Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/22514
Title: Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators
Other Titles: النتوء اللوغريثمي مع مبرهنة T (B) ثنائية الخطية ومؤثرات التكامل الشاذة الأعظمية
Authors: Ahmed, Hind Mohammed Ibrahim
Supervisor, - Shawgy Hussein AbdAlla
Keywords: Mathematics
Integral Operators
Maximal Singular
Logarithmic Bump with Bilinear
Issue Date: 10-Nov-2016
Publisher: Sudan University of Science and Technology
Citation: Ahmed, Hind Mohammed Ibrahim . Logarithmic Bump with Bilinear T (B) Theorem and Maximal Singular Integral Operators / Hind Mohammed Ibrahim Ahmed ; Shawgy Hussein AbdAlla .- Khartoum: Sudan University of Science and Technology, college of Science, 2018 .- 158p. :ill. ;28cm .- M.Sc.
Abstract: We show that if a pair of weights (u,υ) satisfies a sharp Ap - bump condition in the scale of all log bumps certain loglog bumps , then Haar shifts map L^p (υ) into L^p (u) with a constant quadratic in the complexity of the shift . This in turn implies the two weight boundedness for all Calderón – Zygmund operators. We obtain a generalized version of the former theorem valid for a larger family of Calderón – Zygmund operators in any ambient space . We present a bilinear Tb theorem for singular operators Calderón – Zygmund type. Extending the end point results obtained to maximal singular. Another consequence is a quantitative two weight bump estimate.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/22514
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Logarithmic Bump with....pdfResearch2.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.