21)) holds also for the operator TV + @V (x). Using that @ > 0, we deduce

(T+ a@)" [l =7V + a@u= @G + 6w
Since in this situation T is a compact operator, we also have 7, ((T +d(x))N) =
r,(a()N). Thus (6N +8) > r, ((T + c‘z(x))N) and Theorem (3.2.10) applies. Hence,
there exists a unique principal eigenpair (Ap,cpp) of the following problem

_ N
(T + a(x)) bp = —Apyp.
To obtain a principal eigenpair for T + a we argue as follows. Applying T + a(x) to the
above equation it follows that
N+1

(T+d(x)) by = —Ap(T+ a(x)) bp)
_ N
(T + a(x)) Y = -y
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with ¢ := (T + a(x))¢, . Since (T + @)" is positive operator in C(2), A, is simple, we

1
have = p¢, . Hence, ((—Ap)ﬁ,qbp) is the principal eigenpair of 7 + a(x).

For simplicity in the presentation of the arguments and since the proof of the existence
of a principal eigenpair under the relaxed assumptions does not significantly differ, we will
only present the case where (2, ], g and a satisfy the assumptions (H1)- (H4).

To construct an eigenpair (Ap,qbp) in this situation, we proceed using a standard
approximation scheme.

First let us recall that, by assumption, there exists 2, < 2 a bounded subset such

that a_:l = 2 LEM(Q_O). Let (w,,)nen b€ a sequence of bounded increasing connected set

which covers 0, i.e.

W, C Wni1, U w, = (.
neN
Without loss of generality, we can also assume that 2, c w, and therefore

¢
o—a(x)
Lbﬂ(wn) for all n € N. Observe that for each w,, Theorem (3.2.14) and Lemma (3.2.15)
apply. Therefore for each n there exists a principal eigenpair (4, ,,, ¢,, ) to the eigenvalue
problem (37) with on instead of 2.

By construction, using the monotonicity of the sequence of (w,,),,en and the assertion
(i) of Proposition (3.2.25) we deduce that (Ap'n)nel\] IS @ monotone non-increasing sequence

which is bounded from below. Thus 4,, converges to some 1> Ap(Ly + a(x)).
Moreover, we also have that foralln € N
Ay (Lg + alx)) < 2< dpn < Appo < —S%p a(x) = o.

Let us now fix x; € wy N 2. Observe that since for each integer n the eigenvalue
Apn is simple we can normalise ¢y, , by ¢, n(x1) = 1.

Let us now define b, (x) := —4,, — a(x). Then ¢, , satisfies

Lwn [¢p,n] = bn(x)¢p,n in wy,. (61)
By construction for all n € Nwe have b,(x) — 4,0 — o > 0, therefore the Harnack
inequality (Theorem (3.2.11)) applies to ¢,,,,. Thus for n fixed and for all compact set w’ €
w,, there exists a constant C,,(w") such that
¢p,n(x) < Cn (w’)(pp,n(y) Vx'y € w,'

Moreover, the constant C,(w') only depends on U,e, B(x,B) and is monotone
decreasing with respect to xienf b, (x). For all n, the function b,,(x) being uniformly

Wn

bounded from below by a constant independent of n, the constant C,, is bounded from above
independently of n by a constant € (w"). Thus we have

¢p,n(x) < C(w')¢p,n(}’) Vx,y € w'.
From a standard argumentation, using the normalisation ¢,, ,,(x;) = 1, we deduce that the

sequence (¢P'")neN Is bounded in C;,.(£2) topology. Moreover, from a standard diagonal
extraction argument, there exists a subsequence still denoted (qbp,n)neN such that (¢p'n)neN

converges locally uniformly to a continuous function ¢. Furthermore, ¢ is a non-negative
non-trivial function and ¢(x;) = 1.
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Since J has a compact support we can pass to the limit in Eq. (61) using the Lebesgue
monotone convergence theorem and get

fo 1) ¢0dum) + (1 + a() (x) = 0ing.

As above using the equation, we deduce that ¢ > 0 in (2. Lastly, from the definition
of 1, using (4, ¢) as a test function, we see that 1< Ap < A. Hence, (4, ¢) is our desired
eigenpair.

We explore the relation between a maximum principle property satisfied by an
operator M and the sign of its principal eigenvalue. Namely, we prove Theorem (3.2.5) that
we recall below.

Theorem (3.2.22)[118]: Assume that 2 is a bounded set and let / , g and a be as in Theorem
(3.2.1). Then the maximum principle is satisfied by M, if and only if A,,(M,) = 0.
Proof. Assume first that the operator satisfies the maximum principle. From Theorem

(3.2.1), there exists (4, ¢,) such that ¢, € C(2),¢, > 0 and
Lo |¢p] + a()¢, + 1,0, = 0.
We can normalise ¢, so that we have 1 = ¢,, = c¢,. Furthermore, there exists § > 0 so
that —1, — 0 = § > 0 where o denotes the maximum of a in 2.
Assuming by contradiction that 4, < 0 we have

Lo [$p] + a(X)py = —Apeh, > O.
Let us choose w € {2 such that
A}

j p ()<coinf {6,
e =T 200

We can construct a continuous function n suchthat 0 <n < 1,n(x) = 1in w,n(x) =
0 in 1. Consider now ¢,n and let us compute L, [¢p,n] + a(x)¢p,n. Then we have

L.Q [d)pn] + a(x)d)pn = _qubp - ”]” o\ d,u(y) - a(x)d)p(]- - 77)
inf {6,|A
>ty - 2D g, - )
> =y, — Colnf {26' |Ap|} —max {o,0}¢,
coinf {8, |4,[}

> — (/'lp + max{o, 0})¢p — 5
Since by assumption —A,, > 0and —4, — o = 0 it follows from the above inequality that
Lo [ppn] + a(x)ppn — (1, +max {o,0} ¢
_ coinf {25,|A,,|} _ inf {25,|/1p|} o
By construction we have ¢,n € C(£2) that satisfies
Ly [¢ppn] + a(x)ppn = 0in 0,
¢pn = 0on L.
Therefore, by the maximum principle 1.4, ¢,n < 0in 2 which is a contradiction. Hence,
A, = 0.
p —_—
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Let us now show the converse implication. Assume that 4,,(£, + a(x)) = 0, then
we will show that the operator satisfies the maximum principle. Letu % 0,u € C(f) such
that u > 0 on 42 and

Ly [u] + a(x)u < 0.
Let us show that u > 0 in £2. By Theorem (3.2.1), there exists ¢, > 0 such that
Ly [¢p] + a()¢, = —2,¢, < 0.
Let us rewrite L, [u] + a(x)u as follows

_ x — y16,(») u(y) u(x)

Lo [u] + ax)u = fﬂ J [g(y) 900 6,0 dy + a(x)¢,(x) e
_ f ] [x - y10, uly)  ulx ) P u(x)
0 g 1g"») ¢, () ¢p(x) PEP b, (x)

Let us set := ¢i , then we have the following inequality in 2
p

x =Yy qbp()’) _ B

From the above inequality we deduce that w cannot achieve a non-positive minimum in 2
without being constant. Therefore it follows that eitherw > 0in2 orw = 0. Since u %

0, we have w > 0. Hence, q% > 0 which implies thatu > 0.

14
We provide an example of nonlocal equation where no positive bounded
eigenfunction exists. Let 2 be a bounded domain and let us consider the following principal
eigenvalue problem:

p j udx + a(x)u = Ay, (62)
N
where o = a(xo) = max a(x), p is a positive constant and a(x) € C,(f2) satisfies the
condltlon ( ) € Li,.(£2). For this eigenvalue problem we show the following result:

< 1, then there exists no bounded

Theorem (3 2.23)[118]: If p is so that p [ ( )

continuous positive principal eigenfunction ¢ to (62)
Proof. We argue by contradiction. Let us assume that there exists a bounded positive
continuous eigenfunction ¢ associated with 4, that we normalise by fﬂ ¢(x)dx = 1. By

substituting ¢ into Eq. (62) it follows that
p = ()lp — a(x)) ¢.

Since p > 0, from the above equation we conclude that 4, — o =7 > 0. Therefore
___r
¢ = Ay — a(x)
Next, using the normalisation we obtain

| - f dx
- P 0 Ap —alx)’

o , therefore we have

1_pf/'l—a(x) fa—d—fl(x)'

Since p f T < 1 we end up with the following contradiction

By construction 4, =
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| - J dx f dx <1
P —aw’ )y —at T

Hence there exists no positive bounded eigenfunction ¢ associated to 4,, .
We prove Theorem (3.2.6). That is to say, we investigate the existence/non-existence
of solution of the following problem:

My [u]l + f(x,u) = 0in 2 (63)
where f is of KPP type. We show that the existence of a non-trivial solution of (31) is
governed by the sign of the principal eigenvalue of the following operator M, + f,(x,0).
Moreover, when a non-trivial solution exists, then it is unique. To show the existence/non-
existence of solutions of (31) and their properties, we follow and adapt the arguments
developed in [97], [99], [135].

Let us assume that
(Mo + f,(x,0)) < 0.
Then we will show that there exists a non-trivial solution to (31).
Before going to the construction of a non-trivial solution, let us first define some
quantities. First let us denote a(x) := f,(x,0) — b(x) and ¢ := sup a(x). Observe that
0

with this notation, we have 1,(M,; + f,(x,0)) = 1,(L, + a(x)).

From the definition of o there exists a sequence of points (x,,),ey Such that x,, € 2
and | — a(x,)| < %

Then by continuity of a(x), for each n there exists n,, such that forall x € B, (x;)
we have | — a(x)| < %

Now let us consider a sequence of real numbers (€,,),eny Which converges to zero
such that €,, < "7” :

Next, let (x,)nenbe the following sequence of cut-off functions: y,(x) :=
X (”x_nx"” ) where y is a smooth function suchthat 0 < y < 1, y(x) = 0 for |x| > 2 and
x(x) = 1for|x| < 1.

Finally, let us consider the following sequence of continuous functions (a,).en.
defined by a,(x):=sup {a(x),ox,}. Observe that by construction the sequence
(a;)nen is such that |la(x) — a,(x)]l — O.

Let us now proceed to the construction of a non-trivial solution.
By construction, for each n, the function a,, satisfies sup a, = gand a, = oin
0

Ben (x,,). Therefore, the sequence an satisfies ﬁ ¢ LI, .(2)and by Theorem (3.2.1)
2 —Un

there exists a principal eigenpair (/’ln P ¢n) solution of the eigenvalue problem:
Lol + an(x)p + ¢ = 0,
such that ¢,, € L*(2) n C(2).
Next, using that ||la,(x) — a(x)||, — 0asn — oo, from (iii) of Proposition
(3.2.25) it follows that for n big enough, say n > n,, we have

/'lp(LQ + a(x)) <0

Moreover, by choosing n, bigger if necessary, we achieve for n > n,
Ap (Ly + ax))
2 :

n
<

/1; + ”an(x) - a(x)”oo =
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Let us now compute M, [ ¢,,] + f (x, ¢p,,). For n = n0, we have
Mo lepn] + f (repn) = flx,edy) — (b(x) + an(x))edn — Apdn
= (fu(x,0) = (@n() + b(X))) e — Xebn + 0(echy)
> (= lla(x) = an(llew — A% )Py + 0(ey)
AP(M, + x,0
> (— (2 4fu( ) ep, + o(edp,) > 0.
Therefore, for e > 0 sufficiently small and n big enough, e¢,, is a sub-solution of (31). By
definition of , any large enough constant M is a super-solution of (31). By choosing M so
large that e¢p,, < M and using a basic iterative scheme we obtain the existence of a positive
non-trivial solution u of (31).
Let now turn our attention to the non-existence result. Let us prove that when
(M, + f,,(x,0)) = 0 then there exists no non-trivial solution to (31).
Assume by contradiction that 4, (]V[_Q + f.(x, 0)) > 0 and there exists a positive
bounded solution u to Eq. (31).
Obviously, since u is non-negative and bounded, using (31) we have forall x € 2

0<L,[u] = (b(x) —f();' u)> u. (64)

Let us denote h(x) := L,[u]. By construction, h is a non-negative continuous
function in Q. Therefore, since 2 is compact, h achieves at some point x, € 2 a non-
negative minimum. A short argument shows that h(x,) > 0. Indeed, otherwise we have

xo — ¥\ u(®)
JE) KD 4y
jg 9o g ¥
Thus, since /, g and u are non-negative quantities, from the above equality we deduce that

u(y) = 0 for almosteveryy € {z € 2 |’;°(;)Z € supp (J)}. By iterating this argument
and using the assumption J(0) > 0, we can show that u(y) = 0 for almostevery y € 0,
which implies that u = 0 since u is continuous.

As a consequence xlgg (b(x) i (’;’u) ) > § for some § > 0 and there exists a
positive constant ¢, so that u > ¢, in 2. From the monotone properties of f (x,.), we
deduce that L% < 7 (i’%) < fu(x,0).

u 0
f(x!CO)
C

Let us now denote y (x) = — b(x). By construction, we have y (x) < a(x) and

0

therefore by (ii) of Proposition (3.2.25),

(Lo + v ) > 2, (Ly + alx)) = 0.
Moreover, since u is a solution of (31), we have

Lolul+ vy @u=M,[u] + f(x,u) = 0.
By definition of 1,(L, + y (x)), for all positive 1,(L, + a(x)) < 4 < A,(L, +
y (x)) there exists a positive continuous function ¢, such that

Lo [Pl + v (X)pp < —A¢ < 0.
Arguing as above, we can see that ¢, = § for some positive §. Let us define the following
quantity
:=inf {t > 0|lu<7t¢,}.
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Obviously, we end the proof of the theorem by proving that t* = 0. Assume that z* > 0.
Then by definition of 7*, there exists x, € (2 such that 7°¢,(xo) = u(x,) > 0. At this
point x,, we have
0 < Ly [wllxo) = Lpl(T*pa — w(xo) < 0.
Therefore, since w > 0, using a similar argumentation as above, we have w(y) = 0 for
almost every y € . Thus, we end up with t¢; = u and we get the following
contradiction,
0<Lyul+vy@u =L, [t"d] + v ()T < 0.
Hence t* = 0.
Lastly, we show that when a solution of (31) exists then it is unique. The proof of the
unigueness of the solution is obtained as follows.
Let u and v be two non-negative bounded solutions of (31). We see that there exist
two positive constants c, and c; such that
u > cgin {2,
v > ¢y in .
Since u and v are bounded and strictly positive, the following quantity is well defined
y :=inf {y > 0|yu = v}.
We claim that y* < 1. Indeed, assume by contradiction that y* > 1. From (31) we see
that

My [yu] + f oy w) = f(x,y"w - Yy f (xu) (65)
I (f(x,*y u) _f(x,u)>S 0 (66)
y*u u

Now, by definition of y*, there exists x, € 2 so that yu(x,) = v(x,) and from (31) we
can easily see that
My [y ul (xo) + f (v ulxg) = Lo 'u —v]= 0. (67)
From (66) and (67) we deduce that
Loly'u — v](x) = 0.
Therefore, arguing it follows that y*u = v. Using now (66), we deduce that
0= My v+ flx,v)= Mylyul + f(x,7"w)
L SOy f(xuw)
= yu(——:; - S
y*u u
which impliesthat forallx € 2 f (x,y*u) = f (x,u). This later is impossible since y* >
1. Hence, y* < 1 and as a consequence u = v. Observe that the role of u and v can be
interchanged in the above argumentation. So we also have v > u, which shows the
uniqueness of the solution.
We prove Theorem (3.2.24) which establishes the asymptotic behaviour of the
solution of

0,

ou
Fre M, [u] + f(x,u) inR* x 0,
u(0,x) = uy(x) in 0.
Theorem (3.2.24)[118]: Let2,], g, b and f be as in Theorem (3.2.6). Let u, be an arbitrary
bounded and continuous function in 2 such that uy > 0,uy, # 0. Let u(t,x) be the
solution of (33) with initial datum w(0,x) = uy(x). Then, we have:
(i) If O is an unstable solution of (31) (that is A, <0), then u(t,x) — p(x) pointwise as
t — oo, where p is the unique positive solution of (31) given by Theorem (3.2.6).

139



(ii) If O is a stable solution of (31) (that is A, = 0), then u(t,x) — 0 pointwise in 2 as
t > +oo,
Proof. The existence of a solution defined for all time t follows from a standard argument
and will not be exposed. Moreover, since uy, = 0 and uy £ 0, using the parabolic
maximum principle, there exists a positive constant  such that u(1,x) > § in Q2. Let us
first assume that 1, < 0. By following the argument developed, we can construct a
bounded continuous function y so that v is a sub-solution of (33) for small enough. Since,
u(1,x) 6 and y is bounded, by choosing smaller if necessary we achieve also that y u(1, x).
Now, let us denote by ¥ (x, t) the solution of evolution problem (33) with initial datum €.
By construction, using a standard argument, ¥ (t, x) is a non-decreasing function of the time
and ¥ (t,x) < u(t + 1,x). On the other hand, since for M big enough M is a super-
solution of (33) and v, is bounded, we have also u(t, x) < ¥ (¢, x), where & (x, t) denotes
the solution of evolution problem (33) with initial datum ¥ (0,x) = M > u,. A standard
argument using the parabolic comparison principle shows that ¥ is a non-increasing
function of t. Thus we have for all time ¢t
e <PEx)<ult + Lx) <P (t + 1,x).
Since ¥ (t, x) (resp. ¥ (¢, x)) is a uniformly bounded monotonic function of ¢, ¥ (resp. ¥ )
converges pointwise to p (resp. p) which is a solution of (31). From ¥ (¢, x) # 0, using the
uniqueness of a nontrivial solution (Theorem (3.2.6)), we deduce that p = p # 0 and
therefore, u(x,t) — p pointwise in (2, where p denotes the unique non-trivial solution of
(31).
In the other case, when A, = 0 we argue as follows. As above, we have 0 < u(t, x) <
Y (t,x)and ¥ converges pointwise to p a solution of (31). By Theorem (3.2.6) in this
situation we have p =0, hence u(x,t) — 0 pointwise in 1.
We first prove Proposition (3.2.25). Then we recall the method of sub- and
supersolution to obtain solution of the semilinear problem:
My [u] = f (x,u)in 0. (68)
Before going to the proof of Proposition (3.2.25), let us show that 4, (1:,2 + a(x)) IS
well defined. Let us first show that the set A:= {A]|3¢ € C(2),¢ > 0 such
that L, [¢] + A4 < 0} is non-empty. Indeed, as observed in [133] (Theorem (3.2.20)),
for 2,], g and a satisfying the assumptions (H1)-(H4) there exists a continuous positive

function y satisfying
x — y\ ¥y) B
j_(z / (g(y) )g”(y) 4y = @),

where c(x) is defined by
1ifx € {x € 2|g(x) = 0},

c(x):= y—x\ dy .
fﬂ Ji (g(x) ) 70 otherwise.

Obviously c(x) € L* and forany 1 < (Jalle + llclle) We have
Lo[Yl+ @)+ Dy =(@alx)+ cx)+ 1)y
<(ax)+ c(x) = llallew — llclle) < W O.
Therefore, the set A is non-empty.
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Observe now that since J, g are non-negative functions and a(x) € L*, for any
continuous positive function ¢ we have

Lo [¢p] + (a(x) + lla(®¥)]l) ¢ = 0.

Therefore, the set A has an upper bound and 4, is well defined.
Let us now prove Proposition (3.2.25).
Proposition (3.2.25)[118]:
(i) Assume 2, c 0,,then
Ay (Lgl + a(x)) > Ay (ng + a(x)).
(i)  Fix 2 and assume that a, (x) = a,(x), then

Ap(Lg + a,(x)) = Ap (Lo+ () .
Moreover, if a;(x) = a,(x) + & forsome § > 0 then
Ap (Ly + ay(x)) > Ap (Lo + a,(0) .
(iii) 2,(Ly + a(x)) is Lipschitz continuous in a(x). More precisely,
|/1p (LQ + a(x)) - A (LQ + b(x))| <|lalx) = b(x)|lc-
(vi) Let J; < J, be two positive continuous integrable functions and let us denote
respectively by £, , and £, , the corresponding operators. Then we have

Ay (LLQ + a(x)) > A, (LZ,Q + a(x)).
Let us state our first result concerning a sufficient condition for the existence of a
principal eigenpair (Ap, qbp) for the operator M.

Proof. (i) easily follows from the definition of 4, . First, let us observe that to obtain
AP (L-Qz + a(X)) < Ap (L-Ql + a(X))

it is sufficient to prove the inequality

2< 1y (Lg, + a()
forany 1 < 4, (LQZ + a(x)).

Letus fixA <4, (LQZ + a(x)). Then by definition of 1, (L,22 + a(x)) there exists

a positive function ¢ € C(£2,) such that
Lo, [¢] + (alx) + D¢ < 0.
Since 2; < f2,, an easy computation shows that
Lo, [¢] + (alx) + 1) < Ly, [¢p] + (a(x) + 1)¢ < 0.

Therefore, by definition of 4, (Lﬂl + a(x)) we have 1 < 4, (Lgl + a(x)). Hence,
Ay (LQZ + a(x)) < 4 (Lgl + a(x)).
To show (ii), we argue as above. By definition of A,(£, + a;(x)) for any 1 <
Ay (Lﬂ + a; (x))there exists a positive ¢ € C(£) such that

Lo[p]+(a;(x) + D <0
and we have

Lo (@] + (az(x) + D < Ly [p] + (a;(x) + D < 0.
Therefore 1 < 4,(L, + a,(x)). Hence (ii) holds true.
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Let us now prove (iii). Again we fix 1 < 4, (Lgl + a(x)) For this A, there exists

¢ € C(2),¢ > 0such that
Lo [p]+ (alx)+ A)p < 0. (69)
An easy computation shows that we rewrite the above equation as follows
Lo [p] + (a(x) + D = Lo [¢p] + (b(x) + D + (alx) — b(x))p
= Lo [¢] + () + 2 = |la(x) — b(x)|le)P-
Using that (A, ¢) satisfies (69), it follows that
Lo [p]+ (b)) + 4 — |la(x) — b(x)|lo ) < 0.

Therefore, 1 — |la(x) — b(X) |l < 1,(L, + b(x)) and we have

A< Ap(Lg + b(x)) + |la(x) = b(%)]| -
The above computation being valid for any 1 < 4, (Lgl + a(x)) we end up with

Ap(Lg + a(x) — Ap(Ly + b(x) < |la(x) = b(xX)|[c-
Note that the role of a(x) and b(x) can be interchanged in the above argumentation. So, we
also have
Ap(LQ + b(x)) — A, (Ly + alx) < [la(x) — b(x)]| .
Hence
|4,(Lo + a(x)) — 2,(Ly + b)Y < lla(x) = b le,
which proves (iii).

The proof of (iv) being similar to the proof of (ii), it will be omitted.

Before recalling the sub/super-solution method, let us introduce some definitions and
notations. We call a bounded continuous function u (resp. u) a super-solution (resp. a sub-
solution) if u (resp. u) satisfies the following inequalities:

My [u] < (=) f(x,u)in Q. (70)
Let us now state the theorem.
Theorem (3.2.26)[118]: Assume f(x,.) is a Lipschitz function uniformly in x and let u and
u be respectively a supersolution and a sub-solution of (68) continuous up to the boundary.

Assume further that u < u. Then there exists a solution u € C(2) solution of (68)
satisfyingu < u < u.
Proof. Let us first choose k > |1,(Mj,)| big enough such that the function—ks + f (x,s)
Is a decreasing function of s uniformly in x. We can increase further k if necessary to ensure
that k € p(M,), where p(M,,) denotes the resolvent of the operator M, .

Note that by this choice of k, by Theorem (3.2.5) the operator M, — k satisfies a
comparison principle.

Now, let u, be the solution of the following linear problem

M, [ug] — kuy = —ku + f (x,u) in Q. (71)
u, always exists, since by construction the continuous operator M, — k is invertible. We
claimthat u < u; < u. Indeed, since u and u are respectively a sub- and super-solution of
(68), we have
M, [u1 = g] = k(u1 — E)Oin 0,

My luy —ul— k(uy — w) = —k(u — )+ f(x,u)— f(x,uw) = 0in
So, the inequality u < u; < u follows from the comparison principle satisfied by the
operator M, — k. Now let u, be the solution of (71) with u; instead of u. From the
monotonicity of —ks + f (x,s) and using the comparison principle, we have u < u; <

142



u, < u. By induction, we can construct an increasing sequence of function
(U ey Satisfyingu < u,, < uwand

Since the sequence is increasing and bounded, u™(x):=sup wu,(x)is well defined.
neN

Moreover, passing to the limit in Eq. (72) using Lebesgue’s theorem it follows that u™ is a
solution of (68).
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Chapter 4
Improvement of Critical Eigenfunctions Restriction Estimates

We extend Bérard logarithmic improvement for the remainder term of the eigenvalue
1
counting function which directly leads to a (log 1)z improvement for Hérmander’s estimate

22D We show detailed

oscillatory integral estimates with fold singularities by Phong and Stein and use the Poincaré
half-space model to establish bounds for various derivatives of the distance function

restricted to geodesic segments on the universal cover H3.

on the L' norms of eigenfunctions. To the LP estimates forall p >

Section (4.1): Nonpositive Curvature

We say the norm of a Banach space (X,|| - ||) is C* smooth if its kth Fréchet
derivative exists and is continuous at every point of X {0}. The norm is C* smooth if this
holds for all k € N. We concerned with the problem of establishing sufficient conditions
for when a Banach space has a C* smooth renorming, for k € N U {oo}.
Definition (4.1.1)[82]: A subset B © By- is a called a boundary if for each xin the unit
sphere Sy , there exists f € B suchthat f(x) = 1.
Example (4.1.2)[82]: The following will be boundaries for any Banach space X.

(i) The dual unit sphere Sy- . This is a consequence of the HahnBanach Theorem.

(ii) The set of extreme points of the dual unit ball, Ext(Bx- ). This follows from the

proof of the Krein-Milman Theorem ([155]).

Given € > 0 and norms || - || and ||| - ||| on a Banach space X, say ||| - ||| -
approximates || - || if, forall x € X,

1 = alxl] < [Jlxl]| = @ + o)l|
The notion of a boundary plays an important role in this area of study. Frequently, the
existence of a boundary with certain properties gives rise to the desired renormings, as seen
in the following result of H"ajek, which is part of a more general theorem.

H ajek and Haydon provided another sufficient condition for when this property holds,
namely when X = C(K) and K is a compact Hausdorff c-discrete space. We call a
topological space K o-discrete if K = U;-,D,, , where each D,, is relatively discrete:
given x € D, there exists Ux open in K suchthat U, n D, = {x}.

In [36], it is shown that if X has a countable boundary then X has an equivalent
analytic norm which e-approximates the original norm. Moreover, if C(K) admits an
analytic renorming, then K is countable [11]. For a norm || - || to be analytic we mean it is
a real valued analytic function on X \ {0}. Analytic functions on Banach spaces are defined
and explored [17].

The Orlicz functions M for which the corresponding Orlicz sequence spaces [, and
Orlicz function spaces [,(0,1),1,,(0,0) have an equivalent C* smooth norm were
characterised in [28]. Futhermore, the Orlicz sequence spaces h,, with equivalent analytic
norm were characterised in [15].

The main result, Theorem (4.1.7), generalises these results as corollaries. It also takes into
account smoothness of injective tensor products, in a manner similar to that of [16]. As in
the proof of [158], the proof of Theorem (4.1.7) makes use of two lemmas ([158])
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concerning the so-called generalised Orlicz norm, denoted by || -[|4. The first lemma
provides a condition where || - || is equivalentto || - [|.

Definition (4.1.3)[82]: Let B be a set. Suppose for every element t € B there exists a
convex function ¢, on [0, ) with ¢,(0) = 0 and lim,_, ¢;(a) = oo (such functions
are called Orlicz functions). Define || - || on I, (B)by

||f||¢ =inf{p > 0: Zd)t (V(Tt)l> < 1}.

teB

and define £4(B) as the set of f € £, (B) satisfying ||f| |(p < oo,
Lemma (4.1.4)[82]: [158]. Let || - || be as in Definition (4.1.3). Suppose there exist § >
a > 0 with the property ¢.(a) = 0 and ¢.(8) = 1 for allt € B. Then £,(B)\=
- (B) and

all-lg< Il - llo < BIl-llg:

We use || - || to define another norm on a more general space X, which we also denote
by || - |l 4. The second lemma gives a sufficient condition for when || - || ,on X'is C* smooth.
It uses the || - ||notion of local dependence on finitely many coordinates and generalises

158].

[Lerr]lma (4.1.5)[82]: Let |[ - ||, be as in Lemma (4.1.4) and let IT: X — £4(B) be an
embedding (non-linear in general), where the map x — [1(x)(t) is a seminorm which is
C* smooth on the set where it is non-zero, for all ¢ € B. Assume the assignment ||x||¢ =

[117()1|, defines an equivalent norm on X. Suppose for each x € X, with ||x|[, = 1,

there exists an open U € X containing x, and finite F < B, such that ¢.(|Y(t)|) = 0
when Y € U and t € B\F. Finally, assume that each ¢, is C* smooth. Then || - || is ck
smooth on X.

As Lemma (4.1.5) appears in [158], X is taken to be a closed subspace of #.,(B) and I1
is the identity. The proof uses the fact that
each coordinate map x — |x(t)| is C* smooth on the set where it is non-zero and uses the
implicit function theorem to show that || - || is also C* smooth. In our case, each coordinate

map is C* smooth on the set where it is non-zero and the same argument guarantees that
|| - [4is C k smooth. The first part of the proof of Theorem (4.1.7) is concerned with setting
up the necessary framework to apply these lemmas. The remainder uses a series of claims
to prove they do in fact hold. Theorems (4.1.14) and (4.1.15) are obtained as corollaries of
Theorem (4.1.7), along with some other results and applications. Before proceeding to the
statement of Theorem (4.1.7), a key notion of w* -locally relatively compact sets (w* -LRC
for short) needs to be introduced. This property is first studied in [156], in the context of
polyhedral norms.
Definition (4.1.6)[82]: ([156]). Let X be a Banach space. Wecall E € X* w*-LRC if given
y € E, there exists a w* -open set U suchthaty € Uand E n U || - || is norm compact.
Example 1.9 ([156]). The following sets are w*-LRC.

(i) Any norm compact or w*-relatively discrete subset of a dual space.

(ii) Given X with an unconditional basis (e;);¢; and f € X* , define

supp(f) = {i € I: f(e))6 = 0}.
Let E < X" have the property that if f, g € E, then |supp(f)| = |supp(g)| < oo.
E is w* -LRC. Indeed, take f € E and define the w*-openset U = {g € X" : 0 <
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lg(e))| < |f(ep))| + 1: i € supp(f)}. Clearly, if g € U N E, then supp(g) =
supp(f). Thus U N E is a norm bounded subset of a finite dimensional space.

The main result is concerned with renorming injective tensor products. Given Banach
spaces X and , the injective tensor product X @, Y isthe completion of the algebraic tensor
product X @ Y with respect to the norm

1D % ®Y; Il = sup{z fxD8(YD : f € By g € By
i=1 i=1

Also note the following facts. If Iy is the identity operator on , then given f € X™* we
define f¥ = f @ L, on X ® Y by fY (X2, 2, ®Y,) =X, f(x)Y; . We have
IlFY 1| = |If|] and extend to the completion. Similarly define g% forg € Y*. A useful fact
isf ®g = gof’ = fogX. Given two boundaries N € X* and € Y*, the set {f &
g: f € N,g € M}isaboundary for X @, Y. To see this, takeu € X ®, Y. There
exists f € BX* and g € BY* such that ||u|]] = (f ® g)(w) = ||lg*¥w)]||. Then there
exists f € N such that f(g¥X(w)) = ||u|| = || fY (w)||. Finally, there exists § € M
suchthat G(f Y (W) = (f ® §w) = |[u]l.

Given a Banach space Y with a C* smooth renorming, Haydon gave a sufficient condition

on X for X ®, Y to have a C* smooth renorming ([16]). This condition involves a type of
operator that are now known as Talagrand operators. Another sufficient condition is given
in the main result below. It is worth noting that these conditions are incomparable. For
example, the space C[0, w,] satisfies Haydon’s condition but not that of Theorem (4.1.7).
On the other hand, if we take K to be the Ciesielski-Pol space as seen in [20], then C(K)
satisfies the hypothesis of Theorem (4.1.7) but not Haydon’s condition.
Theorem (4.1.7)[82]: Let X and Y be Banach spaces and let (E;,) be a sequence of w* -LRC
subsets of X* ,suchthat E = U;-¢E, is o —w"-compactand contains a boundary of X.
Suppose further that Y has a C* smooth norm || - [|Y for some k € N U {e}. Then
X ®. Y admits a C*¥ smooth renorming that € — a pproximates the canonical injective
tensor norm.

The proof of this theorem is based to some degree on that of [156]. Given its technical
nature, some of that proof is repeated here for clarity.

Proof. To begin, we can assume E is a boundary and EY" < E for all n € N. Indeed, if
neccessary, taking E = Up—okm , where Km is w* -compact, we can consider for all
n,m €N,

E, N K,, N By-.
By [156] there exist w* -open sets V;, such that if we set 4,, = E,M; N V,, then

— Il .
E, € A, € E, andA,isw* — LRC.

Each 4,, is both norm F; and norm Gg. So foreachn € N, 4,,\ Uy, A Will in particular

be norm Fo. Now we write
An\ U Ak = U Hn;ml
m=0

k<n
where each H,, ,,, is norm closed. By arrangement, we assume H,,,, € H,, ;41 forallm €

N and, for convenience, we set H, _; = @. Let = : N* —— N be a bijection and for all
i,j € N,define
Lnq,jy = Hij\H;j-1.
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Clearly E is the disjoint union of the L, and L. < E;’ C E, where n = m(p, q).
Given f € E, let

()= {neN: fel, Jandn(f) =mini(f).
Now fix e > 0. We definey : E—— (1,1 + €) by

1 1 .
Y(f) = 1+§s-2—"(f> 1+7 z 271
i€1(r)

Sete, = %e - 47" Fixn. As Y(L,) € (1,1 + &), there is a finite partition of L,, into

sets J, such that diam(¥(J)) < &,.

LetP = {I < J:Iis g,-separated}. This set is non-empty because any singleton is in
P.ForachainT € P wehave Uyer N € P, so we can apply Zorn’s Lemma to get I’ C
J, a maximal &,-separated subset of /. By maximality, I' is also an ¢,-net. And by the ¢,,-
separation, for a totally bounded set M < J, the intersection M n I' is finite. By
considering the finite union of these I, there exists I, < L, with the property that given
f € L, thereexists h € I, so that

() — p® < gpand [If — hl| < &,
Moreover, if M < L,, is totally bounded, M N I, is finite. Now define B = U ~o I, -
We are now ready to define [ - | on £, (B).
For each f € B we pick a C* Orlicz function ¢, so that

, 1
¢f (@) = 0if a Sm,
¢f (@) > lif a =——,where 0(f) = () — &

CIGN
We define || - [[4 with respect to these functions, as per Definition (4.1.3). By taking
(1 + &)~" and 1 as the constants in the hypothesis of Lemma (4.1.4) we have [, (B) =
loB)and | - llo < Il - llp < @ + Ol - llg. We embed X ®, Y into £,,(B)

by setting T(w)(f) = ||fY (W)||Y,f € B. The coordinate map u - |[|fY (w)]|| is a
seminorm which is C* smooth on the set where it is non-zero for each f € B. Since
11| = [lull,itfollowsthat|| - || < || - ll, < (1 + &I - [|onX.

Suppose for the sake of contradiction that the remaining hypothesis of Lemma (4.1.5)
does not hold. Then we can find u € X ®, ¥V with || u |l = 1,(u,) € X Q. Y
withu, — u and distinct (f,) € B such that ¢p, (|Ifi¥ (w,)l|) > 0, for all n. Then
VDI )l > 1 for all n. Take a subsequence of (f;,), again called (f;,), such that
Y(f,) — afor some @ € R. Now take (g,) S Sy- such that [|£,Y (w)||l = gn(fiY (w,)).
Let (f,g) € Byx+ X By« be an accumulation point of (£, g,,) in the product of the w™ -
topologies. Then f ® g isaw™ -accumulation pointof (f,, ® gn)and a(f & g)(u) =
1.

The remainder of the proof is concerned with obtaining the contradiction a(f &
g < 1
Case 1: @ = 1. With @ = 1, it is evident that a(f ® g)(w) = (f ® @)W < [lull-
The following claim ensures ||u|| < 1.

Claim (4.1.8)[82]: If v = 0, then |[v|| < || v |l4.
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Let||v]] = 1andpickp € E,q € Sy-suchthatl = (p ® q)(v). As noted above, this
Is possible because E and Sy- are boundaries of X and Y, respectively. By (1) above, let
r € Bsuchthat ||[p— || < &, for an appropriate n. Observe that 8(r)((r ® q)(v)) <
| v Il holds. Indeed,

11" )| ) ( 7Y )| > 1
lezB(pl(B(r)(r Saw) = (Mg (rY (v)) = Or (90«)) > L

Now to prove the claim,

1= ® )W)
=r@pw+ (-1 q)W
=00 @ QW+ (1 - M) ®@ YW+ (p — N ® q)(W)
Sllvieg+ (@ -6 Q@ W+ (-1 q)W).
Sowearedoneif (6(r) — Dr @ q)(v) + (r — p) ® q)(v) > 0. Indeed,
or)— 1 =yYr)—¢, — 1

>1 —n
27 € 27M(r) — ¢,
1
ZE e - 27" — En-
Also, r @ @)(@) = r(¢*@) = 1 — |Ip = 7| [lgW)I| = - Thus,
1 1
O - D Q YW +(r — P ® q)() 2o € 2" —oe &
1 -n
:Z 2 _E &n
_2 2‘"—i - 47" >0
—3° 64 °

And the claim is proven.
Case 2: a> 1.
We’ll first prove f € E.

Fix N Iarge enough so that 1 +¢-27V <= : (1 + «). Because ¥(f,,) » a we have
IP(fm) > = (1 + a)for all m large enough. Hence n(fy) < N.Therefore, f, € Ups o4 -

L, for aIIsuchm By w*closure, f € U<y, .ZZ C E.

Now the aim is to prove Y (f) > «a.
We can assume f,, # f for all n € N, because the fn are distinct. Now fix the unique m
suchthat f € L,, and let

=I(f)U{k eN: k = m + 2}.

Clearly m € I(f). Let (p,q) € N* such that m = m(p,q). We have L,, S A,. Since
Ay, is w* -LRC, there exists a w* -open set U 3 f, such that A, N U is relatively norm
compact.
From before, I7;, ) N U is finite forall k € N, since I, k) S Ap. So the set

—w*
V =U Li V) U Fn'(p,k){f}

iEN\J k=0
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. —w
Is w* -open. Moreover, because f; Uienyy Li , we have f € V. We assume from now

onthat f,, € V.
Claim (4.1.9)[82]: m & I(f,).
Ifm € I(f,), then
-l — -l

f,el, nVel, nV, =L _nV = c H,,.
It follows that f,, € Hpx\Hpx—1 = Lypi) forsome k < q. Onthe other hand, f, € B,
SO fn € Lpppi) N B = Iz k) - HOwever, this cannot be the case, since f,, € V \{f}.
Claim (4.1.10)[82]: I(fn) < J.

Leti € I(fy). Ifi € J,thenf, € Ujenyy Lj N v , but this contradicts f,, € V.

Claim (4.1.11)[82]: Y(f) — Y(f) = — £ - 4™ = 6&y,
Firstnote n(f,,) = n(f), using Claim (4.1.10)and n(f) = min I(f) = min].There
are two cases to consider. If n(f,) > n(f), then

Y —P(f) = 142 e- 27D — (142 £.2770M - .27 >-£.27m And
if n(f,) = n(f), then

1 . .
l/)(f)_ lp(fn) Zg & - Z_n(f) 2 AL z 2l

i€I(f) i€l(fn)
—Z ¢ .- 2—i _ =i
iel(H\(f) LEI(f\I(f)
e Z 2-i
8 ie/\I(f)

1 1
> c . Z—n(f) 2-m=-1 5 — o . 4-m
=3 & =16 &

Claim (4.1.12)[82): Forh € B,||h ® gl

If|[(h @ g)(W)] >% then

> a1 @) = gal|I” @)

leB
> pn((h® () > 1 == |lvl|, > 1.
S0, Ik ® gll, = sup{lth @ W:|Iwll, < 1} <555

o(h) "
We can now prove a(f & g)(x) < 1.By (1), take h € B such that ||f — h|| <
enand |Y(f) — Y(h)| £ &,. We then have

allf ® gll, < a(llh ® gll, + [1F - W& gl|,)
< a(lih ® gll, + |IF - W ® gl|)

= ( 9(1h) * ‘S”)'
+ &) < 1.Well,

¢ = 9(h)

So we are done if a(e( >
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a
1—%—(X€n>0

e=20Mh)— a — g,60(h)a > 0

&= Yh)— ¢, — a — g,0(h)a > 0.
By claim 2¢, we have Y (h) — &, — a = 4¢, and since 6(h),a < 2, it follows that
g,0(ha < 4e,.
Andso,a||f %) g||¢ <1l==alf  g)(uw) < 1.

Corollary (4.1.13)[82]: Suppose X has a ¢ — w* -LRC and o-w™ -compact boundary. Then
X has a C* renorming.

Proof. Apply Theorem (4.1.7)to X @, R = X,

We can now prove Theorems (4.1.14) and (4.1.15) as corollaries of Corollary (4.1.13).
Theorem (4.1.14)[82]: ([157]). If (X, || - ||) admits a boundary contained ina || - || — o-
compact subset of By« , then X admits an equivalent C* smooth norm that € — approximates
-1l

Proof. Any norm compact subset of X* is trivially w* - LRC. The result follows from
Corollary (4.1.13).

Theorem (4.1.15)[82]: ([158]). Let K be a o-discrete compact space. Then, given & >
0, C(K) admits an equivalent C* smooth norm that & —approximates || - || .

Proof. Let K = Uj-, D, , where each D, is relatively discrete. Let &, be the usual
evaluation functionals, 6,(f) = f(t). Then E, = {£6,: t € D,} is w* -relatively
discrete and so w* -LRC. Moreover, E = U;~, E, 1S aw™ -compact boundary of C(K)
because given any f € C(K), there exists ¢t € K such that ||f|| = |f(t)], by

compactness.

The corollaries below are new results. Before presenting them, a definition and a theorem
appearing in [156] are needed.

Definition (4.1.16)[82]: ([156]). Let X be a Banach space. We sayaset F € X™isarelative
boundary if, whenever x € X satisfies sup{f(x): f € F} = 1, there exists f € F
such that f(x) = 1.

Example (4.1.17)[82]: Any boundary and any w* -compact set will be a relative boundary.
Theorem (4.1.18)[82]: ([156]). Let X be a Banach space and suppose we have sets S,, <
Sy and an increasing sequence H,, S By- of relative boundaries, suchthat Sy = Uj=o Sn
and the numbers

b, = inf{sup{h(x):h € H,}:x € S,;}

are strictly positive and converge to 1. Then for a suitable sequence (a,)n-, 0f numbers
theset F = Up~, a,(H,\H, _1) is a boundary of an equivalent norm.

Given a Banach space with an unconditional basis (e;);e; and x =
Yicrxie; ,lete/ (x) = x;. For o € I, let Po denote the projection given by P;(x) =
Yies e (x)e; .

Corollary (4.1.19)[82]: LetX have a monotone unconditional basis (e;);e; , with
associated projections P;,¢ < I, and suppose we can write Sy = Un~;S, insuchaway
that the numbers

cn = inf{sup{||B,(x)||: 0 € I,|0| = n}:x € S,}

are strictly positive and converge to 1. Then X admits an equivalent C* smooth norm.
Proof. Let H, = {h € By~ : |supp(h)| < n}. Each H,, is a relative boundary because it

Is w* -compact. Note thatgivenx € S, ando <€ I,
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with |o| = n,

1P ()| = sup{f (P;(x)): f € By}

= sup{F; f(x): f € By }.
Of course, |supp(P; f)| < n, for all f € Byx-. And by monotonicity, ||P; |f| =
1.So0 Py (f) € H,. Therefore,
0 < ¢, = inf{sup{||P,(®)||: 0 S Llo| = n}:x € S,}

= inf{sup{P; f(x): f € By-,0 € I,|o| = n}:x € §,,}

= inf{sup{h(x): h € H,}:x € S,,} = b,.
Thus, (b,,) is a strictly positive sequence converging to 1. The set H,\H,,_, is w* -LRC.

By Theorem (4.1.18), there exists a sequence (a,)m=o, Where the set F =

Umeo an(Hy,\H,_1) isa o —w"*-LRC and g-w* -compact boundary for an equivalent
norm ||| - |||. By Corollary (4.1.13), X will admit an equivalent C* —smooth that e-
approximates ||| - ||]-
Corollary (4.1.20)[82]: Let X be a Banach space with a monotone unconditional basis
(e;);e; and suppose for each x € Sy thereexists ¢ c I,|o| < oo, sothat ||P,(x)|| = 1.
Then X admits an equivalent C* — smooth norm that g-approximates the original norm.
Proof. Let H,, = {h € By-: |supp(h)| < n}. As mentioned in the proof of Corollary
(4.1.19), each H,, is w* -compact and the finite union of w* -LRC sets. Now take x € Sy
and o such that ||P;(x)|| = 1. Thenthereis f € By- such that

1 = |[IBEW@I| = f(B®) = B f(®).
Because (e;);e; is monotone, ||P; || = 1 and so Py f € H,, . Therefore, the set H =
Un=o H, is a boundary satisfying the hypothesis of Corollary (4.1.13).

Using Corollary (4.1.19) we can obtain new examples of spaces with equivalent C*

smooth renormings.
Example (4.1.21)[82]: LetN = U,~, 4, , where each A, is finite, and let p = (p,,) be
an unbounded increasing sequence of real numbers with p,, = 1. For each sequence of real
numbers x = (x,,) define

o

®(x) = sup z z |lx(k)|P"* : B, < A, and Bn are pairwise disjoint.

n=0 Kke€B,
Proof. We define £, ,, as the space of sequences x where @(x/1) < oo for some A > 0,
with norm |[|x|| = inf{4 > 0: ®(x/1) < 1}. Define the subspace h,,, as the norm

closure of the linear space generated by the basis e, (k) = &, . [156] provides an
appropriate sequence of subsets (S,,) of Sy so that Corollary (4.1.19) holds.
Example (4.1.22)[82]: Let M be an Orlicz function with
M(K (D))
—_— L = +OO’
M)
for some constant K > 0. Let hM (I") be the space of all real functions x defined on I
with ¥ e M(x, /p) < oo forall p > 0, with the norm

||x||:inf p>0: Z M(ﬂ) <1

YEr P
Proof. The canonical unit vector basis (eV)yer of functions e, (B) = 6,5 s

M(t) > O forallt > 0,and ltirr(} (

unconditionally monotone. [156] provides suitable subsets of Sy to ensure the hypothesis of
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Corollary (4.1.19) holds. The final example concerns the predual of a Lorentz sequence
space d(w, 1, A), for an arbitrary set A.

Let w = (w,) € co\¥; with each w, strictly positive and w, = 1. We define
d(w, 1, A) as the space of x: A —— R for which

lx|| = supZWj |x(a; )| : (a;) S Alisasequence of distinct points ) < o .
j=0

The canonical predual d,(w, 1, 4) of d(w, 1, A) is given by the space of y: A —— R for
which Y = (Y, ) € co, where

= f20lY (@)l - .
Y, = sup 1 : Qg,aq,..., 0, -1 are distinct points of A ¢,
i=0 Wi
with norm ||Y|]| = ||@|| . We can see that (e,)4e4 IS @ monotone unconditional basis for
[0 0]

both d(w, 1, A) and d.(w, 1, A). The separable version of d,(w, 1, A) was first introduced
in [29].

Example (4.1.23)[82]: X = d.(w,1,A) has a C® smooth equivalent renorming that &-
approximates the original norm.

— —k
Proof. Let y € Sy. Since Y € c,, there exists k € N such that Y = 1. It can also be

shown Y € cy(A) and thus the supremum in the definition of @k is attained. Following
this, there exists aq, a4, ...,a,_; € A such that
| = gt~ ZElY@l
Zowi

Setting ¢ = {ay,a4,...,ax_1}, We have |[|P;(Y)|| = 1. By Corollary (4.1.20), X has a
C* smooth equivalent renorming that g-approximates the original norm.
Section (4.2): Riemannian Manifolds with Constant Negative Curvature

For (M, g) be a compact n-dimensional Riemannian manifold and let A, be the
associated Laplace—Beltrami operator. Let e, denote the L2-normalized eigenfunction

—Age,l = /'lze,-l,

sothat A = 0 is the eigenvalue of the operator —A,. A classical result on the LP-estimates
of the eigenfunctions is due to Sogge [15]:

leallean < C2°(p), (1)
where 2 < p < ooand
n—-1 1 1 5 -
p)= (1 1) 1
- —— | —= 0
\"z 7p) 2 PSP =™
if we set p, = 2:_+12. These estimates (1) are saturated on the round sphere Sn by zonal

functions for p > p. and for 2 < p < p. by the highest weight spherical harmonics.
However, it is expected that (1) can be improved for generic Riemannian manifolds. It was
known that one can get log improvements for |[e;|l p(m),pc < p < oo, when M has
nonpositive sectional curvature. Indeed, Bérard’s results [20] on improved remainder term
bounds for the pointwise Weyl law imply that

n—1

1
leallioquy < €A 2 (log 1) 2leall 2 my.
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1
Recently, Hassell and Tacy [82] obtained a similar (log A) 2 gain forall p > p,.

Similar LP-estimates have been established for the restriction of eigenfunctions to
geodesic segments. Let IT denotes the space of all unit-length geodesics. The works [163],
[1], [156] (see also [26] for earlier results on hyperbolic surfaces) showed that

1

)
sup ( f lex|? ds) < CA°®P) el 2y, (2)
where
1
7 ,2 < p < 4,
- ——,4 < p =< oo
2 p
n—1 1
o(n,p) = > —E,ifp > 2andn > 3. (4)

It was known that these estimates are saturated by the highest weight spherical harmonics
whenn = 3onround sphere Sn, aswellasinthecaseof 2 < p < 4whenn = 2, while
in this case the zonal functions saturate the bounds for p > 4.
There are considerable works towards improving (2) for the 2-dimensional manifolds
1

with nonpositive curvature. Chen [19] proved a (log A) 2 gain for all p > 4. Sogge and
Zelditch [30] and Chen and Sogge [156] showed that one can improve (2) for2 < p < 4,

in the sense that
1

Sug (j ley|? ds>E = 0(/1%). (5)
Y€ y

Recently, using the Toponogov’s comparison theorem, Blair and Sogge [162] obtained log

improvements for p = 2:
1

2 1 1
sug (j les|? ds> < CA% (log 1) % |leall 2 an)- (6)
Y€ %

Inspired by the works [162], [156], [168], X; and [160] was able to deal with the other

endpointp = 4 and proved a (loglog A) & gain for surfaces with nonpositive curvature
1

and a (log A) "+ gain for hyperbolic surfaces
1

4 1 1
sup (f leal® ds> < €A+ (log V) 4 lleallzony.- (D)
YEII %

In the 3-dimensional case, under the assumption of nonpositive curvature, Chen [19] also

1
proved a (log A) z gain forall p > 2. With the assumption of constant negative curvature,

Chen and Sogge [156] showed that
1

sup (f ley|? ds>E = o(/l%). (8)
Y€ Y

Hezari and Riviere [165] and Hezari [164] used quantum ergodic methods to get logarithmic
Improvements at critical exponents in the cases above on negatively curved manifolds for a
density one subsequence.
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1
We prove a (log 1)~z gain for the L? geodesic restriction bounds on 3-dimensional
compact Riemannian manifolds with constant negative curvature. We mainly follow the
approaches developed in [162], [156], [160]. We derive an explicit formula for the wave

1

kernel on H3, which is one of the key steps to get the (log 1)z gain. We shall lift all the
calculations to the universal cover H?3 and then use the Poincaré half-space model to derive
the explicit formulas of the mixed derivatives of the distance function restricted to the unit
geodesic segments. Then we decompose the domain of the distance function and compute
the bounds of various mixed derivatives explicitly, since it was observed in [156] and [160]
that the desired kernel estimates follow from the oscillatory integral estimates and the
estimates on the mixed derivatives. Moreover, whether one can get similar logarithmic
improvements on 3-dimensional manifolds with nonpositive curvature is still an interesting
open problem. One of the technical difficulties is that these manifolds may not have
sufficiently many totally geodesic submanifolds (see [156]). We shall assume that the
injectivity radius of M is sufficiently large, and fix y to be a unit length geodesic segment
parameterized by arclength.

Theorem (4.2.1)[160]: Let (M, g) be a 3-dimensional compact Riemannian manifold of
constant negative curvature, let y < M be a fixed unit-length geodesic segment. Then for
A > 1, there is a constant C such that

1 1
lleallizgy < CA2 (log )2 |leall 2 9
Moreover, if IT denotes the set of unit-length geodesics, there exists a uniform constant C =

C(M, g) such that
1

2 1 1
sup (j leal? dS) < €22 (log 1) 2 [leall .2 qmy- (10)
YEII %

We start with some standard reductions. Since the uniform bound (10) follows from a
standard compactness argument in [156], we only need to prove (9). Let T > 1. Letp €

S(R) such that p(0) = 1 and suppp < [—1/2,1/2], then it is clear that the operator

p(T(A — ,/—Ag)) reproduces eigenfunctions, namely p(T(/l — 1/—Ag)) e, = e
Let y = |p|?. After a standard TT* argument, we only need to estimate the norm

)((T (/'1 _ E))

Choose a bump function § € C,° (R) satisfying
p(t) = 1for|t| < 3/2,andB(z)=0,|t| = 2.
By the Fourier inversion formula, we may represent the kernel of the operator

X (T(/l — 1/—Ag)) as an operator valued integral

X(T (/1 — /—Ag)> (x, y)
1 - :
= — f B)R(/Te™ (75750 ) (x,y)dr
1 : -
+ﬁ (1 - ,B(T ))X(T/T)euu (e_LT\/__Ag) (x'y)dT
= Ko(x,y) + Ki(x, ).
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Then one may use a parametrix to estimate the norm of the integral operator associated with
the kernel Ko (v (£), v (s)) (see [156])

||Ko||L2[o,1]—>L2[o,1] < CAT™M. (12)
Since the kernel of y(T(A + /—4,)) is 0(A™") with constants independent of T, by
Euler’s formula we are left to consider the integral operator S;:

S'lh(t):niT j_o:o fol (1

— B(t )))E(T/T)ei’“ (cos T /—Ag) (y(t),y(s))h(s)dsdr. (13)

As in [162], [156], [160], we use the Hadamard parametrix and the Cartan—Hadamard
theorem to lift the calculations up to the universal cover (R3, §) of (M, g). Let I denote the
group of deck transformations preserving the associated covering map x: R3 - M
coming from the exponential map from y(0) associated with the metric g on M. The metric
g is its pullback via k. Choose also a Dirichlet fundamental domain, D =~ M, for M centered
at the lift 7(0) of y(0). Let 7(¢), t € R, satisfy k(7(t)) = y(t), where y is the unit speed
geodesic containing the geodesic segment {y(t):t € [0, 1]}. Then ¥(t) is also a geodesic
parameterized by arclength. We measure the distances in (R3, §) using its Riemannian
distance function dg( -,-). Moreover, we recall that if X denotes the lift of x € M to D,

then (
(costﬁ) (x,y) = z (cost —ng) (f,a(y)).

a€el’
Hence fort € [0,

Sh(t) = TZ jj (1

ael’

— ,B(T)))Z(T/T)ei’“ (cos T /—Ag) ()7(1:), a(f(s))) h(s) dsdr.
As in [162] and [160], we denote the R-tube about the infinite geodesic y by
Te(P = {(x,y,2) € R®: dj((x,y,2),7) <R} (14)
and
Ir,[# = {a € T: a(D)n Tr([7) = 0}.
From now on we fix R = InjM. We will see that T (7) plays a key role in the proof of
Lemma (4.2.5). Then we decompose the sum
Sah(t) = SEUPe R(t) + S5 h(t) = 2 stube p(¢)
a€lr, (¥)
+ Z SCh(E),t € [0,1].
aélr,(¥)
Then by the finite propagation speed property and y(t) = 0if |t | = 1, we have
dg (7(0),a(7(s))) < T,st € [0,1]
As observed in [162],
#{a € It (7) : ds(0,a(0)) € [2k,2k +1]} < C2F (15)
Thus the number of nonzero summands in S*2¢ h(t) is O(T) and in S25¢ h(t) is 0(e‘T).
Givena € I setwiths,t € [0,1]
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Ka(t,s) = niT J_TT (1 = B(@))RGT)e (cos T\/TAQ) ()7(17),“(]7(5))) dt.

When a = I dentity, one can use the Hadamard parametrix to prove the same bound as
(12) (see e.g. [19], p. 9)

IK1all2[01]52210] < CAT ™M (16)
If @ # Identity, we set ¢(t,s) = dg(7(t),a(7(s))),s,t € [0,1]. Then by finite

propagation speed and @ # Identity, we have
2 < ¢(t,s) < T,ifs,t € [0,1]. (17)
As in [156], one may use the Hadamard parametrix and stationary phase to show that

|K,(t,8)] < CAT Yr™t + €T, where r = d; (7(t), a(7(s)) ). However, we may get a
g

much better estimate for K,. To see this, we need to derive the explicit formula of the wave
kernel on hyperbolic space. We may assume that (M, g) has constant negative curvature —1,
which implies that the covering manifold (R3, §) is the hyperbolic space H?3. If we denote
the shifted Laplacian operator by

(n — 1)?
L = 45 +T = 45 + 1 (forn = 3),

which has the property Spec(—L) = [0, ), then there are exact formulas for various
functions of L (see e.g. [169]). Indeed,

1 1 0 .
h(V=L)0y () = - 2 sinhr or )
where £ is the Fourier transform defined by
- 1 .
A = — j h(k)e=imdk.
Nor
If h(k) = Sm(tk) then A(r) = E 1gr<)epy- Hence, for t > 0,
sin tvV— x )_6(1: - 7) "
\/—L Oy 4 sinhr’ (18)
where x,y € H3 andr = dg(x,y). Differentiating it yields
6'(t — 1)
cost Vv—L 6y(X) = m . (19)

Recall the following relation between L and 4; (see e.g. [166])

cost ’—A~ = costV—L — tf jl(x/tz__j) cos sV—Lds, (20)
s

where J, (v) is the Bessel function
(—1)k N 2k+1
W= maamG)
We plug (19) into the relation (20) to see that fort > 0,
o' (t — t2 — 0,6(s —
cost [~a7 5,00 = 2= _ f L(VE — 5%) 0:6(s — 1)

4m sinhr Vt2 — s2 4msinhr
Thus, integrating by parts and noting that cost ,/—A4; is even in t, we get the following

explicit formula for the wave kernel “cost ,/—45(x, y)” on H?
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cost /—Ag 5, (x)
_ : , r|t|G'(Vt? — r?)
~ 4msinhr [6 (Itl = ) = 1(Olels(fel = 7) - Viz = 72 Le<ien |, (21)

wheret € R\ {0}, and G(v) = J;(v)/v is an entire function of v,, satisfying

3
G(v) ~ Cv~3/2 cos (v ——) +-,asv o oo, (22)

4
Lemma (4.2.2)[160]: If « +# Identity, we have
|K,(t,s)| < CAT te™"/?,fort,s € [0,1],
where r = d; (V(t), a(?(s))) > 1 and C is a constant independent of T and .
Using this lemma and (15), we get
k
K,(t,s) < CAT™: z 2ke —22 < CAT™L.  (23)
a€lr, ()\{1d} 1<2k<T

Consequently, by Young’s inequality and the estimate on Kj4 (16) we have
|| S5upe < CAT™. (24)

||L2[0,1]—>L2[0,1]
Proof. Since the formula of the wave kernel (21) consists of 3 terms, we should estimate
their contributions separately. Integrating by parts yields

' 0 iAT < d o it
|G- pe)eames ot - ar| < 2.l (= s

< C), (25)

since B, ¥ € S(R). Similarly,

= > (- p@)rE/mes
=47
< Cr. (26)
Noting that J; (v), J; (v) are uniformly bounded for v € R and G (v) is an entire function of
v?2, we see that G (v) /v is also uniformly bounded for v € R. Moreover, by (22), there is
some N > 1 such that

T
j (1 = B@)2G/T)e™ el | - Pdr
-T

|G'(v)/v| < Cv™5/2,forv > N.

This gives
T o rlt|G' (VT2 = r?)
_ - ilt
J_ ) (1 - B@)x(x/Te r =z lrsyde
G’(\/’l’z — rz)
< Crf |7| dt
|t|zr 72 — 1r?
N 00
< Cr (f lp + rldp + f lp + rllpl‘s/zdp>
0 N
< cr(C + Cr), (27)
where p = |t | — r. Hence
CA + Cr + Cr? I
|K,(t,s)| < < CAT te™ /2,

T sinh r
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We estimate the kernels K, (t,s) with a & It (7). From now on, we assume that a &
It (7). We need a slight variation of the oscillatory integral theorem in [160]. Indeed, it is

a detailed version of the estimates by Phong and Stein [167] on the oscillatory integrals with
fold singularities.

Proposition (4.2.3)[160]: Let a € C§° (R?), let ¢ € C®(R?) be real valued and 2 > 0,
set

NAO = [ e aef()ds,  f € G )
If ps; = 0onsupp a, then_

1
ITifllzary < Cagd 2 If l2mys
where

Zosi,jsz ||6£a||30|lat] ¢;,t“°° . (28)
lnfld)stl

Assume supp a is contained in some compact set F € R2. Denote the ranges of tand s in F
by F;, € Rand F;, < R respectively. If for any s € Fs, there isa unique t, = t.(s) € F;
such that ¢ ¢ (t.,s) = 0,and if ¢ (t.,s) # 0on E, then

1

ITaf 2y < Caph * If 2wy

1
Cqp = Cdiam(supp a)f{lla”oo +

where .
Yosijez ||0tall [|07 dsell

——— —= . (29)
mf|¢st/(t - tc(S))| }
Dually, if forany t € F;,thereisaunique s, = s.(t) € F suchthat ¢ (t,s.) = 0, and
if pies(t,s;) = 0o0n F, then

1
ITaf 2y < Cap A 2lf lizqmys

1
Cqp = Cdiam(supp a)Z{Ila”oo +

where .
Yosij<z |05l |19/ psell

. (30)
inf |2 /(s — sc(s))|’ }

The L*-norm and the infimum are taken on supp a. The constant C > 0 is independent of
Aa,¢pand F.

Proof. Noting that the first part is due to non-stationary phase (see [160]) and the third part
simply follows from duality, we only need to prove the second part. As in [160], by a TT"
argument, it suffices to estimate the kernel of T; T,

K(s,s) = f eil(¢(t, s)—¢(t,s ))a(t, s)a(t, s)dt.

1
Cqp = Cdiam(supp aL)Z{IIaLIIoo +

Let

d(t,s) — p(t,s)

P , fors # s/, and ¢(t,s,s) = ¢(t,s),

o(t,s,s) =

a(t,s,s') = a(t,s)a(t,s).
Then the kernel has the form

K(s,s) = f e s=s)p(tss") g(¢ s s dt. (31)
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Using the mean value theorem, we have ¢.(t,s,s") = ¢ (t,s'), where sis a number
between s and s . By our assumptions, we see that there is a unique point t.(s”’) € F; such
that ¢ (t.(s"),s”) = 0, and ¢ (t.(s"),s"") = 0.Let 6 > 0. Selectn € Cy° (R)
satisfyingn(t) = 1,|t| < 1,andn(t) = 0,|t|] = 2. Then we decompose the oscillatory
integral into two parts. First,

U eAs=s"eany ((t — tc(s))/B) dt‘ < 40|all%.
Then integrating by parts yields if s # s’

U eAs=s"eap ((t — tc(s”))/B) dt‘

Ia 19 ﬁ(l - U((t - tc(S”))/H)) \‘
P /

I
dt

S(/ls—s')_zf — | ==
| | |t_tc(sll)|>9 ot (pt ot
_ . 2
- € (Sosije N0kl 107 ¢ll,,)
T @s —sD2-inf (|o(s — se()])*
| (1t — te(®I™* + 62|t — t,(s")|2)dt
[t—t.(s")|>6

, . 2
(Sostje lloiall 107 o2l
inf (jog/(s = se@))"
where C is a constant independent of 4, a,¢ and F. If we set8 = (A|ls — s'|)7z, then
, . 2
Xo<i j< dsa d; s
( 0<i,j<2 ” s ”oo” t ¢St”j:) (/1|S _ S'|)_%,ifS + s'.
inf (|ge/(s = sc()])

< CO3(As —s'])?

IK(s,sDI < € {llalls +

Hence,

1
|K(s,s)|ds < C(;?¢A_§ )
which completes the proof by Young’s inequality.

We will use C to denote various positive constants independent of T. Using the
Hadamard parametrix and stationary phase [156], we can write

K,(t,s) = W(V(t),a(?(s)))z ai(T,/l;cp(t,s))eim‘p(t's) + R,(t,s),

+
where |w(x,y)| < C, and for eachj = 0,1,2,..., there is a constant C; independent

of T,A = 1 so that

0] ar(T, 4, M| < ¢T ™, r =1 (32)
From the Hadamard parametrix with an estimate on the remainder term (see [27]), we see
that with a uniform constant C

IRy (t,s)] < e‘T.

Noting that diam(supp a4) <2 and we have good control on the size of a+ and its derivatives
by (32), it remains to estimate the size of ¢¢; and its derivatives. We may assume that (M, g)
Is @ compact 3-dimensional Riemannian manifold with constant curvature equal to —1. As
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in [160], we will compute the various mixed derivatives of the distance function explicitly
on its universal cover H3. We consider the Poincaré half-space model

H3® = {(x,y,z) € R®: z > 0},
with the metric ds? = z72(dx? + dy? + dz?). Recall that the distance function for the
Poincaré half-space model is given by

dist((xl, V1, 21), (X2, V2, Zz))
= arcosh (1 +

(2 — %)% + (2 — y1)* + (2, — z)?
2717, ’
where arcosh is the inverse hyperbolic cosine function

arcosh(x) = In (x + Vx? — 1),x > 1.

Moreover, the geodesics are the straight vertical rays normal to the z = 0-plane and the
half-circles normal to the z = 0-plane with origins on the z = 0-plane. Without loss of
generality, we may assume that 7 is the z-axis. Let 7(t) = (0,0,e%),t € R, be the infinite
geodesic parameterized by arclength. Our unit geodesic segment is given by y(t),t €
[0,1]. Then its image a(?(s)),s € [0,1], is a unit geodesic segment of a(7). As before,

we denote the distance function d; ()7(1:), a(V(s))) by ¢(t, s). Since we are assuming a

It (7), we have
2 <¢p(t,s)<T, ifs,t € [0,1]. (33)
If 7 and a(y) are contained in a common plane, it is reduced to the 2-dimensional case. We
recall the following lemma from [160], where 7(t) = (0,e") in the Poincare half-plane
model.
Lemma (4.2.4)[160]: Let a & I7 (7). Ifa(¥) N ¥ = @, we have
inf |p| = e T,

* Ta(3)
A y

Fig. (1)[160] Pioncarée half-space model.
Assume that a(¥) is a half-circle intersecting 7 at the point (0,e%0),t, ER. If t, &
[—1, 2], which means the intersection point (0, efe) is outside some neighborhood of the
geodesic segment {y(t) : t € [0, 1]}, then we also have
inf |ply| = e T,
Ift, € [—1,2], then
inf |5 /(t — to)| = e~

psellec + N Psiello + N Psitellon < €T,
where C > 0 is independent of T. The infimum and the norm are taken on the unit square

{(t,s) e R?: t,s € [0,1]}.

Moreover,
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We assume that a & It,(7), and ¥ and a () are not contained in a common plane.
Without loss of generality, weseta = 0,r > 0,andf € (0,%].Indeed, one can properly
choose a coordinate system to achieve this. Let y,(t) = (0,0,e?), and y,(s) =

1-e?s 1-e2s | 2res . - )
(a + rcosf, — rsing, 1+ezs)' It is not difficult to verify that both of them are

1+e2s e
parameterized by arclength. Assume that

F@®:t € [0,1]} = {r1i(®): t € [0, 1]} {a@(s)) : s € [0,1]} = {y2(s):s € I},
where I is some unit closed interval of R. Here y,(s),s € R, is a half circle centered at
(a, 0,0) with radius r. § is the angle between the y-axis and the normal vector of the plane
containing the half circle. Moreover, these two geodesics are contained in a common plane
when 8 = 0. See Fig. (1).

We are ready to compute @st explicitly and analyze its zero set. For simplification,
we denote

d; = a? + r2 — 2arcosfandd, = \/a, + 1, + 2arcosp.
Direct computation gives

o(t,s) = dg(yl(t),yz(s)) = arccosh (4re5+t) ,t € [0,1],s € I,
where A = e25%2t 4 2t 4 (225 + (2. Taking derivatives yields
, lere®*?[(acosp — r)(e***?' + d3) + (acosp + r)(e® + die*)]
st (A2 _ 16r2625+2t)3/2
The computation is technical. To see (34), we write

A
s+t h —_
e coshg e

.(34)

Taking derivatives on both sides, we obtain
(bt + @5 + ¢is)sinhg + (1 + ¢pipg)coshg = e*t /r.  (35)
Denote P = e5tt,Q = d?e5 ' ,R = et 5,and S = die 5"¢. Since
4rcosh¢p = P+ Q + R + S,
taking derivatives yields
4r¢isinhgg = P — Q + R — S,4r¢gsinh¢p = P + Q — R — S.
Then we multiply both sides of (35) by 4r?(sinh¢)? and use the hyperbolic trigonometric
identity (sinh¢)? = (cosh¢)? — 1 to obtain
4r%(sinh¢)3¢L, = (acosp — r)(P + S)+ (acosf + r)(Q + R).

This gives our desired expression (34).

We denote the zero set of ¢¢; by Z. Clearly, if r < acospf, then Z = @. Assume that

r > acosp. In the interesting special case f = %

Z ={(ts)ER?: t = tyors = sp},
where e?to = g% + r?and e?% = 1. See Fig. (2). In this case, we can easily see that ¢ 5,
and ¢, vanish at the point (to, s¢), as observed in [156]. In general, if 0 < f < %
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o .
" major axis
p

g
7 -
L7 (to, s0)

A

Fig. (2)[160]: Zero setof ¢, B =7

we have
Z = {(t,;s) € R*: (e* — Xy)(e* — Yp) = B}, (36)
where
_ 1 + acosf , _ 4a’rcosfsin’f
Yo "~ r —acosB’"° di¥o, ~ (r — acospB)? ’ (37)
and
XYy, — B = d3. (38)

When 8 € (0,% ), the set Z consists of two disconnected curves. See Fig. (3). It has four

different asymptotes:
ll: t =1n Xo, lZ: t=1n\/X0_B/Y0,

l3: 5 = In,Y,, ly: s =In,Yy, — B/X,.

They intersect at four points, which constitute the “central square” in Fig. (3). Clearly, the
“central square” converges to the point (t,,sy) asf — g . We set
JBY,

/5% and e®t = Y, +
T Y "X

(39)

Fig. (3)[160]: Zero setof ¢pi1, B € (0% )

The points (t,,s;) and (t_,s_) are a pair of vertices of Z in Fig. (3). They both converge
to (ty,Sp) aspf — g A simple computation shows that the straight line passing through

162



these two vertices, namely the “major axis”, is parallel to the straight line t —s = 0. This
fact makes the “restriction trick” work in the proof of Lemma (4.2.5). Moreover, if s > s,
ors < s_,thereisaunique t, = t.(s)suchthat (t.,,s) € Z.Ift > t, ort < t_,there
IS a unique s, = s.(t) suchthat (¢,s.) € Z.These two facts are related to the oscillatory
integral estimates in Proposition (4.2.3). Indeed, one can see from (36) that
B
eZtC(s) = Xo + m , eZsC(t) =Y, +
Given 0 < 1, we denote the -neighborhood of Z by
Z = {(t, s) € R?: dist((t, s),Z) < e}.
In particular, we setZ = @if Z = @. See Figs. (4) and (5). We decompose the domain [0,
1] of the phase function into 4 parts:
(i) Non-stationary phase part: [0,1]% \ Z;
(ii) Left folds part: [0,1]2 n {(t,s) € Z: s > s, +€ors < s_ —€};
(iii) Right folds part: [0,1]> n {(t,s) € Z: t > t, +€eort < t_ —€};
(iv) Young’s inequality part: [0,1]> N Z n ([t- —€,t, +€] X [s_ —€,s, +€]).

—. 4

&> 50+ €

major axis

1
|
|
|
|
|
|
|
|
| § < 8y — €
|

|

|

Fig. (4)[160]: Z and its decomposition, f = g

s> s5.t¢ |

s
# majaor axis
-

Fig. (5)[160]: Z and its decomposition, 8 € (0% )
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We postpone the proof of the lemmas and finish proving Theorem (4.2.1). We always
use C to denote various positive constants independent of and T. Recall that there are at
most 0(e“") summands with @ ¢ I7 (7). We claim that the kernel K¢ (t,s) of the

3 1
operator S95¢ is bounded by e¢" (EA + €7%Ms + —422 ) Indeed, one can properly choose

some smooth cutoff functions to decompose the domain [0, 1]? and then apply Proposition
(4.2.3), Lemma (4.2.4) and Young’s inequality to the corresponding parts (1)—(4). Recall
that Proposition (4.2.3) consists of “non-stationary phase”, “left folds” and “right folds™.
Since the estimate (32) on the amplitude holds, it is not difficult to see that A comes from

3 1
Young’s inequality, —2A4 comes from one-side folds (or stationary phase), and —442 comes
from non-stationary phase. Then Young’s inequality gives
3 1
1S9l 2o n1ozi0n < €€ (eA b o227 + —4,15). (41)

Taking T = cloglande = e T T, where ¢ > 0isasmall constant (c < (12€)™1),
and combining (41) with the estimates on S5*?¢ (24) and K, (12), we finish the proof.
Before proving the lemmas, we remark that in the Poincaré half-space model
Tr(7) = {(x,y,z) € R3: z > 0andz > /x2 + y2/y/(coshR)? — 1}.
See Fig. (1). Indeed, the distance between (0,0, e®) and (x,y,2),z > 0, is

x*> + y2 + (z — eb)? x? + y? + z%2 4+ %
f(t) = arcosh (1 + 4 ( )> = arcosh( Y )

2zet 2zet
Setting f'(t) = O0givest = Inyx2 + y2 + z2, which must be the only minimum point.
Thus the distance between (x, y, z) and the infinite geodesic y is

dist((x,y,z),f) = arcosh (\/1 + (x/2)? + (y/z)z).

Since dist((x,y,z),?) < RinTg(p), it follows that z > \/xz + yz/\/(coshR)2 - 1.
Lemma (4.2.5)[160]: Let a & I1, (7). Assume that ¥ and a(y) are not contained in a
common plane. Then we have

inf [pgt| = €e’e™T,

where the infimum is taken on [0,1]% \ Z. If Z = @, then we have

inf |y |/It — te(s)] = e~CT,
where the infimum is takenon [0,1]> N {(t,s) € Z: s > s, +eors < s_ —e },and

inf |pg|/Is — sc(O)] = T,
where the infimum is takenon [0,1]> N {(t,s) € Z:t > t, + eort < t_ —e }. The
constant C > 0 is independent of and T.
Proof. First of all, we need to derive some useful results from the condition that ¢(¢t,s) <
T. Namely,

(et + d?)e?s — 4r(coshT)ete’ + e?* + d3 < 0,t € [0,1],s € 1. (42)
olving the quadratic inequality (42) about e®, we have
r

< e’ < _
AcoshT = e® < 4rcoshT (43)

The discriminant of (42) has to be nonnegative:
167%(coshT)2e?t — 4(e?* + d?)(e? + d3) = 0,
from which we see that

Q

— < 2ecoshT, (44)

ﬁ

164



dy < 2ecoshT, (45)

1
r = EcoshT, (46)

which are similar to the observations in [160]. Moreover, to get the lower bounds of the
derivatives, we need the condition that a« ¢ I7, (7). We claim that there exists some
constant C independent of T such that

a & I1,(7) > r < CcoshT ord; =
Indeed, we are going to prove the contrapositive:
r = CcoshT andd; < 1CcoshT = a € I, (7). (48)

We obtain this by showing that under the above assumptions on r and d;, the segment
¥2(5),s € [—In(4r~1coshT),In(4r coshT)] is completely included in Tx(¥), which
impliesa € Ity by (43). The argument is generalized from [160]. Solving the polynomial

system

) 47
CcoshT (47)

Jx2 + y2/4/(coshR)?z — 1

1—e? 1—e? 2re®
,y,z)=|a + 1T o7 rcosﬁ,l_l_ezS rsm,B,1 o7

we can see that
{r2(s) : s €R} N Tr(¥)
= {y,(s): d?e* + 2(a® + r? — 2(coshR)?r?)e? + d? < 0}.(49)
Note that
r = CcoshT
{dl < (CcoshT)™1
This implies

= a/r < 1+ (CcoshT)™% < (coshR)? — 1.

| Q

coshR)? — 1
j ( ) coshR,

r — . [(coshR)? — cos?p
which is equivalent to

(a® + r? — 2(coshR)?r?)? — d2d> > 0.
This means that the discriminant of the quadratic polynomial in terms of e2S in (49) is
nonnegative. Thus when d; > 0, the RHS of (49) becomes

{y,(s):u_ < e* < uy}, (50)
where
2(coshR)?r? — r? — a? + /(a? + r? — 2(coshR)?r2)2 — d?d?
u, = _ . (51)
It is easy to see that
- d3 - d3 - (coshR)? + 2coshR -
U-= 2(coshR)?r2 — r2 — a2 = (coshR)?r2 — (coshR)? (52
(2(coshR)? — 1)r? — a®*> (coshR)?r?
, > — >— (53)
1 1

So if we choose C = 4+/coshR + 2/vcoshR, we see that
r > CcoshT  (u_ < r?(4coshT)~?
dy > Oand {d1 = (CCOShT)_1{ u, > (4coshT)? @ € Iy OB
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In the easier case d; = 0, we have u, = +oo. Consequently, we obtain (48), which is
equivalent to our claim (47).
Moreover, we notice thatby ¢ < T,

2
sl = 19wl (

4res + tcoshT)

- |(acosf — 1)(e?5*2t + d2) + (acosp + r)(e?t + d?e?s)]

- (coshT)?rA
Now we need to consider two cases: (I) r < acosf; (II) r > acosp.
Case (I): ¢ has no zeros and it is not difficult to obtain the lower bound of |¢;|. Indeed,
ifd; = 1, by (55) and (43)—(44), we get

e C(acosp + r)d?r2(coshT) 2
Ibstl = (coshT)?r(d?r?(coshT)?) —

Ifd; < 1,theclaim (47) is needed. We assume that r < CcoshT. Then by (55) and (43)-
(46), we obtain

.(55)

Ce .

2t
o0 = C(acosp + r)e ——
(coshT)?r(r?(coshT)?)
Otherwise, we assume that d; > (CcoshT)~1. Then similarly we have
., _ C(acosp + r)dfr*(coshT)?
|bsel = (coshT)2r(r2(coshT)?)
Case (I1): Since ¢¢; has zeros, we prove the lower bound of |¢;| on ([0,1] X 1)\ Z first.
The claim (47) is essential here. However, for technical reasons we only need a slightly
weaker but useful version of the claim:
o & Iy, =1 < C(coshT)” ord; = (CcoshT) 1, r > C(coshT)?”. (56)
(i) Assume that r < C(coshT)’.
In this case, we use a “restriction trick” to reduce it to a one-variable problem. Let § €
R. We restrict ¢ (t, s) on the straight line s — t = § and obtain a uniform lower bound
independent of §. Indeed,
|(acosfp — 1)(e%5t%t + d2) + (acosp + 1)(e?t + d?e?S)]
= (r — acosp)|e®st?t — Yye?t — X,e?s + d3
= (r — acosp)|e* — (X, + Yoe™29)e?t + dZe~2%|e?0
= (r — acospB)|(e?t — e?™-)(e?t — e?™+)|e?S,

Ce—BT

Il
&

Fig. (6)[160]: Restrictionons — ¢
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where

2% = X, + Yee % + \/(XO — Ype72%)2 4+ 4Be%9,
r+acosf

e~2% then
100

2e%+ > Yye 29 > 100.

Ifr — acosff <

Butt € [0, 1] implies that
le?t — e27+| 2% e+ 2% Yye 2%,
LetZ,§ = {t e R: (t,t + &) € Z.}.Since the straight lines — t = § is parallel to the

“major axis” of Z, we have
dist(r,[0,1]\ Z,8) = €/V2. (57)
See Fig. (6). This implies
le2t — e27-| > 1 — e™2 > ¢/10,fort € [0,1]\ Z,, 6.
Thus
(r — acospB)|(e?t — e?™-)(e?t — e?™)|e?® > 40(r + acosp).

Ifr — acosp = % e 25 then we use (57) again to see that

le2t — e2Tt| > 1 — e 82 > ¢/10, fort € [0,1]\ Z,, &,
which gives

_ 2t _ L2T)(p2t _ ,2T4)[p28 >
(r — acosp)|(e e“™-)(e e“™)|e _10000(r+acosﬁ).

So we can use (55), (43)—(46) and our assumption r < C(coshT)? to obtain the lower
bound of |¢.;|, namely

2

. Ce?(r + acosp) 5 20T
|bsel = (coshT)?r(r2(coshT)*) = Cete ' (58)
(ii) Assume that d; > (CcoshT) tand r > C(coshT)’.
If |r — acosf| < 1, we can use (43)—(46) and our assumption to get
|(acosfp — 1)(e?5%t + d2) + (acosp + r)(e?t + die®S)| = Cr3(coshT)™*,
since (r + acosf)(d?e? + e?') > Cr3(coshT) *and (r — acosp)(e®*%t + d3) <
Cr?(coshT)?.

If |r — acospB| = 1, then d; = |r — acosB| = 1. Thus, (r + acosp)(d?e? +
e?t) > Cr3(coshT) ?and (r — acosB)(e?*?t + d2) < Cr?(coshT)3, which imply
|(acosp — 7)(e®*2 + d3) + (acosf + r)(e?' + die®S)| = Cr3(coshT) 2.

Therefore, we use (55) and (43)—(46) to get
. Cr3(coshT)™* P
|bsel = (coshT)?r(r2(coshT)*) = Ce ’ (59)
which is better than the bound e2e~¢T. Since the lower bounds in (58) and (59) are
independent of §, we finish the proof of the lower bound of |¢{:] on ([0,1] X I) \ Z.. Now
we are ready to give the proof of the lower bounds of |¢p./(t — t.)| and |ps:/ (s — so)].

Denote
= 11 1+ B
€ =3 X,Y,
Part 1: Assume that

(0,11 x I) n {(t,s) € Z.: s > s, + eors < s_ —e}# 0. (60)
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Fig.(7)[160]: dist(t,, [0,1]) < €/V/2.
¢)| on this set. A simple computation

We need to obtain the lower bound of |¢¢;/(t

using (37)—(39) shows that
S>s, + € © e¥ > Ve,
B
s<s_—e<:)s<(Y0——)e‘2€0. (61)
Xo

Hence

Since the “major axis” of Z is parallel to the straight line s — ¢
(60) we have t, € [—eV2,1 + eV2]. See Fig. (7). Thus,
r)(e®1t2t + d3) + (acosf + r)(e? + die®)|/|t — t.|
(e?t — Xo)(ezs - Y) — B‘

|e?S — Yy| = (1 — e 2%)Y,.
[ = 0, by our assumption

|(acosf —
= (r — acosp) —
e2t _ p2tc)(p25 — Y
— (r — acosp) ( )( 0)‘
t — t,
= (r — acospf) - ZeZt' - e?s — Y]
> (r — acosB) - 2e72VZ . (1 — e 2€0)y,
m (r + acos,B)
where we use the mean value theoremand ¢, > €
First, we assume that r < C(coshT)’. Then using (55) and (44)—(46), we obtain
o C +
st_| o e(r + acosp) > Cee-2T
t — t.|  (coshT)?r(r?(coshT)*)
(CcoshT) ! and r > C(coshT)””, since |t —

Under the other assumption that “d; =
is still applicable here, we get

t.| < 1 + eV2 and the lower bound (59) of |¢
st > (Ce—10T

t — t,
(62)

Part 2: Assume that
(J0,1]x Dn {(t,s) € Z.: t>t, + eort<t_—€e}+0Q
168



We need to get the lower bound of ¢ /(s — s.)| on this set. It is also difficult to see from
(37)-(39) that
t>t, + € © e? > X e,

t < (Xo — B/Yy)e %, (63)

Hence
le?t — X,| = (1 — e™%% )max{X,, 1}.

Ift > t, + ¢, clearly we have e?5c > Y,. See Fig. (3). If B = 0, we have e?5c = Y,. If
t < t_ — eand B > 0, then from (40) we get

B
e2sc = Y "X, — et = Yo T e2t+26 + BJY, — e2t
v B
-0 2t(p2€ 2t+2€ B B
e’t(e’c — 1)+ e (X0Y0)+70
> Y B
~ " JB(X,Y,) + BY,
XoYo XoYo
== YO - 2 YO -
JX.Y/B + X, 1+ Xo
Yo
X + 1

where we use X,Y,/B > 1 from (38). Since the “major axis” of Z is parallel to the straight
lines — t = 0, by the assumption (62) we get dist(s.,I) < ev2. See Fig. (8).

Fig. (8)[160]: dist(s., 1) < eV?2.
Therefore,
|(acosf — 1)(e%5*2t + d2) + (acosp + 7)(e?t + d?e?)|/|s — s
(92t - Xo)(ezs - Y)—-B

S — S

= (r — acosp)
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2t 2s _ ,2s¢
(r — acosp) (e Xo)(e e %)
S — 5S¢

= (r — acosp)|e?t — X,|- 2e%'
> (r — acosp)|e?t — Xol - 2¢2(sc-1-€v2)

2Y,
s o - et )2 e
0

€
> —_
= 150 (r + acosp),

where we use the mean value theorem and €, = €. Then we can obtain the lower bound of
|pt /(s — s.)| in the same way as Part 1. First, under the assumption that » < C(coshT)7,
we have

124

ot Ce(r + acosf)
= > Cee
S — S, (coshT)?r(r?(coshT)*)
Under the other assumption that “d; > (CcoshT)™! andr > C(coshT)””, noting that

|s — s.] < 1 + V2 and the bound (59) is still valid here, we get

7
st

S — S
So far we have finished the proof of all the lower bounds.
Lemma (4.2.6)[160]: For every multi-index a = (a4, @5),
ID%pllo, < e%T,
where the norm is taken on the unit square [0, 1]%. The constant C, is independent of T.
Proof. We only need to prove the upper bounds of mixed derivatives when a # Identity,
since the bounds for pure derivatives are well known in [20], [162] and we do not use them.
For convenience, we denote
G(t,s) = (acosp — 1)(e®*%t + d3) + (acosp + r)(e? + die?s),
E(t,s) = A? — 16r2e?st2t,
Recalling the formula (34), we have ¢., = 16re?s*2t GE=3/2, By induction it is not
difficult to see that for any multi-index a = (a4, a;)

G
D« (_) = E~V—lal Z Cy.a.ﬁo.---.mmDﬁOG . DP1E ... DPIE,

0=IBol+++| Bl |<lal
where |a| = a; + a5, and Cy,a,p,..5, &€ CONStants independent of G and E. Thus,
2s+2t
re

DL, = S/l z Ca,Bomfiq PPOG - DPLE - DPialE,
0<1Bol+-+|Bial|<lal
From the condition that ¢(t,s) = 2, we have A > 4(cosh2)res*t . Thus,
A — 4reStt > (4cosh2 — 4)reStt.
If r = CcoshT, then by (43)—(46),
E > (A — 4restt)? > Cr2e?*2t > Cr*(coshT)7?,
|ID®E| < C,r*(coshT)®,|D*G| < C,r3(coshT)>.

—-20T

> (Ce 10T

Hence,
C,r(rcoshT)?
D < e LCOSHT)
(r4(coshT)~2)3/2+lal
If r < CcoshT, then by (43)-(46),
E > (A — 4reStt)? > (Cr2e?*2t > C(coshT)°,
170

r3(coshT)5(r*(coshT)®) < (, e(10+10)T




ID®E| < C,(coshT)'?,|D*G| < C,(coshT)3.

Therefore,
C,r(rcoshT)®
|Da¢; a (

el < ((coshT)—6)3/2+al

(coshT)8((coshT)1?)l4l < ¢, e(18ia+22)T,
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Chapter 5
Refined and Microlocal with Bilinear Kakeya—Nikodym Bounds and Averages

We show that stronger related microlocal estimates involving a natural decomposition
of phase space are adapted to the geodesic flow. We do this by using microlocal techniques
and a bilinear version of Hormander’s oscillatory integral theorem.

Section (5.1): Eigenfunctions in Two Dimensions
Suppose that (M, g) is a two-dimensional compact Riemannian manifold and {e,} are
the associated eigenfunctions. That is, if A, is the Laplace—Beltrami operator, we have
—Ager(x) = Aey(x),
and we assume throughout that the eigenfunctions are normalized to have L? -norm one, i.e.,

f leal* dV, = 1,
M
where dv, is the volume element.

We obtain essentially sharp estimates that link, in two dimensions, the size of LP -
norms of eigenfunctions with 2 < p < 6 to their L?> -concentration near geodesics.
Specifically, we have the following:

Theorem (5.1.1)[170]: Forevery 0 < g, < % , We have

1/2 1/2
leall 2y Se, A%/ ||e/1||L£(M) X “leAl”K/N(/Ls()) D
If
1/2
|||€/1|||KN(A,80) = (sup A1/2-¢o ] |e,1|2 dV) . (2)
Y Ell Ty-1/2+¢0 V)

Equivalently, if &, > 0, thenthereisa C = C(gy, M) such that

1
) 1

1 =
leslls < A7 gl { sup | Glav) @
VeI JT 1 (¥)
A"zTe0
and therefore if fM le,|>dV = 1,forany e > OthereisaC = C(&, M) such that
1

2
e su e
leall s e catee S92 Meallizgg, 1)

1/16+¢ 1/2
< CAY'*esupy €11 ||eA||L4(TA;’:/2 oy 4)
Here I1 denotes the space of unit-length geodesics in M and the last factor in (2) involves
averages of |e;|? over A~ 1/2+% tubes about y € I1. Also, for simplicity, we are only stating
things here and throughout for eigenfunctions, but the results easily extend to quasimodes
using results from [173].
Note that if ¢, = 1 2, then (1) is equivalent to the eigenfunction estimates from [15]
lealls oy S 28 lleall iz oy »
which are saturated by highest weight spherical harmonics on the standard two-sphere. We
also remark that, up to the factor A%/# | the estimate (1) is saturated by both the highest
weight spherical harmonics and zonal functions on S2 . This is because the highest weight
spherical harmonics are given by the restriction of the harmonic polynomials

AVAGa+ix)® 3 = [k + 1) tothe unit sphere, while the L2-normalized zonal
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-1/2
functions centered about the north pole on S2 behave like (A‘l + dist(x, +(0,0, 1))) :

See [33].
In [36] (with a slight loss) and in [28], inequalities of the form (1) and (3) were proved,
where the first norm on the right is raised. The inequalities in [28] were not formulated in
this way but easily lead to this result. The approach in [28] made inefficient use of the
Cauchy—Schwarz inequality to handle the “easy” term (not the bilinear one), which led to
the loss. The strategy for proving (1) will be to make an angular dyadic decomposition of a
bilinear expression and pay close attention to the dependence of the bilinear estimates in
terms of the angles, which we shall exploit using a multilayered microlocal decomposition
of phase space.

Before turning to the details of the proof, let us record a few simple corollaries of our

(00]

main estimate. If ja;. IS a sequence depending on a subsequence {A; }of the
Ajic =0 J

eigenvalues of A, , then we say that
a =0—(A%)
if there are some ¢ > 0 and C < oo such that
|CZA| < C(l + A)G_g .
Then using Theorem (5.1.1), we get:
Corollary (5.1.2)[170]: The following are equivalent:

lewe] . = o=(") )

1/8
Supyen ||eﬂjk = 0~ (/1]]{ ’ (6)

L* (M)

L*(T,-1/2(r )
ji

sup |[le;. = o0—(1). 7
VEE ” Aji LZ(TAT,(I/Z(y))) 7
]
Also, if either
sup j leal>ds = 0(A5, ), foralle > 0 (8)
Yy €l %
or
_ -1/4+¢
S0 lleasellsgr o = 0GR, foralle > 0,
then

(e s = O foralle > 0. (10)

Here, ds denotes the arc length measure on y.

Clearly (5) implies (6). Also, (7) follows from (6) and Holder’s inequality. Since (1)
shows that (7) implies (5), the last part of the corollary is also an easy consequence of
Theorem (5.1.1). Note also that (4) says that if 1 Is a sequence of eigenfunctions with

_ 1/8
||e/1jk L* (M) - Q(A]k )'
then for any &, there must be a sequence of shrinking geodesic tubes {T}-12 (yk )} for
jk

which, for some ¢ = ce > 0, we have

1/8-
”eljk c AM8E

jk

L*(T_12 (Yk))
Ajk
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In other words, up to a factor of A — e for any € > 0, they fit the profile of the highest
weight spherical harmonics by having maximal L* -mass on a sequence of shrinking
17172 tubes.

Like in Bourgain’s estimate, (1) involves a slight loss, but this is not so important in
view of the above application. In a later work we hope to show that (1) holds without this
loss (in other words with &, = 0),which should mainly involve refining the
S1/2,1/2 Microlocal arguments that are to follow. Note that, because of the zonal functions
on S?, this result would be sharp.

We shall introduce a microlocal Kakeya—Nikodym norm and an inequality involving
it, (24), which implies (1). This norm is associated to a decomposition of phase space which
Is naturally associated to the geodesic flow on the cosphere bundle. In particular, each term
in the decomposition will involve bump functions which are supported in tubular
neighborhoods of unit geodesics in S*M. This decomposition and the resulting square
function arguments are similar to the earlier ones of Mockenhaupt, Seeger and [48], but
there are some differences and new technical issues that must be overcome. We do this and
prove our microlocal Kakeya—Nikodym estimate. There, after some pseudodifferential
arguments, we reduce matters to an oscillatory integral estimate which is a technical
variation on the classical one in Hormander [45], which was the main step in his proof of
the Carleson-Sj6lin theorem [37]. The result which we need does not directly follow from
the results in [45]; however, we can prove it by adapting Hérmander’s argument and using
Gauss’s lemma. We shall see how our results are in some sense related to Zygmund’s
theorem [60] saying that in two dimensions, eigenfunctions on the standard torus have
bounded L* —norms. Specifically, we shall see there that if we could obtain the endpoint
version of (1), we would be able to recover Zygmund’s theorem with no loss if we also knew
a conjectured result that arcs on AS* of length A1/2 contain a uniformly bounded number of
lattice points [66].

As in [28]; [16], we use the fact that we can use a reproducing operator to write e; =
xaf = p(A— [Ay)ey for p € S satisfying p(0) = 1, where, if supp p < (1,2), we
also have modulo 0 (A" ) errors (see [16])

0@ =5 [ (et (e [a,r) oae
p

1 ,
L j MDD g, (x,y) f () V), (11)

where

Y(x,y) = dg(x,y) (12)
Is the Riemannian distance function, and if, as we may, we assume that the injectivity radius
is 10 or more, a, belongs to a bounded subset of C* and satisfies

ay(x,y) = 0,if dy(x,y) € (1,2). (13)
Thus, in order to prove (1), it suffices to work in a local coordinate patch and show that if a
Is smooth and satisfies the support assumptions in (13), if 0 < § < 1 10issmall but fixed,
and if
1
Xo = (0,}’0)»5 <y < 4
Is also fixed, then
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2

1 ,
P j e (x,y)a(x, y)f (7)dy
L*(B(0,5))

Seo A2 flliz X NI f 1 lknaey, i supp f € B(xo, 6). (14)
Here B(x, §) denotes the §-ball about x in our coordinates. We may assume that in our local
coordinate system the line segment (0,y), |y| < 4 is a geodesic.
In order to prove (14) we also need to define a microlocal version of the above Kakeya—
Nikodym norm. We first choose 0 < B € C§° (R?) satisfying

Z f(z +v) = landsupp B < {x € R?: |x| < 2}. (15)

To use this bump function, let ¢;(x,&) = (x(t),&(t)) denote the geodesic flow on the
cotangent bundle.

Then if (x, ¢ ) isaunit cotangent vector with x € B(xy, §) and || < &, with § small
enough, it follows that there is a unique 0 < t < 10 such that x(t) = (s, 0) for some
s(x,&).1f E(t) = (&1(t), &, (b)) forthist, it follows that &, (t) is bounded from below. Let
usthenset (x,&) = (s(x,&),&(t)/|¢(t)]). Note that ¢ then is a smooth map from such
unit cotangent vectors to R? . Also, ¢ is constant on the orbit of ¢. Therefore, |@(x,&) —
¢ (y,n)| can be thought of as measuring the distance from the geodesic in our coordinate
patch through (x, &) to that of the one through (y,n). Let a(x) be a nonnegative C;°

function which is one in B (xo,g 8) and zero outside of B(x,,25). Given 8 = 27 with
A2 <9 < 1andv €Z?,letY € C®(R) satisfy

Y(s) = 1,5 € [c,c7t],Y(s) = 0,s ¢ [% ,20_1], (16)
for some ¢ > 0 to be specified later. We then put
Qp (,§) = a(x)B (0~ p(x,§) + v)Y(IS |/). (17)

This is a function of unit cotangent vectors, and we also denote its homogeneous of degree
zero extension to the cotangent bundle with removed by Qp (x, ¢ ), & # 0, and the resulting
pseudodifferential operator by Qp (x,D). Then if f is as in (2-4), we define its microlocal
Kakeya—Nikodym norm corresponding to frequency A and angle 8, = A~1/2%% to be

1
|||f||| KNG 9053921 (iggz 6 "2||1Qllg (x, D)IIf Il 2 (Rz)) + 1l fllz w2y,
90 — /1—1/2+£0. (18)
Note that
sup 6 ~1/2 19 (x,D)f |l (R?)

VEZ?
measures the maximal microlocal concentration of f about all unit geodesics in the scale of

6. This is because if we consider the restriction of Qp to unit cotangent vectors and if
Qp (x,&) # 0,then supp Qp is contained in an 0(6 ) tube in the space of unit cotangent
vectors about the orbit t — ¢,(x,&).Let us collect a few facts about these
pseudodifferential operators. First, the Qp belong to a bounded subset of

Sf/2+€0,1/2_80 (pseudodifferential operators of order zero and type (%+so,%—

g)), If 17128 < g < 1,with &, > 0 fixed. Therefore, there is a uniform constant C,,
such that

1
195 (e, D)gllz < Cg, llgllz, 2727 < 6 < 1. (19)
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Similarly, if Py = (Qp)* o Qp for such 6, then by (15), )., P belongs to a bounded
subset of Sf/2+80,1 /2—¢,, @nd s0 we also have the uniform bounds

1
Py (x,D)g| < Cellgllz, 272" <6 < 1. (20)

VEZ2 12

We can relate the microlocal Kakeya—Nikodym norm to the Kakeya—Nikodym norm if we
realize that if the & > 0 above is small enough, then there is a unit length geodesic y,, such
that Qg (x,§) = 0 forx & Tgg, (v), with C a uniform constant. As a result, since
Qp (x,&) = 0if|&]is not comparable to A, we can improve (19) and deduce that for every
N = 1,2,...,thereis a uniform constant C” such that

1/2
195 (x, D)gll,z < C, (j Iglzdy>
Teo(ry)
+Cy A7V lgllz, 171248 < 9 < 1, (21)

=l

Figure (1)[170]: T¢rg(y,)-
since the kernel Kj (x,y)of Qp (x,D) is O N)for any N if y is not in
Tee (vo ), with C” sufficiently large but fixed. (See Figure 1.) Since

1 1
2 2
(J Iglzdy> Ssup 65! (f Iglzdy> :
Tce (rv) Y€l To0(v)
A7Vt = g, < 6 < 1,
1/2 < 1/2+€0 < <
sup 6771105 (. Df ey < Ce, [llgl] A7V 0 <1, (22)

meaning that we can dominate the microlocal Kakeya—leodym norm by the Kakeya—
Nikodym norm. From this, we conclude that we would have (14) if we could show

2
H f A%e‘“’(x, yV)alx, y)f ()dy

1
6 2

we have

&
Seo AZ Ifllz X M £ 1 Imrnaey),

L*(B(0,8))
if supp f < B(xg,96). (23)
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We note also that since y e; = ey, this inequality of course yields the following microlocal
strengthening of Theorem (5.1.1):
Theorem (5.1.3)[170]: Forevery 0 < g, < 12,we have

1/2 1/2

leallis (M) e, 20/ Nleall £y X [lleall] o @)

if |||€/1|||MKN(/1,80) is as in (18).
We prove the estimates in (23). We shall follow arguments from 86 of [48].
We first note that if supp f < B(xy, ) as in (24), and if
90 — /1—1/2+£0 (25)
with &, > 0 fixed,

6f =) 100, @D + Rif,
VEZ?
where, if ¢ > 01in (16) is small enough,and N = 1,2,3,...,,

IRA f oo - AN ML £ 12
Therefore, in order to prove (14), it suffices to show that

> 0, | Se 22N iz X MFI wknciey. (26)
V,V'EZ? 12
We split the sum on the left based on the size of |[v —v” |. Indeed, the left side of (26) is
dominated by

(00)

> e )| ) > n@ || - @
v 2 ¢=1 || v—vo|g[2¢f 2f+1) 12

The square of the first term in (27) is

ST [ Gogh £ (s, ) dx

v,V
Next we need an orthogonality result, similar to Lemma 6.7 in [48], which says that if A is
large enough we have

> || ) i xS IF1E @)
(lv=v'1z4)
We shall postpone the proof of this result until, when we will have recorded the information
about the kernels of y,Qp that will be needed for the proof. Since by [15],
lxall zops = 0(AY®),
If we use (28) we conclude that the first term in (27) is majorized by (20) and (22):

1 1
32y llob, £ I Mgk, £, + A7 kilf Ii% A2 0f I

v

xsup [loy £, + AV IF Il
VEZ?

_ 2 _
= 20 |If llz2 x A2~ sup 125, £ 11, + 27 IIF Il (29)
4S

Therefore, the first term in (27) satisfies the desired bounds
Using (22) again, the proof of (23) and hence (14) would be complete if we could
estimate the other terms in (27) and show that
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2 -1
0 95,f 12 Qo fll . Se, IfII2 x (2°60)
v—v |g[2f 2¢+1)

sup  kQV 2P0, lIfII7- + A7V IIf I (30)
VEZ?

Note that if 26, » 1, the left side of (30) vanishes and thus, as in (22), we are just
considering £ € N satisfying 1 < 2¢ < A/27% ,In proving this, we may assume that £ is
larger than a fixed constant, since the bound for small £ (with an extra factor of A% on the
right) follows from what we just did. We can handle the sum over £ in (27) due to the fact
that the right side of (30) does not include a factor A% . We now turn to estimating the
nondiagonal terms in (27). We first note that by (15),

Qb f =) Qb Qb f + On AN IFIIL),if supp f < B(xo,0).
UEZ2
Furthermore, if, as we may, we assume that £ € N is sufficiently large, then given N, € N,
there are fixed constants ¢, > 0 and N; < oo (with ¢, depending only on N, and the
cutoff S in the definition of these pseudodifferential operators) such that if
6, = 6,2%,
then

X295, f X298 f
(lv-v|€[2¢ 2¢+1)
— z XAQ?OQ{, Qp, fXAQf:loeg Qg;) f

{wuf€Z2:Ng<|u—p |SN{} X [v—v' |€[2£,20+1)

+0oy AVIIfIIZ) B
for each N € N. Also, given p € Z?, there is a vo(p) € Z? such that

kQh o, Qo IF IE < Cy ATV F Nz if v = vo(w] = €2F,
for some uniform constant C. If |u— ' | < Ny, then |vo(n) — vo(u)| < C€2° for some
uniform constant C.

Since ”(Qg')* o Qy

constant, it follows that

= 0(AN)for every N if [v — v'|is larger than a fixed

L?>L?

2

J J Z z Qp, f (0)Q, f )| dxdy

Vo=V Ivo(W)—v[sC2¢  v—v' [€[2¢ 20+1)

2 . 2 _
= > g, £ 12,1105, £ 117, + on GV I £ 1%,
lv=v (Wl lv-ve(wlsc2*
if lu — Wl <G,  (32)
for every N if C” is a sufficiently large but fixed constant. Also, using (20), we deduce that

log, 17, -NF1Z

(HEZ?  |yo(W-v|sC2?
We clearly also have

2 2
195,f1l. = sup 1195/,

lv(w-v'|sc’2¢
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Using these two inequalities and (32), we deduce that

Q% f(X)QY F()

—u’! £
ln=wI=Ny |[|lvo(—vllvo(W)—v'I<C2? [v—v'|g[2¢,2¢+1) 12 (dx dy)

S Nflle xsup [|Q5, fIl . + On(A7MIfIIZ). (33)
HEZ? L

In addition to (28), we shall need another orthogonality result whose proof we postpone
until, which says that whenever 0 is larger than a fixed positive multiple of 8, in (25) and
N is fixed,

4
f |19 912205 92) (129 922205 g4 ) dx| <y 277 l_[ gl
j=1
if |w— @+ W —§l=Cand|p— p[E—- | <N, (34)

forevery N = 1,2,..., with C being a sufficiently large uniform constant (depending on N;
of course).

Using (33) and (34), we conclude that we would have (30) (and consequently (14)) if
we prove the following:
Proposition (5.1.4)[170]: Let

1P = || @Iy dydy,  35)
Where
(X224) (%, )
denotes the kernel of )(AQS . Then if § > 0 is sufficiently small and if 6 is larger than a

fixed positive constant times 8, in (3-1) and if N, € N is sufficiently large and if N; > N,
Is fixed, we have

||T)tl’9uF < 8—1/2 ”F”LZ, lf NO < |Ll—Ll’| < N]_,

L2(B(0,5)) %o
F(y,y) =0, if (v,y") & B(xp,28) X B(xp,26).  (36)
To prove this we shall need some information about the kernel of )(AQS . By (17), the kernel
is highly concentrated near the geodesic in M
Vu = {xu(t) P=2 <t <2 q)t(xw Eu) = (xu(t)' fu(t))'

07 p(x,,¢) + 1 = 0}, (37)
which corresponds to Qg . We also will exploit the oscillatory behavior of the kernel near
Vu-

Specifically, we require the following:
Lemma (5.1.5)[170]: Let 6 € [CoA~1/?+¢o0 ,%], where C, is a sufficiently large fixed

constant, and, as above, &, > 0. Then there is a uniform constant C such that foreach N =
1,2,3,..., we have

|(X29) (. M| < Cy AN, ifx e T,(n)ory € Tz, (v,).  (38)
Furthermore,

(94) (x,y) = AM2eM0Y) g o(x, ) + Oy(A7Y),  (39)
where one has the uniform bounds
|VSa,00y)| < C,0719, (40)

Ca
|6tj ayp (x, xu(t))| < G, x € Y (41)
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if , as in (37), {x, (1)} = v,
Proof. To prove the lemma it is convenient to choose Fermi normal coordinates so that the
geodesic becomes the segment {(0,s) : |s| < 2}. Let us also write 6 as
g = 1—1/2+5

where, because of our assumptions, ¢; < 6 S% for an appropriate ¢c; > 0. Then in these
coordinates, Qg(x, D) has symbol satisfying

qp(x, ) = 0, if |&/|€]| = CATY#*0, |x;| = CA7Y**%,0r |€]/A & [CT1,C), (42)
for some uniform constant C, and, additionally,

|07,0% 0. 0 qp(x, &) < Cjjoym (1 + [§])I(/278)71A/248)=m (43

Next we recall that y; = p(1 — p,/—4,), where p € S(R) satisfies p (1, 2), and that the

injectivity radius of (M, g) is ten or more. Therefore, we can use Fourier integral
parametrices for the wave equation to see that the kernel of y, is of the form

Xey) = || el s @t x, ) ds
where a € Si,, and S is homogeneous of degree one in ¢ and is a generating function for

the canonical relation for the half wave group e ~*v~2¢ . Thus,

N 0:5(t,x, &)= —p(x,V, S(t,x,€)), S(0,x,&) = x - & (44)
Let ®,(x, &) denote the Hamiltonian flow generated by p(x, &), which is homogeneous of
degree one in & and agrees with the geodesic flow @, (x, &) when restricted to unit cotangent
vectors. The phase S(t, x, &) also satisfies

Dp(x, Vi S) = (Ve S,8). (45)
Furthermore,

det

93¢ * 0. (46)
By (42), (43), and the proof of the Kohn—Nirenberg theorem, we have that

(X205 )(x,y) = j J eSExE)-ly-S+iA 5 g (t, x,y, & )dE dt + 0(A7N),

=2 [ [ ersexr e pqex,y,26) dg de + 007, (47)
where for all t in the support of

1 1
pratxy, ) = 0if 1&/1E1 = €A72%0, x| = 272",
or [§|/A /€ [C7F,C], (48)

with € as in (43), and also

|97, 0%, 0¢, 08, a(t,2,7,8) | < Ciaum(L + 1§1)jA/270712F07m - (49)
Let us now prove (38). We have the assertion if y & JT3_1/245 () DY (48). To prove that
remaining part of (48) which says that this is also the case when x is not in such a tube, we
note that by (45), if d,(x0,¥0) = toand xy,yo € ¥, then

Ve (S(to,x0,8) — Yo - &) = 0,if & = 0.
By (46), we then have
|‘7§ S(to,x, &) — yo - &) |z dg(x,x0),if & = 0.

1
We deduce from this that if |&|/]€] < C*72%0, |y, < €A Y2*8.and |¢ ]| €
[C~1,C],thenthereareacy, > OandaC, < oo such that
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|V€ (S(tOJfo) - Y- f)l = COA_1/2+6,l.fX ¢ TCO)I—1/2+8()/|J)-
From this we obtain the remaining part of (38) via a simple integration by parts argument if
we use the support properties (48) and size estimates (49) of q(¢t, x, y, £ ). We note that every
time we integrate by parts in & we gain by 1729, which implies (38) since g vanishes unless
|€| = Aandé is bounded below by a fixed positive constant.
To finish the proof of the lemma and obtain (39)—(41), we note that if we let
Yt xy§)=Stxé)—y- &+t
denote the phase function of the second oscillatory integral in (47), then at a stationary point
where
Ve =0,
we must have W = dg(x,y), due to the factthat S(¢t,x,§ ) — ¥ - & = Oandt = d4(x,y)
at points where the & -gradient vanishes. Additionally, it is not difficult to check that the
mixed Hessian of the phase satisfies

g t( 0¥ ) %0
e
a(§,0)a(,0)
on the support of the integrand. This follows from the proof of Lemma 5.1.3 of [16].

Moreover, since modulo 0 (A~ ) error terms (XaQS )(x,y) equals

A? ﬂ e p(t)q(t, x,y, AE) dE dt, (50)

we obtain (3-15)—(3-16) by the proof of this result if we use the stationary phase and (48)—
(49). Indeed, by (45), (50) has a stationary phase expansion (see [24]), where the leading
term is a fixed constant times
A% et q(t,x,y,A8),if t = dy(x, y)and P_,(y,&)

= (x,V, S(t,x,&)). (51)
From this, we see that the leading term in the asymptotic expansion must satisfy (40), and
subsequent terms in the expansion will satisfy better estimates, where the right-hand side
involves increasing negative powers of 124 (by [24] and (49)), from which we deduce that
(40) must be valid. Since §; = O0and p(y,¢§) = 1(by (45)) in (51) when x,y € y,, we
similarly deduce from (49) that the leading term in the stationary phase expansion must
satisfy (41), and since the other terms satisfy better bounds involving increasing powers of
A~29  we similarly obtain (41), which completes the proof of the lemma. Let us now collect
some simple consequences of Lemma (5.1.5). First, in addition to (38), the kernel
()(AQg )(x,y) is also 0 (AN ) unless the distance between x and y is comparable to one by
(2-3). From this we deduce that if N, € N is sufficiently large,

(225 (x, ) (00225 ) (x, ¥") = 0(A7Y),
unless Angle(x; y,y") € [0,C,0] and x,y,y" € T¢,o(1), if [u — W'| € [Ny, N;], (52)
if Angle(x,y,y") denotes the angle at x of the geodesic connecting x and y and the one
connecting x and y”, and where C, = C,(N;).
This is because in this case, if x € Tz (¥,) N Tz (v,r), then the tubes must be disjoint

at a distance bounded below by a fixed positive multiple of 8 if N, is large enough, and in
this region their separation is bounded by a fixed constant times 8 if N, is fixed; see Figure
2.

To exploit this key fact, as above, let us choose Fermi normal coordinates (see [172]) about
¥, SO that the geodesic becomes the segment {(0,s) : |s| < 2}. Then, as in (12), let
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Y(x; y) = dg (x1,%2), V1, ¥2)
be the Riemannian distance function written in these coordinates. Then if x,y, y” are close
to this segment and if the distances between x and y and x and y” are both comparable to 1
and if, as well, y is close to y”, it follows from Gauss’s lemma that

d 0
Y(x y)—a

3y, 9%, Y,y .  (53)

Angle (x; (1, ¥2), (1 »)’é)) a Xo

:|"'_u _

Figure (2)[170]: 6-tubes intersecting at angle > N,6.
As a result, by (52), there must be a constant ¢, > 0 such that

(1225 ) (x, y) (129 ) (y) = 0(~™),

¢( ,Y) 6y62

with, as above, NO E N sufficiently large and N; fixed. Another consequence of Gauss’s
lemma is that if x and y as in (53) are close to this segment and at a distance from each other
which is comparable to one, then

6 0

< cof and |p— || € [No, N1], (54)

0 9 0. 55
9%, 3y, Y(x,y) # (55)

We shall also need to make use of the fact that, in these Fermi normal coordinates, we have
0 0
Il) (0 xZ) (O }’2) - 71[} (O) XZ)) (O) yZ)
6 6 V1 d0xq

= 0,if dg (0,x2),(0,y;) = 1. (56)
Next, by (41)—(39), modulo terms which are 0(1~" ) we can write

08 Y QL y) = 22 PEEN), oy, yry
where, by (52) and (54),
b,(x; y,¥") = 0,if dg(x,y)ordy(x,y") & [1,2],
or |x¢| + |y | + |y1| = Cal 0,

6 9]
- < ¢y, 57
5= YY) ay1 axzw(xm b, (57)
and, since we are working in Fermi normal coordinates,
a9/ ok
——b(xy,y)<C0910<],k<3 (58)
dx] 0x
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The constants C, and ¢, can be chosen to be independent of u € ZZand 8 > A~1/2%o jf
g > 0. But then, by (57) and (58) if y, and y, are fixed and close to one another, and if
we set
l/)(x, S, t) = lp(x) (S + t,}’z)) + l/)(xl (S - t,yé)) and

b(x;s,t) = by(x;s + t,y2,5 — t,¥3),
there is a fixed constant C such that

b(x;s, t) = 0if |xi|+ |s|+|t]| = Cp,
Jj k
and

a]akb(xst)‘<Ct910<],k<3 (59)

while, by (55) and (56),

iiwo xy; 0,0) = 29 W(0,x,; 0,0) = ilP(o xy; 0,0) =
0x, 0s dx, Ot
butaiai ¥(0,x,; 0,0) # 0if b(0,x,; 0,0) #0, (60)
and, moreover, by (57),
|a — Y(x;s, t)| > c0, ifb(x;s,t) #0. (61)

Also, if we assume that |y, — y2| S &, as we may because of the support assumption in
(36), then

|a 3 LP(st)|<C5 if b(x;s,t) + 0, (62)
since the quantity on the left vanlshes identically when y, = y;.

Another consequence of Gauss’s lemma is that if y,y’,x are close to the second
coordinate axis and if the distances between x and each of y and y’ are comparable to 1,
then if 8 above is bounded below, the 2 x 2 mixed Hessian of the function (x; y;,y;) —
Y(x,y) + P(x,y") has nonvanishing determinant. Thus, in this case (36) just follows from
Hoérmander’s nondegenerate L? -oscillatory integral lemma [45] (see [16]). Therefore, it
suffices to prove (36) when 6 is bounded above by a fixed positive constant, and so
Proposition (5.1.4), and hence Theorem (5.1.1), is a consequence of the following:

Lemma (5.1.6)[170]: Suppose that b € C§°(R? x R?) vanishes when |(s,t)| = §. Then
if ¥ e C*(R? x R?) is real and (59)—(62) are valid, there is a uniform constant C such
thatif 6 > 0and & > 0 are smaller than a fixed positive constant and

TF(x) = f f e M¥EsDp(x; s, t)F(s,t) ds dt,

then we have

ITiFllzey < CATRO7Y2|IF 2y - (63)
We shall include the proof of this result for the sake of completeness even though it is a
standard result. It is a slight variant of the main lemma in Hérmander’s proof [45] of the
Carleson-Sj6lin theorem (see [16]). Hormander’s proof gives this result in the special case
where y, =y, , and, as above, W is defined by two copies of the Riemannian distance
function. The case where y, and y; are not equal to each other introduces some technicalities
that, as we shall see, are straightforward to overcome.
Proof. Inequality (63) is equivalent to the statement that ||T; T|l 22 < CA72071 . The
kernel of Ty T} is
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K(S, £ S’, tr) — Jf ei/l(‘P(x;S,t)—lP(x;s"tl))a(x; s, t,Sl, tl)dxl dxz,

ifa(x;s,t,s',t") = b(x,s, t)b(x;s’,t").
Therefore, we would have this estimate if we could show that
|K(s,t;s",t)| <CcO™MA+As—=s,t—=t'DVN+Cco(Q+20|s—s",t—t'|)7V,
N =0,1,2,3, (64)
for then by using the N = 0 bounds for the regions where |(s —s',t —t")] < (18)71!
and the N = 3 bounds in the complement, we see that
sup ff |K|ds' dt',sup ﬂ |K|dsdt < CA™%671,
st s't!
which means that by Young’s inequality, ||T; Tyll,22 < CA™2 071, as desired.
The bound for N = 0 follows from the first part of (59). To prove the bounds for N =
1, 2, 3, we need to integrate by parts.
Let us first handle the case where
|s—s'| =AYt —t'|, (65)
where A > 1 is a possibly fairly large constant which we shall specify in the next step. By
the second part of (60) and by (62), we conclude that if § > 0 is sufficiently small
(depending on A), we have
‘% (‘P(x; s, t) —W(x;s’, t’))| >cls—s'|,|s=s'| = A7t -t/ (66)
1
for some uniform constant ¢ > 0.
Since |K| is trivially bounded by the second term on the right side of (3-40) when |s — s'| <
(18)~1 and (65) is valid, we shall assume that |s —s’| > (16)7 1.
If we then write
ei)L(‘P(x;s,t)—‘P(x;s 0,t O)) — LeiA(‘P(x;s,t)—‘P(x;s 0,t 0))’

1 0
,(67)

where L(x,D) =
i1 (‘P,’Cl (x;s,8) — Wy, (x; ', t’)) O,

then we obtain

K| < JJ |(L*(x,D))Na(x;s,t,s',t')|dx.

Note that
. , sV s 0;
Ay s, s, ) — P, (s, )] 1L )V al < Cy Z —]ja
0< j+ksN dx;
aam 4 ! !
| W(Eb x, (68t ))‘
X z ; : — 7 — T E (68)
@y ++agsN ¢x1(x;5;t) ¢x1(x,S,t)
Clearly,
k aam
1_[ axam(ll/x1 (x;8,t) — Py, (x;s',t’)) < Cels — st — t'|k, (69)
1

m=1

and consequently, by (65) and (66),
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O (W, (i5.,8) =, O s',t'>)‘

dx,

[Tr=1

- < Cupe (70)
|(¥x, Gis,6) =W, (657,6)))

Since by (59), we have that |0y a| < C677,j = 0,1,2,3,and (59) also says that a
vanishes when |x, | is larger than a fixed multiple of 8, we conclude from (66)—(70) that if
(65) holds, then |K| is dominated by the first term on the right side of (64).
We now turn to the remaining case, which is

It —t'| = Als — 57|, (71)
and where the parameter A > 1 will be specified. By the first part of (60) and by (61) and
the fact that |s|, |s” |, |t|, |t | are bounded by a fixed multiple of 6 in the support of a, it
follows that we can fix A (independent of 8 small) so that if (71) is valid, then

d
|a (W(x;s,t) — P(x; S',t'))| > cO|t — t'|,on supp a,
2
for some uniform constant ¢ > 0. Then since (56) implies that

k
am
| | pyD (Py, (x;5,t) — Wy (x;8,t)| < C8|s —s',t — t'|*, on supp q,
2
m=1

and since, by (59),

|0y, al < Cy,1 < j <N,
we conclude that if we repeat the argument just given but now integrate by parts with respect
to x, instead of x;, then |K| is bounded by the second term on the right side of (64), which
completes the proof of Lemma (5.1.6).
To see this, we note that by Lemma (5.1.5), if ()(AQS)(X;Y) denotes the kernel of

X219 » then

(2225 )y (112 ) Ge vy (95 ) 6o ) (2205 ) (5 = Oy @™),

ifx € Teo (V) N Tce (Yw) N Tee (i) N Teo (Vi)
with C sufficiently large and the geodesics defined by (37). On the other hand, if x is in the
above intersection of tubes, then the condition on (w, u', fi, i" ) in (34) ensures that if the
constant C there is large enough, we have
|Vx dg(xiy) + dg(xry,) - dg(xiy) - dg(x'y,)| = COG ’
ify €Jco M),y €Tc0 (), ¥ € Tce () and y° € Tee (v ),
for some uniform ¢, > 0. Thus, (34) follows from Lemma (5.1.5) and a simple integration
by parts argument since we are assuming that 8 > 6, = A~'/27% with g, > 0.
Recall that for T2 , Zygmund [60] showed that if e; is an eigenfunction on T?, i.e.,

e (x) = ae™**, (72)
{e€Z?: |£|=A}

then
leallsrzy < C,
for some uniform constant C.
As observed in [5], using well-known pointwise estimates in two dimensions, one has

sup j a2 ds = 0,19
Yy €ll Y
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forall ¢ > 0. This of course implies that one also has

swp [ el dx = 0,07
Ve T 1/2)
forany e > 0.

Sarnak (unpublished) made an interesting observation that having O(1) geodesic
restriction bounds for T2 is equivalent to the statement that there is a uniformly bounded
number of lattice points on arcs of AS* of aperture 1=1/2 . (Cilleruelo and Cérdoba [171]
showed that this is the case for arcs of aperture A=1/2=% forany § > 0.)

Using (1) we can essentially recover Zygmund’s bound and obtain ||ey|[;s 12y =
0. (A% ) for every € > 0. (Of course this just follows from the pointwise estimate, but it
shows how the method is natural too.)

If we could push the earlier results to include ¢, = 0 and if we knew that there were
uniformly bounded restriction bounds, then we would recover Zygmund’s estimate.
Section (5.2): Eigenfunctions on Compact Riemannian Surfaces

For (M, g) be a two-dimensional compact boundaryless Riemannian manifold with
Laplacian A,. If e, are the associated eigenfunctions of ./—A, such that —Aje; = Aey,

then it is well known that
1

leall sy < C A8lleall 2y, (73)
which was proved in [15] using approximate spectral projectors y, = x(4 — ,/—4,) and
showing

1
xa fllieany < € A8IIf Nl 2 qaa- (74)
If0 < 4 < uand ey, e, are two associated eigenfunctions of ,/—A, as above, Burg
et al. [3] proved the following bilinear L?-refinement of (73)

1
lezeull 20y = € llerllizanllenll oy 75
as a consequence of a more general bilinear estimate on the reproducing operators
1
Dafetoll o < €N lzanliglizon — (76)

The bilinear estimate (75) plays an important role in the theory of nonlinear Schrodinger
equations on compact Riemannian surfaces and it is sharp in the case when M = S?
endowed with the canonical metric and e;(x) = h,(x), e,(x) = hg(x) are highest weight
spherical harmonic functions of degree p and g, concentrating along the equator

x = (1, x2,%3) : x{ + x5 = L,x3 = 0}
with 22 = p(p + 1),u? = q(g + 1). Indeed, one may take h,(x) = (x; + ix,)* to
see ||hgll, = k~'/* by direct computation.

We will construct a generic example to show the optimality of (76) and exhibit that
the mechanism responsible for the optimality seems to be the existence of eigenfunctions
concentrating along a tubular neighborhood of a segment of a geodesic. As observed in [16],
(74) is saturated by constructing an oscillatory integral which highly concentrates along a
geodesic. The dynamical behavior of geodesic flows on M accounts for the analytical
properties of eigenfunctions exhibits the transference of mathematical theory from classical
mechanics to quantum mechanics (see [27]).
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That the eigenfunctions concentrating along geodesics yield sharp spectral projector
inequalities leads naturally to the refinement of (73) in [36] and [28], where it is proved for
an L? normalized eigenfunction e, , its L*-norm is essentially bounded by a power of

1 2
T g 14O
where IT denotes the collection of all unit geodesics and Ts(y) is a tubular §-neighborhood
about the geodesic y.This fact motivates the Kakeya—Nikodym maximal average
phenomena measuring the size and concentration of eigenfunctions.

This result was refined by Blair and Sogge [170], proved forevery 0 < & < 1/2,there

isaC = C(& M) so that

(77)

1
1

1 1
leallo < € ATllealZy | sup | e(ldx | . (78)
YEII T 1

1727 )

We shall assume throughout that our eigenfunctions are L?-normalized, but we shall
formulate our main estimates as in (78) to emphasize the difference between the norms over
all of M and over shrinking tubes.

As mentioned in [170] it would be interesting to see whether the e-loss in (78) can be
eliminated. Further results for higher dimensions are in [69] and [175]. These results played
a crucial role in obtaining improved LP eigenfunction estimates under certain curvature
assumptions, see [162] and [30].

Inspired by [28], we are interested in the bilinear version of the main result in [28],
searching for the essentially appropriate control of ||e,1e”||2 by means of Kakeya— Nikodym

maximal averages. In fact, we will obtain a better result by establishing the microlocal
version of Kakeya—Nikodym average in the spirit of [170], and our main result reads

Theorem (5.2.1)[174]: Assume 0 < A < p and ey, e, are two eigenfunctions of ,/—A,

associated to the frequencies A and u respectively. Then for every 0 < & < % we have a
C. > 0 such that

&
leaeull 2y = CeA? llewll 2y Meallliencaer (79)
and
&
||elelil|L2(M) = CEAZ ”eA”LZ(M)”|e.u|||KN(A'£)’ (80)
where the Kakeya—Nikodym norm is defined by
1
. 2
1wy = | sup 22~ | F@Pdx| . @)
YEII T 1
12tem
Note also that we can reformulate our main estimates as follows
1
2
< Co el ngy % | sup 72~ [ eal? d 82
||e/1€ﬂ||L2(M) - & elv‘- LZ(M) )S/lélg T oL e/l X 4 ( )
12te®

and
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1
2

1 1_ 2
||e,16“||L2(M) < CA4llepll 2y X sug Az27¢ f |eﬂ| dx | , (83)
re T deew
both of which are bilinear variants of (78). Also, by taking the geometric means of (79) and

(80) one of course has that
£ 1 1 1 1
> 2 2
lerenll oy = CeZ llealle o llewllZz o Meallin o lleullZ v o (84)
Note that it is the geodesic tubes corresponding to the lower frequency that accounts

for the optimal upper bound of ||eze,| . We point out that in (80) one cannot take the
KN(u,e)-norm of e, For on T" = (—m,m]" if e = eY* |j| = 4 and ¢, =

e, |k| = p, the analog of (80) involving || |e”|||KN(” 5 is obviously false for small £ >

0 if u » A. Note also that if ep is replaced by a subsequence, e, of quantum ergodic

eigenfunctions (see [27]) then (80) implies that ||e’1€“jk — lasuj — oo. This is

L*(M)
another reason why it would be interesting to know whether the analog of (80) is valid with
g = 0there.

We construct an example to show the sharpness of (76). We introduce some basic
preliminaries and reduce the proof of Theorem (5.2.1) to the situation, where the strategy in
[170] can be applied. We employ the orthogonality argument to conclude the theorem by
assuming a specific bilinear oscillatory integral inequality. Finally, we prove this inequality
based on the instrument in [3], which provides a bilinear version of Hérmander’s oscillatory
integral theorem [45]. We shall assume 0 < A < pu.

We construct an example showing the optimality of the universal bounds (76). We
use approximate spectral projectors x, and y, which reproduce eigenfunctions and can be
written as proper Fourier integral operators up to a smooth error.

We may assume the injectivity radius of M is sufficiently large. Take a Schwartz
function y € S(R) with y(0) = 1 and y supported, so that the spectral projectors are
represented by

xaf () = AMPTf () + Raf (1), x,9(x) = u'/?Tg(x) + Rug(x),
where

”le“Lw(M) =< CN AN ”f”Ll(M);l
forallN = 1,2,..., and the main terms read

Rug|l oy < Cw ™ Ngllircany

Tof (x) = fM e V) a(x,y,2) f(y) dy, (85)
TG = [ e ax,z,0)g()dz. (86)
M

Here d,(x,y) is the geodesic distance between x,y € M,and the amplitudes
a(x,y,A),a(x,z,u) € C* have the following property
|6,‘C’fya(x,y,)l)| + |6§fza(x,z,u)| < C,, forall a.
Moreover a(x,y,A) = 0ifd,(x,y) € (1,2) and likewise for a(x, z, u). (See [16].)
After applying a partition of unity, for small 6 fixed, we may fix three points
X0, Y0, Zo € Mwith1 < dj(xg,y0) < 2,1 < dy(x,20) < 2, and assume that

a(x,y,A) vanishes outside the region {(x,y)|x € B(xy,6),y € B(¥,,6)}, a(x,z u)
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vanishes outside the region {(x,z)|x € B(xy,8),z € B(z,6)}. To see the sharpness of
(76), we will prove the following result.

We will choose suitable f and g concentrating along a segment of the geodesic y,
connecting x, and y, with appropriate oscillations. The explicit expression of f and g will
yield automatically upper bounds on |||, ||gll.. On the other hand, we will see there is a

strip region £2,, containing x, such that ||T,1fTMg||L2(Q ) is bounded below by (1) times
u

1
the upper bound of A ||f ||, gll».

Recall first the geodesic normal coordinate centered at y,. Let {e;,e,} be the
orthonormal basis in T, M such that e, is the tangent vector of y,, pointing to x,. The
exponential map exp,, is a smooth diffeomorphism between the ball {Y €ET,M:Y =
Yie; + Yye5, 1Y | < 10} and B(y,, 10). Let {wy, w,} be the dual basis of {ey, e,} and set
Vi = wj oexp;,o1 for j = 1,2. Then {y,,y,}is the Riemannian geodesic normal
coordinates such that y, = 0 and

{gij 0) = &y,
dgi;j (0) = 0,
In particular, ;¥ (0) = 0,V i,j,k = 1,2,and dG(0) = 0 with G = det(g;; ). In this
coordinate system, y, is parameterized by t — {(t,0)}.
Lemma (5.2.2)[174]: If we denote by ¢(x,y) = d,(x,y), then in these coordinates
¢(x,0) = |x|. Moreover, if we set x = (x1,x,),y = (y1,¥,) and assume 0 < y; <
x,then p(x,y) = x; — ¥y + 0((x* — y?)?).
Proof. See p. 144 in [16].
With Lemma (5.2.2) at hand, we are ready to prove Proposition (5.2.3).
Proposition (5.2.3)[174]: There exist f and g such that for some C > 0,
ITaf Tugll . = €AY 4 2If 1l 2 ligll,e - (87)
Proof. We work in the above coordinates and let
0, ={x:8/2C, < x; < 2046, 1x,] < eu™?},0 < &6,
where C, > 0 is chosen as on p. 144 in [16]. The region £, is defined similarly. Take a €
Co’ (—1,1) and set

foralli,j = 1,2.

FO) = abn/ea (2 y/er) e, (89)

1 .
9(2) = a(z/&)a (uf 22/51) etta, (89)
Denote by e = A/u. Then similar to Chapter 5 in [16], we estimate

2
2, |T,1f(x)Tug(x)| dx.
Indeed, for x € 2, we have

|T/-{f(x)|2 = fj ei/l(dg(x'QV)_dg(x'y’)_[(xl_:)’l)_(xl_y{)]) a(x’ y, ){)a(yl/gl)a (A% yz/gl)
2

1
X a(x,y', 1) a(y1/&) a(A2 y,/&) dydy .
Notice that by Lemma (5.2.2), the phase function equals 0(|x, — y,|?) + 0(|lx, — y5|2).
1 1

Since |x,| < &u z and |y,], ly;] < €472, we see that the phase in the exponent is of
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order &2 on 1,,, and the oscillation is eliminated in the integrand by choosing &; small. Thus
onf,
T f GOI? | = 27
Similarly,
2 _
|T/1.g(x)|2 |-Qy| = u 1:

Thus, ||T,1fTﬂg||L2(ﬂ ) is bounded below by u74A72. On the other hand, |Ifll,llgll, <
u
¢ (4,) *for f and g given by (88) and (89), we have

1
() Taf Tugll,/ClIFlIz llgllz) = Ceyp 2Y4,

This example exhibits the concentration of eigenfunctions along a tubular neighborhood
of a geodesic leading to the sharpness of the bilinear spectral projector estimate (76), where
our bilinear generalization of the main result in [28] is motivated.

Remark (5.2.4)[174]: Comparing this example with (84), one may suspect that (84) can be
further refined. Indeed, one may observe that the example suggests the possibility of refining
(84) by strengthening the L?-norm of the eigenfunction corresponding to the higher

frequency on the right side to a Az -neighborhood of the same geodesic segment for the
lower frequency eigenfunction. An interesting problem would be to see if the following
refinement of (84) is valid:

||eleﬂ||L2(M)

B

1

< Cgy A% sup j |e”(x)|2 dx j le;(x)|% dx || . (90)
YEII T 1 T 1

2 2+80 (Y) 2 2+€0 (Y)

In view of y,e; = e;and y,e, = e,, we are reduced to estimating ||T,1fTMg||L2 . By

scaling, we may assume the injectivity radius of M is large enough, say infj M > 10. We
use partitions of unity on M to reduce the L? integration of T,fT,g on the geodesic
ball B(x,,6) with § > 0 small. In view of the property of supp a, we may apply partition
of unity once more and assume supp f < B(y,y,6) and supp g < B(zy, &) for some y,
and z, satisfying

1 < dy(xp,¥0),dg(xp,29) < 2.

Next, we need to choose a suitable coordinate system to simplify the calculations on a
larger ball B(x,,10). As in [28] and [175], we shall use Fermi coordinate system about the
geodesic y connecting x, and y,. Let y, be the geodesic through x, perpendicular to y. The
Fermi coordinates about y is defined on the ball B(xy, 10), where the image of y, N
B(x,,10) in the resulting coordinate system is parameterized by s — {(s,0)}. All the
horizontal segments are parameterized by s — (s, t,) and we have

dg((sl’ to), (Sz»to)) = |s; — syl
Clearly, in our coordinate system, y, is on the 2nd coordinate axis, and z, is a point
satisfying 1 < d;(z,,(0,0)) < 2.

Therefore, if we set y = (s,t),z = (s',t") in this coordinate system, we may write

T,f and T, g locally as
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T, f () = j ey (60q(x, (s, £), 1) F(s, £) dsdt, 91)
IRZ

T,g(x) = j eitdg(x(s.0) g (x, (s, "), 1) g(s', tNds dt.  (92)
]RZ
Moreover, by noting that 1 < dj(xo,¥0),dg(x0,20) < 2 and y € B(¥,,0),z €
B(zy, 6), we shall assume
maX{|S|, |t - dg(ym x0)|, |dg((5,; t’); ZO)|} < 5

We remark that we are at liberty to take 6 to be small when necessary.

We deal with the case when the angle between y and the geodesic y' connecting x,
and z, is bounded below by some &, > 0. To do this, we shall use the geodesic normal
coordinates around x,. Set {ey, e,} to be the orthonormal basis in T, M, where the metric g

at x, is normalized, such that el is the tangent vector of y, at x, and —e, is the tangent
vector of y at x, if y is oriented from x, to y,. Let {w;, w,} be the dual basis of {e,, e, } and
set {x; = w; o expy' }j = 1,2 to be the Riemannian geodesic normal coordinate system
on B(x,,10), where x, = 0 and y is parameterized by x, —» {(0,x,)}, whereas y= is
parameterized by x; - {(x;,0)}with |x;|] < 5. Letf, = 6(z,) be such that z, =
d,(x, zo)(cos By, sin 6,), where the angular variable is oriented in clockwise direction. It
follows that y'+ is given by r = exp, (( cos @q, 7 sin @,)) with ¢, = 6, + % and |r| <
5.
Writing

y = (ry cos 64,77 sin 6,), z = (r, cos 0,,1, sin 6,) (93)
in geodesic normal coordinates, we have

T f(x) = U 2y (x1.60) g (x, (ry, 0,), 4) f(ry, 0,) dryd6y, (94)

T,9(x) = jj eihdg(x.(r202)) g x, (ry,0,), 1) g(ry, 6,) dr,df,. (95)
We recall the following fact.
Proposition (5.2.5)[174]: Let &, > 0 be a small parameter. Assume | 0(z,) +§| > &

and | 0(zy) — §| > &,. If we choose 6 small enough depending on &,, there exists C such
that

-12
IT2f Tugll, < €(A) “Nfl2llgllz: (96)
Thus in order to prove Theorem (5.2.1), it suffices to consider either |9(Zo) + %l <

&, Or |8(zo) - §| < &,. This confines z, in a small neighborhood of the geodesic y by
compressing y and y' to be almost parallel with each other.

Essentially, this proposition is proved in [3] based on the following lemma.
Lemma (5.2.6)[174]: Lety = expo(r(cos 6,sin 6)) and ¢, (x,0) = d,(x,y). For every
0 < & < 1,thereexistsc > 0,8, > 0 such that for every |x| < &y,

|det (ane)(Pr(x:Q): vx69¢r (X,Q )l = C, (97)
if[0 — 0’| = e,and |0 + T — 6| = &,. Inaddition, for every 8 € [0, 2m],
|det V, 097 (x, 0),V,.05¢,(x,0)| = c. (98)

This is an immediate consequence of the following fact.
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Lemma (5.2.7)[174]: Let y > k(y) = expy’* (v) be the geodesic normal coordinates
vanishing at x,, as described above. Then we have

deg(xry) |x:x0 = k() /). (99)
Proof. Relation (99) is equivalent to Gauss’ lemma. See [28] and [3].
The map y — k(y) is a local radial isometry. See [28].
We sketch the proof of Proposition (5.2.5) briefly for completeness. In our situation, we

have (y,) = —% . Fixing a parameter &, > 0, we assume |9(zo)+§| > & and

|9(zo) - §| > g,.5Incey € B(yy,6),z € B(zy,6) given by (93), we may choose 6 0.
By Schur’s test, it suffices to show

K(61,62,61,6;) < C(ul6, — 6] + A16; — 61]) —10, (100)
where

K(6,,6,, 6,05 = f e Wau(xi01.0:0102) A(x; 0,,0,0,,65) dx,

A(x; 91; 9{; 92; Qé) = a(x, (Tl, 81); A)a(xr (rlr 9{)) A)a(xl (rz, 92)1 ‘U)a(x, (Tz, Hé); H);

W, (6 01,05,00,00) = 1 (¢r, (,01) — dy, (1,0)) + 1 (br, (.02) — by, (,69)).
For all multi-index a, |a| < 10, Lemma (5.2.6) and the above formula give
Vil = CQAI6, — 611 + ul6, — 05D),]08 W] < CA16, — 61| + ul6, — 65)).
Now (100) follows from integration by parts.

We will employ the strategy introduced by [170] (see also [48]), where a microlocal
refinement of Kakeya—Nikodym averages are exploited. From now on, we shall always
assume

|6(20) +g| < e K1

where% = —0(y,). Recall that we may write, modulo trivial errors,

1 .
mﬂmzzfj eM45)) ¢ (6, ) f(dy,  (101)
RZ
1

Xug(x) ~ uz fRz pihdg(x,2) a,(x,2) g(z) dz, (102)

with supp f < B(y,,6),supp g < B(zy,6)and x € B(0,0).

We may choose &, > 0 sufficiently small to make z, to be within an fixed small
neighborhood of y.

To decompose the phase space, we shall use the geodesic flow &, (y,&) on the
cosphere bundle S*M, which starts from y in direction of & € S;M. We use the Fermi
coordinates around y to write

y(@),§@) = @ (1,6, (y(0),¢(0) = (%),
where ¢ (7 ) is the unit cotangent vector in T);(7)M. Define 0 : (y,{) € S'M - R XR

by

Mg, @, (v,$)
$1 7 To
G(y' f) = (H CD (y! f); )
e |10, (v, )
where T, is chosen so that y,(to) = I1,,®,, (y,§) = 0.By Il,, we mean the projection to

the component of ¢-variable.
Remark (5.2.8)[174]: As in [170], we require |&;| < & with & small enough with y €
B(yy, Cod). Moreover, 0 is constant on the orbit of ® and |0@(y, §) — 0(z,1)| can be used
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as a natural distance function between geodesics passing respectively through (y,§) and
(z,m). Next, we microlocalize y,f and x,g by introducing smooth functions «,(y) and
a,(z) adapted respectively to the ball B(y,, 26) and B(z,, 28) and setting
Q 0,8) = ax() PO, &) + v)Y(SI/D) (103)
Py (z,n) = ax(2)B(87'0(z,1) + v) Y(Inl/w) (104)
where 172 < @ < 1,v,v € Z?, with 8 smooth such that

Z B(- +v)=1LsuppB < {x € R*: |x| < 2}, (105)
VEZ?
and ¥ € Cy° (R) is supported in [c,c — 1] for some ¢ > 0. Let us take a look at the

symbols Qy (v,¢) and P§ (z,n). First, we define B(0710(y, &) + v)and B(6710(z,n) +
v) on the cosphere bundle. Since these two functions are of degree zero in the cotangent
variables, we then extend them homogeneously to the cotangent bundle. The above
Qy (v, &) and Py (z,n) are well-defined for ¢ = 0,n # 0.Givené, B(0710(y, &) + v) =
0 unless y belongs to a tubular neighborhood of y,,, where

w={y@)-2<1<2(E)ikr) =0 5,8,00,8)+ 6, = 0}.
Moreover, if we set v = (v4,v,), the direction of y, at y(z,) is determined by 6v, and is
independent of 2. Since (y,¢) = @7 (y(10),€(10)) and y(to) = (¥1(7o),0) with
v1(t9) = 6v,; + 0(6), one easily finds that y € TC,0(y,), for some C; = 1. Similar
statements hold for Pj (z,7).

Let Qy (x,D), Py (x, D) be the pseudo-differential operators associated to the symbols
defined in (103) and (104) respectively. We next record some properties of Qg (v, D) and
Py (z,D). The first lemma indicates that these two kinds of operators provide a natural
microlocal wave-packet decomposition in the phase space for 2-dimensional manifolds.
Lemma (5.2.9)[174]: If A71/2*¢ < 9 < 1 withe > 0 fixed, the symbols Q and
Pg belong to a bounded subset of S{’/Hm/z_g. Then there is C, and C, > C; such that for

A"1/2+8 < 9 < 1, we have
Qg (x,D)fll 2 < Cgllflle(Tcze(yv)) + Cy A7V IFI (106)

IPg (x, D)gll,z < IIngIILz( )+ Cw £V ligll.  (107)
Moreover, for any integer N > 0, one may write
xif = ) xae QD) f + Ryf.ifsuppf < B(y6), (108)

VEZ?

Xud = ). Xuo PY(6D)g + Ry gifsuppg € B(z,6), (109)

VEZ?

with [|Ryll 2 o0 S A7V, ||RM||L2%°o u™N,

Proof. That Qg (y,¢) € Sf/2+£,1/2_£ has already been proved in [170]. If we use u > 4,
we get pu~tAY?27¢ < u~Y27¢ and the same calculation as for Qy Vields that the
Py (z, D) belong to a bounded subset of pseudodifferential operators of order zero and type
(1/2+4¢,1/2 — €). To see (106), one observes that the kernel K (x,y) of the operator
Qp is bounded by 0(2") if y does not belong to Tc,0 (1) for some large C, > C, by
using integration by parts. We can deduce (108) from (105). In fact, if we recall the process

of constructing parametrix for the half wave operator e’™v=2s in [16], we may use
integration by parts to see that in (108), one may assume f
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(&) = 0if |é] & [c,, Cy] up to some terms of the form R, f. It suffices to see the difference
of f(x) and Y, Qp (x,D)f(x)is of the form R;f (x). This is easy due to the fact that
Y(€]/2) = 1 on the support of f by choosing suitable ¢,C and (1 — a,(x))f(x) = 0.
Now (105) yields

G@f () = ) Qf (DI ().

Similar argument yields (107) and (109).
Now, we recall the microlocal Kakeya—Nikodym norm in [170], corresponding to
frequency A and 8, = A~1/2%%
1 Wencae) = sup (sup 8120105 G, DIl ) + N iz (110)
0s60<1 \ve
As pointed out in [170], the maximal microlocal concentration of f about all unit geodesics
in the scale of 6 amounts to the quantity

sup 87Y2]1Qy (x, D)f Il 2 (we)-

VEZ2
From Lemma (5.2.9), one can prove |||f|llmenae) < Ce, 1 Illknae,)- We refer to [170]

for more details. Similarly, for the same 6,, we can define
lglllncrey = sup (sup 0-V21PF Go DIgllzany) + gllzqan, (111)
0p<0<1 \vezZ2
again by Lemma (5.2.9), we see that [||glllmxnre,) < Ce, 1191 lknaey)-
Lemma (5.2.10)[174]: For any & > 0, there exists some C., > 0 such that for all
/1—1/2+€ <0 < 1,
< Cellfllzz,

D @) e Qsf D, @) e Pg
v L2 v L2
Proof. The L2-estimates (112) are valid thanks to (105) and the classical calculus of pseudo-

differential operators of type (1/2 + ¢,1/2 — &) withe > 0.
We describe next the kernels of the operators x;,Qp := (xa ° Qg )(x,D) and x,Pg :=

(Xu ° Pg )(x,D) following [170].
Lemma (5.2.11)[174]: Denote by (x;Qp )(x,y) and (x,P§ )(x,z) the kernels of the
pseudodifferential operators x,Qp (x,D) and y,Pg (x,D) respectively. Assume 6 €
[CoB0, 1] With 8, = A~Y/2%€ and C, » 1. We can find a uniform constant C so that for
each = 1,2,3,..., we have

|(aQe) (x| < Cy A7V ,ifx & Te,(nory & Te,(v,),  (113)

< Cellgllz. (112)

and
|(xuP8)(x,2)| < Cyu™ ifx & Te,(n)orz & Te,(v,). (114)
Furthermore,
1
Q9 (x,y) = 22e@) q y(x,y) + Oy (A7), (115)

1,
(XuP)(x,2) = pz e ®D by o(x,2) + Oy V),  (116)
where we have the uniform bounds
|(VE)%a, 000, y)| < €071, |(VE )%y 0(x,2)| < C,071%,  (117)
and

|6tj av,g(x,xv(t))| < C,x €y = {x,(0)}, (118)
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|0£by,6(x, x,(®))| < C,x € 1, = {x,()}, (119)
where Vi denotes the directional derivative along the direction perpendicular to the
geodesics {x, (t)} withv = v orv and
Yy = {zv(r): -2 <1< 2,(ZV(T),T]V(T)) = &, (z,1,),0710(z,n,) + v = 0}.
Proof. The properties for (x;Qy)(x,y) are exactly the same as in [170], and the proof is

1
identical to that of Lemma (5.2.6) in [170]. Since 8 > u"2*%, the properties for
(x2Pg)(x, z) follows from the same proof,
We have the following.
Lemma (5.2.12)[174]: Assume 8 = 6, and N; is fixed. Then there exists C, > 1, when
lv — V| + [v — 0] = Cyand |[v — v|,|V — T] < Ny, we have
4

| j X2Q5hs (COxu PG by () x2Q5 hs () X P§ ha(x) dx| < Cy ™ 1_[ Bl
j=1

Proof. To get Oy (1) decay as claimed, we need to split into two cases depending on the

size of u. Assume first u > A2

It suffices to consider the kernel

K(y,z9,2) = f x2Q8 G, M x Py (x, 2)x2Q8 (x,9) x,P§ (x,2)dx.

Indeed, by Lemma (5.2.11), up to a Oy (u~") error, we can restrict the domain of
integration here to 2 = T¢, (1) N T¢, (vp)-
Plugging (116) into the expression of K(y, z, ¥, Z), we get

K(y,z,9,%) = u j b(x,y,2,9,5)e™ (agCe-aye2) g 4 Oy (u™),
n

where
b(x,y,2,9,2) = x2Qp (x,¥)x2Q8 (x,9) by g(x,2) by o (x, 2).
It is easy to see that b(x,y, z, J, Z) satisfies
Ve b(x,y,2,5,2)| < cAle*,
Now we consider the phase function
u (dg (x,z) — dg(x,z”)).
The gradient reads
uv, (dg (x,z) — dgy(x, Z)).
We claim that for C, big enough, there exists some ¢, > 0, such that
19, (dg(r,2) = dg(x,2))| 2 <o,
then our lemma follows from simple integration by parts argument.
Indeed, since x € Tg, (1) N Tc,(¥5),z € T, (1) and Z € T¢,(yy), we see that

v (dg (. 2) — g, )| v — 6,
noticing that
v —dl=lv—-9V|—-|v—-uvul-|V—-17=|v— 7V — 2N,
thus for C, big enough,

1 1
|U—ﬁ|2§(|v_ﬁ|+ |V_17|)_N1 ZECO_Nl = Co,

finishes the proof for the case u > 2.
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Now we assume p < A%, then again by Lemma (5.2.11), up to a Oy (u™N) =
0,y (A72N) error, we can further restrict the domain of integration in this case to Q' =

TC@ (VU) N TC9 (Yﬁ) N TC@ (VV) N TC9 ()/V)
Similarly as above, by plugging (115) and (116) into the expression of K (y, z, ¥, Z), we
see that the resulting phase function is given by

A(dg(r,y) = dg(x,5)) + (dg(x,2) — dg(x,2)).
The gradient reads
AV, (dg(x,y) — dg(x,f/)) + uv, (dg(x,z) — dgy(x, Z)).
Let us denote V, (dg(x, y)) = Y , here Y is a unit vector in T, M, similarly denote
v, (dg(x,y)) = Y, Vy(dy(x,2)) = Zand V, (dg(x,z”)) = Z. By the separation

conditions we have, it is easy to see that 2(Y,2),2(Y,Z) < N,6 and 2(Y,Y) +
£(Z,Z) = Cy0.We claim that
U

L U A~ 7 S U
Y -7 +5 (2 -2)] =|(¥ +52) —(7 +32)| = 36, (120)
which implies the desired result using integration by parts. Indeed, it suffices to show that

L(Y +%Z,17 +%Z~) IS bounded below by some uniform constant times 6. Note that

(Y +52,y),2(7,7 +52),2(v +£2,2),2(2,7 +5Z) < N,6, we have
wooooou .
(v +22,7 +IZ) > £(Y,Y) — 2N,6,
similarly,
[T i
(Y #3527 +52) = £(2,2) - 2N,6.
Thus for C, large enough,
wooo Hs 1 . . 1
2(Y +32,7 +22) 25 («(v.7) + £(2,2)) = 2M,0 25 Cof — 2M,0 = o,

finishes the proof.
We use orthogonality argument to reduce the proof of Theorem (5.2.1) to a specific
bilinear estimate. We use Lemma (5.2.9) and Minkowski’s inequality to estimate

lxaf xugll, by

X2Qs, f xuPs, 9 (121)

lv—vlsM 2

O0(logA)
Y D kS aPh| (122)
f=log M/ log 2 2¢<|lv—v|<2ftl
for certain dyadic M large enough. The square of (121) is estimated by

2

| 2, Coxul, 08GO xaPRLCO) dx, (123)
lv—v'|+|v'—v|=Cy |v—v'|+|v'—v|2C,
where |v —v|,|v_—v_| < M.
By Lemma (5.2.9), the second term of (123) is negligible by choosing C, sufficiently
large.
We can estimate the contribution of the first term as
196



2
125, f 2. P8, 9]l
VEZZ v:|lv-v|sM
If we use the bilinear estimate (76), we can estimate this sum by

1 Y v N2
2 eggll > lles sl

VEZ?2 v:lv-v|sM

By the L?-orthogonality, we see the contribution of (121)is

=

& 1. v ~12\2
27 llgl, x (22 %sup [k f%)
%
which corresponds to (79). Similarly, since the sum is symmetric, we can also bound (121)
by

N =

& 1. Y
A7 NfI, x (22 %sup|Py,qll2)”
v

which corresponds to (80).

The second microlocalization. For the off diagonal part (122), we will reduce the
matters to a bilinear oscillatory integrals as in [170]. Fixing £ = logM/ log2, we see that if
2¢ < |v — v| < 2%+ then the distance between ¥, and ¥, in the sense of Remark (5.2.8) is
approximately 278,. To explore this and use orthogonality argument, one naturally employs
wider tubes to collect thinner tubes by making use of the second microlocalization.
Precisely, up to some negligible terms, we may write for 6, = 2%, with c, to be specified
later

X2Qg, f(x) = z (X202, ) © @3, £CO, xuPE, 90

0, E7Z?
~ D (wr,)e P o
0, EZ?
Noting that the kernels of the operators (XAQZ:G{ ) o Qp, and ()(MPC?@) o Py decrease
rapidly unless T¢ c.6,(¥s,) N Te,a, ) # @ and T¢ c0,(vs,) N Teo, ) # @, we

have by choosing M large enough, there are N, = N,(cy, M) and N; such that up to some
negligible terms

X2Qp,f () xuPg g (x) (124)
2¢<|v—v|<2ft?

2. > (0e%,) e 05s ) (1uP5,) © Ph9G).

01,0,€72,Ny<|lo;—0,|sN; 2¢<|lv—v|<2f+1
Moreover, we may find a C; > 0 having the property that for every g; and o, there are
v(gy) and v(a,) suchthat [v — v(ay)|, [v — v(ay)| = C52¢ implies
o —-N o —-N
G0z, ) @5l 2o 2 [ (eubs,) = P 007
forall N = 1,2,.... Therefore, we may estimate (124) as follows

% v 0-1,0-2 0'1,0'2
Lol s D [ ThEeTGEG) dx
NOS|O'1—O'2|SN1
loy —0ql+loy—0,12C
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0'1 02 01,02
DY kS RaIer:
N0S|O'1—O'2|SN1
loy—0q|+|o—03]2C

where N, can be sufficiently large by choosing ¢, small and
T RACES ﬂ X2°Q%%,) @y) (xu© P23, (1, 2)F (y,2)dydz, (125)

F(y,2) = > Qy FOIPLg(z),  (126)
2¢<|lv—v|<2f+?
lv(o)—v|+|v(o,)-v|sC32¢
with F(y,z) = 0if (y,z) € B(yy,Co0) X B(zy, Cyd). It follows again from Lemma
(5.2.12) that if we choose C large enough, the second term in the expression preceding (125)
Is negligible.
To evaluate the first term there, we are reduced to estimating

Z ”Tflligj’ ||2L2(B(0,5))' (127)

No<|o;—0,|<N,
We shall need the following proposition whose proof is postponed.
Proposition (5.2.13)[174]: Let

AULZZF(JC) = ﬂ XA °Qc09€)(x y) ()(,i 00 P )(x 2) F(y,z) dydz. (128)

Assume as before that § > 0 is sufficiently small and 6 is larger than a fixed positive
constant times 6,. Then if N, is sufficiently large and N; > N, is fixed, there exists a
positive constant C = C,, such that
01, 0'2
”Tl”ef ||2L2(B(0 5))

Assuming (129), we can now complete the proof of Theorem (5.2.1). In fact, we have
2

< COP|F|l,if Ng < |0y — 0 < Ny (129)

X2Qq,f XuPg,9
2"<Iv—v|<2{’+1 )
|2
-1
< c(2%,) I > 0%, FOIPY, 9| dyd.
No<|01 o,|sN; 2l<|lv—v|<2?t+1

lv(ay)—v]+|v(oy,)-v|=C32f
Notice that
IZ

U z Qp, fW)Pg, g(2)| dydz

2<|lv—v|<2f+t
lv(oy)—vl+Iv(o,)-vl<C52¢

- > > (@5 = 04, £.1 () * P§.9.9),
2¢<|lv—v|<2?*? 2f<|v’—v'|<2t+1
[v(o)-vI+lv(oy)-vIsC32¢  |[v(oy)—V'|+|v(oy)-v'|<C52¢

where | (Qs,) °Qp, = o(A™N) and ||(ng) °Pgl, .= o™ if v—v'| +
lv —v’| = C for Clarge. Consequently, we have up to some negligible terms
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lazalz <c@e)” ) ). Iz, 71,178,911,

N0S|O'1—O'2|SN1 |V—V(O-1)|+|U_U(O-2)|SC3 2€

SC(Z*’HO)_l sup Z ||Q50f||2 ' Z Z ||Pgog||z

g
1 |v—v(0'1)|SC3 21'0 0-2 |U_U(O-2)|SC3 Zf

-1 2
< C(26,) " llgll3sup ||Q¥q, /]|
VEZ? o- 12
Thanks to the fact that we are allowed to have an extra small power of A, we may sum over

1 < ¢ < logAt o finish the proof of (79). To get (80), one notes that the above sum is again

symmetric, thus we may interchange the role of Qg_f and Py g to get
2

— 2

02Q8.£0) xuPog@|| = €(2%60) " IIfZsup [Pk g -

2¢<ly—pl<2t+l ) ver? ?
summing over ¢ finishes the proof of (80).

We take 6 = c,60, and prove Proposition (5.2.13). We work in the geodesic normal
coordinates about a fixed point ¥ € T¢, (¥s,) N Tc,(¥s,). Without loss of generality, we
may assume X € y,, and the geodesic y,, is parameterized by {(0,s):|s| < 2}. In the
following, we denote by ¢ (x,y) = d ((x1,x,), (¥1,¥2)) the geodesic distance between x
and y.

In order to estimate the L?(B(0, §)) norm of

Tywe F(x) = ﬂ x1°Q5") 00) (X o P?) (v, 2)F (v, 2) dydz. (130)

we shall need the following lemma to further restrict the domain of x, y, z
Lemma (5.2.14)[174]: There exists a constant C, such that if we set 2, = T, (y,,) and

0, = T¢,(vs,) We have

H ¢ (22 08") @) (o PG?) (x )F (v, 2) dydz <y NNglls
Yy&ily

L?(B(0,5))
and

041,05
Au,0

< CyAN )
2o = N I 1211gll2

Similarly, we have
ﬂ (222 08") ) (xu © P?) (. 2DDF (v, 2) dydz
Z&0,

and

< Cu AV N2l g2
L?(B(0,5))

0'10'2
/1#9

Cul™ N
soosnay = VA IFI21gll
Proof. Since we know there are at most 0(A1,) many terms in the sum

Fo.=) > S0 Ph@,

v ulv-v|g[2f,20+1)

it suffices to show the L?(B(0,5)) norm of
Jj (X/l ° le) (X,y) (Xﬂ ° sz) (x, Z)f(y)g(z) dde
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satisfies our claim.,
Indeed, by Lemma (5.2.7), we can find C such that if x & T, (v5,) or y & T¢, (¥s, ),

lx208 (x, y)| < CyA7N.
Thus

| (o) enroray| < cuaifie,

L®(dx)
while we know y,, has L* — L? norm 1, so

U (Xu o PQUZ) (x,y)g(z) dz < CyA Mgl
L%(dx)
Therefore
|| Gee 05) om (e P32 @ g@ayds]| < cuaislalglhs
L2
as claimed.

The second part of our lemma follows from the exact same proof.

Remark (5.2.15)[174]: By the above lemma, we see that we can assume in (130), y €
Tey (Vo) 2 € Te,(¥Vs,), and x € T, (¥s,) N Tc,(Vs,)- Moreover, if Ny < |0y — 03| < Ny,
then we may assume the angle Ang(x; y, z) between the geodesic connecting x and y and
the one connecting x and z belongs to [é, 649]. This geometric assumption yields x,y,z €
TC,0(v,,) for some large constant C,. Moreover, we also have £(y,,,vs,) = Nob.
Noticing that d;(x,y) and d,(x, z) are comparable to 1, we claim that for N, sufficiently
large, we can find ¢ > 0 such that

|y, — z1| > c@. (131)
'-}#()'2 r}fa_ 1
G4\ Y
p
* Nt
Iy

Fig.(3)[174]: The geodesic tubes T¢, (v, ) and T¢, (v, )-
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Indeed, it is easy to see that |y,| < C6 and d (z, Vaz) < (6. Since the constant Chere is a
uniform constant, we can choose N, > C. Then we have |z;| = Ny6 — C8, see Fig. (3).
Therefore |y, — z;| = Ny6 — 2C6 = c6 as claimed.

Returning to Ty o' F (x), we have from Cauchy—Schwarz
2

|72 ZZF A ﬂ U Pl 0132)212)) o712 (x, y, 2)F (y, 2)dyrdz, | dxdy,dz,,
where € = /1/,u and
U;xyj>—wuw>+Mn@,
v z(x y,z) a01,9(xry)b02,9(xrz)-
Fix y, and z, , it suffices to prove
2
f f gihPelx; (yl'yZ)'(Zl'Zz))agl'agz (x,y,2)G(yy,z1)dy dz; | dx
Rz |/R2 o
< C(ud)GI%, (132)

uniformly with respect to y,, z, where we set G(y;,z,) = F(y, z) for brevity.
Squaring the left side of (132) shows that we need to estimate

ﬂ ¥ (x; 3’1'3’{'21'21)AZZ’692 (¢ y1,Y1,21,21)G (¥4, z)dxdy,dz,dy;dz;, (133)
where

J1 0> 01,02 01,02

A (6 yu v 20,21) = ag g (%, (v, v2), (21, 22))ag g (x, (01, v2), (21, 22))

W=V, 0 y,v121,21) = Pe(x, 01, ¥2), (21, 22) )P (x, 01, ¥2), (21, 22))
Set

01,0 . _ 'lp;,””O',O' .
KA’L’QZ(x, Y1, Y1, 21, 21) = ij e ¥ (% y1.51.2, Zl)A/-Llu,g e vy, 210, 27)dx. (134)

Then by Schur test, we are reduced to proving

! ! ! !
Y1,21,21) | dys,dzy

Supj Kl;liez(x Y1JY1:Zl:Zl)|dY1rdzlsup]
v1,2; JR? Y1,21

Au 6
< C/Aub.
By symmetry, we shall only deal with the first one.
By Remark (5.2.15), we have
ly; — 211 = ¢O,|y; — 21| = 6. (135)

This would allow us to study the oscillatory integral (134) using the strategy of [28] and a
change of variables argument similar to the one in pp.217-218of [3]. In fact, if we let

Y(x,y1) = ¢(x, (y1,¥2)), then is a Carleson-Sjolinphase for fixed y,, i.e.
det( ey Prn >¢ 0, (136)

?’[}3,5,1,'3/1'3’1 7’[}3,5,2,'3’1:3’1
see [16], [28]. Changing variables (y,,z,) ~ (t,t'), (y1,21) = (£,7") by
(v =0y -2 (2= (i - 2p)?
{ 2U ’ 2U ’
A ’ A ’

~/

k r’=zl+;y1 k T =z{+;y{

where we may assume y; > z; by symmetry. It is clear that the above bijective mapping
sends variables from {y; —z; = c6}to {(r,t) : T = ¢;30,/2u}, whose Jacobian reads
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D(t,t")

D(y1,21)
The phase function in (134) goes to

Plx; 7, 7,7, = W5 y1, ¥4, 21, 21),
under the change of variables. The Carleson-Sj6lincondition allows us to obtain as in [3]
V. @7, 87, 8)| = |t — & + |t/ — 7|
|6§'§‘T’(x; T,f,r’,f’)| <C,(t—1l+ 1|7 =%, |la| <5

In view of integration by parts and relation (135), we have for fixed (y;, z;) hence fixed
(t, "), thus

= (14 ¢e)(2er)/?

04,0:; . ; I}
ff |K/'L;1t,92 (6 y1,¥1, 21, Z1)| dy,,dz,
V1—212c0O

-1/2

A
< Cff 1+ ult — |+ pulc’ = F~° (—T) drdt’
r=cA0?%/2u U

< C/Aub,
finishes the proof.
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Chapter 6
Principal Spectrum and Properties of the Principal Eigenvalue

We discuss the applications of the principal spectral theory of nonlocal dispersal
operators to the asymptotic dynamics of two species competition systems with nonlocal
dispersal. We show the equivalence of different definitions of the principal eigenvalue. We
also study the behaviour of 4, (£, + a) with respect to some scaling of K. For kernels K of

the type, K(x,y) = J(x — y) with J a compactly supported probability density, we also
establish some asymptotic properties of A ( omao — i + a) where L, ., o Is defined by

Lonaldli= 51, 1 (52) 60) dy. We show tha lim 2, (Lop0— 1/0° +a =

A (DZU)A + a) , Where D, (]) := fRN J(2)|z|?*dz and A, denotes the Dirichlet principal
eigenvalue of the elliptic operator. We obtain some convergence results for the
corresponding eigenfunction ¢,, ;.

Section (6.1): Principal Eigenvalues of Nonlocal Dispersal Operators and Applications
We devoted to the study of principal spectrum of the following three eigenvalue problems
associated to nonlocal dispersal operators,

Vq UD k(y —x)u(y)dy —u(x)|+ a;(x)u = Au(x), x €D, (1)
where D < R" is a smooth bounded domain,
V2 fD k(v — 0)u®) — u@)]dy + az()ulx) = du(x), x € D,(2)
where D < RV isas in (1), and
Vs JRN k(y — Y)u(y)dy — u(x)] + az(®)u(x) = u(x), x €RV,

u(x + pje;) = u(x), x €RVN,

where p; > 0,e; = (6;1,8j5, -+, 6y ) With §;, = 1ifj = kand §;, = 0ifj # k, and
az(x +pje;) = az(x),j = 1,2,---,N. In (1), (2), and (3), k() is a nonnegative c?t
function with compact support, k(0) > 0, and RRN k(z)dz = 1.

Observe that the nonlocal dispersal operators in (1), (2), and (3), that is, u(x) —
Dk(y — xu(y)dy — u(x),u(x) — Dk(y — x)[u(y) — u(x)]dy,and u(x)
RN k(y — x)u(y)dy — u(x),can be viewed as u(x) — RN k(y — x)[u(y) —
u(x)]dy with Dirichlet type boundary condition RN\D k(y — x)u(y)dy = 0 forx €
D,u(x) — RN k(y — x)[u(y) — u(x)]dy with Neumann type boundary condition
RN\D k(y — x)[u(y) — u(x)]dy = 0 forx € D,and u(x) — RN k(y —
x)[u(y) — u(x)]dy with periodic boundary condition u(x + p;e;) = u(x) forx €
RY , respectively.

Observe also that the eigenvalue problems (1), (2), and (3) can be viewed as the nonlocal
counterparts of the following eigenvalue problems associated to random dispersal operators,

(3)

{( viAu(x) + ai(x)u(x) = Au(x), X € D, @
u(x) = 0, x € dD,

(voAu(x) + a,(x)ulx) = Au(x), x € D,

u (5)
i (x) =0, x € dD,
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and

v3Au(x) + az()u(x) = Au(x), x €RN, ¢
{u(x + pje) = ux), x €RN, (6)
respectively. [199], explore the relations between (1) and (4) (resp. (2) and (5), (3) and (6))
and prove that the principal eigenvalues of (4), (5), and (6) can be approximated by the
principal spectrum points of (1), (2), and (3) with properly rescaled kernels, respectively

(see Definition (6.1.1) for the definition of principal spectrum points of (1), (2), and (3)).
The nonlocal dispersal operator u(x) — Jov k(v — x)[u(y) — u(x)]dy with

Dirichlet type or Neumann type or periodic boundary condition and the random dispersal
operator u(x) +— Au(x) with Dirichlet or Neumann or periodic boundary condition are
widely used to model diffusive systems in applied sciences. In particular, the random
dispersal operator u(x) +— Au(x) with proper boundary condition is usually adopted when
the organisms in a diffusive system move randomly between the adjacent spatial locations.

Nonlocal dispersal operator suchas u(x) — RY k(y — x)[u(y) — u(x)]dy is applied
when diffusive systems exhibit long range internal interactions (see [183], [184], [147]).
Here if there is § > 0 such that supp(k(-)) © B(0,8) := {z € RN | ||z|]| < &} and for

any 0 < & < §,supp(k(-)) n ( B(0, 8)\ B(0, S)) + ©,8 is called the dispersal distance

of the nonlocal dispersal operator u(x) — RN k(y — x)[u(y) — u(x)]dy. As a basic
technical tool for the study of nonlinear evolution equations with random and nonlocal
dispersals, it is of great importance to investigate aspects of spectral theory for random and
nonlocal dispersal operators.

The eigenvalue problems (4), (5), and (6), and in particular, their associated principal
eigenvalue problems, are well understood. For example, it is known that the largest real part,
denoted by Az ; (vq,a,), of the spectrum set of (4) is an isolated algebraically simple
eigenvalue of (4) with a positive eigenfunction, and for any other A in the spectrum set of
(4), ReA < Agp1(v1,a1) (Ag, 1(vy, aq) is called the principal eigenvalue of (4)). Similar
properties hold for the largest real parts, denoted by Ag,(v,,a;) and Ag,, (v3,as3), of the
spectrum sets of (5) and (6).

The principal eigenvalue problems (1), (2), and (3) have also been studied recently by
many people (see [118], [146], [187], [189], [200], [199]). Let A;(v4,ay)
(resp.A,(v4,a3),A3(vs, a3)) be the largest real part of the spectrum set of (1) (resp. (2),
(3)). 1,(vy, ay) (resp. A, (v, ay), A3 (vs,a3)) is called the principal spectrum point of (1)
(resp. (2), (3)). A,(vy, ay) (resp.1,(v,, ay),A3(vs,a3)) is also called the principal
eigenvalue of (1) (resp. (2),(3)) if it is an isolated algebraically simple eigenvalue of (1)
(resp. (2), (3)) with a positive eigenfunction. It is known that a nonlocal dispersal operator
may not have a principal eigenvalue (see [118], [200]), which reveals some essential
difference between nonlocal and random dispersal operators. Some sufficient conditions are
provided in [118], [189], and [200] for the existence of principal eigenvalues of (1), (2), and
(3) (the conditions in [118] apply to (1) and (2), the conditions in [189] apply to (1), and the
conditions in [200] apply to (3)). Such sufficient conditions have been found important in
the study of nonlinear evolution equations with nonlocal dispersals (see [118], [185], [187],
[189], [190], [191], [200], [201], [202]). However, the understanding is still little to many
interesting questions regarding the principal spectrum points/principal eigenvalues of
nonlocal dispersal operators, including the dependence of principal spectrum points or
principal eigenvalues (if exist) of nonlocal dispersal operators on the underlying parameters.
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The objective of the current is to investigate the dependence of the principal spectrum
points of nonlocal dispersal operators on the underlying parameters. We study the effects of
the spatial inhomogeneity, the dispersal rate, and the dispersal distance on the existence of
principal eigenvalues, on the magnitude of the principal spectrum points, and on the
asymptotic behavior of the principal spectrum points of nonlocal dispersal operators with
different types of boundary conditions in a unified way. Among others, we obtain the
following:

(a) criteria for 1;(vy, a;) (resp.1,(v,, ay), A3 (vs, az)) to be the principal eigenvalue of
(1) (resp. (2), (3)) (see Theorem (6.1.14) (i), (ii), Theorem (6.1.15) (iii), and Theorem
(6.1.16) (iii) for detail);

(b) lower bounds of A;(v;,a;)in terms of @; where @; is the spacial average of
a;(x) (i = 2,3) (see Theorem (6.1.14) (iv) for detail);

(c)  monotonicity of A;(v;,a;) with respect to a;(x) and v; (i = 1,2,3) (see Theorem
(6.1.14) (v) and Theorem (6.1.15) (i) for detail);

(d) limits of A;(v;,a;) asv; » Oandv; —» o (i = 1,2,3) (see Theorem (6.1.15)
(iv), (v) for detail);

(e) limits of A;(v;,a;,8)as8 — 0and § — o in the case k(z) = (%N k(z6)and

k(z) = 0, supp(k) = B(0,1), RN k(z)dz = 1, where Ai(vi,a;,8) =
A(vi,a) (i = 1,2,3) (see Theorem (6.1.16) (i), (ii) for detail).
We also investigate the applications of principal spectrum point properties of nonlocal
dispersal operators to the asymptotic dynamics of the following two species competition
system,

(ut = v[j k(y — x)u(t,y)dy — u(t,x)] + uf(x,u + v),x € D
1 (7)

kvt = v j k(y —x)[u(t,y) — u(t,x)]dy + vf(x,u + v),x € D,
D

where D and k(-) are as in (1) with k(=z) = k(z) and f(-,) is a C* function satisfying
that A, (v, f(-,0)) > 0,f(x,w) < 0 forw >» 1, and d,f(x,w) < 0 forw > 0.(7)
models the population dynamics of two competing species with the same local population
dynamics (i.e. the same growth rate function f(-, -)), the same dispersal rate (i. e.v), but one
species adopts nonlocal dispersal with Dirichlet type boundary condition and the other
adopts nonlocal dispersal with Neumann type boundary condition, where u(t, x) and v(t, x)
are the population densities of two species at time t and space location x. We show
(f)  the species diffusing nonlocally with Neumann type boundary condition drives the
species diffusing nonlocally with Dirichlet type boundary condition extinct (see

Theorem (6.1.19) for detail).

Nonlocal evolution equations have been attracting more and more attentions due to the
presence of nonlocal interactions in many diffusive systems in applied sciences. See [177],
[122], [125], [179], [180], [181], [131], [137], [135], [146], [188], [189], [190], [192], [194],
[196], [198], etc. for the study of various aspects of nonlocal dispersal equations.

We investigate the effects of spatial variation on the principal spectrum points of
nonlocal dispersal operators and prove Theorem (6.1.14). We consider the effects of
dispersal rate on the principal spectrum points of nonlocal dispersal operators and prove
Theorem (6.1.15). We explore the effects of dispersal distance on the principal spectrum
points of nonlocal dispersal operators and prove Theorem (6.1.16). We consider the
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asymptotic dynamics of (7) by applying some of the principal spectrum point properties of
nonlocal dispersal operators and prove Theorem (6.1.19).

Let
X, = ¢(D) (8)
with norm |lullx, = max lu(x)| fori = 1,2,
X" ={ueX|ulx)=0xeD}i=12, (9)
and
Xt = Int(X") = {u € X +ilu(x) > 0,x € D}i = 1,2. (10)
Let

Xs={ueCR®R",R)|ulx + pje)) = u(x),x €RY,j = 1,2,---,N}(11)
with norm ||u||X3 = m%;\(, lu(x)],
XE

Xf ={u€X;|ukx) = 0x eR"}, (12)

and
XfT=mt(X} ) = {u € X |ux) > 0,x e RN }. (13)

Let
K+ Xi = X, (K, )(x) = Dk(y — x)u(y)dyvVu € X;,i = 1,2,(14)

and

Kz Xz = X3, (Kz)(x) = RYk(y — x)u@y)dyvu € X;.  (15)
Observe that X, = X; and K, = K;. The introduction of X, and ¥, is for convenience.
We denote the identity map in the space under consideration.

Let
{h1(x) = -v; + a;(x),
e = v | Ky~ x)dy + ay() (16)
khg(x) = —v3 + az(x).

So, we have

hi()I: X; = X;,(h(H)Tw)(x) = h(Dux)vVu € X;,i = 1,2,3, (17)
where a; € X;,i = 1,2,3 and a;(-)I has the same meaning as in (17) with h;(-) being
replaced by a;(+).

In the following, for (iii), we put

D = [0,p1] x [0,pz] X+ X [0,py ]. (18)
For given a; € X;, let
1
a; =— f a;(x)dx,i = 1,2,3, (19)
IDI J p
where |D| is the Lebesgue measure of D. Let
a; max — r};lé%( ai(x): A min — l’;le%l ai(x)f
and
hi,max = max hi(X)y hi,min = min hi (x)
xeD xeD

Let c(v;X; + h;(-)I)be the spectrum of v;X; + h;(-)T forl = 1,2,3 and
A(vi,a;) = sup{Rep|p € o(v;K; + h;(:)T)}, i=1,23. (20)
Definition (6.1.1)[176]: Let 1 < i < 3 be given.
(i) A;(v; , a;) defined in (20) is called the principal spectrum point of v;X; + h;(-)T.
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(i) A real number A;(v;, a;) € R is called the principal eigenvalue of v;X; + h;(:)T if it
Is an isolated algebraically simple eigenvalue of v;X; + h;(-\)T with a positive
eigenfunction and for any pu € a(vl-IKi + hl()T) \ {Ai(vi , ai)},Reu < Ai(vi , Cli).
Observe that A;(v; ,a;) € o(v;K; + h;(-)T) (see Proposition (6.1.6)). Observe also that if
Ai(vi,a;) exists (1 < i < 3),then

Ai(vi,ai) = Ai(vi, ay).

Consider (7). By general semigroup theory, for any (uy,vg) € X; X X,, (7) has a unique
(local) solution (u(t, x; ug, vy), v(t, x; Uy, vo)) With (u(0,x; ug, vy), v(0, x; Uy, vy)) =
(ug(x), vo(x)). The main results are stated in the following four theorems.
Corollary (6.1.2)[176]: (Criteria for the existence of principal eigenvalues). Let 1 < i <
3 be given.
(i) A;(v;,a;) exists provided that max a;(x) — I)E}EIIL)I a;(x) < v; ;gg fD k(y —
x)dyinthecasei = 1,2 and max a;(x) —I;EIL)I a;(x) < v;inthecasei = 3.
(ii) A;(v; , a;) exists provided that h;(+) is in CY (D), there is some x, € Int(D) satisfying
that h;(x9) = h;max ,and the partial derivatives of h;(x) up to order N — 1 at x, are zero.
(i) There is v) > 0 such that the principal eigenvalue A;(v; , ;) of v;X; + h;(-)I exists
forv, > v}.
(iv) Suppose that k(z) = Ks(z), where ks(z) is defined as in (44) and k() is symmetric
with respect to 0. Then there is 6, > 0 such that the principal eigenvalue
Ai(vi,ai) Of viiKi + hl()l existsfor0 < § < 60.
Proof. (i) and (ii) are Theorem (6.1.14) (i) and (ii), respectively.
(iii) is Theorem (6.1.15)(iii).
(iv) is Theorem (6.1.16)(iii).

We first present some basic properties of the solutions to the following evolution
equations associated to the eigenvalue problems (i), (ii), and (iii),

diu(t,x) = v, U k(y — x)u(t,y)dy — u(t,x)| + a;(x)u(t,x),x € D, (21)
D

oiu(t,x) = vy j k(y — x)[u(t,y) — u(t,x)]dy + a,(x)u(t,x),
D
x € D, (22)

and
(diu(t,x) = v3[JRN k(y — x)u(t,y)dy — u(t,x)] + az(x)u(t,x), x € RN, 23)
u(t,x + pje) = u(t,x), x €RVN,

respectively.
By general semigroup theory, for any given u, € X; (resp. uy € X,,uy € X3),(21)
(resp. (22), (23)) has a unique solution u;(t,;; ug,vy,a;) € Xy (resp.u,(t,; ug,vy,a,) €
X5, usz(t,; ug,v3,a3) € X3)withu;(0,x; ug,vi,a;) = ug(x) (i = 1,2,3). As
mentioned before, by general semigroup theory, for any given (uy,vy) € X; X
X,,(7)also has a wunique (local) solution (u(t,; ugy, vy), v(t,; Uy vy)) With
(w(0, x; ug, vp),v(0,x; Uy, Vo)) = (up(x),vo(x)).For given ul ,u? € X;, we define
ul < u?ifu® —ut e X',
and

ul « u?,ifu? — ul e X,
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Definition (6.1.3)[176]: A continuous function u(¢t,x) on [0,7) X D is called a super-
solution (or sub-solution) of (21) if for any x € D, u(t, x) is differentiable on [0,7) and
satisfies that

diu(t,x) = (or <)vi h U k(y — x)u(t,y)dy — u(t,x)i| + a;(x)u(t,x)
D

fort € [0, 7).
Super-solutions and sub-solutions of (22) and (23) are defined in an analogous way.
Proposition (6.1.4)[176]: (Comparison principle).
(i) If u® (¢, x) and u? (t, x) are bounded sub- and super-solution of (21) (resp. (22), (23))
on [0, 1), respectively, and u' (0,-) < u? (0,),thenu! (t,) < u® (t,)fort € [0,7).
(i) For given 1 < i < 3,iful,u? € X;,ul < u? and ul = u?, then u;(t,
;ul, vy, a) < u(t; u?,v;,a) forallt > 0.
(iiiy For given 1 < i < 3,uq € X;",and a;,a? € X, if al < af,then wu;(t,
; uo,vi,ail) < ui(t,; uo,vi,aiz)for t = 0.
Proof. (i) It follows from the arguments in [200].
(ii) It follows from the arguments in [200].
(iii) We consider the case i = 1. Other cases can be proved similarly.
Note that u,(t,X; v4,a% ) is a supersolution of (21) with a,(-) being replaced by al ().
Then by (i),
ui(t,; ug, vy, al ) < ui(t,; ug,vy,a? )Vt = 0.

Next, we consider (7) and present some basic properties for solutions of the two species
competition system.
For given (u! ,v1), (u?,v?) € X; X X,, we define

(ul,v!) <1 @?,v?),iful (x) < u? (x),v! (x) < v? (%),
and

(ul,vl) <2 @?,v?),if ul (x) < u? (x),v! (x) = v? (x).
Let T > 0and (u(t,x),v(t,x)) € C([0,T) xD, R?) with (u(t"),v(t)) € X} x
X3 . Then (u(t, x),v(t, x)) is called a super-solution (sub-solution) of (7) on [0, T ) if

|(( deu(t,x) = (S)v[f k(y — x)u(t,y)dy — u(t,x)] + u(t,x)f(x,u(t,x) + v(t,x)),x € D,
4 D

I

\

ov(t,x) < (2)v f k(y — x)[v(t,y) — v(t,x)]dy + V(t,x)f(x,u(t,x) + V(t,x)),x € D,
D

fort € [0,T).

Proposition (6.1.5)[176]: (i) If (0,0) <; (ug,vg),then (0,0) <1 (u(t,; ug,vy), v(t,
; Ug,Vp)) forallt > 0 atwhich (u(t,:; ug, vg), v(t,; Uy, vg)) exists.
(iiy If (0,0) <; (uj,vy), for i= 1,2, (us(0,),v,(0,)) <, (uz(0,"),v; (0,")), and
(uy(t,x),vi(t,x)) and (u,(t, x),v,(t,x)) are a sub-solution and a super-solution of (7) on
[0,T ) respectively, then (uy (t,"), v, (t,) <5 (uz(t,), v,(t,)) fort € (0,T).
(iii) If (0,0) <1 (u;,v;),fori = 1,2 and (uy,v1) <, (uy, vy),then (u(t,; uy, vyp), v(t,
;UL V) <2 (u(ty; uy,vy),v(t,; uy,vy)) for all ¢t >0 at which both  (u(t,
; U, 1), 0(t,; uq,v1)) and (u(t,; uy, vy), v(t,; u,, vy)) exist.
(iv) Let (ug,vy) € X{ x X5, then (u(t,; ug, vp), v(t,; ug, vy)) exists for all ¢ > 0.
Proof. It follows from the arguments in Proposition (6.1.4) in [185].

We prove some basic properties of principal spectrum points/principal eigenvalues of
nonlocal dispersal operators. First of all, we derive some properties of the principal spectrum
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points of nonlocal dispersal operators by using the spectral radius of the solution operators
of the associated evolution equations. To this end, define @;(¢t; v;,q;) : X; — X; by
Cpi(t; vi,ai)uo = ui(t,-; Ug, Vi ,ai),uo € Xi L= 1, 2,3 (24—)
Let r(®;(t; v;,a;))be the spectral radius of &;(t; v;,a;). We have the following
propositions.
Proposition (6.1.6)[176]: Let1 < i < 3 be given.
(i) Forgivent > 0,etie@t = r(,(t; v; , a;)).
(ii) 4;(vi , a;) € o (v + by (DT).
Proof. Observe that v;X; + h;(-)T : X; —» X, isabounded linear operator. Then by spectral
mapping theorem,
e VKO = G(d,(t; v;,a;)) \ {03Vt > 0. (25)
By Proposition (6.1.4),
q)i(t; vi,ai)Xi+ cC Xi+ vt > 0. (26)
Hence ®;(t; v;,a;) is a positive operator on X; . Then by [195], r(®;(t; v;,a;) €
o(®;(t; v;,a;)) forany t > 0. By (25),
ettt — r(®,(t; v;,a;)) Vt > 0,
and hence 1;(v;, a;) € o(v;K; + h;(DT).
Proposition (6.1.7)[176]: (i) A;(v,,0) < O.
(i) A,(v,, 0) = 0.
(i) A3(v3,0) = 0.
Proof. (i) Let ug(x) = 1. Observe that

j k(y — Due(Ndy — up(x) < 0,
D
and there is x, € D such that

j k(y — xo)uo()dy — ue(x) < O.

D
By Proposition (6.1.4) (ii),
0 KL D(t; v,0Duyg K uy Vet >0,
and then
|®,(t; vi,0)upllk < 1 vVt > 0.
Note that for any u, € X; with ||ii,|| < 1, by Proposition (6.1.4) (ii) again,
|, (t; vi, 0Tl < [[P1(E; v1,0upll <1V E > 0.
This implies that
r(®,(t; v,0)) < 1Vt > 0,
and then 1;(v,,0) < 0.
(ii) Let uy(-) = 1. Observe that
D,(t; v5,0uy=uy Vt = 0,
And
|2 (E; v, 0)Tpll < [[P2(E; va, Ougllk = 1
forallt > 0andii, € X, with ||fiy|| < 1. Itthen follows that
r(®,(t v,,0)=1 Vvt =0,
and then 1, (v,,0) = 0.
(iii) It can be proved by the similar arguments as in (ii).
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Next, we prove some properties of principal spectrum points of nonlocal dispersal operators
by using the spectral radius of the induced nonlocal operators Uy ., o, and Vg, o (i =
1,2, 3), where a; > max hi(x) i = 1,2,3),

X

B vsk(y — x)u(y)
(Ugg.vg;a3u)(x) a »I]RN as — hS(y)

dy, i=12 (27)

ay, (28)

And

Vi fD k(y — x)u(y)dy B v (F;u) (x)
a; — h;(x) a; — hi(x)’

V3 Jon k(v — Du@)dy  v;(FGu) (x)

(Vas;,v3,a3u) (x) = £ — = — .(30)

. , az — hz(x) a; — hsy(x)

Observe that U, ,, o, and Vg, ., o, are positive and compact operators on X; (i = 1,2,3).

Moreover, there isn > 1 such that

(Ul o) XFNOD) € X+, i =123,

(Viwpa ) () = i =1,2,(29)

And
(Vivoa)” KFNLOD € XF*, 0= 1,23,

Then by Krein-Rutman Theorem,

| Uk € O WUkiw,a ) T Vdivye) € 0Wiiva), (1)
and r(Ug, v, ) and r(V;, .. o ) are isolated algebraically simple eigenvalues of Uy, ,, .. and
Vaii.vi.ai with positive eigenfunctions, respectively.
Proposition (6.1.8)[176]: (i) a; > h;max IS an eigenvalue of v;K; + h;(-)T" with ¢(x)
being an eigenfunction iff 1 is an eigenvalue of U;. ,. . with ¥(x) = (a; — h;(x))¢(x)
being an eigenfunction.
(i) a; > h;max IS an eigenvalue of v;X; + h;(-)T with ¢ (x) being an eigenfunction iff 1
Is an eigenvalue of Vaii:Vi:a’i with ¢ (x) being an eigenfunction.
Proof. It follows directly from the definitions of U, .., 5, and V., a-
Proposition (6.1.9)[176]: Let1 < i < 3 be given.
(@) r(U‘ili:Vi:a’i) Is continuous in a;(> h;max ), strictly decreases as «; increases, and
r(Uéi,vi,ai) - 0asa; — oo.
(b) T(Vaii,vi,ai) Is continuous in a;(> h; max ), Strictly decreases as «; increases, and
T(Vaii,vi,ai) - 0asa; — oo,
Proof. We prove (a) inthe case i = 1. The other cases can be proved similarly. First, note
that r(Ugy 4, o, ) is an isolated algebraically simple eigenvalue of Ug_ . o, - It then follows
from the perturbation theory of the spectrum of bounded operators that r(U;ln,lﬂ1 ) is
continuous in a; (> hymax )-
Next, we prove that r(Uc}ln,l,a1 ) is strictly decreasing as a increases. To this end, fix any
a1 > hymay Let ¢(-) be a positive eigenfunction of Uél,vl,al corresponding to the
eigenvalue r(UéLVl,a1 ). Note that for any given &; > a4, thereis §; > 0 such that

a; — ag

—— — > §,Vx € D.
a; — hy(x) !
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This implies that

) B vik(y — x)p1(y)
Ual,vl.ﬁl ¢1 (X) - L dl _ hl(y)dy

f vik(y — x)p1(y) 1
= . = dy
p a1~ h(y) I 5
a; — hy(y)
1 f vik(y — x)p1(y)
< dy
1+ 46, Jp a, — h1()’)
Ua,vya) $,(x)Vx € D
1+6 ! '
It then follows that
Uél'vl'al )

r
T(Uclll,vl,&l ) =

1
1 + 61 < r(Ual,Vl,al )’

and hence r(Uyg, v, o, ) is strictly decreasing as a; increases.
Finally, we prove that 7(UZ, . o, ) > Oasa; — oo.Note that for any € > 0, there is
a; > 0suchthatfora; > ai,
j nkly = x) dy < eVx € D.
p @1 — h(¥)

This implies that

MU vioa || <€ Vay > af.
Hence r(Ug, v, o, ) = Oasa; — oo.
Proposition (6.1.10)[176]: Let 1 < i < 3 be given.
(@) Ifthere is @; > h; max suchthat r(US ..o, ) > 1,then ;(vi,a;) > Ri may -
(b) If there is a; > Rymax SUchthat (V7 y 4. ) > 1,then 4;(vi,a;) > hymax -
Proof. We prove (b). (a) can be proved similarly.
Fix 1 < i < 3. Suppose that there is a; > h; nax such that r(V; a;,v;, ;) > 1. Then
By Proposition (6.1.9), there is @y > h; max such that

T(Vali,vi,ao) = L 5 (32)

By Proposition (6.1.8), a, € oa(v;X; + h;(-)I). This implies that A;(v;,a;) = a, >
hi,max .
Proposition (6.1.11)[176]: (Necessary and sufficient condition). For given 1 < i <
3, 4;(v; , @) exists if and only if A;(v;,a;) > h;max
Proof. For 1 < i < 3,v;X; is a compact operator. Hence v;K; + h;(-)I can be viewed
as compact perturbation of the operator h;(-)I. Clearly, the essential spectrum o,¢;(h;I) of
h;(-)I is given by

Oess(Nil) = [hi,min :hi,max I
Since the essential spectrum is invariant under compact perturbations (see [182]), we have

O-ess(vi:K‘i + hil) = [hi,min :hi,max ]'
where g,..(v;K; + h;I) is the essential spectrum of v;X; + h;(-)I. Let
0aisc(Vi¥; + WD) = oK + hil)\oess(viK; + hyl).
Note that if 1 € a,;,.(v;K; + h;I), then it is an isolated eigenvalue of finite multiplicity.
On the one hand, if 4;(v;,a;) > hymax (x),then 4;(v;, ;) € 04i5c(vi¥; + hil).By
Proposition (6.1.8), 1 € ¢ U;i’viji(vi,ai) . Hence
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..r (U;'i'vi,zi(vi,ai)) > 1.
By Proposition (6.1.9), there is 4 > 1;(v;, a;) such that

r(vl, s =t

This together with Proposition (6.1.8) implies that A is an isolated algebraically simple
eigenvalue of v;X; + h;(-)I with a positive eigenfunction. By Definition (6.1.1) (ii),
/11' (Vi , al-) exists.
On the other hand, if Ai(vi,ai) eXiStS, then ii(vi,ai) = Ai(vi,ai) € adl-sc(vi%i +
hll) This ImplleS that ii(vi , ai) > hi,max (X)

Finally, we present some variational characterization of the principal spectrum points
of nonlocal dispersal operators when the kernel function is symmetric. We assume that k(+)
Is symmetric with respect to 0. Recall

Ky i Xy o Xp (Kan)(x) = jRN Ky — Du@)dyvu € X,

For givena € Xj, let

k@) = ) kG + Gipujberdven ) (33)
j1!j2!'”!jN €Z .
where py, p,,- - - py are periods of a(x). Then k() is also symmetric with respect to 0 and
(HKsu)(x) = j k(y — x)u(y)dyvu € Xs, (34)
D

where D = [0,p;] X [0,p,] X -+ X [0,py ] (See (18)).
Proposition (6.1.12)[176]: Assume that k() is symmetric with respect to 0. Then
Lvoa)= s | @) + @ @ @ = 1,2,3)
u€L?(D),llullL*(D)=* Jp

Proof. First of all, note that v;X; + h;(-)I is also a bounded operator on L? (D) and v;X;; is
a compact operator on L? (D), where X;; is defined as in (34) wheni = 3. Let o(v;K; +
h;1,L? (D)) be the spectrum of v;X; + h;(-)I considered on L? (D) and

A(v;,a;,L? (D)) = sup{Red |1 € o(v;K; + hI, L? (D))}
Then we also have
A(vi,a;, 17 (D)) € o(viK; + hl, L7 (D)), [Rimin »himax ] © o(viK; + hil, L* (D)),
and

A(Vi y A ’LZ (D)) = hi,max .
I\/IOI‘eovel’, if /Ti(Vi , Cli) > hi,max (Tesp./ii (Vi , A ,LZ (D)) > hi,max ), then
1;(v;,a;) (resp.A;(v;,a; , 12 (D))) is an eigenvalue of v;X; + h;I considered on
L? (D) (resp.C(D)) and hence A;(v;,a;,L? (D)) = A;(v;,a;) (resp.1;(v;,a;) =
1;(v;,a; ,L? (D))). We then must have
L a) = 4, a;, L7 (D).

Assume now that k(-) is symmetric with respect to O, that is, k(—z) = k(z) for any z €
RY . Then forany u,v € L? (D), inthecasei = 1,2,

f Ka)(Ov(dx = f f Ky — Du)vE)dydx
D D D
- j j k(= Yul)v(y)drdy
D D
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|
S

f k(y — v()ux)dydx
D

(K;v)(x)u(x)dx
and inthe casei = 3,

f W Evde = j Ry — 0u@)v)dydx

j Rx — »u@v()dxdy

D

- j j Ry — 0v()u)dydx
D D

=jD (Hsv)(x)u(x)dx.

Therefore X; : L?> (D) - L? (D)is self-adjoint. By classical variational formula (see
[141]), we have
Ivia, 2 )= s m@Eaue + kow @ldx
ueL2(D),lull2py=1 Jp
The proposition then follows.
We provide a useful technical lemma.
Lemma (6.1.13)[176]: Let 1 < i < 3 and a; € X; be given. For any € > 0, there is
a; € X; such that

ST

la; — af lI< e
hi (x) = —v; +af (x)for i =1or 3 and h{((x) = —v; fD k(y —x)dy +
af (x) fori = 2isin C" , and satisfies the following vanishing condition: there is x, €
Int(D) such that h{ (x,) = max hi (x) and the partial derivatives of h{ (x) up to order
X
N — 1 atx, are zero.
Proof. We prove the case i = 2. Other cases can be proved similarly.
First, let ¥, € D be such that
h, (%) = max h,(x).
. X€D
Forany e > 0,thereis X, € Int(D) such that
€
h, (%) — ha(Xe) < 3" (35)
Let & > 0 be such that
B(%.,6) € D,
where B(X., &) denotes the open ball with center X, and radius &.

Note that there is é(-) € C(D) such that 0 < &(x) < 1,é(%.) = 1, and supp(é) c
B(%.,d).
€
hae(x) = hy(x) +5 &(x). (36)
Then h;, .(+) is continuous on D and h; .(+) attains its maximum in Int(D).
Let D ¢ RN be suchthat € D . Note that h, .(-) can be continuously extended to D .

Without loss of generality, we may then assume that h, .(+) is a continuous function on D

and there is xq € Int(D) such that h, ((x¢) = sup h;¢(x). Observe that there is ¢ > 0
xX€D

and h,(-) € C(D) suchthat B(xy,0) € D,
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— € ~
0< hz'(__-(X) - hZ,E(x) S§ Vx € D, (37)

And ~
hye(x) = hye(xo) Vx € B(xg,0).
Let
Cexp————) ifllx]| < 1,
160 =1 ¢ =) T
0 if |[x|| = 1,
where C > 0 is such that fRN n(x)dx = 1.Forgiven§ > 0, set
1 X
15 () = =5 1(3).
Let

hoes() = [ 150 = ey
D
By [143], hyes() isin C®(D)andwhen 0 < § « 1,
— € —
|hoes(x) — hye(x)| < 3 Vx € D. (38)

It is not difficulty to see that for 0 < § « 1,
hyes(x) < hy(xg) Vx € B(xg,0),
And
hz’e’S(X) = hz’e(xO) Vx € B(XO,O-/Z)
Fix0 < § « 1. Let
5 (X)) = hges(x).
Then h$ (+) attains its maximum at some x, € Int(D), and the partial derivatives of h5(-)
up to order N — 1 at x, are zero. Let

as(x) = h§(x) + v, j k(y — x)dy Vx € D.
D
Thena$ € X,,—v, [, k(y — x)dy + a5(x) = h5(x), and
la, — asll = |h§ = hall < [|RS — hye|| + [|Roe = hoel| + ||hoe — ha|| <€
The lemma is thus proved.

We investigate the effects of spatial variations on the principal spectrum
points/principal eigenvalues of nonlocal dispersal operators and prove Theorem (6.1.14).
Firstof all, forgiven1 < i < 3andc¢; € R, let

Xi(c) ={a; € X; |a; = ¢}
(see (19) for the definition of @;). For given x, € R¥N and ¢ > 0, let
B(xp,0) = {y € RV ||ly —xoll < o}.
Theorem (6.1.14)[176]: (Effects of spatial variation). (i) (Existence of principal
eigenvalues) For given 1 < i < 2, A;(v;,a;)exists if  ajmax — Aimin <
viinf [ k(y — x)dy.
x€eD D
(if) (Existence of principal eigenvalues) For given 1 < i < 2,4;(v;, a;) exists if h;(-) is
in ¢V (D), there is some x, € Int(D) satisfying that hj(x¢g) = hjmax, and the partial
derivatives of h;(x) up to order N — 1 at x, are zero.
(iii) (Upper bounds) For given 1 < i < 3 and ¢; € R,sup{A;(vi,ap|a; € X;,3; =
i} = oo,
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(iv) (Lower bounds) Assume that k(+) is symmetric with respectto 0 (i.e.k(—z) = k(z))
and i =2 For given ¢ €R,inf{A;(v;,a)|a; € Xi,4; = ¢} = Ai(vi,c)(=
c;) (hence A;(vi ,a;) = Ai(v;,3;)). If the principal eigenvalue of v;X; + h;(-)T exists,
then ” = ” holds if and only if a;(-) is a constant function, that is a;(-) = 3;.
(v) (Monotonicity) For given a},a? € X, if af (x) < a? (x),thenl;(a},v;) <
Ai(a?,v) (i = 1,2,3).
Proof. (i) We first prove the case i = 1. Let x, € D be such that

hq (xO) = hl,max .
Note that there is €, > 0 such that

0< ay(rp) — @, (@) < vy in j k(y — Dy — &
D

< vlj k(y —x)dy — e, VxE€D.
D

Forany 0 < € < ¢, put
Ae = hi(xp) + €(= —vy + a1(xg) + €).

Then
vif, k& —0dy v, [, k(y — )dy
Ae —hi(x) a;(xp) — a;(x) + €
> vlfD k(y - x)dy
v, k(y — x)dy +e—¢
> 1Vx € D.
This implies

Vg voa) > 1V0 < e « 1.

Then by Proposition (6.1.10) (b), A; (vy,a;) > hi max - BY Proposition (6.1.11),
A1 (v4, ay) exists. We now prove the case i = 2. Similarly, let x, € D be such that

hz(xo) = hz,max-
Note that there is €, > 0 such that

0 < @)~ @) < v, inf f k(y — ©dy — &
D

< v, j k(y — x9)dy — €.
Forany 0 < € < ¢, put 0
he = ha) + €(= —v, | kO = x0)dy + @) + ©),
Then 0
V3 fD k(y — x)dy A,

~h0) = v, [ kG = Dy @) - v [ kO = x)dy
D D
+ v, f k(y — x)dy — a,(x) + € = v, f k(y — x)dy v,
D D

jk(y—x)dy+6—eo>1Vx65.
D

This again implies that
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r(Vi i) > 1V0 < e < 1.

2
Then by Proposition (6.1.10) (b), A,(vy az) > hymax- By Proposition (6.1.11),
A, (v,, ay)exists. (ii) It can be proved by the similar arguments as in [200]. For the
completeness, we provide a proof in the following. Let x, € Int(D) be such that h;(x,) =
h; max and the partial derivatives of h;(x) up to order N — 1 at x, are zero. Then there is
M > 0 such that
hiGo) = i) < M|lxo- ¥l vy € D.

Fixo > Osuch that B(xq,20) © D and B(0,20) € supp(k(-)).Letv* € X + i be
suchthat v* (x) = (1Vx € B(xy,0),0Vx € D\B(xg,20).
Clearly, for every x € D\B(xy,20)andy > 1, we have

(Uéi,vi,hi(xo) +ev')(x) = yv*(x) =0Ve > 0. (39)
Note that there is M > 0 such that for any x € B(xg,20),k(y — x) = Mvy €
B(xg,0).

It then follows that for x € B(x,,20)
vik(y — x)v*(y)

Ui + * — d
( ai,vi,hi(xo) €V )(x) D hl(xo) -|— E — hl(Y) y

- j vik(y — x)
g0 M||x0 - X||N + €

Vl'M
Z_[ dy.
_ B(x0,0) Ml|xo — y|IN + €

u v dy = oo. This implies that for 0 < € « 1, thereisy >

Notice that fB(xo,a) m

1 such that
(Ufzi»Vi, hi(xo)) +€e” )(x) > yv* (x) Vx € B(xy,20). (40)
By (39) and (40),
(Ucizl-;Vi»hi(xo))-l-E”* (x) 2 yv*(x)Vx € D.
Hence, 7(US v ne)e) > 1. By Proposition (6.1.10)(a), Ai(vi,a;) > hi(xy) =

a;,vi,
h; max - By Proposition (6.1.11), the principle eigenvalue 1;(v; , a;) exists.
(iii) Recall that A;(v;,d) = sup{Rep|p € oc(v;X; + h;()D}with h;(x) = —v; +
a(x)for i = 1,3and hy(x) = —v, [, k(y — x)dy + a(x)for i = 2. By the
arguments of Proposition (6.1.11),
Oess(Vi¥; + Iyl) = [min hi(x):rilng( hi(x)].
Note that
sup (max d(x)) = oo.
aex;(c;)  x€D
Then
sup A;(v;,d@) = sup (max h;(x))=> —v; + sup (max d(x)) = oo.
aex;(c;) aexy(c;) X€D aexi(c;) X€D
(iv) We first assume that the principal eigenvalue 1, (v,, a,) exists. Suppose that u,(x) is a
strictly positive principal eigenfunction with respect to the eigenvalue 4, (v,, a,). We divide

both sides of (ii) by u,(x) and integrate with respect to x over D to obtain
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j [VZ[ID k(y — x)(uz(y) —uz(x))dy] + a,(x)u,(x) dx = j Ay (vy, ay)dx,
5 D

uz(x)
@)
' 1
1y(v7) = o o || R0 = 9w - ey + 5 [ e
_ ﬁ fD fD k(y — Dup(y) — up (g (x) dydx + @y,
By the symmetry of k(-),
f f k(}’ - x)”z()’) - uz(x)uz(x)dydx
1 D D
-2 f J k= 0w ) - @ ()dydx
. f J y — 0up(y) — up()uy(x)dydx
1 DXD
-2 f J k= 0w0) — w ) (@dyds
1
. f j k(y — 0up(x) — w,(y)uy (v)dydx
DXD 2
(uz ») — u,(x))
f -[DXD Uy (uz(y) dydx = 0 (0

So,
inf{d,(va,ax)|a; € X;3,a; = ¢} = G; = cy.
And clearly, 1,(v,, d,) = a,. Together, we get
inf{d,(va, ax)|a; € X3,a; = ¢} = A;(v2,8;) = c3.
Second, by Lemma (6.1.13), forany e > 0, thereisa$ € X, n CV, such that
lla; — a3ll < e,
and h§ (1) € CN (= —v, fD k(y — x)dy + a$5) satisfies the vanishing condition in
Theorem (6.1.14) (ii). So, the principal eigenvalue A,(v,,a$) exists and A,(v,,as) =
A, (v,, a5 ). By the above arguments,

Aa(vy,a§) = A(vy,as) = A,(vy,a5) = as. (42)
We claim that

lir% (v, a5) = A (v2, ap).
€E—
In fact, ||a5 — a,|| < €, thatis
a,(x) — € < a$ (x) < a,(x) + eVx € D.
Note that @,(t; v,,a, + €)uy = e d,(t; vy, ay)uy, Where @, (t; vy, a,)uy is  the

solution of (22) with the initial value u,(-). Similarly, we have &,(t; v,,a, - €)uy =
e ¢t d, (t; vy, ay)ug. SO
r(®,(t; vaap £ €)) = e (Dy(t; vy, a,)).
Hence
L(vya, £ €) = 1(vy,a5) £ e (43)
By Proposition (6.1.4), we have

D, (t; vo,a; — ug < Dy(t; vy, a5 )ug < D,(t; vy, a; + €)uy.
Hence
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r(D,(t; vo,a, — €)) < 1(Dy(t; vy,a5)) < r(D,(t; vy, a, + €)).
By(43),
L(vy,a, - €) < L, (vy,a5) < 1,(vy,a, + €).
Taking the limit of (42) ase — 0, we have
) A(vy,az) = @,
So,inf{A; (v, az)|a; € Xp,8; = co} = A,(va, c2)(= cy).

When the principal eigenvalue exists, it is not difficult to prove that the ” = ” holds if
and only if a,(-) = c,. In fact, suppose that A, (v,, a,) exists and u,(-) is a corresponding
positive eigenfunction. By (41), A,(v,, a,) = G,(= ¢,)iff u,(x) = uy,(y)forall x,y €
D .Hence A,(vy,a,) = @,(= c¢,)iff u,(-) =constant, which implies that a,(x) =
A2 (vy, az) = @,

(v) Suppose that a; ,a? € X; and a; < a7 .By Proposition (6.1.4), for any u, € X;" and
t >0,
®,(t; v, ai Jug < (6 vi,af ug.

This implies that

r(®i(t; vi,a; i) < 1(Di(t v, a7 ).
By Proposition (6.1.6), we have

L(vi,ai ) < L(vi,ap).

We give a proof for the Neumann boundary case. Let ¥ (x) be the eigenvalue function of
the operator A + a,(-)I defined on €2 ([0,L]) with Neumann boundary condition. So
Y(x) > 0and we have

(P "(0) + az()P(x) = Ag2p(x), x € (0,L),
Z—w(x)zo, x = OorlL.

n
Multiplying this by ¥ (x) and integrating it from 0 to L, we have
L L L
— [ v o+ [ wGow? @idx = aee | ¥ @
0 0 0

Hence
— [} ¥ @dx + [} a9’ @)dx
[y w2(x)dx |

/1R,2 -

Take x4, x, € [0,L), we have
X2
W)= W) = [ 2w @
X1
Hence, for any positive number k > 0,

P? (x)—llfz(x)<lfL ¢'2(X)dx+ka P? (x)dx
? YTk 0 0 '

Multiplying the above inequality by a,(x,) and integrating it with respect to x; €
[0,L) and x, € [0,L), we get

L L
L j @ Co)? (1)dx, — ool f 2 (x)dx;
0 L ?
1
< 12 (EJO W2 (Odx + kjo 2 (x)dx>.

This is equivalent to
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L L
L j @, COV? (x)dx — ¢,L f W2 (x)dx
0 0

L L
< c,1? (%L Y'? (x)dx + k fo P? (x)dx!).

Letting k = c,L, we obtain

L L L
- J P'? ()dx + f a, (OY? ()dx < (¢ + c5L%) j P? (x)dx.
0 0 0

So, we have

Ar2 < ¢y + L%,
(if) Theorem (6.1.14) (iv) may not be true for the Dirichlet type boundary condition. That
is, 1;(vy,a;) = A4(vq,41) may not be true, where a; € X;.

In the random dispersal case, There is an example in [199] which shows that the
principal eigenvalue A 1 (v4, a;) of (iv) is smaller than the principal eigenvalue A 1 (v4, ¢1)
of (iv) with a; (x) being replaced by c; (= a,). Itis prove in [186] that

A1(v1,a4,8) = Ag1(vy,aq)

asd — 0.So0, forany 0 < § « 1,4,(vy,ay,8) is close to Ag 1(vy, ay), and A, (v4, ¢y, 6)
is close to Agq(vy,cq)-Hence Ay(vy,aq,8)can be smaller than A;(vy,cq,8) =
A(vy,c1,6) for § K 1.

(iii) Theorem (6.1.14) (iv) holds for periodic case (see [202]). When A;(v;,a;) does not
exist (i = 2,3), we may have 1;(v;,a;) = @; but a;(-) is not a constant function. For
example, let X3 ={u(x) € C(RY,R)|u(x + ¢) = u(x)),x ERY,j = 1,2, -
,N},and g € X5 with

( [l x|I? .
: )_{ X = o2 if lIxll < o,
q(x) = | .
kO if o < |lx|| SE'

Then K5 + h;(-)I with k(z) = kg(z) has no principal eigenvalue for M > 1,0 < ¢ <
1,6 » 1 and hy(x) = —1 + M g(x) where x € RV and N > 3 (see [200]). Hence

A3 =max hg(x) = —1 + Mmax q(x) = —1 + M. Choosing M =, we have
X€ED X€ED 1-q
Mg = =1 + M,thatis a; = A3, butaz(x) = M q(x) is not a constant function.

We investigate the effects of the dispersal rates on the principal spectrum points and
the existence of principal eigenvalues of nonlocal dispersal operators and prove Theorem
(6.1.15).

Theorem (6.1.15)[176]: (Effects of dispersal rate). Assume that 1 < i < 3 and k(-) is
symmetric with respect to 0.

(i) (Monotonicity) Assume a;(+) # constant. If v} < vZ,then 1;(vi,a;) > L,(v,a).
(i) (Existence of principal eigenvalue) If i = 1 or 3 and A;(v;, a;) exists for some v; > 0,
then A;(v; , a;) exists for all #; > v,.

(iii) (Existence of principal eigenvalue) There is vQ > 0 such that the principal eigenvalue
}\i(Vi ,ai) of ViKi + hl()l exists for Vi > V? .

(iv) (Limits as the dispersal rate goes to 0) V%i_)n(’)l_}_ L, a) = i max-
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(v) (Limits as the dispersal rate goes to o) lim A;(v;,a;) = —oofori = 1and
V]1—>00
hm Xi(vi,ai) = ﬁi fori = 2and 3.
V]1—00
For given § > 0 and k(-):RV — R* satisfying that sup(k) = B(0,1):= {z €
RY ||zl < 1}and [ k(z)dz = 1, let

k8(z) = 5i1v'; (g) . (44)

When k(z) = ké&(2), to indicate the dependence of 1 i(v;,a;) on &, put
Ai(vi,a;,6) = A(vi,ap).
Proof. (i) Assume that k(-) is symmetric. Observe that for any u(-) € L* (D),

k(v — x)u(x)u(y)dydx — j u? (x)dx

DXD D

< [ [ ko - ououeoaydx - [ [ ko = oyt s
_ f f Ky — D(u®) — u@)u@)dydx
1D D
=~ f jD kO = D) - ue))utdyds
1
+§f Z ijD k(y — x)(u(y) — u(x))u(x)dydx
1
=~ f jD kO = D(E0) - w@)udydx
1
+3 J jD K = 0@ - e0))u)dydx

1
= — EJ jDXD k(y — x)(uly) - u(x))2 dydx < 0.

Then (i) follows from the following facts: Vv; > 0,
Avi,a;) = sup

uELZ(D),|IuI|L2(D)=1

- k(y — dydx — | u? (x)d (Ou? (x)d
[vl OD JD v — Du@)ulx)dydx jD u® (x) x+>fD a; (x)u® (x) x]
inthecasei = 1,

A(vi,ay) = sup
u€L2(D),||ul |L2(D) =1

[—%j JDXD k(y — x)(uly) - u(x))2 dydx + fD a; ()2 (x)dx]
inthe case i = 2, and

A(vi,ap) = sup
u€L2(D),||ul |L2(D) =1

[vi <fD fD k(y — x)u(y)u(x)dydx —fD u? (x)dx> +fD a; (x)u? (x)dx]

inthe case i = 3 (see (34)).
(if) We prove the case i = 1. The case i = 3 can be proved similarly.
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Without loss of generality, assume a,(x) > 0 for € D . Assume that v; > 0 is such that
A1 (v4,ay) exists and ¥; > v;. By Proposition (6.1.11), 4, (v, a4) > max h,(x), that is,
X

M(vy,a1) >max  (—vy + aq ().
X€ED

Let ¢, (+) be a positive principal eigenfunction with ||¢1||L2(D) = 1. Then

11(171; a;) = V1f f k(y — x)p1(0)p1(x)dydx — v,
DXD

+ f a;, (x)pF(x)dx > max (—vy + a,(x)).
By Proposition (6.1.12), 0
11(171; a;) = 171[ f k(y — x)p1(y)p1(x)dydx — 9,
DXD

¥ j a1 () P2 (x)dx

D
= A (vi,a1) + (V1 — V1)J J k(y — x)p1(y)p1(x)dydx + v — ¥

DXD
> max (—v1 + al(x)) +v =P+ @ —vy)
X

| | o=08:00¢:0dvdx
DXD
> max (—V; + aq(x)).
xX€D
By Proposition (6.1.11) again, A, (V;, a,) exists.
(iii) It follows from Theorem (6.1.14)(i) and can also be proved as follows.
To show A;(v;,a;) exists, we only need to show A;(v;,a;) > max h;(x), where
X
hi(x) = —v;+a;(x) for i = 1 and 3 and h;(x) = —v; fD k(y — x)dy + a;(x) for
i = 2.Inthecasei = 2o0r3,4;(v;,a;) = @; by Theorem (6.1.14)(iv). This implies that
Zi(Vi,Cli) > hi,max VVi > 1.

Inthe case i = 1, note that 1,(1, 0) exists and

-1 < 44(1,0) < 0.
This implies that /11(1,%) exists for v; > 1 and then A, (v4, a;) exists for v; > 1.

1

(iv) On the one hand, we have
Ai(Vi rai) = hi,max = —Vi + a; max -
On the other hand, for any 4 > a; jax, AT — a;(-)T has bounded inverse. This implies that
ai,max +€e > /’L-(vi,ai) VO < Vi < 1.
Therefore,
Im- 4,(vi, @) = Gimax
(v) We prove the cases i = 1 and i = 2. The case i = 3 can be proved by the similar
arguments as inthe case i = 2.
First of all, we prove the case i = 1. By Proposition (6.1.7),
1,(1,0) < 0.
Observe that
1

- a -
) and A4 (1'1/_) - 11(1,0)

1

- - a,
A(vy,a1) = vidy (1»—
V1
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asv,; — oo, It then follows that
~ Vi =~
/11(1/1: al) < 71 Al(l, 0) VV1 > 1.

This implies that

llm j.l(vl,al) = —00,
V100

Second of all, we prove the case i = 2.By (iii), 4,(v,, a,) exists for v, > 1.In the
following, we assume v, > 1 such that 1,(v,, a,) exists. Let ¢,,v, (x) be a positive
principal eigenfunction with fD d3,v, (x)dx = 1.
Note that

dy < A(vy,az) < Az max,
and

V2 fD fD k(y — x)( b2, ) — b2, (x)) b2, (x)dydx

n f a3 () bz, (Vdx = 23(v2, ).
D
This implies that

%fl) L k(y — x) (¢2,v2 ) — ¢24, (x))z dydx

- f (V) bz, (VX — A3(V2,03) < Gpmae — o
D
and then
2 max a
[ k6 = 0 (810, 0 = oy, )" aya = 2L 5 %), )
D D
Let,, vy (X) = ¢ay, (x) — ¢2,, - Then

v [ kG = 0 (620, 0) = 02, @) dydx
D D

4 j 0y ()b, (O)dx = f 02 () (Wi, () + Bz )i,
D D

and hence

2o (V) @) j B, X = B, j 4y (x)dx + f 02 ()2, ().
D D D
This implies that

~ ~ 1
A(V2,a2)Dz2 = G20,,V; +mf az ()3, (x)dx. (46)
D

To show A,(vy a;) = @ asv, — oo,we first show that [ = a,(x)¥,., (X)dx —

0 asv, — oo.Note that A,(1,0) = 0 and 1,(1,0) is the principal eigenvalue of X, +
by()I with @(-) = 1 being a principal eigenfunction, where

bo() = = [ kG = dy.
D
Moreover, 1,(1,0) is also an isolated algebraically simple eigenvalue of %, + by()I on

L? (D). Note also that
| (=36 = b @ueods
D
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1
=EJD jD k(y — x)(u(y) — u(x))2 dydx = 0 (47)

forany u(:) € L? (D)and —X, — by(-)I is a self-adjoint operator on L? (D). Then there
is a bounded linear operator A : L2 (D) — L? (D) such that

j (=K, — bohHu (x)u(x)dx =f (Aw) () (Au)(x)dx VYV u € L? (D).(48)

Let

E; = span{e(-)},
and

E, = {u() € L* (D)| j u(x)dx = 0}.
D

Then

> (D) = E; ® E,
and

:}CZ + bo()] (EZ) C Ez.
Moreover, (¥, + by(-)I)|g, is invertible. We claim that there is C > 0 such that

f (Auw)(x)(Au)(x)dx > C .[ u? (x)dxVu € E,. (49)
D D
For otherwise, there is u, € E, with [ uz (x)dx = 1 such that

| Gudau)@ax - o
D

as n — oo, It then follows that 0 € o((K, + by(-)I)|E, ), a contradiction. Hence (49)
holds.
By (47), (48) and (49), forany v, >» 1,

L Vi, @i < 5 fD ]D kO = ) (W2, O) = Yz, @) dydx. (50)
Observe that
JD JD kO = 2 (62, ) = o, () dydx

= [ [ k@ = 0 (o, 0) = o, @)y
This together with (455) ang (50) implies that
f Y3,v, (x)dx - O0asv, > oo,
and then 0
J az(X) P2y, (x)dx - 0asv, »
D

Second, assume A,(v,,a,) + @, asv, — oo.By (46),we must have ¢,,v,,n — 0 for
some sequence v,,n — oo. This and (45) implies that

[ W3, @ax < ¢ [ [ ko - 03, @dyax
D D D
= G0 [ | kO = 0 (03,00~ 9, s, 0)) dydx
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G [ [ ko = 003.,,0003,,, (Idydx
D D

<[] K0 =0 (#3000 = #21,,00)” dye

+ |D|ZCOM$2 Van $2 Van
CO(aZ,max - dz)

= " + [DI*CoM@” 2,v,0 9" 2,V
2
where C, = (min [, k(y — x)dy) —1andM = sup k(y — x).Thatis
X€D x,y€D

f ¢35y, (X)dx = 0asvy, — oo.
5 ;

This is a contradiction. Therefore
A,(vy,ay) = Gyasv, = oo,
We investigate the effects of the dispersal distance on the principal spectrum points
and the existence of principal eigenvalues and prove Theorem (6.1.16).
Theorem (6.1.16)[176]: (Effects of dispersal distance). Suppose that k(z) = ks(z), where
ks(z) is defined as in (44) and k(z) = k(—2).Let1 < i < 3.
(i) (Limits as dispersal distance goes to 0) }Si_r)r(l) L(;,a;,8) = a; max -

(i) (Limits as dispersal distance goes to o) gim L (vy,ay,8) = —v, +
a1 max ,gim Ay (V3,a3,8) = @y max ,and gim 13(v3,as,8) = A3(vs, az), where

A3(v3,a3) = max{ReA |1 € o(vsI + hy()D)},
and

_ 1
Iu=—j u(x)dx.

(iii) (Existence of principal eigenvalue) There is §, > 0 such that the principal eigenvalue
/11'(1/1' ,ai) of vﬂ(‘i + hl()l existsfor0 < § < 60.

Proof. (i) As mentioned, the casesi = 1 and 3 are proved in [189]. The casei = 2 can be
proved by the similar arguments as in [189]. For completeness, we provide a proof for the
case i = 2 inthe following. By Proposition (6.1.12),

hvoa, = s [ v | ksl = 0(uG) - ut)dy
u€L?(D),|lullL2(D)=* Jp D
+ a;(x)u(x) u(x)dx.
On the one hand,
L, a;,8) = sup
u€L?(D), |lullL* (D)=t

[—% jD jD ks(Cy —x)(u(}’) — u(X))Z dydx + fD fD ai(x)uz (x)dx] < Qjmax -

On the other hand, assume that x, € D is such that a;(xy) = a;max. Then forany 0 <
€ < 1,thereare 6§ > Oandx; € IntD suchthat B(x},o5) < D and

a;(xg) — a;(x) < €/2 forx € B(xy,04 ).
Let uy(+) be a smooth function with supp(ug(-)) N D © B(xg,0q )and |lug||L2(D) =
1. Then
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A vi,a;,68) = J (Vi J ks — 0)(ug(y) — up(x))dy + ai(x)uo(x)>
D D

w(dx = v, j ( j ks(y — (1o (y) — uo(x>)dy> p (¥)dx
D D

+ (ai,max _g)
Note that

| kO = D000) = uGNdy > 0vx € Ine(D)
as § - 0.And 7
| kst = 000 - wo)ay
Hence, theDre exists §, > 0, such that forany § < §,, we have

v ] kO - 0@0) - @)y u@ds <

It then follows that

< 2maxyep |uo(y)|Vx € D.

€
2

i Aimax = A (Vi,a;,8) = Qimax — €
This implies that 4;(v; ,a; ,6) = a;max as6 — 0.
(i) First, fori = 1,

| KO- ouidy| <l | ksr-dy - 0
asd - o unifornl;lyinu € X, with |lu|] < 1. The?efore,

1,(vy,a4,8) = sup {Re/1|l € a((-v, + al(-))l)} = —v; + a,,
Asd — oo.Fori = 2,

| k0= Do)~ ue)ay < 2lul j ks(y - X)dy = 0
D D

asd — oouniformly inu € X, with ||u]| < 1. Hence
Zz(vz, a,,0) — sup{ReA|A € g(ay(-1)))} = aypmax asd — .
Fori = 3, recall that
A3(vs3,a3) = sup{Red |1 € a(v,I" + h3(:)D},

B 1 P1 P2 PN
Iu = f f e f u(x)dx.
PiP2 " PN Jo 0 0

We first assume that a5 (-) satisfies the conditions. Then by similar arguments as in Theorem
(6.1.14) (ii), A3(v3,a3)is the principal eigenvalue of v3l + hs(-)I.Let ¢3(+) be the
positive principal eigenfunction of v3I + hy(-)I with ¢3 = ﬁ I, ¢3(x)dx = 1.We

where

then have A3(vs, a3) > hsmax and

1 _
o j Vss (O (v as) + vs — as(x) dx = 1, 1)
D
where

P3(x) = (13(1/3,(13) + vz — a3(x)) $3(x).
Fix 0 < € < A3(v3,a3) — hi,max.Then
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1 j V33 (x)
DI Jp A3(v3,a3) — € + vz — az(x)
Observe that forany k = (ki k,, -+, ky ) € ZV {0},

N N
j k(z) cos (Z kipix; + 6 z kipizi> dz — 0,
RN i—1 i=1

N N
f E(Z) sin (Z kipixi + 0 z kipizi> dZ -0
RY i=1 i=1

asd — oo, This implies that for any a € Xj,

k(z)a(x + 6,)dz — a
]RN

dx > 1. (52)

and

as & — oo and then

f v3ks(y — 0)P3(y) dy
R

v A3(vs, a3)~_ € +vs — az(y)
f k(Z)ll)g(x + 65)
= V3= d,
RN /13(1/3,613) — € + V3 - a3(x + 5Z)
1 j V33 (x)
N _ dx
ID| Jp 23(v3,a3) — € + vz — as(x)
As § — oouniformly in x € RY . This together with (52) implies that
j v3ks(y - x)3(y)
RN Az3(vg,a3)- € + v - asz(y)
It then follows that
13(1/3, a3, 6) > 2._3(1/3,0,3) — € > hi,max V(S >> 1 (53)
and A;(vs,as,6) exists for § > 1.
Now forany e > 0, by (51),

dy > 1Vx €eRV,§ » 1.

1 _
D J Va3 (x)A3(v3,a3) + € + v3 — asz(x)dx < 1. (54)
D
Then by the similar arguments in the above,
A3(v3,a3,8) < A3(vs,a3) + eV » 1. (55)

By (53) and (55),
A3(vs,a3,8) = A3(v3,a3) as§ — oo,
Now for general a; € X3, and forany e > 0, there is as, ¢ € X; such that
las - ase|]| < evx €RY,
and as, €(+) satisfies the conditions. By Theorem (6.1.14) (v),
A3(v3,a3,6,8) — € < A3 (v3,a3,8) < A3(v3,as,608) + €.
By the above arguments,
A3(vs,a3) — 3€ < A3(vs,ase) — 2€
< A3(vs,a3,68) < A5(vs, ase) + 2¢
< A3(v3,a3) + 3eVéS » 1.
We hence also have
13(vs,a3,6) = A3(vs,a3)as § — oo,
(iii) By (i), forany e > 0,
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/L'(Vi,ai,é‘) > Aimax — eVO < § K 1.
This implies that there is §, > 0 such that
/Ti(vi,ai,6) > hi,max VO < 6§ < 50.
Then by Proposition (6.1.12), A;(v; ,a;) existsfor0 < § < §,.

We consider the asymptotic dynamics of the two species competition system (7) and
prove Theorem (6.1.19) by applying some of the principal spectrum properties developed.
We assume that k(—z) = k(z),AL,(v,f(+,0)) > 0,f(x,w) < 0 forw » 1, and
d,f(x,w) < 0forw = 0.

We first present two lemmas.

Lemma (6.1.17)[176]: For any givenv > Oand a € X;(= X,),

L(v,a) < L, a)
and if A, (v, a) exists, then

L, )= 4(v,a)) < 4;(v,a)
Proof. First, assume that A, (v, a) exists. Let ¢(+) be the positive principal eigenfunction of
vK; — vl + a(-)lwith ||¢]|| = 1.Then
o,(t; v,a)p = e’ll("'a)tq.'), and @,(t; v,a)¢p = e’lz("'a)tcp‘v’t > 0.
By Proposition (6.1.4),
d,(t; v,a)p » O.(t; v,a)pVt > 0.

This implies that

Lv,a) > (v, a).
In general, by Lemma (6.1.13) and Theorem (6.1.14) (ii), for any ¢ > 0, there is a, €
X; such that 1, (v, a,) exists and

a.(x) — € < alx) < a.(x) + e

By the above arguments,

A(v,a) > A1(v,ap).
Observe that

Lw,a) = 1, v,a.) — eand 1,(v,a.) = 1,(v,a) — €.

Hence

L(v,a) = 1;(v,a) — 2e.
Letting e — 0, we have

L,(v,a) = 41 (v,a).
Consider

U, = VU k(y — x)u(t,y)dy —u(t,x)| + u(t,x)g(x,u(t,x)),x € D (56)
and 7
Uy = Vj k(y — x)[v(t,y) —v(t,x)]dy + v(t,x)g(x,v(t,x)),x € D, (57)
D

where g isa C* function, g(x,w) < 0 forw > 1,and d,,(x,w) < 0forw > 0.
Lemma (6.1.18)[176]: (i) If A,(v,g(-,0)) > 0,then there is u* € X{*such that u =

u” is a stationary solution of (56) and for any solution u(t,x)of (56) with u(0,:) €
X {0}hu(t,) » u* (Din X,.

(i) If 2;(v, g(-,0)) > 0, thenthereis v* € X5+ suchthatv = v* is a stationary solution
of (57) and for any solution v(t, x)of (57) with v(0,-) € X5 {0}, v(t,)) » v* ()in X,.
Proof. It follows from [197].
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Theorem (6.1.19)[176]: (i) There are u* () € X;/* and v* (-) € X5 * such that
(u* (-),0)and (0, v* (-)) are stationary solutions of (7). Moreover, for any (ug, vo) € X{ X
XFwith  uy# 0and v, = 0(resp.u;, = 0and vy # 0), (u(t,; uy, vy), v(t,
; Uo, Vo)) = (U (), 0) (resp. (u(t,; uo, vo), v(t,; Up, Vo)) = (0,v" () ast — oo
(if) For any (ug,vp) € (Xi \{0}) x (X3 \{0}), lim (u(t,; up,vo), v(t,; o, Vo)) =
0, v" ().

Proof. (i) By A;(v, £ (-,0)) > 0and Lemma (6.1.17), we have 1,(v, f(-,0)) > 0.Then by
Lemma (6.1.18), there are u* € X;*and v* € X;*such that (u*,0)and (0,v* )are
stationary solutions of (7). Moreover, for any (u,, vy) € X{ X XS withuy, # 0Oand v, =
0 (resp. uy = 0and vy #= 0), (u(t,; ug, vy),v(t,; ug,vy)) = (W*(-),0) (resp.(u(t,
5 U, Vo), V(L5 U, V) = (0,07 (1)) ast — oo

(i) Observe that

v U k(y - x)u” (y)dy - u” (x)] + f(x,u* (x))u* (x)= 0,x € D. (58)
D
This implies that A, (v,f(-,u* (-))) exists and A, (v,f(-,u* (-))) = 0.By Lemma
(6.1.17), we have
1, (v,f(-,u* (-))) > 0.
By Lemma (6.1.13), thereare ¢ > 0and a € X; such that A, (v, a) exists,
a(x) < f(x,u* (x))- €4;,(v,a) > 0,

and

Zz(v,f(-, u () + e)) > 0.
Let ¢(-) be the positive eigenfunction of vK, —vb(:)I + a(-)I with [|¢]|| = 1, where
b(x) = fD k(y — x)dy. Let
us(x) = u* (x) + 6% and vs(x) = 54 (x).
Then

0 =v U k(y — x)u* (y)dy — u” (x)] + u’ (x)f(x,u* (x))
D
= v U k(y — xus(y)dy — u(g(x)] + us (O f (x, us () + v5(x))

+ v6? (1 — f k(y — x)dy)— 5% f(x,u* (x))
+ ug [f(x u” (x)) f(x us(x) + v(g(x))]
jD k(y — x)ua(y)dy] — us(0) + us(Of(xus(x) + vs()
for0 < § « 1,and
0 < 2, a)vs(x) = v fD k(y — Olvs ) — v(0]dy + a(X)vs(x)

=V

<v j k(y — Dlvs ) — vs@]dy + [flru’ () = e]vs®)
D

— v j k(y — 0)lvs 0) — vsCldy + v (6 us (1) + v5()
D

+vs(O[f (2, u* () = fx,us () + vs(x)) — €]
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=v jD k(y — 0lvs ) — vs()]dy + vs(0)f (x,us (x) + vs(x))

for0 < § « 1. Itthen follows that for 0 < § < 1, (us(x),vs (x)) is a super-solution
of (7). By Proposition (6.1.5),
(u(tZJ'; Us, Ug),v(tz,'; ué‘rvé‘)) <2 (u(tl"; Us, 175),
v(ty, us,vs) V0 <t < t,. (59)
Let
(ug* (x),vs" (x)) = th_)rg (u(t,x; ug,vs), v(t, x; us,vs))vVx € D

(this pointwise limit exists because of (59)).

We claimthat (uz" (-),vs" (1)) = (0,v" (+)). Observe that uz" (-) and vz* (-) are semi-
continuous and (us" (), vs (+)) satisfies that

(1 [ kO = 00 o)y - w5 @] + 45 (OF uy @) + 557 () = 0x € D,
D
_(60)
|V ] k(y = 0vs” () — vs (0)]dy + vs” ()f(xrus (x) + vs (x)) = 0,x € D
D
(see the arguments in [185]). Multiplying the first equation in (60) by vs* (x), second
5
equation by ug" (x), and integrating over D, we have

[ w cow wax = [ [ ko - vy @i codx
D D D
This together with vs* (x) = J4(x) > 0 implies that

[1 — j k(y — x)dy] us* (x) = 0vx € D.
D

Note that fD k(y — x)dy < 1forx near dD. This together with the first equation in (60)

implies that ug" (x) = 0 forall x € D .We then must have v;* (x) = v* (x) forall x €
D . Moreover, by (59) and Dini’s theorem,
lim  (u(t,; us,vs),v(t,; us,vs)) = (0,v* (1) inX; X X,. (61)

t—>oo

Now, for any (ugy, vo) € (X5 \ {0} x (XS \{0}),thereis M, > 0 such that
(ug,v9) <2 (M,0).

Then by Proposition (6.1.5),

(u(t,; ug,vg), v(t,; uy,vo)) <2 (u(t,; M, 0),v(t,; M,0))vt > 0.
Since  (u(t,; M,0),v(t,; M,0)) - (u* (:),0)inX; X X,for0 < § « 1,there is
T > 0 such that (u(t,; ug, vo), v(t,; Uy Vy)) <2 (us(-),0)vt = T. Then wv(t,
; U, V) satisfies

26, %) = v f k(y — )[w(t,y) — v(t, 0)ldy
D

+v(t, x)f(x,u*" (x)+€ +v(t,x))fort=>T.
Note that A, (v, f(-,u* (-) + €)) > 0.ByLemma (6.1.18),for0 < § « 1,thereisT >
T such that v(t,:; ug, vy) = vs(-) vVt = 0.We then have
(u(t + T, ug, vo), v(t + T,5up,v9)) < 2(u(t,; us, vs), v(t,; us, vs)) vVt = 0.
By (61),
lim = (u(t,; o, vo), v(t,; Uo, Vo)) = (0,7 ().

The theorem is thus proved.
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Section (6.2): Some Nonlocal Operators

The principal eigenvalue of an operator is a fundamental notion in modern analysis. In
particular, this notion is widely used in PDE’s literature and is at the source of many
profound results especially in the study of elliptic semi linear problems. For example, the
principal eigenvalue is used to characterise the stability of equilibrium of a reaction-
diffusion equation enabling the definition of persistence criteria [215], [216], [217], [97],
[102], [232], [115]. It is also an important tool in the characterisation of maximum principle
properties satisfies by elliptic operators [209], [100] and to describe continuous semi-groups
that preserve an order [204], [141], [234]. It is further used in obtaining Liouville type results
for elliptic semi-linear equations [93], [99].

We are interested in such notion for linear operators Ly + a defined on the space of

continuous functions C (2) by:

Lolol +ap = jK(x,y)¢(y)dy+ a(x)e(x)
QO
Where 2 c R is a domain, possibly unbounded, a is a continuous bounded function and
K is a non negative kernel satisfying an integrability condition. The precise assumptions on
N, K and a will be given later on.

For most of positive operators, the principal eigenvalue is a notion related to the
existence of an eigen-pair, namely an eigenvalue associated with a positive eigen-element.
For 2 the operator Ly + a, when the function a is not constant, for any real A, neither
Lq + a+ A nor its inverse are compact operators. Moreover, as noticed in [118], [224],
[229], [200], the operator Lo +a may not have any eigenvalues in the space
LP () or C () . for such operator, the existence of an eigenvalue associated with a positive
eigenvector is then not guaranteed. Studying quantities that can be used as surrogates of a
principal eigenvalue and establishing their most important properties are therefore of great
interest for such operators.

In this perspective, we are interested in the properties of the following quantity:
/129( L_Q + a):
= sup{A € R|3,€ C (2), ¢ > 0,such that Ly[e] + a(x)e + A, < 0in 2}, (62)
Which can be expressed equivalently by the sup inf formula:

_ o Lalel() + alx)e(x)
Ap(Lg +a) = <ngl()fz) xlél{fl‘ < e > (63)
®>0

This number was originally introduced in the Perron-Frobenius Theory to characterise
the eigenvalues of an irreducible positive matrix [218], [245]. Namely, for a positive
irreducible matrix A, the eigenvalue A,(A) associated with a positive eigenvector can be
characterised as follows:

A
1. (A): = inf (——X>:A A):= inf —
p(A) ;euug\' iE{i’r-l-vN} X p(A) xR ie{sll.l..IZN}<
x>0 x20,x#0

also known as the Collatz-Wieldandt characterisation.

Numerous generalisation of these types of characterisation exist. Generalisations of the
characterisation of the principal eigenvalue by variants of the Collatz-Wielandt
characterization (i.e. (64)) were first obtained for positive compact operators in LP (22) [230],
[231], [242] and later for general positive operators that posses an eigen-pair [226].

(Ax)i
Xi

> =:1p(4), (64)
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In parallel with the generalisation of the Perron-Frobenius Theory, several inf sup
formulas have been developed to characterise the spectral properties of elliptic operators
satisfying a maximum principle, see the fundamental works of Donsker and VVaradhan [141],
Nussbaum, Pinchover [151], Berestycki, Nirenberg, Varadhan [100] and Pinsky [238],
[113]. In particular, for an elliptic operator defined in a bounded domain 2 < R¥and with
bounded continuous coefficients, &£:= a;;(x)0d;; + b;(x)0d; + c(x), several notions of
principal eigenvalue have been introduced. On one hand, Donsker and VVaradhan [141] have
introduced a quantity A, (£), called principal eigenvalue of &, that satisfies

W(E) = 2= _inf  sup <_€|<P|(x)>

edom(€) xeq o(x)
©>0

=inf{A € E|Tp € dom(E), ¢ > 0suchthat E[@](x) + A,(x) = 0in 2}, where dom(E) <
C (£2) denotes the domain of definition of £. On the other hand Berestycki, Nirenberg and
Varadhan [100] have introduced A, (&) defined by:

211(E):=sup{l € R[T ¢ € W>" (1), p > Osuch thatE[p](x) + A, (x) < 0in}

_ | ( e|<p|(x>>
= sup inf|-—

peEW2N X€EQ <p(x)

@>0

as another possible definition for the principal eigenvalue of £. When £2 is a smooth bounded
domain and € has smooth coefficients, both notions coincide (i.e. A,(E) = 4,(€)). The
equivalence of this two notions has been recently extended for more general elliptic
operators, in particular the equivalence holds true in any bounded domains £ and in any
domains when £ is an elliptic self-adjoint operator with bounded coefficients [209]. It is
worth mentioning that the quantity A,,(£) was originally introduced by Donsker and
Varadhan [141] to obtain the following variational characterisation of A,(€) in a bounded

domain:
AM(E) = sup inf j(_glqol(x)) du(x),

dueb(Q)PEdom(E) @ (x)
»>0 Q

where P(Q) is the set of all probability measure on Q. Such characterisation is still valid
when Q is unbounded, see Nussbaum and Pinchover [151].

Lately, the search of Liouville type results for semilinear elliptic equations in
unbounded domains [93], [241] and the characterisation of spreading speed [206], [236]
have stimulated the studies of the properties of A, (E) and several other notions of principal
eigenvalue have emerged. For instance, several new notions of principal eigenvalue have
been introduced for general elliptic operators defined on (limit or almost) periodic media
[99], [93], [237], [241]. See [209], for a review and a comparison of the different notions of
principal eigenvalue for an elliptic operator defined in a unbounded domain.

For the operator Lo + a, much less is known and only partial results have been
obtained when Q is bounded [118], [223], [141], [146], [228], [229] or in a periodic media
[135], [224], [200], [202]. A,( Lo + a) has been compared to one of the following
definitions:

(Lo +a)
= inf{ leR|T e C)NL ), =# 0,a.t. Lo[p](x) + (a(x) + Dp(x) = 0inN}
or when Lq + a is a self-adjoint operator:
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{Laje T a9, )

Av(Lg +a) = i
V( Q +a) (pELzl(g),(pio ”(P”iz(ﬂ)
1
5 faa K& [0(0) — () ]12dxdy — [,[at0) + [, K(x,y) dy]e?(x) dx.
= 1n
€L2(Q) 2
(p,<p¢0 ”(P”L Q)

where (, Ydenotes the scalar product of L*(R). For 2 c R¥a bounded domain and for
particular kernels K, an equality similar to A,(€) = A,(€), has been obtained in [118],
provided that K € C(Q x Q) satisfies some non-degeneracy conditions. The author shows
that
In a periodic media, an extension of this equality was obtained in [135], [224] for kernels K
of the form K(x,y) :=J(x —y) with J a symmetric positive continuous density of
probability. In such case, they prove that

Ap(ﬁRN + a) :A%(L]R{N +a) =y (Lgny + a). (66)
We pursue the works begun in [118], [224], [223] we investigate more closely the properties
ofA,( Lo + a). Namely, we first look whether 4,( Ly + a) can be characterised by other
notions of principal eigenvalue and under which conditions on £, Kand a the equality (65)
or (66) holds true. We introduce a new notion of principal eigenvalue, 1, ( Ly + a) defined
by: 1,(Lg +a) =sup{d € R|T ¢ € C.(2),p =+ 0 such that Lg [e](x) + (alx) +
D (x) = 0 inf2}and we compare this new quantity with A,, 1,, and Ay.

Another natural question is to obtain a clear picture on the dependence of 4, with
respect to all the parameters involved. If the behaviour of 1,,( Lo + a) with respect to a or
Q can be exhibited directly from the definition, the impact of scalings of the kernel is usually
unknown and has been largely ignored in the literature except in some specific situations
involving particular nonlocal dispersal operators defined in a bounded domain [180], [180],
[229], [176].

For a particular type of K and a, we establish the asymptotic properties of 1, with
respect to some scaling parameter. Let K(x,y) =J(x — y) and let us denote J,(z) :=

JiN Ji (g)when J is a non negative function of unit mass, we study the properties of the

principal eigenvalue of the perator L; ., o — aim + a, where the operator L, q is defined
by:

Loma = f Jo G = Yo dy.
Q

In this situation, the operator L; ., o —Gim refers to a nonlocal version of the standard

diffusion operator with a homogeneous Dirichlet boundary condition. Such type of operators
has appeared recently in the literature to model a population that have a constrained dispersal
[205], [145], [147], [229], [176].

The pre-factor aim IS interpreted as a frequency at which the events of dispersal occur.
For m€[0,2] and a large class of J, we obtain the asymptotic limits of
Ap(LG,m,Q —Gim+ a) andas o — 0 andas g — +oo.
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Our interest in studying the properties of 4,( Lo + a) stems from the recent studies of
populations having a long range dispersal strategy [118], [223], [205], [229], [200]. For such
a population, a commonly used model that integrates such long range dispersal is the
following nonlocal reaction diffusion equation ([145], [184], [147], [235], [244]):

deu(t,x) = J] (x —y)ut,y)dy — u(t,x)
Q

f] (x —y)ult, y)dy + f(x,u(t,x))in R* x Q. (67)
Q

u(t, x)is the density of the considered population, J is a dispersal kernel and f(x,s) is a
KPP type non-linearity describing the growth rate of the population. When Q is a bounded
domain [122], [118], [223], [227], [229], [202], an optimal persistence criteria has been
obtained using the sign of 4,( Mg + 9,1 (x,0)), where M, stands for the operator:

Mg [9]:= [,] (x = ) dy — j(x)p(x),
where j(x) := [,] (v — x) dy.

In such model, a population will persists if and only if 1,( Mg + 0, f(x,0)) < 0. We can
easily checkthat 4,( Mg + 9,1 (x,0)) = 1,( Lo —j(x) + 9,f(x,0)).

When 2 = R" and in periodic media, adapted versions of 1,, have been recently used to
define an optimal persitence criteria [135], [224], [200], [176]. The extension of such type
of persistence criteria for more general environments is currently investigated by ourself
[205] by means of our findings on the properties of 4,,.

The understanding of the effect of a dispersal process conditioned by a dispersal budget
is another important question. The idea introduced by Hutson, Martinez, Mischaikow and
Vickers [147], is simple and consists in introducing a cost function related to the amount of
energy an individual has to use to produce offspring, that jumps on a long range. When a
long range of dispersal is privileged, the energy consumed to disperse an individual is large
and so very few offsprings are dispersed. On the contrary, when the population chooses to
disperse on a short range, few energy is used and a large amount of the offsprings is
dispersed. In RY, to understand the impact of a dispersal budget on the range of dispersal,
we are led to consider the family of dispersal operator:

1
Mo,m [90] (x) = O'_m (]a * QD(X) - QD(X)),

Where J,(2) := GiN Ji (g)is the standard scaling of the probability density/. For such

family, the study of the dependence of A, (M, + a)with respect to o and m is a first step
to analyze the impact of the range of the dispersal o on the persistence of the population. In
particular the asymptotic limits ¢ — +o0 and ¢ — 0 are of primary interest.

Let us now state the precise assumptions we are making on the domain Q, the kernel K
and the function a. Here, throughout, 2 < R¥is a domain (open connected set of R") and
for a and K we assume the following:

a€C()NL), (68)
and K is a non-negative Caratheodory function, that is K > 0 and,
Vx € QK (x, -) is measurable, K( = ,y) is uniformly continuous

for almost every y € 0. (69)
For our analysis, we also require that K satisfies the following non-degeneracy condition:
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There exist positive constants ry > r; > 0, Cy = ¢y > 0 such that K satisfies:

ColanBr, (V) 2 K(x,¥) = colong, ., (Mforallc,y €0,  (70)
where 1, denotes the characteristic function of the set A ¢ R" and Br(x) is the ball centred
at x of radius r. These conditions are satisfied for example for kernels like K(x,y) =

xX—y - .. _ Ny
J (g(y)h(x))WIth hand g positive and bounded in Q and J € C(RY),] = 0, a compactly

supported function such that j(0) > 0. Note that when Q is bounded, any kernel K €
C (2 x 02) which is positive on the diagonal,6 satisfies all theses assumptions. Under this
assumptions, we can check that the operator L, + a is continuous in C(£2), [233].
We start by investigating the case of a bounded domain Q.
In this situation, we prove that 1, 4;,, and 4;; represent the same quantity. Namely, we show
the following
Theorem (6.2.1)[203]: Let 2 c RY be a bounded domain and assume that K and a satisfy
(68) — (70).Then, the following equality holds:
In addition, if K is symmetric, then
Ap(L‘Q + a) = Av(L‘Q + a).

When Q is an unbounded domain, the equivalence of 4, A;,and /1;,’ is not clear for general
kernels. Namely, let consider 2 = R, K(x,y) = J(x — y) with J a density of probability
with acompact support and such thatfR](z)z dz > 0. For the operator Ly, which

corresponds to the standard convolution by J, by using e?* and constants as test functions,
we can easily check that 4;,(Lg) < —1 < r/{1>1(r)1 fR J(2)e** dz < Ap(LR). < However some
inequalities remain true in general and the equivalence of the three notions holds for self-
adjoint operators. We prove here the following

Another striking property of 4, refers to the invariance of A,, under a particular scaling
of the kernel K. We show
Proposition (6.2.2)[203]: Let 2 < RY be a domain and assume that a and K satisfy (68) —

(70). Forallo > 0, let 2y = 02, a,(x) : = a ( %) and

1 X
Loo [9100) = —5 | K (=) 0() dy.

4
oo
No
Then for all ¢ > 0, one has
Ap( LQ_ + a) = AP(LG'QJ + a).
Observe that no condition on the domain is imposed. Therefore, the invariance of 4, is
still valid for 2 = RY. In this case, since R is invariant under the scaling, we get
Ap(Lgn +a) = 1,(Ls gy + ag).

Next, for particular type of kernel K, we investigate the behaviour of 4, with respect of
VA

some scaling parameter. Let K(x,y) = J(x — y) and let J,(2) := GLN Ji (;)
We consider the following operator

1
Lsmale] = e f Jo (x —y)e(y) dy.
p)

For J is a non negative function of unit mass, we study the asymptotic properties of the
principal eigenvalue of the operator L, 1, o — GiN + awheno - 0 and 0 — +o.
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To simplify the presentation of our results, let us introduce the following notation. We
denote by M i, o, the following operator:

1 (1 X—y
Moma 9} == =5 [ 1(52) o0y - o) | (1)
0
For any domains Q, we obtain the limits of A,,( My + a) When o tends either to zero or
to +oo.
Let us denote the second moment of ] by

D2()): = j ] @al? dz,
]RN

the following statement describes the limiting behaviour of 1,(Mym o + a):
Theorem (6.2.3)[203]: Let Q be a domain and assume that /] and a satisfy (68) — (70).
Assume further that J is even and of unit mass. Then, we have the following asymptotic
behaviour:

(i) When0 <m < 2, lim Ap(]\/[@m'g + a) = — sgpa

o—+00

(iWhenm =0 lim /lp(]\/[(,,mlg + a) =1- sgp a.

o—>+00
In addition, when 2 = RY and if a is symmetric (a(x) = a(—x) for all x) and the map ¢ —
a(tx) is non increasing for all x, t > 0 then 1,(M o gv + a) is monotone non decreasing
with respect to o.
(il)When 0 < m < 2, Ll_r)r(l) Ap(]\/[(,,mlg + a) = — sgp a

(iv)Whenm = 2 and a € C%*(2) for some a > 0, then

. D, (J)
Ll_r)r(l)lp(]\/[(,,zg +a) =/'ll< oN A+a>

And

DZU) . DZ(’) fQ|V(p|2 (X) dx fﬂa(x)goz(x) dx
A A+a|:= inf > — 5 :
2N peH(Q),pz0 2N lell5 loll3
Note that the results hold for any domains €, so the results holds true in particular for 2 =
RV,
Having established the asymptotic limits of the principal eigenvalue AP(MGIZIQ + a), it is
natural to ask whether similar results hold for the corresponding eigenfunction ¢, ,, when it

exists. In this direction, we prove that for m = 2, such convergence does occur:
Theorem (6.2.4)[203]: Let Q be any domain and assume that J and a satisfy (68) — (70).
Assume further that J is even and of unit mass. Then there exists o, such that for all o < g,

there exists a positive principal eigenfunction ¢, associated to AP(MG,Z,Q + a). In
addition, when ¢, ,, € L*(Q) for all ¢ < g, we have
(pp,a - @1 in L%oc(n)i
where @, € H}() is a positive principle eigenfunction associated to 1, (D;I(V]) A+ a).
First, we can notice that the quantity A, defined by Donsker and Varadhan [141] for
elliptic operators can also be defined for the operator Lo + a and is equivalent to the
quantity A,,. The equality (65) can then be seen as the nonlocal version of the equality 4, =

Ay Where A, is the notion introduced by Berestycki-Nirenberg-Varadhan [100].
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Next, we would like to emphasize, that unlike the classical elliptic operators, due to the
lack of a regularising effect of the operator L + a, the quantity A,( Lo + a) may not be
an eigenvalue, i.e.the spectral problem

Lolpl(x) + a(x) (x) + A,(x) = 0in 0,

may not have a solution in spaces of functions like LP (Q2), C(2)[135], [222], [141], [229].
As a consequence, even in bounded domains, the relations between 4,,4;,4;, and A, are
quite delicate to obtain.
Another difficulty inherent to the study of nonlocal operators in unbounded domains
concerns the lack of natural a priori estimates for the positive eigenfunction thus making
standard approximation schemes difficult to use in most case.
Lastly, we make some additional comments on the assumptions we have used on the
dispersal kernel K. The non-degeneracy assumption (70) we are using, is related to the
existence of Local Uniform Estimates [219], [220] (Harnack type estimates) for a positive
solution of a nonlocal equation:

Lolol +b(x) e =0 in Q. (72)
Such type of estimates is a key tool in our analysis, in particular in unbounded domains,
where we use it to obtain fundamental properties of the principal eigenvalue 1,( Ly + a),
such as the limit:

(Lo +a) = lim 2,(Lan + @),

where (2,, is a sequence of set converging to Q. As observed in [221], some local uniform
estimates can also be obtained for some particular kernels K which does not satisfies the
non-degeneracy condition (70). For example, for kernels of the form K(x,y) =

gNl(y)] (%)With ] satisfying (69) and (70) and g > 0 a bounded function such that

{x|g(x) = 0} is a bounded set and with Lebesgue measure zero, some local uniform
estimates can be derived for positive solutions of (72). As a consequence, the Theorems
(6.2.1) and (6.2.14) hold true for such kernels. We have also observed that the condition
(70) can be slightly be relaxed and the Theorems (6.2.1) and (6.2.14) hold true for kernels
K such that, for some positive integer p, the kernel K;, defined recursively by:

Kl(xry): = K(x,y),

K,i1(x,y) := JKn (x,z)K,(z,y)dz. forn =1,

)
satisfies the non-degeneracy condition (70).

For a convolution operator, i.e. K(x,y):= J(x — y), this last condition is optimal. It is
related to a geometric property of the convex hull of {y € R¥|J/(y) > 0}:

K, satisfies (70) for some p € N if and only if the convex hull of{y € R"|/(y) > 0}
contains 0.

Note that if a relaxed assumption on the lower bound of the non-degeneracy condition
satisfied by K appears simple to find, the condition on the support of K seems quite tricky
to relax. To tackle this problem, it is tempting to investigate the spectrum of linear operators
involving the Fractional Laplacian, 4%:

A% = Cy 4P. V.(

p(y) — p(x)
|X _ y|N+2a

That is, to look for the properties of the principal eigenvalue of the spectral problem:

dy.><p = 0inRM \ 2
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A%+ (a + D=0 in 0. (73)
As for elliptic operators and Ly + a , analogues of A;, 47, and 1340 can be defined for
A% + a and the relations between all possible definitions can be investigated. When Q is
bounded or a is periodic, the different definitions are equivalent [207]. However, in the
situations considered in [207] the operator 4% + a has a compact resolvent enabling the use
of the Krein Rutmann Theory. Thus, the corresponding 4, is associated with a positive
eigenfunction, rendering the relations much more simpler to obtain.
Moreover, in this analysis, the regularity of the principal eigenfunction and a Harnack type
inequality [213], [214], [243] for some non negative solution of (73) are again the key
ingredients in the proofs yielding to the inequality

(A% + a,2) < p(4% + a,0)

for any smooth domain Q.

Such Harnack type inequalities are not known for operators L, + a involving a
continuous kernel K with unbounded support. Furthermore, it seems that most of the tools
used to establish these Harnack estimates in the case of the Fractional Laplacian [213], [243]
do not apply when we consider an operator Ly + a. Thus, obtaining the inequality
With a more general kernel requires a deeper understanding of Harnack type estimates
and/or the development of new analytical tools for such type of nonlocal operators.

In this direction and in dimension one, for some kernels with unbounded support, we
could obtain some inequalities between the different notions of principal eigenvalue.
Proposition (6.2.5)[203]: Assume N = 1 and let 2 c R be a unbounded domain. Assume
that K and asatisfy (68)—(69). Assume further that K is symmetric and there exists C > 0
and a > zsuch that K(x,y) < C(1 + |x — y|)~%. Then we have

Ap(Lg+a) <ALy +a) <ALy +a) < AL, +a)

We recall some known results and properties of the principal eigenvalue 4,(£, + a). The
relations between the different definitions of the principal eigenvalue, A,, 4, 4; and 2,
(Theorems (6.2.1), (6.2.14) and Proposition (6.2.5)). We derive the asymptotic behaviour of
A, with respect to the different scalings of K (Proposition (6.2.2) and Theorems (6.2.3) and
(6.2.4)).

To simplify the presentation of the proofs, we introduce some notations and various
linear operator:

(i) Bgr(x,) denotes the standard ball of radius R centred at the point x,

(i1) 1, will always refer to the characteristic function of the ball Bz (0).

(iii)S(RY) denotes the Schwartz space,[212]
(iv) C(Q) denotes the space of continuous function in €,

(V) C. () denotes the space of continuous function with compact support in Q.

(vi) For a positive integrable function J € S(R"), the constant [y J(2)|z|*dz will refer

to
[1@pra= [ 1@ (i Zf)dz
RN RN

t=1
(vii) For a bounded set w < RY, |w| will denotes its Lebesgue measure
(viii) For two L? functions ¢, Y, ¢, denotes the L? scalar product of 1 and ¢
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(ix) For ] € I*(RY), Jo(2): = = J ()
(X) We denote by L ,, o the continuous linear operator
Lcr,m,_(z: C(ﬁ) - C(ﬁ)

. d 74
<P—>a—mﬂf]a(x—y)u(y) y (74)

where 2 c RV,
(xi) We denote by M ,,, o the operator My, . 0 = Lo mao — aim

We recall some standard results on the principal eigenvalue of the operator £, + a.
Since the early work [141] on the variational formulation of the principal eigenvalue, an
intrinsic difficulty related to the study of these quantities comes from the possible non-
existence of a positive continuous eigenfunction associated to the definition of 4,, 1;, 45,
or to 4,,. This means that there is not always a positive continuous eigenfunction associated
to A,, 43, A, or A,,. A simple illustration of this fact can be found in [118], [222]. Recently,
some progress have been made in the understanding of A,. In particular, some flexible
criteria have been found to guarantee the existence of a positive continuous eigenfunction
[118], [229], [202].

Theorem (6.2.6)[203]: (Sufficient condition [118]). Let 2 < RY be a domain, a € C(2) N
L*(2) and K € C(C(Q x Q) non negative, satisfying the condition (70). Let us denote v :
= supQ) a and assume furtherthat the function a satisfies ﬁ € L'(n,) for some bounded

domain 2, c Q. Then there exists aprincipal eigen-pair (1,, ¢,,) solution of
_ Lo[e](0) + (a(x) + Dp(x) = 0in .
Moreover, ¢, € C(Q), ¢, > 0 and we have the following estimate
—' < Ay < —v,
where v': = sup[a(x) + fn K (x,y)dy].
This critécreiél2 is almost optimal, in the sense that we can construct example of operator
L, + a with Q bounded and a such that ﬁ € L1(2) and where Ap(Lo + a) is not an

eigenvalue in C(Q), see [118], [229], [202].
When Q is bounded, sharper results have been recently derived in [222] where it is proved
thatd, (£, + a)is always an eigenvalue in the Banach space of positive measure, that is, we

can always find a positive measure du, that is solution in the sense of measure of
Loldp,| () + a(x)du,(x) + A,dp,(x) = 0. (75)
We have the following characterisation of 4.
Theorem (6.2.7)[203]: ([224], [222]). A,(L, + a) is an eigenvalue in C(Q) if and only if
Ay (Lo + a) < —sup(x).

XE(
See [222] for a more complete description of the positive solution associated to 4,

when the domain Q is bounded.
We recall some properties of 4,,.

Proposition (6.2.8)[203]: (i) Assume (2; < £, then for the two operators L, + aand
Ly, + a arespectively defined on C(£2;) and C(£2;), we have :
Ap(Lo, +a) = 2,(Ly, +a).
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(i1) For a fixed Q and assume that a;(x) = a,(x), forall x € 0. Then
Apy(Lg + az) = 1,(Lg + ay).
(i) A,(Lq + a) is Lipschitz continuous with respect to a. More precisely,
|2,(Lg + @) —2,(Ly +D)| < lla — bllw
(iv) The following estimate always holds

—sup (a(x) + fK(x, y)dy) < ALy + @) < —supa.
X€EN 0 0

See [118], [223] for the proofs of (i) — (iv).

We prove some limit behaviour of 1,,(L, + a) with respect to the domain Q. We
show
Lemma (6.2.9)[203]: Let Q be a domain and assume that a and K satisfy (68)—(70). Let
(12,)nen be a sequence of subset of Q so that lim 2,, = 2,02, < 0, .. Then we have

n—oo

lim A, (L, +a) =A,(Ly + a)

n—oo

Proof. By a straightforward application of the monotone properties of Ap with respect to the
domain
((i) of Proposition (6.2.8)) we get the inequality

A (Lo + @) < lim 2,(Lg, +a). (76)
To prove the equality, we argue by contradiction. So, let us assume
A (Lo + @) < lim 2,(Lg, +a). (77)
and choose 4 € R such that
Ap (Lo +a) <A< lim 2, (Lg, +a). (78)

We claim
Claim (6.2.10)[203]: There exists ¢ > 0,9 € C(2)so that (4,¢) is an adequate test
function. That is, ¢ satisfies
Lolp](x) + (a(x) + De(x) < 0in 0.

Assume for the moment that the above claim holds. By definition of 1,,(£, + a), we geta
straightforward contradiction

Ap(Lp+a) <A< A,(L,y + a).
Hence,

lim 4, (Lﬂn +a)= Apy(Lg + a)

n—oo

Let us now prove Claim (6.2.10).

Proof. By definition of v := supa, there exists a sequence of points (x;)xen Such that x;, €
0

Nand |a(x;) —v| < % By continuity of a, for each k, there exists n; > 0 such that

2
By, (xx) © £, andsupB, |a — V| < P
Mk

Now, let y; be the following cut-off” functions: y; (x) := x (”xk_x”

) where g, > 0 is to

be chosen later on and y is a smooth function such that 0 < y < 1,x(z) = 0 for |z| =
2 and y(z) = 1 for |z| < 1. Finally, let us consider the continuous functions a,(-), defined
by ar(x) := sup{a, (v —infQ a)y,(x) + igfa}. By taking a sequence (&)ren SO that
nk

& < —, & — 0, we have
2
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() {a forx € 0\ By, (i)
k v forx €2 n B (xx)
and therefore
la—aglle <v:= sup |v —a| - 0ask - oo.
By, (Xk)
By construction, for k large enough, say > k, , we get for all k > k,

f |1, (Ly + @) - 2| | Im Ap(La, +a) - A|

n—»oo

2 2

lla = axllo < in

Since £2,, = 2 when n—oo, there exists ny := n(k,) so that
Bnko (Xk,) €2y foralln = n,.
On the othre hand, from the Lipschitz continuity of 1,(L, + a) with respect to a ((iii)
Proposition (6.2.8)), inequality (78) yields
(Lo +ag,) < A< lim 2, (Lq, + ar,) (79)
Now, by construction we see that for n = n,, supa,, = supa,, = v and since a,, = v v
B, - n ~ n
2"" (xx,), foralln = n, the function ﬁ ¢ LI, ({2,). Therefore, by Theorem (6.2.6),
for all n > nythere exists ¢,, € C (2,,), ¢, > 0 associated with 2,, (Lgn + ako)'
Moreover, since xj, € My 5p, 2y, for all n =ny, we can normalize @,by @,x;, = 1.
Recall that for all n > n,, ¢, satisfies
Lo, [0a](x) + (ar,(0) + Ap(La, + @, (0)))on(x) = 0in 0y,
so from (79), it follows that (¢,,, A) satisfies
Lo, [on](x) + (a,(x) + 1) < Lo, [¢n](x) + (i, (x)

in

+4,(Lg, + ax,)en(x) =0in 0, (80)

Let us now define b, (x):= —2,(Lg, + ay,(x)) — ak,(x), then for all n >ny, @,n
satisfies

L_Qn[QDn](X) = by (X)pnp(x) = 0in 0,. (81)

Construction, for n > n,, we have b,(x) = —21,(Lg_ + ay,)— v > 0. Therefore, since

Ksatisfies the condition (70), the Harnack inequality (Theorem (6.2.3) in [221]) applies to
@, Thus, forn = n, fixed and for any compact set w cc 2, there exists a constant C,,(w)
such that

on(x) < C(w)e,(y) Vxy €w.
Moreover, the constant C,,(w) only depends on 6, < 2(«,00) , €0 Uxew Bs, (x), and i&lf b,,.

Furthermore, this constant is decreasing with respect to %1f b, bn. Notice that for all n >

ny, the function b, (x) being uniformly bounded from belcr;w by a constant independent of
n, the constant C,, is bounded from above independently of n by a constant C(w). Thus, we
have

Pn(x) < C(@)n(Y) VX, y € w.
From a standard argumentation, using the normalization ¢, (x, ) = 1, we deduce that the

sequence (@), »n,is uniformly bounded in Cy,(£2) topology and is locally uniformly
equicontinuous.
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Therefore, from a standard diagonal extraction argument, there exists a subsequence,
still denoted(¢y,)y, »n,, Such that converges locally uniformly to a continuous function ¢
which is nonnegative, non trivial function and satisfies ¢, (x;,) = 1.

Since K satisfies the condition (70), we can pass to the limit in the Equation (80) using the
Lebesgue monotone convergence theorem and we get
Lole]l + (ar,(x) + 1)p(x) <0in Q.
Hence, we have
Lolol(x) + (a(x) + De(x) <0in 0,

since a < ay, -

We investigate the relations between the quantities 4,,1,,4; and A, and prove
Theorems (6.2.1) and (6.2.14).
First, remark that, as consequences of the definitions, the monotone and Lipschitz continuity
properties satisfied by A, ((i)—(iii) of Proposition (77)) are still true for 1, and 4,. We
investigate now the relation between A, and 1,,:
Lemma (6.2.11)[203]: Let 2 c RY be a domain and assume that K and a satisfy (68)—(70).
Then,

Ly +a) <A,(Ly +a).
Proof. Observe that to get inequality A, (L, + a) < 4,(£L, + a), itis sufficient to show that
forany 6§ > 0:
ALy +a) <A,(L, +a)+6.

For 6 > 0, let us consider the operator £, + &, where 6, := a + 1,(L, + a) + 6. We
claim that
Claim (6.2.12)[203]: For all § > 0, there exists @5 € C.(£2) such that @5 = 0 and @g
satisfies

Lolps](x) + bs(x)ps(x) 2 0in .
By proving the claim, we prove the Lemma. Indeed, assume for the moment that the claim
holds.

Then, by construction, (@5, 4,(L, + a) + ) satisfies
Lolos](x) + [a(x) +1,(Ly + a) + S]les(x) = 0in Q.
Thus, by definition of A, (£, + a), we have 4,(L, + a) < 1,(L, + a) + 6. The constant
d being arbitrary, we get for all § > 0:
Ay (Ly+a) <A,(Ly +a) +6.
Proof. Let § > 0 be fixed. By construction 4,(L, + bs) < 0, so by Lemma (6.2.9), there
exists a bounded open set ® such that 1,,(L,, + bs) < 0. For any £ > 0 small enough, by
taking w larger if necessary, arguing as in the proof of Claim (6.2.10), we can find b, such
that
”b6 - bg”oo,w = ”b(S - be”oo,.() < €
Ap(Ly +be(x)) +& <0,
and there is ¢, € C(®), ¢, > 0 associated to 4,(L,, + b.(x)). That is ¢p satisfies
Lo [0,] () + be(x)@,(x) = —1,(Ly, + be(x))pp(x) in w.  (82)
Without loss of generality, assume that ¢, < 1.
Let v denotes the maximum ofb,¢ in @, then by Proposition (6.2.8), there exists ¢ > 0 such
that
—Ap(Ly +be(x)) —e—v=1>0.
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Moreover, since ¢, satisfies (82), there exists d, > 0 so thatinf >d, .
WPy

Let us choose w’ cc w such that
lw\ @'| < dyinf{r,-1,(L, + b,) — €}
2[|K |l oo '
where for a set 4, |A| denotes the Lebesgue measure of A.

Since w' cc w and dw are two disjoint closed sets, by the Urysohn’s Lemma there
exists a continuous functionn suchthat 0 <n < 1,n=1inw,n = 0in dw. Consider now
@pn and let us compute £, [@,n] + bsp,n. Then, we have

Lo[opn] + bsopn = —2,(Ly, + by — K l|0 ]
_bsq)p(l - 77) - (bs - bé‘)(ppn'
= _()’p(Lw + bs) + ”b6 - bs”oo,w) Pp
do inf{t,—A,(L, + b.) — €}
- e —b.(0p,(1 - ),
> —(Ap(Lw + b,) + e)gap
do inf{t, =1, (L, + b.) — ¢}
- 2
> —1,(L, + b.) + & + max{y, 0}401g
do inf{t,—1,(L, + b.) — €}
_ > _
Since —A,(L, + b)) —e>0 and —A,(L, +b,) —e—v = 17 > 0, from the above
inequality, we infer that
Ly|opn] + bsopyn = —(2,(L,, + be) + € + max{v, 0} )d,
do inf{t, —2,,(L,, + b.) — &}

— max{v, O}q,p,

2
S do inf{z, -4, (Zz;w + b,) — &} -

By construction, we have ¢,n € C(w) satisfying
Ly [@pn] + bsppn = 0 in w,
@pn = 0ondw.
By extending ¢, by 0 outside w and denoting ¢ this extension, we get
Loles](x) + bs(x)ps(x) = Lyles](x) + bs(x)e(x) =2 0 in w,
Lolos](x) + bs(x)ps(x) = L, [@s](x) = 0in N\w.
Hence, o5 = 0,9 € C.(£2) is the desired test function.

Assume for the moment that 2 is a bounded domain and let us show that the three
definitions A, 45, A, and4,, are equivalent and if in addition K is symmetric, A, is equivalent
to A,. We start by the case A, = 4,. We show.

Lemma (6.2.13)[203]: Let Q be a bounded domain of R and assume that a and K satisfy
(68)—(70). Then,

Apy(Lg +a) = 1,(Ly + a).
In addition, when L, + a is self adjoined, we have

ALy +a) =21,(L, +a).
The proof of Theorem (6.2.1) is a straightforward consequence of the above Lemma. Indeed,
the definition of A, we have
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A, (Lgp+a) <ALy +a) <A,(L, +a)
Thus, from the above Lemma we get
Ap(Lgta)=2(Ly+a) <A;(Ly+a) <A,(Ly+a) =1,(Ly +a).
Let us now turn to the proof of Lemma (6.2.13)
Proof. By Lemma (6.2.11), we already have
A, (Lg +a) <A,(Ly + a).
So, it remains to prove the converse inequality. Let us assume by contradiction that
A, (Lg +a) <A,(Ly +a).
Pick now 1 € (4,(Lq + a),4,(L, + a), then, by definition of 4,, and 1, there exists ¢ and
1 non negative continuous functions such that
Lolol(x) + (a(x) + De(x) <0in 0,
Lo[w](x) + (alx) + DY(x) = 0in 0.
Moreover,
@ > 0 in 0. By taking A smaller if necessary, we can assume that ¢ satisfies
Lolol(x) + (alx) + De(x) < 0in Q.
A direct computation yields

o) Y
K(x, ( — )d > 0.
![ () o) o0 o))V
Since £ € C (), the function ¥ achieves a maximum at some point x, € 2, evidencing thus

P
the contradiction:

@

YO) w(xo>) <o

0 < jK(x'ym(y) (qo(y) @ (x0)

n
Thus,

ALy +a) =21,(Ly + a).
In the self-adjoined case, it is enough to prove that

Ay (Ly +a) =21,(L, +a).
From the definitions of 4, and A,, we easily obtain that A4, < A,. Indeed, let 1 >
Ay (Lg + a), then by definition of 4, there exists y > 0 such that ¢ € C(22) N L*(£2) and

Lolpl(x) + (a(x) + DY(x) =0in . (83)
Since Q is bounded and Y € L®(),y € L*(2). So, multiplying (83) by —i and
integrating over (2 we get

- j j K (x,y) (%) dxdy — f a(x) P(0)2dx < A f W2 (x)dx,
N N n

0
1
o| [xen e -y awy
0N 0
= f(a(x) + k() () 2dx < Aft/)z () dx,
0 0

A, (Lo +a) <A f P2 (x)dx < A f P2 (x)dx.
) 0
Therefore, 1,(L, + a) < 4,(L, + a).
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Let us prove now the converse inequality. Again, we argue by contradiction and let us
assume that

1y (Lo + a@) < Ay (Lg + a). (84)
Observe first that by density of C(2) in L?(£2), we easily check that
_/117(*6!2 + a)
1 2
20 LK) (W) —90)) dydx — [,(al) + kG0) () dx
= — in ’
YEL2(N),p#0 ||<P||]%2(g)
2
e Th R KRGy @Ep0)) dydx - [(al) + k@) pe)%dx
YEL2(R),p#0 ||<P||]%2(g) ’
(Laolp]l + ap, @)
= Sup - 2 )
QEL2(2),p%0 ||<P||L2(g)
(Lolp] + ap, @)
= Ssup - 2
PEC(R),p#0 ||<P||L2(g)

By (iv) of Proposition (6.2.8), since 1,,(L, + a) = 4,(L, + a), from (84) we infer that
A, defined by
(Lolel + ap, @)

/1+ = - 85
pecd) % (69)
ct computation yields
V() Yx)
K(x,y) o) - dy > 0.
l (qo(y) w(x))

Since% € C(0), the function % achieves a maximum at some point x, € 2, evidencing thus
the contradiction:

YO) w(xo>) <o

0 < jK(x'ym(y) (qo(y) @ (xo)

- - Q
satisfies

Ay >—1,(Ly+a) 2 maxa. (86)
Using the same arguments as in [135], [147], we infer that the supremum in (85) is achieved.
Indeed, it is a standard fact [212] that the spectrum of £, + aa is at the left of 1, and that
there exists a sequence ¢, € C(2) such that |l@pllz) =1and [|(Ly+a-—
A)Pnllz@@) = 0asn —» +oo.
By compactness of £, : L2(2) - C(2), for a subsequence, liT Lo [@,] exists in C(Q).

n—-+oo

Then, using (86), we see that ¢,, —» ¢ in L?(2) for some @and (£, + a)p = A, ¢. This
equation implies ¢ € C(2), and A, is an eigenvalue for the operator £, + a. Moreover,
@ = 0, since @™ is also aminimizer. Indeed, we have

fg[ﬁrz [p](x) + a(x)p(x)] p(x)*dx

lo* 11220y
Jo[Lale*1() + a(x) (@) ()] p(x) *dx

2
||(p+||L2(Q)

+ =

)
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%fn f_(z K, y) o~ ()™ (y)dydx

o1
_ JalLalg*lag* ()l p(x)* dx

||<P+||1%2(g)
Thus, there exists a non-negative continuous ¢ so that
Lolp](x) + (a(x) + A,)@(x) = 0in L.
Since 4,, < 4, we can argue as above and get the desired contradiction. Hence, 4, = 1, =
Ay = 1.
Now let Q be an unbounded domain. From Lemma (6.2.11), we already know that

A, (Lg+a) <ALy +a) < A,(L, +a).
To complete the proof of Theorem (6.2.14), we are then left to prove that

A, (Lg +a) =1Ly +a) = 2,(L, + a),
when L, + a is self-adjoined and the kernel K is such that p(x) := fﬂ K(x,y)dy is a
bounded function in Q. To do so, we prove the following inequality:

Assume that Lemma (6.2.16) holds and let us end the proof of Theorem (6.2.14).
Theorem (6.2.14)[203]: Let 2 ¢ RY be an unbounded domain and assume that K and a
satisfy (68) — (70).

Then the following inequalities hold:
When K is symmetric and such that p(x) := fQK(x, y)dy € L () then the following
equality holds:

)

<,.

Proof. From Lemma (6.2.11) and (6.2.16), we get the inequalities:
lim A‘U(L.Qn + a) < A;?(L-Q + a) < AZ(LQ + a) < AP(LQ + a),

n—+oo
(Lo +a) < lim Mo(Lo, +a) S ,(Ly +a) < 2y (Ly + a).

withf,, := 2 n B,(0). Therefore,

lim Mo(Lo, +a) =2,(Ly +a) = 25 (Ly + a) = 1,(Ly + a),
It remains to prove that 4,(£, + a) = 1,(£L, + a).

By definition ofA,; (L, + a), we check that
(Lo ta) <A,(Ly+a) =21,(L, + a).

On the other hand, by definition of A,,(L,, + a), forany § > 0 there exists ¢5 € L?(2) such
that

%f [ K@) (0500 — 0s() “dydx — [ (a(x) + p(x))pd(x)dx

”906”%2(9)
<A1,(L, +a) + 6.

Define
25 v K@) (0500 = 95(0) dydi = f, (aG0) + pr()) 03 (x)dx

||<P6||]%2(QR)

Tr(@s) =

)
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with pg(x) := fﬂR K(x,y) dy. SinceA,, (L, + a) < }%l_r)rolo pr () =p(x) forallx € N,a €

L* and @5 € L?(2), by Lebesgue’s monotone convergence Theorem we get for R large
enough

- [ (e + pe@)eF@ax < sl o,y — [ (@G + prGO) PRI
Qg 0
Thus, we have for R large enough

2T Fpn KG9 (0500 = 050)) dydx — [,(a ) + p(0)) gl (x)x
”‘PS”%Z(g)
+112
< Tr(gs) = 10 To ”sz(m
”(p5”L2(_QR)

<A,(Ly +a) + C6,
for some universal constant C > 0.
By definition of 1,,(L,, + a), we then get
(Lo, + a)Tr(@s) < 2,(Ly +a) < C6 for R large enough.
Therefore,

Tr(@s) <

)

(A, (Lg +a) +6) + 6,

lim 2, (Lg, +a) <2,(L, +a) + C6. (87)

R—>o0

Since (87) holds true for any 8, we get
lim 2, (L, +a) < 2,(L, + ).

R—o00

As a consequence, we obtain

(Lo +a) < lim 4, (Lo, +a) <,Ly+a) <ALy +a) =2,(Ly + a),
which enforces

(Lo +a) = 2,(L, + a).

We can now turn to the proof of Lemma (6.2.16). But before proving this Lemma, we start
by showing some technical Lemma in the spirit of Lemma 2.6 in [207]. Namely, we prove
Lemma (6.2.15)[203]: Assume Q is unbounded and let g € L*(2) be a non negative
function, then for any R, > 0, we have

fﬂn(BRo+R/BR)g ~ 0

lim
R0 anBR 9
Proof. Without loss of generality, by extending g by 0 outside Q we can assume that 2 =
RN. For any R,, R > 0 fixed, let us denote the annulus Cryr = Bgr,+r \ Bg. Assume by

contradiction that
Jo. g

Ro,R

lim = 0.
R—>o0 fB g

R
Then there exists e > 0 and R, > 1 so that

Consider the sequence (R,,),en defined by R, := R, + nR, and set a,, := fc g-

Ro,Rn
For all n, wehaveCg r = Bg .. /Bg, and
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n
BRn+1 = BRS' U (U CRO'Rk>'
k=1

From the last inequality, for n > 1 we deduce that a,, > efBR g = €Xr—o -

Arguing now as in [207], by a recursive argument, the last inequality yields
vn=1,a, =cay(l+e)" L (88)
On the other hand, we have

a= [ 95 NglalCoyn, < don®.
CRo,Rn
with d a positive constant, contradicting thus (88).
We are now in a position to prove Lemma (6.2.16).

Lemma (6.2.16)[203]: Let Q be an unbounded domain and assume that a and K satisfies
(68)—(70). Assume further that K is symmetric and p(x): = [ L, K(x,y)dy € L*(Q2). Then,
we have

(Lo +a) < nl_i)r+noo infa, (Lo, + a).
where 2,, := (2 N B,) ey and B, is the ball of radius n centred at 0.
Proof. The proof follows some ideas developed in [208], [207], [135], [225]. To simplify
the presentation, let us call 1, = 1,(£L, + a) andd, = 4;,(L, + a).
First recall that for a bounded domain Q, we have

Ap =y = 4,

Let (B,,)nen be the increasing sequence of balls of radius n centred at 0 and let 2,, := 2 N
B,,. By monotonicity of A, with respect to the domain, we have

(Lo +a) < A, (Lg, +a) =2,(Ly, +a)
Therefore

Ap (Lo +a) < lim inf2,(Lg, + a).

Thanks to the last inequality, we obtain the inequality A,(L, +a) < 1,(£L, +a) by
proving that

lim inf2, (L, +a) < 2,(L, + a). (89)
n—oo
To prove (89), it is enough to show that forany 6 > 0
lim inf2,(L, +a) < 2,(Ly +a) + 6. (90)
n—oo

Let us fix & > 0 and let us denote u := 4;,(L, + a) + §. By definition of2;, (L, + a) there
exists a function ¢ € C(2 N L*(N2), ¢ = 0 satisfying

Lolel(x) + a(x)e(x) + pe(x) = 0in L. (91)
Without loss of generality, we can also assume that ||| o) = 1.

Let 1, be the characteristic function of 2, = QN B, and let w, = @1, . By definition
ofd,(Lg, + a) and since w,, € L?(£2,,), we have
1o, + Dlwalizgay < [ (~Lo 19160 — 20w, (0) wa (O (92

Since Ly[¢]w, € L'(£2,), from (92) and by using (91) we get

Av(ﬁﬂn + a)”wn”iZ(_Qn) < Jﬂ (_L.Qn [Wn] (X) - a(X)Wn(X) — UWp + .uWn) Wn(X)dX-
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< llonliZ ) + f (~ Lo, Wal ) + La[@]()) wa GOl

n

( f K(x )9 () dy> W GO dx,
2, \Yo\n,

= .u”wn”iz(_(zn) + In;

< llonlEzqa, + |

where I, denotes

Iy = f f K& y)eOdy |ex)dx.
I \ove,
Observe that we achieve (90) by proving

In

lim inf ———— =0, (93)
n—eo ||§0||L2(gn)

Recall that K satisfies (70), therefore there exists C > 0 and R, > 0 such that
K(x,y) < C1g,(|x — y[))- So, we get

Ih < f ( j K(X,y)qv(y)dy><0(><)dx. (94)
0y Qﬂ(BR0+n \Bn)

By Fubini’s Theorem, Jensen’s inequality and Cauchy-Schwarz’s inequality, it follows that
1/2

1/2 2
I < J ( J qoz(y)dy> (j ( f K(x,y)<p(y)dx> dy) ,
0n \720(Bry,,, \Bn) 20(Bry,, \Bn) \Y 2,

1,
2 2
= HQDHLZ(Q”(BROM \Bn)) (-['Qn(BRO+n \By) (jﬂanK e (y)dx> dy) ’

1/2
2 2

Since K and p are bounded functions, we obtain
b < KNPl < 190 2 (005, () 120z O9)
o+n \°1n

Dividing (95) by < [|¢lI7z,, ,, We then get
I, 3 llgo”Lz(ﬂﬂ(BRom \Bn))

”QD”izmn) B ”‘P”izmngn)
Thanks to Lemma (6.2.15), the right hand side of the above inequality tends to 0 as n — co.
Hence, we get

o o In
lim inf4, (L, +a) < p+ lim inf

n—oo n—oo

> =1Ly +a) +6. (96)
||(p||L2(Qn)

Since the above arguments holds true for any arbitrary § > 0, the Lemma is proved.

When N = 1, the decay restriction imposed on the kernel can be weakened, see [225].
In particular, we have
Lemma (6.2.17)[203]: Let Q be an unbounded domain and assume that a and K satisfy
(68)-(69). Assume further that K is symmetric and K satisfies 0 < K(x,y) <

C(1+ |x—y|)~« for some a > % Then one has
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Ap(Lo +a) < lim inf2, (Lg, +a) < 2,(Ly + ),

where 02, := 2 N (—n,n).
Proof. By arguing as in the above proof, for any & > 0 there exists ¢ € C(2) N L")
such that

Lole]l +(a +2,(Ly +a) + &)e(x) =0in .
and

Mo(Lo, + @) < lonlifzg ) < lloglifzg ) + In
where u := 1,(L, + a) +9).
Ap(Lg + @), wy := @1(_y ) and I, denotes

L = f f Kxy)e()dy | p(x)dx. (97)
2 \7%o

As above, we end our proof by showing

In

n-o ||§0||L2(gn)
Let us now treat two cases independently:
Case 1: ¢ € L?(12)
In this situation, again by using Cauchy-Schwarz’s inequality, Jensen’s inequality and

Fubini’s Theorem, the inequality (97) yields

1

2

I < lloll 2, lj sz(x,y)w(y)dy @*(x)dx
0\2,

Recall that K satisfies K(x,y) < C(1 + |[x — y|[)™¢ for some C > 0 and a>3/2, therefore

p(y) = fn K (x,y) dx is bounded and from the latter inequality we enforce

In < C”QDHLZ(Q\Qn) ||(p||L2(_Qn)'
Thus,

I ol
lim infz—rl < lim infw =
e TP A S P
Case 2: ¢ & L2(0).
Assume now that ¢ & L2(2), then we argue as follows. Again, applying Fubini’s

Theorem and Cauchy-Schwarz’s inequality in the inequality (97) yields

1

( d

b loley|[ || [Keyrar) {eo)e
(2NR-)\2p,

n

(i L]

+f | fK(x,y)de | () dy
@QNR+)\2,

\nn
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Recall that by assumption there exists C>0 such that K(x,y) < C(1 + |x — y|) ™% with «
>32 .So, we have

S

1\

2

I; < Cj f(l + |x —y) 7% dx @ (y) dy
(2NR-)\2

1

n 2
n < Cf ( f(l + |x —y~* dX> @ (y) dy.
(@2NR-)\2, -

To complete our proof, we have to show that

~
+

— 0. The proof being similar in both
” ”Lz(ﬂ )

— 0. We claim that

+

cases,so we only prove that
” "LZ(.Q )

Claim (6.2.18)[203]: There exists C > 0 so that foralln € N,
( d
2

f \ j(l +lx —yD™%%dx | |e(y)dy.
@nNR+)\2, a

Assume for the moment that the claim holds true, then from (99), we deduce that

In
— 0 whenn — oo.

_ < (—
”QD”EZ(Qn) ||§0||E2(Qn)
Hence, in both situation, we get

lim infA (LQ + a) < p lim inf

n—-+oo n—-oo

=1Ly +a) +6,
I ”L2 @)
Since & > 0 can be chosen arbitrary, the above inequality is true for any 6 > 0 and the Lemma
IS proved.

Proof. Since ¢ € L*(£2) and y > n then x <y and we have

( d

f;sngonooj 1 [a+y-n22a]| |ay,
@QnNR+)\2,
1
+oo n 2
anonoof (f(1+y—x>-2“dx> dy,
n —-n
lolloo T’ il
< — 1+v—n 2 dy,
N A
n
+00

1
< cj (1+42) "2 dz.
0

250



We investigate further the properties of the principal eigenvalue
A, (Lg + a) and in particular its behaviour with respect to some scaling of the kernel K
((Proposition (6.2.2)) and Theorem (6.2.3)). For simplicity, one dedicated to the proof of
Proposition (6.2.2) and the other one dealing with the proof of Theorem (6.2.3). Let us start
with the scaling invariance of £, + a, (Proposition (6.2.2)).
This invariance is a consequence of the following observation. By definition of
Ay (Lg + a), we have for all 1 < 4,(L, + a),

Lolol(x) + (alx) + De(x) <0in 0,
for some positive ¢ € C(2). Let X = ox,0, := i!) and Y (X) := ¢(0oX) then we can
rewrite the above inequality as follows

fK(;,y> p(y)dy + (a (g) +A)go (i;() <0 forany X € 0,

0

fK(;,;z) e(y)dy + (a;,(X) + D)ep(X) < 0forany X € 0,

0

j K, (X, WYY + (ag(X) + Dp(X) < 0forany X € 0,
‘QO'
withK, (x,y) := UiN K(g ,%) and a,(x) := a (g) Thus ¥ is a positive continuous
function that satisfies
Lo0,[W]1(x) + (as(x) + DP(x) < 0in 0.
Therefore, 1 < 1,,(Lso, + a5) and as a consequence
(Lo +a) < Ap(Lgg, + ag).
Interchanging the role of 4,(L, + a) andA, (L, o, + a5) in the above argument yields
(Lo +a) =A,(Lgg, + ag).
Hence, we get
AP(L-Q + a) = AP (LO-"QO' + ao-).
Let us focus on the behaviour of the principal eigenvalue of the spectral problem
My male]l + (a+ ) = 0in 0,
Where

1
Mmalo) == [ Jo (= oIy - o),
0

with J,(2) := UiN Ji (g) Assuming that 0 <m < 2, we obtain here the limits of
Ap(Myma + a), wheno — 0 and o — co. But before going to the study of these limits, we
recall a known inequality.

Lemma (6.2.19)[203]: Let J € C(RN),J =0,] symmetric with unit mass, such
that|z|%J (2) € LY(RM).

Then for all ¢ € H3 (2) we have

1
-| ( [ 1= 90 dy—<p(x)) o) dx <5 [ 1N a7 ol oy
Q RN

0
Proof. Let € CZ° , then by applying the standard Taylor expansion we have
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p(x+2z)—px) = f z;0;p (x + tz)dt (100)
0

1 1
= z;0;p0(x) + J t (f z;;0;jp (x + tsz)ds> dt (101)
0 0

where use the Einstein summation convention a;b; = YN, a;b; .
Let us denote

T (@) = —f(f](x - Vey)dy — <p(X)><p(X) dx.

0
Then, for any ¢ € C.(22), ¢ € C.(RY) and we can easily see that

T(p) = J J Jx =) (0@) — () dxdy.

]RZN

By plugging the Taylor expansion of ¢ (100) in the above equality we see that

RZN RN

j f](Z)(fp(x‘FZ) <P(x)) dzdx = j](Z) jziaigo(x+tz) dt> dzdx,

2

RZN

j](z) (z jlaﬂp(x+tz)|2 dt) drd
szzv KZ)( ) Zflal‘p(xﬂZ)l2 dt| dzdx

=19
where we use in the last inequality the standard inequality (T 1ab)
(Xiz1af)(Zis b7)

So, by Fubini’s Theorem and by rearranging the terms in the above inequality, it follows
that

T(p) <5 j J@lz?dz | IVel2 g
By density of C°(R) in H} (), the above inequality holds true for ¢ € H3 (), since

obviously the functional 1(¢) is continuous in L?(2).
Let us also introduce the following notation

Jo@==1 (2). pri= [ 1ot nay
0

D)) = f J@)|2|? dz,

RN
— [ ap?(x)dx 1 [,(ps(x) — Dep?(x) dx
A == Rom@) = '
Pz Iz (o)
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B aim(— J,([,](x = »)edy — ¢(x))(x) dx)

Tom(@):= 5 — A(p)
”(p”LZ(_Q)
||(p||L2(_Q)
With this notation, we see that
Av(Mo,m,ﬂ + a) = ¢Ei11:%féﬂ) Ta,m((p) )
and by Lemma (6.2.19), for any ¢ € H}(Q2) we get
Tom(@) < 0?7 J (@) — A(p). (102)
We are now in position to obtain the different limits of A,,( M, o + a) as 6 — 0 and 6 —

o0,
For simplicity, we analyse three distinct situations: m = 0,0 <m < 2 and m = 2. We will
see that m = 0 and m = 2 are ,indeed, two critical situations.

Let us first deal with the easiest case, that is, when 0 <m < 2,

In this situation, we claim that
Claim (6.2.20)[203]: Let Q be any domain and let ] € C(RY) be positive, symmetric and
such that |z|%/(z) € L*(RM). Assume further that J satisfies (68)—(70) and 0 < m < 2 then

Li_r)r(l) /lp(]\/[am’ﬂ + a) = — sgp a
61_13100 Ap (]V[G’m’ﬂ + a) = — sgp a

Proof. First, let us look at the limit of A, when 6 — 0. Up to adding a large positive constant
to the function a, without any loss of generality, we can assume that the function a is positive
somewhere in Q.
Since My, , o + a is a self-adjoined operator, by Theorem (6.2.14) and (102), for any ¢ €
H}(2) we have

/1p (Ma,m,.() + a)a) - Av(Ma,m,.Q + a) = Ta,m(qo) = O.Z—m] (<,0) - Uq((p)
Define v := sgp a, and let (x;,)en e a sequence of point such that |v — a(x,)| < %

. Since a is positive somewhere, we can also assume that forall n, x,, € I': = {x € 0]a(x) >
0}.
By construction, for any n > 0, there exists p, such that B,(x;,,) < I' for any positive p <
pn- Fix now n, forany 0 < p < p,, there exists ¢, € HL(0) such that supp(¢,) € B, (xy)
and therefore,

a— @j(x)dx

lirr(l) sup Ay(Mgma +a) < —A(p,) = < — min a* (x).
(0 d

2 B

Bp(xn) ||(pp ||L2(Q) p(xn)
By taking the limit p — 0 in the above inequality, we then get

lirr(l) sup A,(Mgma +a) < —a(xy).

g—
Thus,

_ 1

l_l{)r(l) sup 4,(Mymo +a)<—v + —
By sending now n — oo in the above inequality, we obtain

lim sup 1,(Mgymo +a) < —v.
-0 T
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On the other hand, by using the test function (¢, 1) = (1, —v) we can easily check that for
anyog > 0
Ap(Mgma+a) = —v.
Hence,
—v < }fl_r)rcl) sup Ay(Mgmao +a) < }fl_r)rcl) sup A,(Mgmao +a) < —v.
Now, let us look at the limit of A,(My. o+ a) when o — +oo. This limit is a
straightforward consequence of (iv) of the Proposition (6.2.8). Indeed, as remarked above,
for any 6 by using the test function (¢, 1) = (1, —v), we have
—V < Ay (Mymo + a)
whereas from (iv) of the Proposition (6.2.8) we have

1

Ay(Mgmaot+a)< — sgp (— om + a) :
Therefore, since m > 0 we have

—v| < lirr(l) sup 1,(Mymao +a) < —v.

g—

Indeed, the analysis of the limit of A,(M; , , + a) when ¢ — 0 holds true as soonas < 2.
Thus,

Ap(Mo-,m’_Q + a) — —supaaso — 0.

0

On the other hand, the analysis of the limit of A,(Mj ,,, o + a) when ¢ — +oo holds true
as soon as m > 0. Therefore,
AP(MG,Z,Q + a) — —supaas o — +oo,
0

In this situation, one of the above argument fails and one of the expected limits is not —v
any more. Indeed, we have

Lemma (6.2.21)[203]: Let Q be any domain and let ] € C(RN) be positive, symmetric and
such that |z|?]J(z) € L'(RN). Assume further that J satisfies (68)—(70) and m = 0 then

lim A,, (]\/[0,0,9 + a) = —sup a
0

o-0

lim A, (]\/[0,0,9 + a) =1-—supa
0

o—+00
Proof. As already noticed, the limit ofA, (M ., o + a) when o — 0 can be obtained by
following the arguments developed in the case 0 < m < 2.
Therefore, it remains only to establish the limit of A,(M ,,, o + @) When ¢ — co.
As above, up to adding a large positive constant to a, without any loss of generality, we
can assume that a is positive somewhere in QQ and we denote v := sup a > 0. By using

0
constant test functions and (iv) of the Proposition (6.2.8), we observe that
—V<=ApMspoq+a)<1— vforaloc>0.
So, we have
lim sup A,(M500+a)<1-—v.

o—00

On the other hand, for any ¢ € C.(2) we have for all o,

7, 0(@) f 02 (x) = — f ( f Jo (= V@) dy — <p(x>> o(x)dx - f ap?(x) dx,
0N 0 0

0

—— | [ 1= 9000rdxdy - | 020 dx - [ ap?eodx,
%N 0} 0}
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1/2

2
= —llollz@ J(Jla(x—y)w(x)w(y)dx> dy
n n

+ J ©?%(x) dx — supa f @?(x) dx,

0 0
> VTl ol + [ 0@ dx—v [ 9?0,
0 n
Ji=
> (— 01{,/2 +1—v>j<p2(x)dx.
0

Thus, for all c we have

I50(0) = (— > le‘” +1-— v>.

o2
By density of C.(£2) in L?(£2), the above inequality holds for any ¢ € L*(12).
Therefore, by Theorem (6.2.14) for all o
VIl e

Ap(jl&ﬁ12+'a)==Av($4@0ﬂ'+60 > — N +'1_'v,
o2
and
lim inf A,(M; +a) <1—v.
o—+00
Hence,

1—-v< lim inf 1,(Ms0q+a) < lim sup ,,(Ms90+a)<1-—v.
o—+00 " o+ e

We analyse the monotonic behaviour of 1,,(M; o + a) with respect to o in the particular
case 2 = RN,
Proposition (6.2.22)[203]: Let 2 = RN, a € ¢(RV)and] € C(RN) be positive, symmetric
and such that |z|?J(z) € L*(RN). Assume further that J satisfies (68)—(70), m = 0 and a is
symmetric (a(x) = a(—x) for all x) and the map t — a(tx) is non increasing for allx, t >
0. Then the map ¢ — 4,(0o) is monotone non decreasing.
Proof. When 2 = RN, thanks to Proposition (6.2.2), we have

Ap(Myomn + @) = 1y (M1 o py + ag (x)).
Since the function ac(x) is monotone non increasing with respect to o, by (i) of Proposition
(6.2.8), for all ¢ = o™ we have

Ap(My gy + a) = 2, (MLO’RN + aa*(x))

< (MLO’RN + ao(x)) = Ap (MU’O’RN +a).
Finally, let us study the case m = 2 and end the proof of Theorem (6.2.3). In this situation,
we claim that
Lemma (6.2.23)[203]: Let Q be a domain, a € C(2) and let ] € C(RN) be positive,
symmetric and such that |z|?J(z) € L*(RN). Assume further that J satisfies (68)—(70), a €

Cc%%(0) with @ > 0 and m = 2 then
lim A,(Mg 20+ a) < —supa,
X0)

g—>+00

255



D K

lim A, (M, 50 +a) = /11< ZU; 2N A+ a,.()), (103)

o—
where

KZN |SN 1| f(s 81)2 ds =
SN—l
and
M (KD (DA + a,0):= inf Ky nd (@) —A(p).

PEH(2),p#0
Proof. In this situation, as already noticed, by following the arguments used in the case 2 >
m > 0, we can obtain the limit of 1,,(M; , , + a) as 0 — .50, it remains to prove (103).

1 2
GZDZU)]G(Z)|Z| , then for

Let us rewrite J, ,(¢) in a more convenient way. Let p,(z) :=
@ € H3(02), we have

1 1
I52(@) = ( j j Jo(x =) (p(x) — qo(y))zdxdy>
%N

91 g, \ 207
, —Ry(@) — A(p),  (104)
1 (D) (p(x) = o))
- - dxdy | - — A(0). (105
”90”22(9)< 2 fﬂfﬂpa(x y) lx — y|? X y) R (@) — A(e).(105)

We are now is position to prove (103). Let us first show that
KZ,NDZ (])

o-0

limsup 1,(My10+a) <24y ( A+ a,.(2>. (106)

This inequality follows from the two following observations.
First, for any w c 2 compact subset of 2, we have for ¢ small enough

ps(x) = j]g(x —y)dy =1 forall x € w.
0

Therefore, forp € CZ(2) and o small enough,

Ryo = 2—21 ps(x — 1) ?(x) dx = 0. (107)
o ||§0||L2(g) 0

Secondly, by definition, p, is a continuous mollifier such that

( ps =0 inRN

fp(,(z)dz =1,Vo > 0,
< ]RN

lirr(l) f ps(z)dz =1,Vo > 0,
oo
|z|28
which, from the characterisation of Sobolev spaces in [210], [211], [240], enforces that
2
. p(x) — o (y)
lim ps(x —y) ( )

-0 J 50 |x — y|?
Thus, forany ¢ € CZ(2)

lim 2,( My, 50 + a) < }rl_f}}) T2 (0) = Kon (@) — A().

o—-0

dxdy = K2,N||<p||fz(m,for any ¢ € H3(2). (108)
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(Kz,NDz @)
2

From the above inequality, by definition of A, A+ a,!)), it is then standard to

obtain

Ky yD
lim sup 2,(M 50+ @) < 4 (%ZU) A+ a,.()).
g—

To complete our proof, it remains to establish the following inequality

K> D
(2D 4 00) < oyt 1,000

Observe that to obtain the above inequality, it is sufficient to prove that

Ky nD
3 (%ZU) A+ a,g) < liminf 2,(M, 50 +a) + 28 forall § > 0. (109)

Let us fix § > 0. Now, to obtain (109), we construct adequate smooth test functions ¢, and
estimate K, yJ(@q) — A(@s) in terms of1,(M; 5 o + a), 6 and some reminder R(o) that
converges to 0 as ¢ — 0. Since our argument is rather long, we decompose it into three
steps.

We first claim that, for all ¢ > 0, there exists ¢, € C.° (2) such that

My 2 0l9s](x) + (a(x) + Ay My 20 +a)+ 25)goa(x) > 0forallx € 0.
Indeed, by Theorem (6.2.14), we have 1,(M, , o + a) = Ay (M, 2.0 + a), therefore for all
o, there exists Y, € C.(£2) such that

Myoals](x) + (a(x) +2,(Myo0+a) + 8)hs(x) =0 forallx € 0.

Since Y, € C.(22), we can easily check that
Myomh [Wel(X) + (a(x) +2,(My20+a) +8)hs(x) = 0forallx € RV.

Now, let n be a smooth mollifier of unit mass and with support in the unit ball and consider

Ny = TLN n(f)orr > 0.

By taking @, := 77 * y, and observing that M, , gy [ @5](x) = 1, (M5, g [W5]) (%) for
any x € R¥we deduce that
N % (Mg mv[Wel + (@) + 2,(My o0 +a) + 6)p,) = 0 for all x € RV,
Mo mv [Po] () + (A (Mg 20 + @) + 8)@y(x) + 1, * (ahy)(x) = Ofor allx € RV,
By adding and subtracting a, we then have, for all x € RY,
MU,Z,RN [@0’] (x) + (a(x) + /1p (MO',Z,.Q + a) + 5)@0’(-’0

+ [ e G = P9e0) (@) - aG)ay 2 0

]RN
For T small enough, say © < t,, the function ¢, € C;°(2) and for all x € Q2 we have

1
M 35160 =~ [ 1o =980y = o) |,
RN

1
= ; f]o. (X - }I)(ﬁo-(:V)dy - </_)0'(x) MO‘,Z,.Q [(/_)a](x)
Q

Thus, from the above inequalities, for T < t,, we get forall x € (2,
MO’,Z,.Q [(ﬁa] (X) + (a(x) + Ap (Ma,z,!) + a) + 5)@0‘(95)
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+ [ 16— 90,0)(a0) - a@)dy = 0
]RN
Since a is Holder continuous, we can estimate the integral by

[ne G = (@) - atay| < [neGx = o) (a (ly ) - “lfj‘)) ay,
: SRKT Py (x),

. . . ) 1/a
where k is the HOlder semi-norm of a. Thus, for T small, says 7 < inf{ (%) , To}, We have

Mg 2,0[0s1(x) + (a(x) + 4,(My 20+ a) + 26) ps(x) = 0forallx € 2. (110)
Let us consider now ¢, :=y @,, where vy is a positive constant to be chosen. From (110),
we obviously have

Mg 2,0l0s1(x) + (a(x) + 4,;(M520 +a) + 26)ps(x) = 0forallx € 0. (111)
Jgn P& (x) dx

By taklng Y ‘= W(x) dx’

we get

Jgn $5(x) dx
S 92 (%) dx

= 1. (112)

Step Two: A first estimate of 4,.
Now, by multiplying My » o[¢s] by @sand integrating over 2, we then get

- fMJ,Z,.Q [QDJ]QDO-(X)d.X

1
- J J 2Jo(x=Y) (0 dy — 9s(x)) @, (x) dydx, (113)
RN xRN
=552 J JRNXRNJU =) (0 dy = 9,(x))" dxdy, (114)
_D() (0o x +2) = 9o ()’
= J JRNXRNPU(Z) PE dzdx. (115)

By combining (110) and (115) we therefore obtain

_D:() (pox +2) — 9, ()
= [ ® 7 drdx
— J a()P2(x)dx < (4,( My 20 + a) + 26) f P2 (x)dx. (116)
RN RN

On the other hand, inspired by the proof of Theorem 2 in [211], since ¢, € C (RY)

, by Taylor’s expansion, for all x,z € R", we have
1 1

056 + 2) = 9s(0) = 2T, ()| < ). |zlz,|f f|al,<pa(x + tsz)|ds | dt.
ij
Therefore,
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2T, < gl [ €| [ 10y0sx + es2)lds | dt+lgu G+ 2) = g0,
Lj 0 0

and for every 6 > 0 we have
2

1 /1
|z.|7%(x)|2 < Cy Z|zizj|jt f|6l~j<pa(x + tsz)|ds | dt
Lj 0 0

+(1+ 0) gy (x + 2) — 9 (x)]?,
<C@Z|ZZ] f ftzlaij<p0(x+tsz)|2dsdt+(1+9)|<p0(x+z—<pa(x)|2.

[0,1]2
Thus, by mtegratlng inx and z over RY x R, we get

jfpaéllil) |z - Vo, (x)|*dzdx

< Cef f Pa(|Z|)Z |22z |l |]2| (j -[[O’l]zt2|6ijg00(x + tsz)|2 dzdx)

o X + — Vo 2
+(1+9)jjp(,(|z|)|‘p (x T;IZ ZACL P

For ¢ small, supp(p,) < B;(0), and we have for all x € R",

ps(|z])
J 6|Z|2 1z - Vo, (x)|*dz = KZ,N|V<P0(X)|2;

RN

Whence,

Ko n j|\7§0a(x)|2dz

IRN
2
|ZiZj| 2 2
< C@JJPGUZDZ PE j f t2]0;;05(x + tsz)|” dsdt |dzdx
Lj [0,1]2

_ 2
+(1 +t9)JJ,()(,(Izl)lgoa(x-l_zlzl2 2aGl dzdx. (117)

Dividing (117) by ||go(,||fzm) and then subtracting A (¢,) on both side, we get

KZ,NJ(§06) - UQ(QDG) < R(O-) + (1 + 0)‘70,2(<p0)r (118)
where R (o) is defined by

12
R(o) := JJ (|2 Dzl ljzl f f t2|aij<pa(x + tsz)|? dsdt | dzdx.
”(pO'”LZ(_Q) | |

[0,1]2

By combining now (118) with (116), by definition of 1, (K“’TDZ(D A+ a,.()), we obtain
K, yD
A (%ZU) A+ a,ﬂ) < R(0) + (1 + 0|4, (M0 +a) +28].  (119)

Let us now estimate R (o) and finish our argument.
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By construction, we have 0;;,_ = 0;j,. * ¥4 So, by Fubini’s Theorem and standard
convolution estimates, we get for ¢ small

ro<y | fp“('z')z,'ffZ'

L,j |z|=1 [0,1]2

f'aijn * Ps(x + tsz)|2dx dtdsdz,

2|
jl‘z|<1 J;01 Po(l2 DZ |l |]2 t*dtdz ”Vznr||L1(RN)||¢G||EZ(RN),

- 3 ” nT”Ll(]RN)”l/JO-”LZ(]RN)-[ Po (|Z|)|Z| dz.
Combining this inequality with (119), we get

K, yD
A, ( 2,N22(]) A+ a,.(2> <1+ 19)[/11,(]\/[‘0,2,[2 + a) + 25]
26, 0 12
+ 2217 gy T | b 2Dl
( ) ” 0'||L2(_Q) zi<1

Since ¢, € C° (Q), ||%||L2(n) II%IILz(RN) and thanks to (112), the above inequality
reduces to

Ko nD2(J)
M (T A+a,0)<A+60)[1,(My,0+a) + 28]
)
3 170l | po(2Dlzl?dz. (120)
lz|=1
Now, since flzlsl ps(|zD|z|* dz < o2, Iettmg o — 0in (120) yields
K, xD
A (%Z(DA +a, Q) <(1+6) [25 + lim inf Ap(Mgo0 + a)]. (121)
o—

Since (121) holds for every 6, we obtain
A (KZ,NDZ(D
! 2
We investigate the existence of a positive continuous eigenfunction ¢, , associated to the
principal eigenvalue A,(M; o + a).
The existence of such a ¢, ; is a straightforward consequence of the existence criteria

in bounded domain (Theorem (6.2.7)) and the asymptotic behaviour of the principal
eigenvalue (Theorem (6.2.3)).
Indeed, assume first that Q is bounded, then since a € L®(f2), there exists g, such that

forall o < oy,
D
kl(LZ(DA+a,Q)‘.
o 2

Now, thanks to A, (M 20 + a) - N (KZN—DZ(DA +a, Q) for o small enough, says o < oy,
we get

o—-0

A+a, Q) < lim inf A (]\/[629 +a)+26

1

— supa>1+
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K, D
}\1< 2nD2())

Ap(Mso0 +a)< 1+ >

Thus, for o < inf{oy, gy},

A+a,ﬂ)|.

1
Ap(Msan +a) < 52 supa,
which, thanks to Theorem (6.2.7), enforces the existence of a principal positive continuous
eigenfunction ¢, ;o associated with A,(M,, 9 + a).
From the above argument, we can easily obtain the existence of eigenfunction when Q
Is unbounded.
Indeed, let 2, be a bounded sub-domain of Q and let y := sup{|1,(2y)]|; |A1(2)]|}. Since

a is bounded in Q, there exists g, such that for all ¢ < gy,

1
— - >2+y.
oz~ supa 14

As above, since A, (M 2.0, + a) = 4, (), there exists g, such that for all o < g, we have
Ap(Mg 20, +a) <1+y.
For any bounded domain 2’ such that 2, < 2" < £2, by monotonicity of A,(My,q + a)
with respect to 2, for all ¢ < o; we have
Ap(Mg 20, +a) <1+y.
Therefore, for all 0 < 0, := inf{o,, 01}, we have

1
Ap(Mozo +a)+ 1 S?—sglpa,

and thus, thanks to Theorem (6.2.7), for all ¢ < o2 there exists ¢p,s associated to
Ap(]\/[(,’z’nr + a).
To construct a positive eigenfunction ¢, ; associated to A, (Mc,z,n + a), we then argue as
follows.

Let (£2,,),,en D€ an increasing sequence of bounded sub-domain of Q that converges to
Q. Then, for all ¢ < 0,, for each n there exists a continuous positive function ¢, ,
associated to A, (M40, + a).
Without any loss of generality, we can assume that ¢,, is normalised by ¢, (xo) = 1 for
some fixed x, € 2y. Since for all n,A,(My 0 +a)+1 <—- sup a, the Harnack

inequality applies to ¢,, and thus the sequence (£2,,),,en 1S Iocally unlformly bounded in C,
topology. By a standard diagonal argument, there exists a subsequence, still denoted
(2,)nen , that converges point-wise to some nonnegative function ¢. Thanks to the Harnack
inequality, ¢ is positive. Passing to the limit in the equation satisfied by ¢,,, thanks to the
Lebesgue dominated convergence Theorem, ¢ satisfies

M 0,2,0[@](x) + (a(x) + Ay s(Mya0+a) @(x) =0 forall x € 0.
Since a is continuous and ((a(x) + }\p,(,(]\/[(,,z,,2 + a) — 0—12) < 0, we deduce that ¢ is also
continuous.

Hence, ¢ is a positive continuous eigenfunction associated with Ap,a(Mam + a).

Finally, let us complete the proof of Theorem (6.2.4) by obtaining the asymptotic
behaviour of ¢, ;when ¢ — 0 assuming that ¢, , € L%(2). We first recall the following
useful identity:
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Proposition (6.2.24)[203]: Let p € C.(RY) be a radial function, then for all u €
L>(RM), ¢ € C°(RY) we have

1
p@Mux+2) —u@lo@ dzdx =3[ [ p@uE@alple) ddx
Whers R

A[0](x) = @p(x +2) —2¢(x) + @(x — 2).
Proof. Set

[ := f f p(2)ulx + z) —ulx)]p(x)dzdx .

RN xRN
By standard change of variable, thanks to the symmetry of p, we get

=3 . jRNp(z) e+ 2) ~ u()]p (o)

+%J J p(=z)[ulx +z) —ulx)]pk),

RN xRN

1
= E_[ j p(Z)[ulx + z) —ulx)]p(x)

RN xRN

1
+§j jp(z)[u(x)—u(x‘l‘z)]‘P(X‘FZ):
RN xRN
1
= ——j j p(@)[ulx +2z) —u@)][pkx +2) — ()],

2
RN xRN

__L j [ poueipe) - o -1+ j | roueue+2) - o1 |

RN xRN RN xRN
1
= —J J p(2)[ulx + z) — u(x)]p(x)dzdx

2
RN xRN
Consider now o < 0,(£2) and let ¢, , be a positive eigenfunction associated with A, ;. That
is ¢, ssatisfies
Ms2.0 [Pnol(x) + (a(x) + Ay )Py (x) = 0forallx € 0. (122)

Let us normalize ¢, , by ”%"’”Lz(n) =1
Multiplying (122) by ¢, , and integrating over (2, we get
2
D,(J) Pp,o(¥) — @p,o(x)
D[ [ 5y 22 =000

|x — y|?

dxdy

axo
< f(a(x) + Ao o) Ppo(x) dx < C.

0
Since aand A, ,; are bounded independently of o < 0, (£2), the constant C stands for all o <

0y (..Q) B
Therefore for any bounded sub-domain 2 c £,
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2
j e (X — ) ((pp,a(Y) - (Pp,a(x)) dxdy < C.

lx — y|?
n'xn!
Therefore by the characterisation of Sobolev space in [240], [239], for any bounded sub-
domain 2 c ., along a sequence, Ppe > Pin L?>(£2). Moreover, by extending
¢p,» by 0 outside 2, we have ¢, ,€L*(R") and for any ¢ € CZ (2) by Proposition (6.2.24)

it follows that
D o
22(]) f f p| Z(é) ©po(X)A[Y] dxdz

OXRN

= [ (aG + 2o =1+ 0o00) Yo Cdx. (123)

0
Recall that iy € CZ°(RY), so there exists C(y) and R(y) such that for all x € RY

14,1100 — 6, (V22 < CW)IzPlp,,, ().

Therefore, since ¢p,o is bounded uniformly in L2(Q),

D
L[ [ 222 g - 6 200)] axds

NXRN
< cc) [ @izl -0, (124)
RN

On the other hand,y € CZ(Q2) enforces that for o small enough supp(1 — p,(x)) N

supp(y) = 9.

Thus passing to the limit along a sequence in (123), thanks to (124), we get

D

2B j @a@dx + [ @ +aydr=0.  (125)
N

being true for any 1, |t follows that ¢ is the smooth positive eigenfunction associated to

Anormalised by [l@ll 21 = };i_r)r(l)||gop,a||L2(m .The normalised first eigenfunction being

uniquely defined, we get ¢ = @, and @, ;— @ in L3,.(2) wheno — 0.
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List of Symbols

Symbol Page
LP Lebesgue space 1
dim: dimension 1
det: determinant 7
L?: Hilbert space 8
Ag: Laplace-Beltrami operator 23
sup: supremum 26
det: determinant 28
max: maximum 38
QUE: Quantum unique ergodicity 47
inf: infimum 48
supp:  support 69
L”: Essential Lebesgue space 75
L': Lebesgue space on the line 77
12 Hilbert space of sequences 81
£4: Dual of Banach space of sequence 84
stab: stabilizer 93
Dir: Dirichlet 93
int: interior 03
Osc: oscillatory 94
loc: local 107
a.p: almost periodic 108
W?2*:  Sobolev space 109
min: minimum 123
per: periodic 124
ker: kernel 125
LRC: locally Relative compact 145
ot Essential Banach space 145
Q: tensor product 146
diam:  diameter 147
dist: distance 167
inj: injectivity 190
Re: Real 204
int: interior 206
ess: essential 211
dom: domain 231
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