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Abstract  

We show that if a pair of weights  (u, ) satisfies a sharp Ap - bump condition 

in   the scale of all log bumps certain loglog bumps , then Haar shifts map    

( ) into     (u) with a constant quadratic in the complexity of the shift . This 

in turn implies the two weight boundedness for all Calderón – Zygmund 

operators. We obtain a generalized version of the former theorem valid for a 

larger family of Calderón – Zygmund operators in any ambient space . We 

present a bilinear Tb theorem for singular operators Calderón – Zygmund 

type. Extending the end point results obtained to maximal singular. Another 

consequence is a quantitative two weight bump estimate.  
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 الخلاصة 

القاطع   في كل النتوءات     - النتوء( يحقق شرط   ,uأوضحنا أنه إذا كان الزوج المرجح ) 

مغ    ( )   إنٍ  ( )   اللوغريثمية أو لنتوء لوغريثم اللوغريثم المعين  إذاً راسم ازاحات هار 

ثىابج انذسجت انثاوُت فٍ حؼقذَت الاصاحت . هزا بانمقابم َذل ػهً انمحذودَت انمشجحت انثاوُت نكم 

ممت نمبشهىت سابقت صحُحت لأجم انؼائهت انكبُشة صَجمىوذ . ححصهىا اصذاء مؼ –مؤثشاث كانذسون 

ثىائُت انخطُت لأجم  Tbصَجمىوذ فٍ أٌ فضاء محُط . أحضشوا مبشهىت  –نمؤثشاث كانذسون 

. حمذَذ وخائج انىقطت انىهائُت انمخحصم ػهُها انً صَجمىوذ  –مؤثشاث انخكامم انشارة نىىع كانذسون 

 ىء مشجح اثىُه كمٍ . خوجت أخشي هٍ حقذَش مؤثشاث انخكاملاث انشارة الأػظمُت . وخُ
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Chapter 1 

Two-Weight Boundedness of Calderón-Zygmund Operators  

We give a partial answer to a long-standing conjecture. We also give a partial result for a 

related conjecture for weak-type inequalities. We combine several different approaches to 

these problems; we use many of the ideas developed to prove the A2 conjecture. As a by 

product of the work we also disprove a conjecture by Muckenhoupt and Wheeden on 

weak-type inequalities for the Hilbert transform: (The Hilbert transform is a linear 

operator that takes a function u(t) and produces a function H(u)(t) with the same domain. 

The Hilbert transform is important in signal processing, where it derives the analytic 

representation of a signal u(t). This means that the real signal u(t) is extended into the 

complex plane such that it satisfies the Cauchy–Riemann equations. For example, the 

Hilbert transform leads to the harmonic conjugate of a given function in Fourier analysis, 

and harmonic analysis. Equivalently, it is an example of a singular integral operator and 

of a Fourier multiplier)[5].  

We show several partial results related to a pair of long-standing conjectures in the 

theory of two-weight norm inequalities. To state the conjectures and the results we recall 

a few facts about Orlicz spaces. Given a Young function A, the complementary function 

 ̅ is theYoung function that satisfies 

         ̅                

We will say that a Young function   ̅ satisfies the       condition, 1 < p <∞, if for 

some  c >0, 

∫
 ̅   

  
 

 

 

  

 
    

If A and  ̅ are doubling (i.e., if A(2t) ≤ CA(t), and similarly for  ̅), then  ̅     if and 

only if 

∫ (
  

    
*

     

 

  

 
    

 Given          , let A and B be Young functions such that  ̅      and  ̅    . We 

say that the pair of weights (u, v) satisfies an     bump condition with respect to A and B 

if 
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‖    ‖

   
‖     ‖

   
    

where the supremum is taken over all cubes Q in R
d
, and the Luxemburg norm is 

defined by 

‖ ‖        2    
 

   
∫                 
 

3 

If (1) holds, then it is conjectured that  

                 

Similarly, if the pair (u, v) satisfies the weaker condition 

   
 
‖    ‖

   
‖     ‖

    
    

then the conjecture is that  

                   

The conditions (1) and (3) are referred to as    bump conditions because they may be 

thought of as the classical two-weight    condition with the localized   and    
 
norms 

“bumped up” in the scale of Orlicz spaces. They first appeared in connection with 

estimates for integral operator related to the spectral theory of Schrӧdinger operators. The 

bump condition considered was the Fefferman–Phong condition that used “power” 

bumps: i.e., Young functions of the form                . Power bumps were 

independently introduced by Neugebauer. Bump conditions in full generality were 

introduced by Pérez . 

It was proved for p = 2 in any dimension and for any Calderón–Zygmund operator 

using  Bellman function techniques. 

Theorem (1.1)[1]: Given p=2, suppose the pair of weights (u,v) satisfies (1), where  ̅  

   and  ̅    . Then every Calderón-Zygmund singular integral operator T satisfies 

 ‖  ‖       ‖ ‖     , where C depends only on T, the dimension d, and the suprema 

in (1). 

                  (2) 

                  (3) 

                   (4) 

             (1) 
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Certain additional results are known in the special case that A and B are “logbumps”: that 

is, of the form 

                        ̅    
  

 

            
                                                    (5) 

        
 
          

       ̅    
  

            
     

where δ > 0, δ′ = δ/(   − 1), δ′′ = δ/(   − 1). But even in this case the result for all 

Calderón –Zygmund operators was unknown. The weak-type conjecture is only known 

for log bumps. 

One can motivate the conjectures (1) ⇒ (2) and (3) ⇒ (4) (and the related conjectures we 

consider below) by considering a pair of conjectures due to Muckenhoupt and Wheeden. 

First, they conjectured that a singular integral operator (in particular, the Hilbert 

transform) satisfies (2) provided that the Hardy-Littlewood maximal operator: (Maximal 

functions appear in many forms in harmonic analysis (an area of mathematics). One of 

the most important of these is the Hardy–Littlewood maximal function. They play an 

important role in understanding, for example, the differentiability properties of functions, 

singular integrals and partial differential equations. They often provide a deeper and more 

simplified approach to understanding problems in these areas than other methods.)[6] 

satisfies 

                 

     
 
           

 
         

They also conjectured that (4) holds if the maximal operator satisfies the 

second,    
 
inequality. Proved that a sufficient condition for each of these estimates to 

hold for M is that the pair (u, v) satisfies 

   
 
‖    ‖

   
‖     ‖

   
    

    ‖ 
   ‖

   
‖     ‖

    
    

in particular, both these conditions hold if (1) holds. 

Given the falsity of the Muckenhoupt-Wheeden conjectures (even for   =2), 

the     bump conjectures become even more interesting. Moreover, Theorem (1.1) and 

the other results listed above strongly suggest that it should hold in the full range of   , 

 

(6) 

(7) 

 (8) 
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dimensions, and Calderón–Zygmund operators. Here we consider two even stronger 

conjectures, motivated by the fact that the “separated” bump conditions (7) and (8) are 

sufficient for the maximal operator inequalities in the original conjecture. 

Conjecture (1.2)[1]: Given  , 1<   < , suppose the pair of weights (u,v) satisfies (7) 

and  (8), where  ̅       and   ̅    . Then every Calderón-Zygmund singular integral 

operator T satisfies  ‖  ‖       ‖ ‖     , where C depends only on T, the dimension 

d, and the suprema  in  (7) and (8). 

Conjecture (1.3)[1]: Given  , 1 <   < , suppose the pair of weights (u,v) satisfies (8) 

where  ̅     . Then every Calderón-Zygmund singular integral operator T 

satisfies ‖  ‖         ‖ ‖     , where C depends only on T, the dimension d, and the 

supremum in (8). 

We can prove Conjecture (1.2) in the special case when A, B are log bumps. 

Theorem (1.4)[1]: Given  ,1<   < , suppose the pair of weights (u,v) satisfies (7) and  

(8), where A and B are log bumps of the form (5) and (6). Then every Calderón-

Zygmund singular integral operator T satisfies ‖  ‖       ‖ ‖     , where C depends 

only on T, the dimension d, and the suprema  in  (7) and  (8). 

The techniques also immediately yield Conjecture (1.3) for log bumps. This gives 

anew proof of the result originally. For completeness we include it here. 

Theorem (1.5)[1]: Given  ,1<    < , suppose the pair of weights (u,v) satisfies (8) 

where A is a log bump of the form (5). Then every Calderón-Zygmund singular integral 

operator T satisfies ‖  ‖         ‖ ‖     , where C depends only on T, the dimension 

d, and the supremum in (8). 

The method to prove Conjectures (1.2) and (1.3) for a subset of the class of bump 

functions referred to as loglog-bumps: 

 

                                        ̅    
   

                        
 
  

 

(9) 
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′
         

′               
′        ̅̅ ̅    

  

                       δ
′′   

Where δ >0. These bump conditions are well known, but have been difficult to work 

with. No results were known for loglog-bumps that were not proved for bump conditions 

in general. However, we can show the following results, both of which are new. 

Theorem (1.6)[1]: Given  , 1 <   < , suppose the pair of weights (u,v) satisfy (7) and  

(8), where A and B are loglog-bumps of the form (9) and (10) with δ sufficiently large. 

Then every Calderón-Zygmund singular integral operator T satisfies ‖  ‖      

 ‖ ‖     , where C depends only on T, the dimension d and the suprema in (7) and (8). 

Theorem (1.7)[1]: Given  , 1 <   < , suppose the pair of weights (u,v) satisfies (8) 

where A is a loglog-bump of the form (9) with δ sufficiently large. Then every Calderón-

Zygmund singular integral operator T satisfies  ‖  ‖         ‖ ‖     , where C 

depends only on T, the dimension d and the supremum in (8). 

Reformulate the results and reduce the problem to proving the corresponding results for a 

general class of dyadic shift operators. It is important to note that in most of the proof we 

only need to assume that   ̅       ̅    ; only at one step are we forced to assume that  

A, B are log bumps. We will use the notation 

〈 〉  
 

   
∫        

 

 

We also restate the weighted norm inequalities in an equivalent form. Let       
 
  then 

we can rewrite (7) and  (8) as 

 

   
 
〈 〉 
   
‖    

 
‖
   
 ∞  

    ‖ 
   ‖

   
〈ζ〉 
    
 ∞  

By the properties of the Luxemburg norm we have that either condition implies the two-

weight     condition: 

(10) 

          (11) 

 (12) 
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〈 〉 
   〈 〉 

    
 ∞  

Similarly, we can restate the conclusions of Theorems (1.1) and (1.4) as 

‖     ‖       ‖ ‖      ‖     ‖         ‖ ‖      

The    condition is closely connected to a generalization of the maximal operator. 

Recall that the Hardy-Littlewood maximal operator is defined to be 

           
   
〈   〉      

   
‖ ‖     

Given a Young function A, we define the Orlicz maximal operator     by 

            
   
‖ ‖     

Theorem (1.8)[1]: Fix  , 1 <   < , and let A be a Young function such that     . 

Then       
    . 

The    condition is also sufficient for a two-weight norm inequality for the Hardy-

Littlewood maximal operator.  

Theorem (1.9)[1]: Fix  , 1 <   <  , and let B be a Young function such that  ̅    . If 

the pair of weights (u,σ) satisfies 

    〈 〉 
   
‖ζ   

 
‖
     ∞
   

then 

‖     ‖       ‖ ‖       

We now turn to the definition of the dyadic Haar shift operators that will replace an 

arbitrary Calderón-Zygmund operator. 

Definition (1.10)[1]: Given a dyadic cube     is a (generalized) Haar function 

associated to a cube Q if 

       ∑          

        

  

  (13) 

        (14) 

         (15) 
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Where ch(Q) is the set of dyadic children of Q and          . 

Definition (1.11)[1]: We say that an operator S has a Haar shift kernel of complexity 

(m,n) if 

       ∑     

 

  

where 

       
 

   
∑            

        

 (  )        

              

 

and      and      are generalized Haar functions associated to the cubes Q  and Q   

respectively. We say that S is a Haar shift of complexity (m,n) if it has a Haar shift kernel 

of complexity (m, n), and it is bounded on          

To prove Theorems (1.4) and (1.5) it will suffice to prove that they hold for Haar shift 

operators of complexity (m,n) with a constant that grows polynomially in   

           . We will prove the following. 

Theorem (1.12)[1]: Given  , 1 <   <  , suppose A and B are log-bumps of the form (5), 

(6), and the pair of weights (u, σ) satisfies (11) and (12). Given any dyadic shift S of 

complexity (m,n),               ‖     ‖        
 ‖ ‖       where C depends 

only on the dimension d and the suprema in (11) and (12). 

Theorem (1.13)[1]: Given  , 1 <   <  , suppose A is a log-bump of the form (5), and 

the pair of weights (u,σ) satisfies (12). Given any dyadic shift S of complexity  (m,n), 

‖     ‖          
 ‖ ‖     , where C depends only on the dimension d and the 

supremum in (12). 

To prove the strong-type inequality we follow the argument used by Hytӧnen in the 

one-weight case. Fix a function  f  that is bounded and has compact support. For each 

N>0, let        
      . By Fatou’s lemma, 
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‖     ‖             
   

.∫                   
        

  

/

   

  

where         is the median value of       on   . Fix N. Using the remarkable 

decomposition theorem of Lerner, they show that there exists a family of dyadic cubes 

       
   and pairwise disjoint sets    

   such that    
    

     
   

 

 
    
  , and 

 

.∫ |               |
 
      

  

/

 

 

   ‖     ‖          ∑‖∑〈    〉
(  
 )
    

 

   

‖

     

 

   

 

(Here, given a dyadic cube      denotes the i-th parent of Q.) Alternatively, we combine 

it with the unweighted weak-type estimate with the right dependence on τ we precede the 

weak-type estimate of            by a careful pointwise estimate of this function on Q. 

This lets the reduce the weak-type estimate of this expression to the weak-type estimate 

of          (with an error term that can be controlled). 

By Theorem (1.9), ‖     ‖       ‖ ‖       Therefore, it remains to estimate the 

second term in (16). We will show that each term in the sum is bounded by   ‖ ‖     . 

Note that this gives the estimate which is cubic in τ.  

Again, we show that this reduces to a two-weight estimate for apositive Haar shift 

operator. We reorder the sum as follows: fix an integer         and sum over every 

cube      
    and then over all cubes   

    such that    
     . Then we have that 

∑〈    〉
   
   
 
  
 

   

 ∑〈    〉 
 

∑   
   
    

 ∑  
 〈    〉 

 

    
         

where the last sum is taken over all dyadic cubes Q and 

  
  ∑   

   
    

  

       (16) 
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Clearly,   (hereafter we omit the superscript i) is a positive operator. We claim that it 

is in fact a positive Haar shift of complexity at most (0,η− 1). From the definition we have 

that 

    ∑
 

   
  
 

   

∫  

 

  

and so in the notation used above we have that 

   
 

   
  
 ∫  

 

  

             , the Q′′ are all the (i−1)-children of Q, and      ∑         (   ) , 

where              and       otherwise. Thus   has a Haar shift kernel of 

complexity             . To see that it is bounded on    , we use the properties of the 

cubes   
 . By duality, there exists       ‖ ‖     , such that 

‖   ‖ 
  ∫ ∑〈 〉

   
   
 
  
           

     

   ∑〈 〉   
   〈 〉

  
    
      

   

∫              
  

  

The last integral is bounded by ‖ ‖ ‖ ‖  by Hӧlder’s inequality and the unweighted    

inequality for the maximal operator. 

Definition (1.14)[1]: Given a positive Haar shift operator S, define the associated 

maximal singular integral operator by 

           
       

             
       

∑       

            

  

To prove that ‖      ‖        ‖ ‖     , we use the following result that is essentially 

due to Sawyer . 

Theorem (1.15)[1]: Let S be a positive Haar shift of complexity (m,n). Then the asso-

ciated maximal singular integral    satisfies 
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‖      ‖           

  ‖     ‖                 
 

‖   (   )‖     

    
 

 

 

    
 

‖   
      ‖     

    
 

 

  

Fix a cube   ; using the notation from the definition of a Haar shift, we have that 

    (    )  ∑      

    

      ∑         

      

 ∑            〈 〉  
    

 

The second inequality is straight forward. As we noted above, the pair (u,ζ) satisfies the 

two-weight   condition (13). Therefore, the       norm of the second term is bounded 

by 

‖   ‖     
〈 〉    〈 〉  

   〈 〉  
    
     

          
     

To estimate the       norm of the first term, we form the following decomposition: 

                       
            

           
  〈 〉 

   〈 〉 
    
        

  
                             

  
  {                       

            〈 〉    〈 〉 }  

   ⋃  
 

   

  

Hereafter we suppress the index i; this will give a sum with η + 1 terms. Given      , 

let      denote the minimal principal cube that contains it, and define 

                          

We will estimate the       norm of the first sum on the right-hand side of (18) using 

the exponential decay distributional inequality originated. Below, S is any positive 

   (17) 

           (18) 



11 
 

generalized Haar shift that is bounded on unweighted   . In particular, we will take S to 

be one of the positive Haar shifts    from above. 

Theorem (1.16)[1]: There exists a constant c, depending only on the dimension and the 

unweighted    norm of the shift, such that for any     ,  

 (                   
    

   
*           

It follows from Theorem (1.16) that for some positive constant c, 

 

‖∑      

   

‖

     

   ∑(∑     

    

(
    

   
*
 

+

   

 

  

We sketch the proof of (19) following the beautiful calculations . 

∑     

   

  ∑∑ ∑          

     

 

   

  

and so 

‖∑      

   

‖

      

       ∑‖∑          

    

‖

      

  

Fix a. Using Fubini’s theorem we write 

‖∑          

    

‖

     

 4∫4∑ ∑  
,                  

    

    
-
            

     

5

 

       5

   

 ∑      

 

(∫[∑  
,                  

    

    
-

    

   
    

]

 

       +

   

 

By the choice of the stopping cubes        we have that 

(19) 
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[∑  
,                  

    

    
-

    

   
    

]

 

 ∑  
,                  

    

    
-
(
    

   
*
 

    

  

This follows because the ratios  
    

   
 in the sum on the left are super-exponential. This 

beautiful observation lets a write 

‖∑          

    

‖

     

 ∑      

 

(∑ (
    

   
*
 

 (                    
    

   
*

    

+

   

  

Then by the distributional inequality from Theorem (1.16): 

‖∑          

    

‖

     

 ∑            

 

(∑ (
    

   
*
 

    

    

+

   

  

This gives (19). 

We can no longer assume that a pair of weights (u,σ) satisfies the general    bump 

condition and we must instead make the more restrictive assumption that we have log 

bumps. Before doing so, however, we want to show how the proof goes and where the 

problem arises for general bumps.We will then give the modification necessary to make 

this argument work for log bumps. 

Define the sequence 

   {
                           

                                             
 

then the inner sum in (19) becomes 

∑
    

   
(
    

   
*
 

  
    

  

But by Hӧlder’s inequality in the scale of Orlicz spaces, 
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  〈 

 

  
 

  〉   ‖ 
 

  ‖
   
‖ 
 

 ‖
   ̅
 ‖    

 
‖
   
   
   
  ̅  

        

Therefore, by (11), 

 

∑
    

   
(
    

   
*
 

  
    

   ∑   
    

   
   
  ̅  

      
   

To complete the proof  we need two lemmas.  

Lemma (1.17)[1]:      is a Carleson sequence. 

The second is a folk theorem. 

Lemma (1.18)[1]: If       is a Carleson sequence, then 

∑      
 
        

    

 ∫       

  

  

Combining these two lemmas with Theorem (1.8) (since  ̅    ) we see that 

∑
    

   
(
    

   
*
 

  

 

   ∑   
      

   
   
  ̅  

       
    ‖  ̅  

       ‖       
 

   ‖       ‖      
 

            

This would complete the proof except that we must now sum over a, and in (19) this 

sum goes from −∞ to the logarithm of the two-weight    constant of the pair (u,σ). We 

cannot evaluate this sum unless we can modify the above argument to yield a decay 

constant in a. We use the fact that the parameter a run from 0 to the logarithm of 

   constant: this follows since by Hӧlder’s inequality the    constant of any weight is at 

least 1. In the two-weight case the    constant can be arbitrarily small, and therefore we 

must sum over infinitely many values of a. We are able to get the desired decay constant 

only by assuming that we are working with log bumps. 

We modify the above argument as follows. Essentially, we will use the properties of 

log bumps to replace  ̅ with a slightly larger Young function. Define        

 (20) 

      (21) 
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  ; then we again have that  ̅    . Instead of (21) we will prove 

that there exists  γ, 0 < γ <1, such that 

 

∑
    

   
(
    

   
*
 

  
    

            ∑   
    

   
   
  ̅   

       
  

Given inequality (22), we can repeat the argument above, but we now have the decay 

term      which allows to sum in a and get the desired estimate. 

To prove (22) suppose for the moment that there exists γ such that 

‖    
 
‖
    
   ‖ 

    ‖
   

   
‖    

 
‖
  

 
          

 
  

Given this, fix a cube     —we can do this since otherwise        . Then 

    

   
.
    

   
/

 

 〈 〉 ‖ 
 

  ‖
    

 

‖ 
 

 ‖
 ̅   

 

 〈 〉 ‖ 
 

  ‖
   

      

‖ 
 

  ‖
  

 
(  
  

   
)

  

‖ 
 

 ‖
 ̅   

 

 .〈 〉 

 

 ‖ 
 

  ‖
   
/

      

 (〈 〉 

 

 ‖ 
 

  ‖
  

 
(  
  

   
)
+

  

 ‖ 
 

 ‖
 ̅   

 

          〈 〉 
   〈 〉 

    
    ‖    ‖

 ̅   

 
              ‖    ‖

 ̅   

 

                 
   
  ̅   

       
   

Inequality (22) now follows immediately. 

Therefore, to complete the proof we must establish (23). By the rescaling properties 

of the Luxemburg norm, the right-hand side of this inequality is equal to 

‖ 
   

  ‖
   
‖ 
 

  

 

‖
  

 
    

 

Where           
 

     . Therefore, by the generalized Hӧlder’s inequality in Orlicz 

spaces, inequality (23) holds if for all t >1, 

       
 

     
        

(22) 

 (23) 

                      (24) 
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A straightforward calculation shows that 

                  
 
   

  

         
   

 
  
      

  

   
      

 
 

  

         
 

 
  
 

   

  

By equating the exponents on the logarithm terms, we see that (24) holds if we take 

  
 

            
  

Therefore, with this value of γ inequality (23) holds, and this completes the proof. 

We give a direct proof of (23). The desire inequality obviously follows from the 

following lemma. 

Lemma (1.19)[1]: Given a probability measure μ, let f be a non-negative measurable 

function. Let      be logarithmic bumps as in (6) with      and     
 

 
  respectively. 

Then there exists an absolute constant C and                such that 

 

‖ ‖      ‖ ‖   
   ‖ ‖

  
 
   

 
  

Proof. We will actually show that    
 

         
 

 

. Define    ∫     
 
    Since inequality 

(25) is homogeneous, we may assume without loss of generality that  

‖ ‖         

Moreover, we may assume that      : otherwise (25) can be achieved by choosing C 

sufficiently large. Let ϵ <1 and K be constants; we will determine their precise value (in 

this order) below. Then we have that 

(25) 

(26) 
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∫
  

 

   
   (  

 

 
*
     

 

 

   ∫    
      

 ∫    
      

 
 

  
 
            

    
 

   ∫
  

 

  
 

       
 

 
  

     

           
 

 

  
      

 
 

  
 
           

    
 

   ∫
  

 

  
 

    
 

 
  
 

 
  

     

           
 

 

  

 
 

  
 
           

    
 

 

 
 

  
 
              

[∫  
 
    

              

 ∫  
 
         

       ]

 
 

  
 
            

    
 

   
 

  
 
              

[             
     ]  

 

In the last line we used (26). Fix ϵ so that 

              

where              
 

 
. In other words, 

             ‖ ‖
  

 
   

 
   

 

     
  

Now choose K so that 

                  
 
  

then 

            
             

 
     

     
 

         
 
    

If we substitute these values into the above calculation, we see that the right hand side is 

dominated by a constant. Hence, by the definition of the Luxemburg norm,  

‖ ‖          ‖ ‖      
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This completes the proof.  

The proof of the weak-type inequality uses essentially the same argument as above; 

here we sketch the changes required. We repeat the argument that yields in equality (16), 

replacing the        norm with the          norm. Since the pair (u,σ) satisfies the two-

weight    condition we have the well known inequality that 

‖     ‖          ‖ ‖       

where the constant C depends only on the    constant and the dimension. Therefore it 

remains to estimate the         norm of          . We have the following analog of 

Theorem (1.15). 

Theorem (1.20)[1]: Let S be a positive Haar shift of complexity (m, n). Then 

‖     ‖               ‖     ‖                   
 

‖   
 (   )‖     

       
  

Given Theorem (1.20) the argument now proceeds exactly as before, using the bump 

condition (12) to bound the testing condition. This completes the proof. 

We will describe the principle changes. Following the argument, it will suffice to 

prove the corresponding results for dyadic shifts. 

Theorem (1.21)[1]: Given p, 1 < p < , suppose A and B are loglog-bumps of the form 

(9), (10) with δ >0 sufficiently large, and the pair of weights (u,σ) satisfies (7) and (8). 

Given any dyadic shift S of complexity (m,n), τ = max(m,n)+1, ‖     ‖      

   ‖ ‖     , where C depends only on the dimension d and the suprema in (7) and (8). 

Theorem (1.22)[1]: Given p,1 < p < , suppose A is a loglog-bump of the form (9) with 

δ>0 sufficiently large, and the pair of weights (u,σ) satisfies (8). Given any dyadic shift S 

of complexity (m,n), ‖     ‖          
 ‖ ‖     , where C depends only on the 

dimension d and the supremum in (8). 

We will prove Theorem (1.21) by modifying the proof of Theorem (1.12) above; 

Theorem (1.22) is proved similarly. The main step is to adapt Lemma (1.19) to work with 
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loglog-bumps. Let B be as in (10), and define    similarly but with δ replaced by δ/2. 

Then arguing almost exactly as we did in the proof of  Lemma (1.19), we have that  

 

‖ ‖      ‖ ‖    
‖ ‖
  

 
   

‖ ‖   
  

where            
 

 
             , and                     if δ is large 

enough. 

Given (27) we have that 

    

   
(
    

   
*
 

  〈 〉 ‖ 
    ‖

    

 
‖    ‖

 ̅   

 

  〈 〉 ‖ 
    ‖

   

 
 4
〈 〉 
    

‖    
 
‖
   

5

 

‖    ‖
 ̅   

 

  (〈 〉 
   
‖    

 
‖
   
)
 

 4
〈 〉 
   〈 〉 

    

〈 〉 
   
‖    

 
‖
   

5

 

‖    ‖
 ̅   

 
  

To complete the proof, we need a bound in a for the first two terms. Since     , 

we have that 〈 〉 
   〈 〉 

    
   . Let      be the logarithm of the supremum in (7). 

Then there exists         , such that 〈 〉 
   
‖    

 
‖
   
   . The sum in a will go 

from −∞ to   , so it will suffice to consider those terms where    <0. 

If b is negative and |b| ≥ |a|/2, then the first term is bounded by   
    

  , and the second is 

bounded by some constant. If b >0 or if it is negative but      
   

 
 , then we estimate the 

first term by    , and the argument in the second term is at most   
   

  . Hence the second 

term is bounded by  
 

    
  . By the assumption,       and so the series  ∑   

  

      

 

    
    converges.  

We prove that the weak-type conjecture of Muckenhoupt and Wheeden discussed is 

false for the Hilbert transform when     . We in fact prove a stronger result. 

 (27) 
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For brevity, we introduce some additional notation. Let        and let      

     . Define       and    similarly, where H is the Hilbert transform. Then we can 

reformulate the conjecture as follows: if 

     
             

then 

     
               

We will show by contradiction that this is not true in general. Suppose to the contrary 

that if the pair (u,v) satisfies (28), then (29) holds. Then for any         and any cube 

Q,  

∫       
 

 ‖   ‖       ‖  ‖        
‖  ‖             ‖ ‖         

     

Let         . Then by duality (since    is the adjoint of    ) we have that the pair 

(u,v) satisfies the testing condition 

∫         
           

 

 

The same argument shows that if the pair (u, σ) satisfies 

     
                                                                                                     (31) 

then this pair also satisfies the testing condition 

∫         
           

 

 

However, we have the following testing condition result for the Hilbert transform 

when p = 2.  

Theorem (1.23)[1]: Let H be the Hilbert transform. Then  

 (28) 

(29) 

                  (30) 

                  (32) 
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‖     ‖           

 ‖     ‖              ‖     ‖               
 

‖      ‖     

       

     
 

‖      ‖     

       
  

Therefore, by the assumption and Theorem (1.23), we have that if a pair of weights 

(u,σ) satisfies (28) and (31), then                . Therefore, the weak-type conjecture 

of  Muckenhoupt and Wheeden cannot hold.  

We have proved a stronger result. 

Theorem (1.24)[1]: There exists a pair of weights (u,σ) such that (28) and (31) hold, but 

the Hilbert transform does not satisfy the weak-type inequality      
             . 

 For the convenience we want to explain why these two results are in fact equivalent. 

If            all satisfy the testing conditions (30) and (32) (replacing H with M 

when dealing with the maximal operator), then all four of them are bounded in 

corresponding pairs of weighted spaces. This gives  Theorem (1.23). Conversely, suppose 

that the right-hand side of the inequality in Theorem (1.23) is finite. Then (30) and (32) 

are both satisfied. Moreover,    and     are both bounded on the corresponding pairs of 

weighted spaces. Therefore, trivially,      also satisfy the corresponding testing 

conditions. Thus, all four operators satisfy the testing conditions, and then       
     

               
            as well as the corresponding norm inequalities for the 

maximal operators.  

We noted that the weak-type conjecture we just disproved followed from another 

conjecture of Muckenhoupt and Wheeden: that 

 

                    
 

 
∫         

(This implication is a straightforward duality argument: the result above gives another 

(indirect) proof of this fact. 

 (33) 
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We note that there is a weaker conjecture than (33) which has also been shown to be 

false. In the one-weight case it was conjectured that for all     , 

 

                  
 

 
     ∫         

 

where         ‖
  

 
‖
  

. The counter example to (33) is not in   . Essentially, 

disproving (34) amounts to finding a “smooth” bad weight, which is even more difficult 

to build than the weight of Reguera–Thiele. While no explicit example has been 

constructed, the existence of such a weight has been proved using Bellman function 

techniques: it was shown that there exist weights in    such that 

 

‖ ‖                       
         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (34) 

 (35) 
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Chapter 2 

Sobolev Spaces on Domains 

We need to check the boundedness of not only the characteristic function, but a finite 

collection of polynomials restricted to the domain. we find a sufficient condition in terms 

of Carleson measures for  p   d, and, in the particular case s = 1. 

Section(2.1): Oriented Whitney Convering and Approximating 

Polynomials with Derivatives of    

Given an open set     , we say that a function is in the Sobolev space        if it 

has derivatives up to order n in the weak sense in U and all of them are integrable in the 

   sense.We say that       
       if those derivatives are in the space     

      instead. 

Definition (2.1.1)[2]: We say that a measurable function       
             is a 

smooth convolution Calderόn-Zygmund kernel of order n if 

|      |  
 

      
                

and that kernel can be extended to a tempered distribution W in    in the sense that for 

any Schwartz function     with         , 

〈   〉            

Abusing notation, we will write K instead of W. 

We will use the classical notation  ̂ for the Fourier transform of a given Schwartz 

function, 

 ̂    ∫               
  

 

And  ̌ will denote its inverse. It is well known that the Fourier transform can be extended 

to the whole space of tempered distributions by duality and it induces an isometry in L
2
. 
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Definition (2.1.2)[2]: We say that an operator      ́  is a smooth convolution 

Calderόn-Zygmund operator of order n with kernel K if K is a smooth convolution 

Calderόn-Zygmund kernel of order n such that  ̂      
    is defined as 

          ̂   ̂    

for any     and T extends to an operator bounded in    for any      . 

For instance, that this boundedness property is equivalent to having   ̂    . 

It is a well-known fact that the Schwartz class is dense in    for        Bearing this in 

mind, we get that given any      and           , 

      ∫              

Example (2.1.3) [2]: In the complex plane, the Beurling transform is defined as the 

principal value 

         
 

 
   
   
∫

    

      
     

       

 

It is a smooth convolution Calderόn-Zygmund operator of any order associated to the 

kernel 

      
 

  
 

and its multiplier is 

 

 ̂     
 ̅

 
 

 

Thus, the Beurling transform is an isometry in   . 

Definition (2.1.4)[2]: Let       be a domain (open and connected). We say that a 

cube Q with side-length     and center      is an R-window of the domain if it 

induces a local parameterization of the boundary, i.e. there exists a continuous function  
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      such that, after a suitable rotation that brings all the faces of Q parallel to 

the coordinate axes, 

     {  ́       
                 ́ } 

We say that a bounded domain Ω it is a      - Lipschitz domain: (A Lipschitz 

domain (or domain with Lipschitz boundary) is a domain in Euclidean space whose 

boundary is "sufficiently regular" in the sense that it can be thought of as locally being 

the graph of a Lipschitz continuous function. The term is named after the German 

mathematician Rudolf Lipschitz.)[7] if for each       there exist an R-window 

centered in x with    Lipschitz with a uniform bound ‖  ‖   . 

We say that an unbounded domain Ω is a special δ-Lipschitz domain if there exists a 

Lipschitz function  A such that ‖  ‖    and 

      ́      
             ́   

With no risk of confusion, we will forget often about the parameters δ and R and we 

will talk in general of Lipschitz domains and windows without more explanations. 

Theorem (2.1.5)[2]: Let   be a bounded      domain (i.e. a Lipschitz domain with 

parameterizations in     ) for a given    , and let                   such 

that     . Then the Beurling transform is bounded in         if and only if         

       . 

This was proved in fact for a wider class of even Calderόn-Zygmund operators in the 

plane. We considered the extension of the Theorem (2.1.5) to higher orders of 

smoothness   and other ambient spaces   . We have restricted ourselves to the study of 

the classical Sobolev spaces, where the smoothness is a natural number. 

Theorem (2.1.6)[2]: Let Ω be a Lipschitz domain, T a smooth convolution Calderόn-

Zygmund operator,     and     . Then the following statements are equivalent. 

a) The operator T is bounded in         . 

b) For any polynomial restricted to the domain,         , we have that      

       . 
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This result remind the results by Rodolfo H. Where the characterization of some 

generalized Calderόn-Zygmund operators which are bounded in the homogeneous 

Triebel-Lizorkin spaces in the whole ambient space is given in terms of its behavior on 

polynomials. Vӓhӓkangas obtained some T1 theorem for weakly singular integral 

operators on domains, but in that case, roughly speaking, the image of the characteristic 

function being in a certain BMO-type space was shown to be equivalent to the 

boundedness of                   where m is the degree of the singularity of  T's  

kernel. 

One can see that, if     and Ω is a       domain then      
      , so we have 

that, assuming the conditions in the Theorem (2.1.5) for Ω, s and p, one always has the 

Beurling transform bounded in        . With this result, they could deduce the next 

remarkable theorem that we state here as a corollary. 

Corollary (2.1.7)[2]: Assuming Ω,   and   to be as in the previous theorem with the 

restriction     ,if we have a function   such that           ̅ and ‖ ‖   , we can 

define the principal solution of the Beltrami equation 

 ̅                

as                where C stands for the Cauchy transform. Then 

                     

Víctor Cruz and Xavier Tolsa worked to find a sufficient condition weaker than   

 , that if      is a Lipschitz domain and its unitary outward normalvector N is in the 

Besov space     
     

 , then one has         
      . Taking into account that for anyn 

    ,     
     

                     we can use the Sobolev Embedding Theorem to 

deduce that the parameterizations are indeed in      for some      , leading to the 

boundedness of the Beurling transform. That this geometric condition is necessary when 

the Lipschitz constants are small. The result can be formulated similarly for       . 

We are trying to see which conditions can be weakened. 

We work with Carleson measures to find a sufficient condition for p ≤ d. This 

condition is in fact necessary for  s = 1. 
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Theorem (2.1.8)[2]: Given a Calderόn-Zygmund smooth operator of order 1, a 

Lipschitz domain Ω and           , the following statements are equivalent. 

i. T is a bounded operator on        . 

ii. The measure |        
    is a Carleson measure in the sense of Definition 

(2.2.9) 

We write    for the vector space of polynomials of degree smaller or equal than n (in 

  ). Givena set     , we write       for the family of functions       with     . 

The polynomials and derivatives that we need to use will be written with the 

multiindex notation. For any multiindex      (where we assume the natural numbers 

to include the 0),           , we define its modulus as     ∑   
 
    and its 

factorial      ∏    
 
   , leading to the usual definitions of combinatorial numbers. For 

     we write     ∏  
 

   
    and for      

 (infinitely many times differentiable 

with compact support),      
    

   
      

  
 . 

In general, for any open set Ω, and any distribution     ́   , we define the   

derivative in the sense of distributions, i.e. 

〈     〉           〈     〉                  
     

If the distribution is regular, i.e.         
 , we say it is a weak derivative. 

We say that         is in the Sobolev space          if it has weak derivatives up 

to order n and            for       . We will use the norm 

‖ ‖        ∑‖ 
  ‖     

   

 

For Lipschitz domains, it is enough to consider the higher order derivatives, 

‖ ‖        ‖ ‖   ‖ 
  ‖      

Where        ∑           . 

We will solve a Neumann problem by means of the Newton potential: given an 

integrable function with compact support      
     , its Newton potential is 
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      ∫
        

       
                 

      ∫
        

  
                

where    stands for the surface measure of the unit sphere in   . Recall that the gradient 

of     is the (d – 1)-dimensional Riesz transform of g, 

                  ∫
   

        
        

It is well known that              for     . 

We recall now two results that we will use every now and then. The first is the 

Leibnitz' Formula, which states that for           and      , if      
    , then 

             and 

        ∑ (
 
 )

   

                                                                                      

The second is the Sobolev Embedding Theorem for Lipschitz domains, which says 

that for any Lipschitz domain Ω, we have the continuous embedding 

 

         
    

 

   ̅  

of the Sobolev space          into the Hölder space   
    

 

   ̅ . Recall that 

‖ ‖      ̅  ‖ ‖       
     ̅
   

           

      
 

Consider a given dyadic grid of semi-open cubes in R
d
. 

Definition (2.1.9)[2]: We say that a collection of cubes W is a Whitney covering of a 

Lipschitz domain Ω if 

W1. The cubes in W are dyadic. 

W2. The cubes have pairwise disjoint interiors. 

  (1) 

  

(3) 
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W3. The union of the cubes in W is Ω . 

W4. There exists a constant    such that 

                           

W5. Two neighbor cubes Q and R       ̅   ̅         satisfy            . 

W6. The family          has finite superposition, i.e. ∑          . 

We do not prove here the existence of such a covering because this kind of coverings 

are well known. 

We consider the R-window Q to be a cube centered in     , with side-length R 

inducing a Lipschitz parameterization of the boundary. Given       -Lipschitz domain, 

we can choose a number                 of windows         
  such that 

 

   ⋃
  
  
  

 

   

   

where    
 

 
  and         are values to fix later. Notice that 

                   is a connected set for any " small enough.  

Each window    is associated to a parameterization     in the sense that, after a rotation, 

         ́       
                 ́   

Thus, each    induces a “vertical” direction, given by the eventually rotated    axis. The 

following is an easy consequence of the previous statements and the fact that the domain 

is Lipschitz. 

W7. The number of Whitney cubes in 
 

 
   with the same side-length intersecting a given 

vertical line is uniformly bounded where the “vertical” direction is the one induced by 

the window. 

This is the last property of the Whitney cubes we want to point out.  We give some 

structure to construct paths connecting Whitney cubes. First, we use that the vertical 

direction allows us to say that one cube is above another one: 

 

    

  (4) 

   (5) 
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Definition (2.1.10)[2]: We say that a cube S is above Q with respect to    if     

 

 
  , there is aline parallel to the vertical direction induced by    intersecting the interior 

of both cubes and there exists a point     such that for any           in local 

coordinates. 

In order to give a structure to the covering, we distinguish the cubes in the central 

region from those which are close to the boundary of the domain. 

Definition (2.1.11)[2]: We say that Q is central if                  
  

  
 , We 

call    to this subcollection of cubes. 

We say that Q is peripheral if it is not central. 

Taking       and the Whitney constants big enough, if Q is peripheral, then   

     for some       . We call    to each subcollection of peripheral cubes. Those 

subcollections are not disjoint. 

On the other hand we call windowpane to       . We will choose    in such a 

way that the cubes contained in a windowpane will have ”enough room over them” 

inside   . Namely, taking    small enough we can grant that for every peripheral cube 

     there exists a cube S above Q with respect to     such that 

                 
 

  
 due to the Lipschitz character of Ω. Choosing    even smaller, 

if necessary,  
 

  
 
  

  
 , so we can say that for any peripheral cube      there is 

another cube S which is at the same time central and above Q with respect to   . 

There is a minimal length    such that any central cube      has         . 

There is amaximal side-length    such that any cube   ⋃     has          We have 

        with constants depending on the Lipschitz character. 

We provide a tree-like structure to the family of cubes so that we can refer to the 

neighbor cubes easier. 

Definition (2.1.12)[2]: We say that                is a chain connecting    and 

   if    and      are neighbors for any    . We will call the “next” cube to        

    . 
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We want to have a somewhat rigid structure to gain some control on the chains we 

use, so we need to introduce the “chain function”            ⋃      We state 

three rules. The first one is on the Definition of chain function. 

First rule: 

 1.1: For any cubes              is a chain connecting Q and S. 

 1.2: Given two cubes       , if                     then       

           . 

We will also write       for the non-ordered collection        
  so that we can say 

that         . 

Given two cubes    , we will use the open-close interval notation:        

                                                . 

Now we can state the second rule, concerning the central cubes. For that purpose, 

assume that we have fixed a central cube   . 

Figure (2.1): Second rule, 2.2. 

 

(a)       .                                            (b)              .                           (c)       

      . 

 

Figure (2.2): Second rule, 2.3: 
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          (a)                                                                    (b) 

                                                     (c)      

Second rule: 

2.1 For any central cube     ,        is a chain of central cubes connecting these two 

cubes with minimal number of steps. 

2.2 For any central cubes        with          , then              . Thus, we 

can define                      (see Figure 2.1).  

2.3 Given two different central cubes Q and S, let           and           be the 

first pair of cubes which are neighbors. Then,                [    ] (see Figure 

2.2). 

This completes the central structure. For any cube       , we define         as a 

chain connecting Q and    and such that for any cube          , S is either central or 

above Q with respect to   , and in case S is central, then                       , 

where        is the subchain of         limited by Q and S (see Figure 2.3) 

 

 

 

 

 

 

 

 

Figure (2.3):                        

Now we can add the rule for peripheral cubes. 
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Third rule: 

3.1: Given two different peripheral cubes which are both contained in, at least, one 

common windowpane               and use        Call            and 

            to the first pair of cubes which are neighbors. Then,       

         [    ]  where                 and  [     ]  
         

3.2: For any peripheral cube S, fix any k such that      and define                 . 

3.3: Given two diferent cubes Q and S in any situation different from (2.1), use rule 2.3 

Definition (2.1.13)[2]: Given a Lipschitz domain  , we say that 

           
           is an oriented Whitney covering of Ω if W is a Whitney covering 

of Ω,    are windows as in (4), the cube      is a central cube of Ω with respect to 

those windows  and       is a chain function satisfying the three  rules explained before. 

We say that the covering is properly oriented with respect to a window    if the cubes in 

the Whitney covering have sides parallel to the faces of   . 

Definition (2.1.14)[2]: If            for some P and        
        for some 

    , then we say that Q ≤ S. We will say that      if      and     . 

Definition (2.1.15)[2]: Given two cubes Q and S of an oriented Whitney covering, we 

define the long distance 

                            

Remark (2.1.16)[2]: One can see using the Lipschitz condition that, if two Whitney 

cubes     
  

 
  , then 

                             

where       is the usual horizontal distance between the vertical projections of Q and S in 

the window   . 

Using that, the properties of the Whitney covering and the chain function rules 2.3, 

3.1 and 3.3, one can also prove that, for         , 
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and 

            

Now we consider some properties of sums across regions and we relate them to the 

Hardy-Littlewood maximal operator, 

         
   
         

It is a well known fact that this operator is bounded in    for          . 

Lemma (2.1.17)[2]: Assume that       
  and r > 0. Then 

 

           

∑
∫       
 

         
 
      

  
        

 

          , 

∑
∫       
 

         
    
 
    

        

 

iii. In particular, 

∑ ∫       
 

    
 
       

    

 

and, thus, ¸  

∑            

    

 

We used the Lipschitz character only to prove the last two inequalities.  

Lemma (2.1.18)[2]: Let       . Then 
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∑            

   

 

with constants depending on a. 

Proof. First assume that Q is not central. Selecting the cubes by their side-length, we can 

write 

∑      

    

 ∑ ∑ (       )
 

    

            

 

   

       ∑     {                  }

 

   

 

Using W7 we get that 

 {                  }         
 
 

and thus 

∑      

    

      ∑   (       )
 

   

 

This is bounded if        . By the same token, given an R-window    , 

∑         

  
 

 
  

 

If Q is central, use (6) in any region . 

Lemma (2.1.19)[2]: Let        . Then 

∑
     

       
   

         
    

Proof. Let us assume that     . First of all we consider the cubes contained in 
 

 
   

and we classify those cubes by their side-length and their distance to Q: 

              (6) 
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∑
     

       
  
 

 
  

 ∑ ∑ ∑
(      )

 

(      )
 

             

                       

 

   

 

    

        ∑
  
 

  
 
  {                                }

   

 

Notice that the value of j in the sum must be greater or equal than k because, otherwise, 

the last cardinal would be zero. 

Using again W7, we only have to bother about how many cubes of side-length 

       can be fit in the section where one can find cubes at a horizontal distance smaller 

than          

 {                                    }   .
(           )    

      
/

   

                

Thus, 

∑
     

       
  
 

 
  

        ∑ ∑                            
   

 

    

 

   

 

as soon as        . 

On the other hand, when   
 

 
   the long distance         is always bounded from 

below by a constant times R (because       ), so separating in windows and using 

Lemma (2.1.19) 

 

∑
     

        
      

  ∑
        

  
    

   ∑ ∑
     

  
               

       

 

When it comes to a central cube     , just apply an argument analogous to (7). 

 

   (7) 
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We will fix a Whitney cube and approximate the function by some mean. Recall that the 

Poincaré inequality says that, given a function             , with 0 mean in the cube, 

‖ ‖           ‖  ‖      

with universal constants once we fix d and p. 

If we want to iterate that inequality, we need also the gradient of f to have 0 mean on 

Q. That leads us to define the next approximating polynomials. 

Definition (2.1.20)[2]: Let Ω be a domain. Let Q be a cube with        . Given 

             , we define   
             as the unique polynomial (restricted to Ω) 

of degree smaller or equal than n such that   

   
   
         

       

for any multiindex       with        . 

The existence of those polynomials is granted in the next lemma. 

Lemma (2.1.12)[2]: The polynomial     
                 exists and is unique as 

long as we fix Q and               . 

Furthermore those polynomials have the next properties. 

P1. Let Q be a cube with center    . If we consider the Taylor expansion of  

   
            , 

                                  
                ∑     (      )

 

    

      

   

then the coefficients       are bounded by 

|    |     ∑‖ 
  ‖
      
         

   

     

   

P2. Given any        , any cube Q and any function                , 

∫   (   
         )     

  

  

 

           (9) 

             (8) 
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P3. Furthermore, if              , for           we have 

‖      
   ‖

      
        ‖   ‖       

P4. Given a square      , if          , 

         
         

        
‖ ‖      

where      , and                        . 

P5. Given an oriented Whitney covering W with chain function      associated to Ω, and 

given  two Whitney cubes         and             , 

‖     
     ‖

     
 ∑

              

       
‖   ‖      

       

 

               , 

     
             

                

Proof.  Notice that (8) is a triangular system of equations on the coefficients of the 

polynomial. 

Indeed, if the polynomial exists and has Taylor expansion (9), then 

     
         ∑    

  

      
(     )

   

   

 

Fix   . When we integrate on the cube 3Q,  

    
            

    
         ∑    

  

       
.
 

 
    /

      

        
     

   

  ∑            
     

   

 

which is a triangular system of equations on the coefficients     . 

Solving for      , we obtain the explicit expression 
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       ∑             
     

   

 

For          this gives the value of       in terms of     , 

     
 

  
    

       

Using induction on       we get the existence and uniqueness of     
    f. Taking 

absolute values we obtain P1. 

In P2 we write the Definition of the polynomial in a new fashion. This allows us to iterate 

the Poincaré inequality 

‖       
     ‖

      
   ‖        

     ‖
      

            ‖   ‖       

that is P3. 

Property P4 is left. 

To prove P5, we consider the chain function in Definition (2.1.13) to write 

‖     
     ‖

     
 ‖     

     ‖       ∑ ‖   
             

    ‖
     

       

 

where we write      instead of           from Definition (2.1.12). Using the 

equivalence of norms of polynomials of bounded degree and the property P4, 

‖   
             

    ‖
     
 ‖   

             
    ‖

     
     

 ‖   
             

    ‖
  (        )

              

       

 ‖   
             

    ‖
  (        )

              

            
 

Taking into account  P3 we get 

(10) 
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‖      
    ‖

     
  ∑ ‖      

    ‖
      

              

         
       

 

  ∑ ‖   ‖      
              

       
       

 

Finally, to prove P6, notice that for                  , we have 

    
 (     

    )       
      

           
           

           

 

From now on, we assume T to be a smooth convolution Calderόn-Zygmund operator of 

order n. Recall that for         and             , 

       ∫                

where the kernel K has derivatives bounded by 

|      |  
 

       
                   

Given a function             , we want to see that its transform  T f  is in some 

Sobolev space and, thus, we need to check that its weak derivatives exist up to order n. 

Indeed that is the case. 

Remark(2.1.22)[2]: Using that S is dense in any Triebel-Lizorkin space     
  with 

finite exponents p and q and that            
 , we conclude that for any               

 

              

and, thus, the operator T is bounded in           

Definition (2.1.23): Let          
            be a smooth convolution Calderόn-

Zygmund kernel of order  n,             a multiindex with        and     

        . We define 

          ∫                   

           (11) 

             (12) 

             (13) 
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Lemma (2.1.24)[2]: Let T be a smooth convolution Calderόn-Zygmund kernel of 

degree n and     . Then    has weak derivatives up to order n in         . 

Moreover, for any multiindex       with       , and           , 

                 

Proof. Take a compactly supported smooth function       
           . We can use 

Tonelli's Theorem and get 

〈       〉  ∫ ∫                         
          

 

 ∫ ∫                          
          

 

Using the definition of distributional derivative and Tonelli's Theorem again, 

〈       〉       ∫ ∫                 
          

         

      ∫ ∫                        
     

       〈       〉
     

 

Lemma (2.1.25)[2]: Given a function             , the weak derivatives of    in 

Ω exist up to order n. 

Before proving this, we consider the functions defined in all    . 

Proof . Take a classical Whitney covering of Ω, W, and for any       , define a bump 

function        
  such that               . On the other hand, let  {  }     be a 

partition of the unity associated to  ,
 

 
     - Consider a multiindex              

 . Then take    
        and    

      
 

 . One can define 

      ∑      (  
   
             

    )

   

 

This function is defined almost everywhere and is the weak derivative     . 
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Indeed, given a test function        
    , then, since   is compactly supported in 

Ω, its suppor tintersects a finite number of Whitney double cubes and, thus, the following 

additions are finite: 

 

〈   〉   〈∑        
   
        

     
    

   

〉 

 ∑〈     
 
   〉

   

    ∑〈      
 
   〉

   

  

where           

In the local part we can use (12), so 

〈     
     〉       

   〈   
        〉 

When it comes to the non-local part, bearing in mind that    
 

 has support away form 

2Q and        
     , we can use the Lemma (2.1.24) and we get 

〈      
    〉       

   〈   
       〉 

Back in (14) we have 

〈   〉  ∑       〈   
       〉

   

   ∑       〈   
       〉

   

 

 ∑       〈        〉

   

         〈       〉 

that is            in the weak sense. 

 

Key Lemma (2.1.26)[2]: Let Ω be a Lipschitz domain, W an oriented Whitney 

covering associated to it, T a smooth convolution Calderόn-Zygmund operator of order 

     . Then the following statements are equivalent: 

i. For every           , 

‖  ‖           ‖ ‖        

        (14) 
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ii. For every           ¸  

∑‖   (   
    )‖

     

 
   ‖ ‖       

 

   

 

Proof. Given a multiindex  with      , we will bound the difference¸ 

∑‖   (      
    )‖

     

 
 ‖   ‖     

 

   

 

Given a cube     we define a bump function      
  such that   

 
 
    

    and ‖    ‖   
       for any      . Then we can break (15) into the local and 

the non-local parts as follows: 

 

∑‖   (      
    )‖

     

 

   

 ∑ ‖   (  (      
    ))‖

     

 

   

 ∑    ‖(     )(      
    )‖

     

 

   

      

First of all we bound the local term in (16), 

  ∑ ‖   (  (      
    ))‖

     

 

    ‖   ‖     
  

To do so, notice that   (      
    )             and, by (12) and the boundedness of 

T in   , 

‖   (  (      
    ))‖

     

 

 ‖ ‖     
 ‖  (  (      

    ))‖
  (  )

 

  ‖     (      
     )‖

      

 
 

where ‖ ‖      stands for the operator norm in       . 

Using first the Leibnitz formula (2), and then using  j times the Poincaré inequality 

(which can be used by the property P2 in Lemma (2.1.21), we get 

             (15) 

     (16) 

       (17) 
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‖   (  (      
    ))‖

     

 

 ∑‖    ‖      
 

‖    (      
    )‖

      

 
 

   

 

 ∑
 

      
       ‖  (      

    )‖
      

 
   ‖   ‖      

 

 

   

 

Summing over all Q we get (17). 

For the non-local part in (16), 

  ∑‖   (      )(       
    )‖

     

 

   

 

we will argue by duality. We can write 

 

 
 

      
‖ ‖  ́  

∑ ∫|   [(     )(       
    )]   |

 

       

   

 

Notice that given       , by Lemma (2.1.24) one has 

   [(     )(       
    )]   

 ∫           (        ) (        
       )  

 

 

Taking absolute values and using Definition (2.1.1), we can bound 

 

|   [(     )(       
    )]   |  ∫

|         
       |

          
   

  
 

 
 

 

 ∑
‖       

    ‖
     

         
   

 

By property P5 in Lemma (2.1.21) we have that 

‖       
    ‖

     
  ∑

              

       
       

‖   ‖       

so plugging this expression and (19) into (18), we get 

     (19) 

(18) 
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‖ ‖ ́  

∑ ∫       
 

∑ ∑
              ‖   ‖      

                
             

 

Finally, we use that         implies                (see Remark (2.1.16), 

 

 
 

      
‖ ‖ ́  

∑ ∑ ∫       
     ‖   ‖      

                 
  [    ]     

  

     
‖ ‖ ́  

∑ ∑ ∫       
     ‖   ‖      

                
        

               

 

We consider first the term 2.1 , where   [    ]  and, thus, by Remark (2.1.16), 

             . Rearranging the sum, 

 

        
‖ ‖ ́  

∑
‖   ‖      

       
 

∑
∫       
 

         
 

∑     

   

 

By Lemma (2.1.17), 

∑     

   

         

 

and 

∑
∫       
 

         
 

   
            

    
 

We perform a similar argument with 2.2 . Notice that when          , we 

have               , leading to 

        
‖ ‖ ́  

∑
‖   ‖      

       
 

∑∫       
    

∑
     

         
 

 

By Lemma (2.1.17), 
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∑∫        
    

     
    
           

and 

∑
     

         
 

 
 

    
 

Thus, 

               
‖ ‖ ́  

∑
‖   ‖      

       
 

       

    
          

‖ ‖ ́  
∑‖       ‖      
 

 

and, by Hölder inequality and the boundedness of the Hardy-Littlewood maximal 

operator in   ́ 

 
 

   (∑‖   ‖     
 

 

+

   

(    
‖ ‖  ́  

∑‖  ‖
  ́   

 ́

 

+

   ́

 

 

Section (2.2): Carleson Measures and a Necessary Condition 

Theorem (2.2.1)[2]: Let  Ω be a Lipschitz domain, T a smooth convolution Calderόn-

Zygmund operator of order       and       . Then the following statements are 

equivalent: 

a) The operator T is bounded in         . 

b) For any polynomial restricted to the domain,            , we have that 

               

Proof. The implication  a)→ b) is trivial. 

To see the converse, fix a point        . We have a finite number of monomials 

              
       for multiindices       and         , so the hypothesis can 

be written as 

‖     ‖            

(20) 
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Assume             . By the Key Lemma, we have to prove that 

∑‖   (   
     )‖

     

 

   

 ‖ ‖        
  

We can write the polynomials 

   
               ∑     (     )

 

      

  

where    stands for the center of each square Q. Taking the Taylor expansion in   for 

each monomial one has 

   
              ∑     ∑ (

 

 
)

           

       
 (      )

   
  

Thus, 

 

   (   
     )    ∑     

      

∑ (
 

 
)

     

(      )
   
            

Recall the property P1 in Lemma (2.1.21), which states that 

 

          ∑ ‖ 
  ‖
      

         
   

     

  ∑ ‖   ‖
     
          

   

     

 

Raising (21) to the power  p, integrating in Q and using (22) we get 

‖   (   
     )‖

     

 
 ∑‖   ‖

     

 

    

∑              ‖       ‖     
 

     

 ∑‖   ‖
     

 

    

∑ ‖       ‖     
  

     

 

with constants depending on the diameter of  , p, d and n. By the Sobolev Embedding 

Theorem, we know that ‖   ‖
     
   ‖   ‖        as  long as      . If we add 

with respect to       and we use (20) we get 

  (21) 

   (22) 



47 
 

∑‖   (   
     )‖

     

 

   

  ∑‖   ‖
       

 

    

∑ ‖       ‖     
 

     

 ‖ ‖       
  

Lemma (2.2.2)[2]: Let Ω be a Lipschitz domain, T a smooth convolution Calderόn-

Zygmund operator of order       . Then the following statements are equivalent: 

i. For every            , 

 

‖  ‖          ‖ ‖        

ii.  For every window Q and every             with             , 

 

∑ ‖   (   
     )‖

     

 

    

    ‖ ‖       
  

where the whitney covering    is properly oriented with respect to Q, i.e., with the 

dyadic grid parallel to the local coordinates (see Definition (2.1.13). 

Sketch of the proof. To see that i) implies ii) just use the Key Lemma with an appropriate 

dyadic grid. 

To see the converse, one can choose a finite a collection of windows 

       
                       such that 

  

  
   is a covering of the boundary of Ω, 

call   to the inner region   ⋃
  

 
  , and let      be a partition of the unity related to the 

covering               
 . Consider a function              Since       

         , one can see that 

‖       ‖            ‖   ‖        

Now, following the proof for the Key Lemma but replacing f by      and using an 

appropriate Whitney covering for every single window, one can get 

‖  ‖            ∑‖   ‖       
 

 

(23) 

 (24) 
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Choosing     as bump functions with the usual estimates on the derivatives ‖    ‖   

     , one can get (23) using the Leibnitz formula. 

We stated in terms of trees, and relating measures in a Whitney covering with 

measures in trees. 

 

 

 

 

 

Figure (2.4):            . 

Definition (2.2.3)[2]: We say that a connected, loopless graph    is a tree, and we 

will fix a vertex       and call it its root. This choice induces a partial order in   , given 

by                    where        stands for the geodesic path uniting those two 

vertices of the graph (see Figure (2.4)). We call shadow of x in    to the collection 

                        

We say that a function          is a weight if it takes positive values (by a function 

we mean a function defined in the vertices of the tree). 

Definition (2.2.4)[2]: Given          , we call the primitive    the function 

       ∑     

       

 

Theorem (2.2.5)[2]: Let            and let   be a weight on   . For a nonnegative 

function  , the following statements are equivalent: 

i. There exists a constant         such that 

‖  ‖         ‖ ‖      

ii. There exists a constant         such that for any       
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∑ 4 ∑     

        

5

 ́

        

       ́     ∑     

        

 

For any           , we say that a non-negative function   is a Carleson measure 

for         if there exists a constant        such that the condition i) is satisfied. 

Given an R-window Q of a Lipschitz domain Ω with a properly oriented Whitney 

covering W, for any     
 

 
 , we write      ́        

     . Given a cube     

 
 

 
 , we define the shadow of any point        as 

      {                   ‖ ́    ́‖  
 

 
    }   

Notice that if   is the center of the upper (n - 1)-dimensional face of Q, the vertical 

projection of       (which is a (n - 1)-dimensional square) coincides with the vertical 

projection of Q (see Figure (2.5)). Finally, we define the vertical extension of       , 

  ̃     {                             ‖ ́    ́‖   
 

 
    }   

More generally, given a set     
 

 
   we call its shadow 

                                                     ́    ́   

Notice that we have a proper orientation in the Whitney covering. Thus, given a Whitney 

cube Q, we call the father of        to the neighbor Whitney cube which is immediately 

on top of Q with respect to the vertical direction. This parental relation induces an order 

relation        if P is a descendant of Q). This would provide a tree structure to the 

Whitney covering W if there was a common ancestor    for all the cubes. This does not 

happen, but we can add a “formal” cube    (root of the tree) and writing        for any  

   
 

 
 , since we will only consider functions and measures supported in the 

windowpane        . If we call T to the tree with the Whitney cubes as vertices 

complemented with    and the structure given by the order relation ≤, then for any 

Whitney cube    
 

 
 , 
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      ⋃ 

   

 ⋃  

        

 

(see Figure (2.5)). 

Proposition (2.2.6)[2]: Given        and an R-window Q of a Lipschitz domain 

Ω with a properly oriented Whitney covering W, consider the weights       

                         
   . For a positive Borel measure   supported on 

        , the following are equivalent: 

i. For any            

∫        ́ ( (             ))
 ́

  ̃   

  

           
    (     ) 

ii.  For any       , 

 

∑4∑    

   

5

 ́

   

         ́    ∑      

   

 

When     and the domain is a disk, the first condition is equivalent to   being a 

Carleson measure for the analytic Besov space      , i.e., for any analytic function 

defined on the unit disc D, 

‖ ‖      
  ‖ ‖     

              ∫             ́         
     

           

  

Definition (2.2.7)[2]: We say that a measure satisfying the hypothesis of the previous 

theorem is a      -Carleson measure for Q (or just a Carleson measure for Q when there 

is no risk of confusion). 

We say that a positive Borel measure   is a Carleson measure for a Lipschitz domain 

Ω if it is a Carleson measure for any R-window of the domain. 

Now consider a given point        . We have a finite number of monomials 

              
        for multiindices       and        . Then, 

          (25) 
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Theorem (2.2.8)[2]: If for every multiindex        

          
        

    

defines a Carleson measure, then T is a bounded operator on        .  

 

 

 

 

 

 

 

 

Figure (2.5): The shadows       and       coincide when x is the center of the upper 

face of the cube. Furthermore,           if and only if             . 

 

Proof. Consider a fixed R-window Q and a properly oriented Whitney covering W, i.e. 

with dyadic grid parallel to the window faces. Making use of Lemma (2.2.2), we only 

need to bound 

∑‖   (    
     )‖

     

 

   

   ‖ ‖       
  

for every           with            . 

Consider a function             with             . Using the expression (9) and 

expanding it as in (21) at a fixed point       , we have 

∑‖   (   
     )‖

     

 

   

 ∑ ∑       
 ⃗⃗           

∑       
 ‖     ‖     

 

   

 

Moreover, taking induction on (10), the coefficients are bounded by 
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     ∑              |    
     |

           

 ∑       |    
     |

           

 

so 

∑‖   (   
     )‖

     

 

   

 ∑ ∑|    
     |

 
     

         

 ⃗⃗     

  

Taking into account that            , we have     
        for P close enough 

to the root   . Thus,   

    
      ∑ (    

             
     )

        

 

and we can use the Poincaré inequality to find that 

 

∑‖   (   
     )‖

     

 

   

 ∑ ∑ 4∑       |  
  |  

   

5

 

         

 ⃗⃗     

       

By assumption,    is a Carleson measure for every       , i.e. it satisifies both 

conditions of Proposition (2.2.6). By Theorem (2.2.5), we have that, for any          , 

 

∑ 4∑    

   

5

 

   

         ∑     
         

   

 

where           
    

Consider multiindices                           and take 

                
      in (27). 

Using Hölder inequality and the finite overlapping of the triple cubes, we have 

 

 

(26) 

(27) 

(28) 
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∑ 4∑           
     

   

5

 

   

         ∑(       
     )

 

   

      

 ∑ ∫               
  

 ́
     

     

 ∫        

 

     

Plugging (28) into (26) for each   and λ, we get 

∑‖   (   
     )‖

     

 

   

    ‖ ‖       
   

Remark (2.2.9)[2]: Given       
 (  
 ̅̅ ̅̅ ), consider the function 

       *(  
      )  +     ∫

(  
     
 )   

               
            

                 
  

For d> 2, where N denotes the Newton potential (1),   
     

 stands for the vertical 

component of the vectorial       -dimensional Riesz transform        and    is the 

hypersurface measure in    
 . This function is well defined since 

‖  
      ‖

     
 ∫ ∫

  
        

                
  
    

 

 ∫ .∫
  

        
     

   
 

/
  
 

           ‖ ‖  

and, thus, the right-hand side of (29) is an absolutely convergent integral for all       
  

with       
‖ ‖ 

    
   

. By the same token, all the derivatives of F are well defined, F is 

     
  , harmonic and              *(  

      )  +    . When      we have to 

make the usual modifications. 

Lemma (2.2.10)[2]: Consider a ball       
  centered at the origin with radius   . 

Let      (  
  
 

 
  )and 

        *(  
     
 )  +            

Then h has weak derivatives in   
                  

 (  
 ̅̅ ̅̅ ), 

   (29) 
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∫         
  
 

  ∫       
  
 

 

Furthermore, for any       , we have 

        {

 

      
‖ ‖                                                                  

(                
         

    
) ‖ ‖            

 

 

and 

         
 

      
(  |   

  
   
|* ‖ ‖  

Remark (2.2.11)[2]: Notice that h can be understood as a weak solution to the 

Neumann problem 

2
                             

  

                                   
  

 

Sketch of the proof of  Lemma (2.2.10). Let us define  F as in (29). Then, 

          *(  
      )  + 

and       . Using Green's identities we would finish, but we have to check the 

behavior of the integrands when approaching the boundary. 

Given     , consider the truncated versions                      . Then, 

writing      *(  
       )  + , it is an exercise to check that   is    up to the 

boundary, with           
           for all      

 . Consider       
 (  ̅̅ ̅̅ ). Using 

the Green identities, since    is harmonic in   
 , we have 

∫          
  
 

  ∫           
  
 

 

 ∫        
   
 

 ∫  
   
 
  
           ∫       

  
 

 ∫    
  
 

 

(30) 

       (31) 

       (32) 

        (33) 
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Taking limits in the previous identity one gets (30). 

To prove the pointwise bounds for    , recall that 

            *(  
      )  +                   

Given        
    , since           

 

 
  , 

 

|          |   ∫ |
         

       
   |

  

 
‖ ‖ 
      

  

On the other hand, consider             and        . Then, for         
   

            one has           , for       
                       one has 

             and otherwise                       Thus, 

 

|      *(  
     
  )  +    |    |∫ .∫

         

        
           

         

/
   
 

|

 ∫ .∫
           

          

/
     

         
            

  ∫ .∫
           

      

/
     

           
     ́                  

  

 ∫ .∫            
  

/
     

          
  (   ́                  )

  

The first term can be bounded by    
‖ ‖  

      
 because ∫

     

         
      

 

  
. The second 

can be bounded by   
  ‖ ‖ 

    
|    

    

   
| using polar coordinates and the last one can be 

bounded by   
  ‖ ‖ 

    
 trivially. Thus, 

|      *(  
       )  +    |  

‖ ‖ 
      

  
  ‖ ‖ 
    

|   
  
   
|  
  ‖ ‖ 
    

 

proving (32) since          . 

To prove the pointwise bounds for h, recall that 

       (34) 

   (35) 
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      *(  
       )   +           

When d > 2 we use the same method as in (34) and (35) using Newton's potential instead 

of the vectorial      -dimensional Riesz transform to get 

         
‖ ‖ 
      

  
  ‖ ‖ 
      

 

When     the Newton potential is logarithmic, but the spirit is the same. In this 

case, arguing as before, 

                 ‖ ‖     ‖ ‖ 
                             

    
 

Proposition (2.2.12)[2]: Given a window Q of a special Lipschitz domain Ω with a 

Whitney covering W, a finite positive Borel measure   supported on     with 

                                         (     )                                  

and given            define the Whitney averaging function 

 

      ∑      

   

          

If                    is bounded, then   is a      -Carleson measure for      

             . 

Proof. We will argue by duality. Let us assume that the window    (  
 

 
) is of side-

length  R and centered at the origin, which belongs to   . Notice that the boundedness of 

A is equivalent to the boundedness of its dual operator 

      ́      (       )
 
 

We also assume that      in a neighborhood of   . One can prove the general case by 

means of truncation and taking limits since the constants of the Carleson condition (25) 

and the norm of the averaging operator will not get worse by this procedure. 

Fix a cube P. We apply the boundedness of    to the test function           to get 

 (36) 

      (37) 
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‖   ‖
(       )

 
 ́

 ‖ ‖
  ́   

 ́
   (     )  

Thus, it is enough to prove that¸ 

 

∑ (     )
 ́
    

   

     ‖   ‖
(       )

 
 ́

    (     )

   

 

                                

〈     〉    ∫        ∫   4∑
   
  

   

      5      
 

 

where we wrote 〈   〉 for the duality pairing. Consider 

 

 ̃     ∑
      

  
   

       ∑      
    

   
   

  

Then, 

〈     〉  ∫  ̃  
 

    

Notice that  ̃ is in    with norm depending on the distance from the support of   to    

by (36), but the norm of  ̃ in    is well known: 

 

‖ ̃‖     (     )  

 

 

 

 

 
  

     (38) 

    (39) 
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Figure (2.6): We divide      
 in pre-images of Whitney cubes. 

 

Consider also the change of variables                ́      ( ́         ́ ) 

where A is the Lipschitz function whose graph coincides with   , and to any Whitney 

cube Q assign the set     
      and its shadow         

  (     ) (see Figure 

(2.6)). Then, for any        we define 

         ̃(    )    (     )  

where    (     ) stands for the determinant of the jacobian matrix. Notice that still 

‖  ‖   ‖ ̃‖             and 

〈     〉  ∫    ̃   
 

  ∫           
  
 

 

 

The key of the proof is using 

        *(  
       )  +              

which is the solution       
    

   of the Neumann problem 

 

∫          
  
 

  ∫       
  
 

                   
 (  

 ̅̅ ̅̅ ) 

provided by Lemma (2.2.10). 

We divide the proof in four claims: 

Claim (2.2.13)[2]: 

    (40) 

      (41) 

     (42) 

(43) 
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〈         〉  ∫       
  
 

                      
 (  

 ̅̅ ̅̅ ) 

Proof. Since   is bilipschitz, the Sobolev      norms before and after the change of 

variables   are equivalent. In particular, for        
 (  

 ̅̅ ̅̅ )                  and we 

can use (41) and (43). 

Now we look for bounds for  ‖   ‖  ́(      ). The Hölder inequality together with a 

density argument would give us the bound 

‖   ‖
(       )

   ‖  ‖  ́    (     )  

with constants depending on the window size R, but we shall need a kind of converse. 

Claim (2.2.14)[2]: 

‖   ‖  ́   ‖ 
  ‖
(       )

    (     ) 

Proof. Take a ball    containing          . The duality between    and   ́gives us the 

bound 

‖   ‖  ́(      )      
    

 (     
 )

‖ ‖   

|∫       |   

To avoid problems in the boundary, we will consider     to be the symmetric extension of 

h with respect to the hyperplane          
   ́          ́      . One can see that    

has global weak derivatives    
   (   )

 
for             and    

   ́     

      ́      for any      . Thus, 

 

‖   ‖  ́(      )     
    

     

‖ ‖   

|∫    
    |   

Given      
     , one can consider the function   ̃                   , where 

   denotes the unit vector in the d-th direction and       
 

 
        , and take 

 

   (44) 

        (45) 
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       ∫  ̃  ́   
  

  

   

Then, we have        
       with        in the support of ϕ and  ‖    ‖ 

 
 

 ‖ ‖ 
 
. Thus, 

∫    
      〈        

 〉   ∫        
    

      
 

where we use the brackets for the dual pairing of test functions and distributions. Using 

Hölder's inequality and the estimate (32) one can see that the error term in (46) is 

bounded by 

 

∫ |       
 |   

      

   ‖    ‖ 
‖   

 ‖
  ́             ‖ ‖   (     ) 

Notice that the constant C only depends on the Lipschitz constant    and the window 

side-length R. 

It is well known that the vectorial d-dimensional Riesz transform, 

         
 

     
   ∫

    

            
                         

is, in fact, a Calderόn-Zygmund operator and, thus, it can be extended to a bounded 

operator in   . Writing   
   

 for the i-th component of the transform and    
        

    

  
   

 for the double Riesz transform in the i and j direction, one has          
        

    
      by a simple Fourier argument. Thus, writing          

     , we have      

     , so 

 

〈        
 〉   〈       

 〉   〈     
 〉  

We claim that 

 〈     
 〉      

   
〈     

 〉      
   
〈      

 〉 

          (46) 

 (47) 

(48) 

(49) 
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where    is a given function in   
             

      with   defined as in (45) and 

          with     a bump function in   
          such that                       

            and             
 . The advantage of     is that it is compactly supported, 

while only the laplacian of    is compactly supported. 

Recall that               
      so, by the hypoellipticity of the Laplacian 

operator,           itself. Thus, the second equality in (49) is trivial since    are    
  

functions. It remains to proof 

 

〈         
 〉
   
→      

To prove (49) recall that     is compactly supported, so taking r big enough we can 

assume that 

 [         ]                        

so 

|〈         
 〉|  ∫

|  |  
  

  
  
|   |  

  

 
    

            

 

It is left for the reader to prove (50) plugging (31) in this expression. One only needs to 

use that            are in any    space for        . 

We can use    
   ́           ́       by a change of variables and, by Claim 

(2.2.13), we obtain 

 

∫       
      ∫           

  
 

  ∫    
       

  
 

   〈          
       〉  

Summing up, by (46), (47), (48), (49) and (51) and letting r tend to infinity, we get 

 

|∫     
    |  〈    (       

 )     〉  ‖ ‖   (     )  

(50) 

(51) 

     (52) 
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Using Hölder inequality in (45) we have that  ‖  ‖    ‖ ‖ . Now,           
      

   
       ,  sousing the boundedness of thed-dimensional Riesz transform in    we get 

‖  ‖    
   ‖  ‖  

  ‖   ‖  
    (‖  ‖ 

   ‖    ‖ 
)    ‖ ‖   

Summing up, by (44), (52) and (53) we have got that 

‖   ‖  ́     
‖ ‖
    (  )

  
 〈          〉    (     )   

On the other hand,  ‖     ‖         ‖ ‖    (   )  for any  f, so we have 

‖   ‖  ́     
‖ ‖
    (  )

  
 〈          〉    (     )  ‖   ‖

(       )
    (     ) 

that is Claim (2.2.14). 

We can make the big step towards the proof of (38). 

Claim (2.2.15)[2]: 

 

∑ (     )
 ́
    

   

   

   

 ‖   ‖  ́
 ́   ∑∫ (∫

      
       

 ̃(    )  

         

,

 ́

     

   

      

Proof. Notice that in (42) we have defined   in such a way that 

          
     *(  

       )  +        
          

 
  

  
∫ .
     
  
∫

     

                 
 

 
     
       

/
  
 

        

Given        
 , consider the kernel of    

     *(  
        )   +    

          

 

        
     
  
∫

     

                  
 

 
       
        

  

  (53) 

 (54) 

         (55) 
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so that 

        
  

  
∫          
  
 

      

We have the trivial bound 

         
       
        

                

but given any Whitney cube                     we can improve the estimate. In 

this case, 

∫
     

          
        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ∫
     

       
 

   
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

  
  

and, thus, when we consider                         we have 

 

        
       
        

             
     
  
∫

     

                  
 

 
      
     

∫
     

       
 
    

        
        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  

By the Lipschitz character of Ω we know that                for any        
 . 

Thus, by (39) and (40), given Q ≤ P we have 

 (     )   ∑    

   

 ∫  ̃     
     

 ∫        
      

 

For any       using (57) and (58) together with (56) we get 

 (     )  ∫            
  
 

          ∫
      
        

 ̃(    )          

         

              
    ∫

       
        

 ̃(    )          

         

  

            (56) 

        (57) 

(58) 
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Then, raising to the power  ́, averaging with respect to      and summing with respect 

to Q ≤ P with weight              
   

    , since        ́   
   

   
    , we get Claim 

(2.2.15). 

We bound the negative contribution of the      -dimensional Riesz transform in 

Claim(2.2.15), i.e. we bound   . 

Claim (2.2.16)[2]: 

  ∑∫ .∫
      
                 

 ̃(    )   /

 ́

     

      (     )  

Proof. Consider         
              and two Whitney cubes Q and S such that 

       and                    , then 

       
        

 
             

       
 
    

       
  

On the other hand, when            , 

∫
         

       
   

       

              

Bearing this in mind and the fact that, by (39)   ̃(    )  ∑        
    

        , one 

gets 

  ∑     

   

(∑
        

       
   

+

 ́

  

Let us consider a fixed        and apply first the Hölder inequality and then (36). We 

get 

  ∑     

   

(∑
            ́

       
   

+(∑
            

       
   

+

 ́

 

 ∑     

   

(∑
            ́

       
   

+(∑
            

       
   

+

 ́
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By Lemma (2.1.19), the last sum is bounded by              with C depending on   as 

long as               , that is, when  
   

 
   

   

 
. Thus, 

  ∑∑
            ́            ́  ́  

       
      

   ∑            ́

   

∑
          ́

       
   

  

Again by Lemma (2.1.19), the last sum does not exceed C         ́ with C depending on 

  as long as         ́         ., when     
 

 ́
  
   

 
 . Summing up, we 

need 

   {
    

 
  }     

   

 
  

Such a choice of   is possible for any p > 1. Thus, 

  ∑    

   

  (     )  

Being   a finite measure,  (     )
 ́
  (     )      

 ̀  . Thus, the last term in (54) 

is also bounded due to Claim (2.2.14): 

 

  ‖   ‖
(    (  

 ))
 

 ́
  (     )

 ́
 ‖  ‖ ́‖ ‖

  ́   

 ́
  (     )   (     ) 

Using Claim (2.2.15) together with Claim (2.2.16) and (59), we get that 

∑ (     )
 ́
    

   

      (     ) 

   

 

Theorem (2.2.17)[2]: Given a Calderόn-Zygmund smooth operator of order 1 and a 

Lipschitz domain Ω, the following statements are equivalent: 

i. Given any window Q with a properly oriented Whitney covering, and given any 

Whitney cube      , one has¸  

∑.∫         
 

     

/

 ́

   

     
   

       ∫         
 

     

 

ii. T is a bounded operator on         . 

(59) 
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Proof. The implication   ⇒     is Theorem (2.2.8). 

To prove that     ⇒    we will use the previous proposition. Let us assume that we 

have a properly oriented Whitney covering W associated to an R-window Q of a 

Lipschitz domain Ω, where we assume that the window      (  
 

 
) is of side-length R 

and centered at the origin, and define 

                   
            

Notice that if T is bounded in         then, by Lemma (2.2.2), 

∑|    |
 
     ‖ ‖       

   

 

so the discrete averaging operator      
              defined as 

 

       ∑                

   

 

is bounded. 

Consider the Lipschitz function A whose graph coincides with the boundary of Ω in 

Q. We say that  ̃ is the special Lipschitz domain defined by the graph of A that coincides 

with Ω in the window Q. One can consider a Whitney covering  ̃ associated to  ̃ such 

that it coincides with W in     . Consider the  ̃ version of the averaging operator, 

          ̃     ∑      

   

                         
   ( ̃)  

It is easy to see that the boundedness of    implies the boundedness of 

       ( ̃)         

(consider an appropriate bump function and use the Leibnitz formula). 

In order to apply Proposition (2.2.12), we only need to show that   (     )   

         , which in particular implies that   is finite. Consider a bump function     

such that                                     
 

     
. 

        (60) 
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Then, 

 (     )  ∫          
   

     

  ∫               
   

     

 ∫          
   

 

 

With respect to the first term, notice that given         ,     (     (     ))  

 

 
     so Lemma (2.1.24) together with (11) allows us to write 

|  (     )   |   ∫
 

          
   

         

  
 

    
  

Being  a Lipschitz domain,  (     )        , so 

∫               
           

     

 

The second term is bounded by hypothesis by a constant times  ‖  ‖       
 

, and 

‖  ‖       
 

 ‖  ‖     
 
 ‖   ‖     

 
                                

Where R is the side-length of the R-window Q, proving that   satisfies (36). 

In the case of the unit disk, we found in the Key Lemma that if T is a smooth convolution 

Calderόn-Zygmund operator of order 1 bounded in        , then 

∑ |    |
 

   ∫          
 

 
      ‖ ‖

       
 

 

for all           . If one considers                
      and       

           , then, when f  is in the Besov space of analytic functions on the unit disk 

       

‖ ‖     
              ∫   ́                    

 

     

          
 ‖ ‖        

Using the mean value property (and (36) for the error term), one can see that if T is 

bounded then for every holomorphic function  f, the bound in (61) is equivalent to 

∫                 
      

 
 ‖ ‖     

   

(61) 

(62) 
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i.e.,  ‖ ‖      ‖ ‖     . The measure   is a Carleson measure for (       ) , 

stablishing Theorem (2.2.17) for the unit disk by means in that article. 

For      Lipschitz, we also have 

∫                 
      

 

 ‖ ‖
       
 

 

for any analytic function  . If Ω is simply connected, considering a Riemann mapping 

    Ω, and using it as a change of variables, one can rewrite the previous inequality as 

∫        (    )| ́   |
 
     

 

 | (    )|
 
 ∫             | ́   |

   
     

 

 

for every f analytic in Ω. Writing   ̃      (    )  ́                    

   ́               , one has that given any   analytic on D, 

‖ ‖    ̃  ‖ ‖      

So far so good, we have seen that  ̃  is a Carleson measure for (       )  if two 

conditions on   are satisfied. The first condition is that the weight   is “almost constant" 

in Whitney squares, i.e., 

                  ⇒              

and this is a consequence of Koebe distortion theorem, which asserts that 

  ́                             

The second condition is the Bekollé-Bonami condition, which is 

∫                       
 

.∫                       ́     
 

/

   

         

If the domain    is Lipschitz with small constant  depending on p (in particular if it is C
1
), 

then  this condition is satisfied.  
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Chapter 3 

Singular Integral Operators 

We prove some new accretive type Littlewood-Paley results and construct a bilinear 

paraproduct for a para-accretive function setting. As an application of a bilinear Tb 

theorem, we prove product Lebesgue space bounds for bilinear Riesz transforms defined 

on Lipschitz curves. 

Section (3.1) : Almost Orthogonality Estimates and Convergence 

Results 

Tb Theorem: Let        be para-accretive functions. Assume that T is a singular integral 

operator of Calderón-Zygmund type associated to       . Then T can be extended to a 

bounded operator on    if and only if          satisfies the weak boundedness property 

and               
          . 

Theorem (3.1.1)[3]: Let         be para-accretive functions. Assume that T is a bilinear 

singular integral operator of Calderón-Zygmund type associated to          . Then T 

can be extended to a bounded operator from          into    for all          

   satisfying 
 

  
  
 

  
  
 

  
 if and only if                 satisfies the weak 

boundedness property and                  
               

              . 

Some convergence results for a reproducing formula of the form 

∫        
  

 
   

 

 

  

For appropriate functions    , which came to be known as Calderón’s reproducing 

formula. The convergence of Calderón’s reproducing formula holds in many function 

space topologies. This formula has since been generalized and reformulated in many 

ways. For some general formulations of this Calderón reproducing formula. We consider 

discrete versions of Calderón’s formula where we replace convolution with    with 

certain non-convolution integral operators indexed by a discrete parameter k   Z instead 

of the continuous parameter t > 0. We prove a criterion for extending the convergence of 
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perturbed discrete Calderón reproducing formulas from    spaces to the Hardy space    . 

We will prove: 

Theorem (3.1.2)[3]: Let      be para-accretive functions and    be a collection of 

Littlewood-Paley square function kernels such that       
     for all k   Z. Also 

assume that 

∑            

   

 

for any     
  such that b f  has mean zero, where the convergence holds in    for some 

1 < p < ∞ . If       
   for some        such that     has mean zero, then    

   and 

∑             

   

 

where the convergence holds in   . 

Here    
       

       denotes the collection of compactly supported,  -Hölder continuous  

functions from     into C. Also we take the typical definition of the Hardy space    with 

norm                    ∑          
 
    , where   is the  

  
Reisz transform in 

  for                         
  

      
   and     is a dimensional constant. Theorem 

(3.1.2) tells ust hat anytime we have convergence of Calderón’s reproducing formula in 

   for some p, then it also converges in   , for appropriate operators and functions. 

 Proof. Define for                      . It easily follows that 

∫        
  

  ∫         
        

  
       

Let R be large enough so that                   We estimate 

                |∫                            
  

|

 ∫            
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We also estimate 

                |∫                         
  

|

 ∫   
   
               

       
       

  

      ∫   
         

       
       

  
        

       
       

So we have proved that                  
       

     . It follows from Lemma 

(3.1.18) applied with  j = 0 that 

                  
       

Therefore  

‖ ∑   
     

‖

  

  ∑         

     

 ∑             

   

     

Hence ∑         is a Cauchy sequence in   , and there exists  ̃       such that 

 ̃   ∑  
   

  ∑       

   

 

But since the reproducing formula holds for    in   for some 1 < p < ∞ , it follows 

that   ̃      and the reproducing formula holds for    in   , which completes the 

proof. 

The need of Theorem (3.1.2) to prove Theorem (3.1.1) comes about in a product 

construction  used to decompose a bilinear singular integral operator T (as in Theorem 

(3.1.1)). To prove Theorem (3.1.1), we follow the ideas to write            

  ,where                  
               

            and    ,   ,    are 

bilinear paraproducts.We construct these paraproducts so that they 

satisfy                           and       
                  

              in 

BMO; likewise for    and   .The paraproduct    is defined in terms of a generalized 

Calderón type reproducing formula, like the ones described in Theorem (3.1.2). The    

convergence given by Theorem (3.1.2) implies BMO convergence of the formula by 
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duality when paired with appropriate elements of  , and eventually this convergence 

yields                            for this paraproduct construction. For more details 

on the construction of these paraproducts and the decomposition              . 

 

Definition (3.1.3)[3]: A function      is para-accretive if         and there is a 

     such that  for every cube Q, there exists a sub-cube R  Q such that 

 

   
|∫       
 

|      

We introduce the Hölder continuous spaces and para-accretive perturbed Hölder spaces. 

These are the functions spaces that we use to form an initial weak continuity assumption 

for T in Theorem (3.1.1), similar to the linear    theorem. 

Definition (3.1.4)[3]: Define for        and         

             
   

              

      
  

and the space           to be the collection of all functions        such that 

        . Also define   
     

      to be the subspace of all compactly supported 

functions in   .It follows that        is a norm on    
 . Despite conventional notation, we 

will take    and   
  to be the spaces of Lipschitz continuous functions to keep a notation 

consistent. Let b be a para-accretive function and define     
  to be the collection of 

functions b f  suchthat        
 with norm                    . Also let (   

 )
 
 be the 

collection of all sequentially continuous linear functionals on     
 , i.e. a linear functional  

      
    is in (   

 )
 
 if and only if 

   
   
                             

 ⇒    
   
〈     〉   〈    〉  

where these are both limits of complex numbers. Given a topological space X, we say that 

an operator      (   
  )

 
 is continuous if 

   
   
           ⇒    

   
〈        〉   〈       〉             
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Given a bilinear operator        
      

       
     for some d > 0, define the 

transposes of T  for            
  

〈                   〉  〈 
                  〉   〈                  〉  

Then the transposes of T are bilinear operators acting on the following spaces: 

        
      

       
   and          

      
       

   . One could more 

generally define the transpose            
         

  , but this is not necessary for this 

work. So we restrict the first spot of      to     
  instead of      

       Likewise for     . 

Definition (3.1.5)[3]: A function                         is a standard bilinear 

Calderón-Zygmund kernel if 

             
 

                 
                        

                          
|    |

                   
  

                                 

                        
        

                   
  

                                   

                          
        

                   
  

                                    

Let           
       be para-accretive functions. We say a bilinear operator   

     
      

  (    
 )

 
 is a bilinear singular integral operator of Calderón-Zygmund 

type associated to         , or for short a bilinear C-Z operator associated to         , if 

T is continuous from     
      

  into (    
 )′ for some d > 0 and there exists a standard 

Calderón-Zygmund kernel K such that for all            
  with disjoint support 

〈                    〉   ∫           
   

∏               

 

   

  

Note that this continuity assumption for T from     
      

 into      
    is equivalent to 

the following: For any                  
  such that      in   

 , we have 
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〈 (           )      〉   〈 (          )      〉  

                             〈 (           )      〉   〈 (          )      〉  

                                 〈                    〉   〈                   〉  

It follows that the continuity assumptions for a bilinear singular integral operator T 

associated to para-accretive functions          is symmetric under transposes. That is, T 

is a bilinear C-Z operator associated to          if and only if    is a bilinear C-Z 

operator associated to          if and only if      is a bilinear C-Z operator associated to 

        . 

Definition (3.1.6)[3]: A function     
  is a normalized bump of order m   N if 

                and 

   
     
             

Let           
∞  be para-accretive functions, and T be an bilinear C-Z operator 

associated to         . We say that                 satisfies the weak boundedness 

property (written                       if there exists an     such that for all 

normalize dbumps            
  of order        , and  R > 0 

|〈       
         

           
   〉|     

Where               
   

 
  . 

It follows by the symmetry of this definition that     (         )      if and 

only if     
                   if and only if     

                 . We 

define T on     
           

      , so that we can make sense of the testing 

condition                 as well as the transpose conditions. The definition we 

give is essentially the same as the one given by Torres in the linear setting and by 

Grafakos-Torres in the multilinear setting. Here we use the definition with the necessary 

modifications for the accretive functions         . A benefit of this definition versus the 

ones is that we define          paired with any element of     
 , not just the ones with 
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mean zero. Although one must still take care to note that the definition of T agrees with 

the given definition of T when paired with elements of      
  with mean zero. 

Definition (3.1.7)[3]: Let          be para-accretive function, T  be a bilinear singular 

integral operator associated to         , and        
    . Also fix functions   

    
  

for             such that    
              and     (  

 )            Then we 

define 

 

〈                 〉

    
   
〈    

        
           〉

 ∫                      
  

∏         
     

 

   

    
                      

 

 

where       
           is minimal such that                     . When 

     , we have 

〈    
        

           〉  〈 (   
         

     )     〉 

                                                            〈     
          

     
            〉 

                                                               〈 ((  
     

 )        
      )       〉 

                                                              〈     
     

          
     

            〉 

                 〈 (   
         

      )     〉 

 ∫               
     (  

         
     )

   
∏                       

 

   

 

 ∫            (  
         

     )    
     

   
∏                       

 

   

 

(1) 
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 〈 ((  
     

 )     (  
     

 )    )      〉                

The first term I is well defined since    
           

  for a fixed   (depending on   ). We 

check that the first integral term II is absolutely convergent: The integrand of II is 

bounded by |       ∏                   
 
   times 

               
         

         
              

 
    
         

         
              

                   

  
    
        

         
              

                                 
 
    
              

              
  

This is an         function that is independent of R (as long as       ), 

∫
    
             

               
            

   
  ∫

    
              

  
        

   
             

   

Since      pointwise, by dominated convergence the following limit exists: 

   
   
∫               

         
         

      
   

∏                        

 

   

  ∫               
            

      
   

∏                        

 

   

 

So          exists. A symmetric argument holds for           .We consider IV minus 

the integral term from (1) 

    ∫                        
  

∏        
                      

 

   

  ∫                                      
   

 ∏   
         

                              

 

   

  

Again we bound the integrand by         ∏                  
 
    times 
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which is an         function: 

∫
  
 
         

                         
           

   
 

  ∫
  
 
         

                   
         ∫                           

 

  
 

Then it follows again by dominated convergence that 

   
   
〈 ((  

     
 )     (  

     
 )    )      〉 

 ∫                       
  

∏         
     

 

   

    
                        

  ∫ (                     )          ∏  

 

      

    
                               

which is an absolutely convergent integral. Therefore              is well defined as an 

element of (    
 )
 
 for         

    . Furthermore if               
 and      has 

mean zero, then this definition of T is consistent with the a priori definition of T since 

   
   
∫                       
  

∏      (  
         

     )                  

 

   

 

 (∫           
  

∏            (     
     )        

 

   

+.∫                
  

/
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since both of these integrals are absolutely convergent. Also, when      has mean zero in 

this way, the definition of 〈             〉 is independent of the choice of   
  and    

 . 

We will also use the notation                  or                 for    

     to mean that for all       
  such that      has mean zero, the following holds: 

〈             〉  〈      〉 

Here the left hand side makes sense since          is defined in      
   . The right hand 

side also makes sense since       
  for      

  where      has mean zero. The 

condition                   defined here is weaker than (possibly equivalent to) 

             when we can make sense of          as a locally integrable function. 

This is because a definition of                  only requires this equality to hold 

when paired with a subset of the predual space of BMO, namely we require this to hold 

for               
  and       has mean zero}   . It is possible that this is equivalent 

through some sort of density argument, but that is not of consequence here. So we do not 

pursue it any further, and use the definition of                   that we have 

provided. Furthermore, if T is bounded from         into    for some            

    then T can be defined on       and is bounded from       into BMO. Hence, if 

T is bounded, then                 
              

               . 

We say (by definition) that             if there is a        so that 

〈        〉   〈      〉 for all       
  where      has integral zero. This isequivalent to 

the notion of         . We also abuse notation here in the sense that if        

     as we defined it, then the appropriate identification of an element in BMO would 

be        , not            as the notation suggests. We have two reasons for using 

this notation. 

The first is that we felt it necessary to mention the function    in the requirement 

         since, as a matter of definition, it does depend on   . 

The second reason is a bit more involved. Note that we do not assert the following: 

If            , then         . We don’t make this conclusion because 1) we 

only deal with pairings of the form 〈        〉  for       
  where b0 f  has mean zero, 
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and 2) we have not shown that the collection              
 and     has mean zero} is 

dense in   . If this collection is in fact dense in   , then we conclude that        

    (as we’ve defined it) implies         . It may be the case that this collection is 

dense in    , but it is not of consequence to us in this work. This discussion applies to the 

bilinear conditions                  as well with the appropriate modifications. 

Define for                       

  
      

   

          
  

For         , we use the notation         
          . We will say indices 

             satisfy a Hölder relationship if 

 

 
 
 

  
 
 

  
  

Definition (3.1.8)[3]: Let    be a function from      into C for each k   Z. We call  

         a collection of Littlewood-Paley square function kernels of type            

for A > 0, N > n, and           if for all             and k   Z 

                       
   
       

                                  
            

   
         

   
          

We say that         is a collection of smooth Littlewood-Paley square function kernels 

of type           ) for A > 0, N > n, and       if it satisfies (3), (4), and for 

all            and k   Z 

                       
         ∏   

   
          

   
         

    

If     is a collection of Littlewood-Paley square function kernels of type 

           (respectively           )) for some          , and         , 

then write            (respectively            . We also define for           

  , and           

         ∫               
  

  

   (2) 

   (3) 

 (4) 

  (5) 
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Definition (3.1.9)[3]: Let   be a functions from     into C for each k   Z. We call 

        a collection of bilinear Littlewood-Paley square function kernels of type 

            for          and        if for all                   
  and k 

 Z 

                   
   
        

   
       

|              (   
 
 
   )|    ( 

 |    
 
 
|)
 
  
          

 (  
   
          

   
        ) 

 

|              (      
 
 
)|    (  |    

 
 
|)
 
  
          

 (  
   
          

   
       )  

We say that         is a collection of smooth Littlewood-Paley square function kernels 

of type              for A > 0, N > n, and       if it satisfies (3)-(5) and for 

all              
  and k   Z 

                                
         ∏    

   
          

   
      

   

      

If {   } is a collection of bilinear Littlewood-Paley square function kernels of 

type             (respectively of type               for some          and 

      , then we write            (respectively             . We also define 

for           ,  and         
     

                ∫                                  
   

 

Remark (3.1.10)[3]: Let    be a function from     to C for each k   Z. There exists 

           , and          such that {  } is a collection of Littlewood-Paley 

square function kernels of type                if and only if there exist         

 , and          such that for all                   
            

                    
           

         

(6) 

      (7) 

      (8) 

(9) 

(10) 
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A similar equivalence holds for smooth square function kernels of 

type                        , and             with the appropriate 

modifications. 

Proof. Assume that                       , and define                 

        It follows easily that (10) holds. Also 

|              (   
 
 
   )|       

      
 
 
      

           

 (  
             

    (    
 
))       

               
   

A similar argument holds for regularity in the    and x spots. Then   satisfies (10)-(13). 

Conversely we assume that (10)-(13) hold. Define    
    

       
 ,               

          , and     . Estimate (6) easily follows since         . Estimate 

(7) also follows since 

                   
 
 
        ( 

 |    
 
 
|)
  
  
               

 (  
                 

        (    
 
)* 

                         ( 
 |    

 
 
|)
 
  
            

                                                (  
              

            ). 

Note that this selection satisfies 

                 
     

 
    

Then (7) holds for this choice of        , and   as well. Estimates (8) and (9) follow with 

a similar argument, and hence {  } is a collection of Littlewood-Paley square function 

kernel of type              . The proofs of the other equivalences are contained in the 

proof of this one.  

(11) 

(12) 

(13) 
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We first mention a well known almost orthogonalitye stimate for non-negative functions: 

If       , then for all         

∫   
        

           
         

       
  

 

Then next result is also a result for integrals with non-negative integrands, but this one 

involves regularity estimates on the functions. 

Proposition (3.1.11)[3]: If               , then for all                 
  

∫ |                      |  
           

  

          (  
          

       )  
         

∫                           
   
         

  

           
       (  

          
       )  

and 

∫                            
   
          

   
               

   
 

         ∏  
          

       

 

   

  

Proof. Since         is of type            , it follows that 

∫ |                      |  
           

  
 

    
       ∫ ( 

       )
 
(   
   
          

   
    )   

   
         

  
 

           
       ∫    

          (   
        )  

         
  

 

        (  
          

       )  
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By symmetry the second estimate holds as well. For the third estimate, we make a similar 

argument, 

∫ |                       |  
            

                 
    

 

 ∫                            
   
         

   
              

    
 

 ∫                            
   
         

   
              

    
 

         ∫   
       (  

          
       )  

   
         

    
    

            

          ∫   
        (  

       )  
         

          
   
   

    

            

          (  
          

       )(  
          

       )  

This completes the proof of the proposition.  

It is well-known that if      and           , then                       for all k 

  Z, where M is the Hardy-Littlewood maximal function 

             
   

 

   
∫           
 

  

and here the supremum is taken over all balls B containing x. We use the kernel function 

almost orthogonality estimates to prove pointwise estimates for some operators. 

Proposition(3.1.12)[3]: If                 and there exists a para-accretive function b 

such that                    for all k   Z, then for all            and         

 

       
                             (14) 



84 
 

If                         and there exists a para-accretive functions b such 

that          and 

∫                      
  

 

for all k   Z and          
 , then for all         

     and         

|                 |    
                         

 If    
      

                     and there exist para-accretive functions      and 

       such that   
        

                  for all k   Z, then for all       

                     

         
          

             
                        

Here we use capital   to be the operator defined by integration against the kernel lower 

case     just like    and   . 

Proof. We first prove (14). Using that    
         and Proposition (3.1.11). 

       
         ∫ |∫                               

  
|         

  

  ∫ |               |  
                    

   

         (  
           

         )                    

With a symmetric argument, the same estimate holds replacing          with        . 

Therefore (14) holds. Now we prove (15). We first use that           to estimate 

                    

 ∫ |∫                                       
  

|                       
   

 

 ∫    
   
     (       )

 
    
   
          

   
      

   
    

   
  

       
   
                                    

(15) 

      (16) 
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         ∫    
          

   
         

   
          

   
         

   
  

   

                                 

          ∫    
      

  
∏(   

             
         )   

 

   

 

                          

We also have 

|                | 

 ∫ |∫                                    
  

|
   

                        

        ∫     
          

        
   

∏   
                      

 

   

 

         ∫    
      

  
∏   

             

 

   

 

        ∫    
       

              

∏   
                       

 

   

 

        ∫    
       

       
     

 

∏   
                     

 

   

 

                      

Note that                           , which is on the right hand side of (15). In II, 

replace    
        with    

           and it follows that       So II is bounded 

appropriately as well. The final term, III is bounded by 

∫    
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 ∫    
          

                  
                

              

 

  .∫    
                  

  
/.∫    

         
            

  
/ 

     
             

           

                  

This verifies that (15) holds. For estimate (16) when      , we use that    
      

  
        and Proposition (3.1.11) 

         
          

           

 ∫                          
   

∏        
                       

 

   

 

          ∫ ∏(   
           

       )

 

      
   
                         

         ∏∫ (   
           

       )            
  

 

   

 

                         

Using that              , it follows that 

|  (     
          

     )   | 

 ∫              
   

|∏  
        

 

   

 ∏  
       

 

   

|∏                     

 

   

 

 ∫ (∫ ∏  
        

 

   

 ∏  
       

 

   

∏   
   
           

 

      
+

   
∏            

 

   

 

         (   
               

           )(   
               

           )
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We see that    
         

        form a collection of kernels of type BLPK. Then (16) 

holds as well.  

Proposition (3.1.13)[3]: Suppose      
     for k   Z satisfy            

   
      and N > n, and define    

           ∫               
  

 

For           . If 

∫              
  

 

for all k   Z and         then           in    as k→ ∞  for all        when     

  and       in    as      for all         for        . 

Proof. For       with 1 ≤ p <∞ 

              (∫ |∫                
  

 ∫                
  

|

 

  
  +

 

 

 

                           (∫ |∫         
                              

  
|

 

  
   +

 

 

 

                           ∫ .∫   
                           

  
/

 

 

  
  

 

                          ∫   
                           

  
  

Note that   
                                        

     which is an       function 

independent of k. So by Lebesgue dominated convergence and the continuity of 

translation in          

   
   
                 ∫   

    
  

   
   
                              

We compute 
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So        almost everywhere as      . We also have 

               
                      

and since             it follows that              as well when      . So by 

dominated convergence 

   
    
           

 
   ∫    

    
          

   
  

       

This proves the proposition.  

Corollary (3.1.14)[3]: Let b be a para-accretive function. Suppose     
     for k   Z 

satisfy             
       for some N > n, and define    

           ∫                
  

 

for         . If 

∫               
  

     

for all k   Z and      , then            and            in    as k→ ∞ for all 

         when 1 ≤ p < ∞ . Also            and           in   as       for 

all           for 1 ≤ q < p < ∞ . 

Proof. Define              with kernel   . It is obvious that |             
    

   and                  . So by Proposition (3.1.13), since        it follows that 

                 in     when       and 1 ≤ p < ∞ . Also when         

                  , it follows that                  as      . Also 

                
      , so the same convergence properties hold for      

These approximation to identities perturbed by para-accretive functions are important 

to this work. 

Definition (3.1.15)[3]: Let        be a para-accretive function. A collection of 

operators         defined by 
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           ∫                
  

 

for kernel functions      
     is an approximation to identity with respect to b if 

           , and 

                                          
                         

 (  
   
         

   
         

   
          

   
       ) 

∫              
  

   ∫              
  

     

We say that an approximation to identity with respect to b has compactly supported 

kernel if             whenever             

Proposition (3.1.16)[3]: Let b be a para-accretive function, {  } be the approximation to 

identity with respect to b that has compactly supported kernel, and     . Then 

            and            in    
          for all       

  and     

         , where  is the smoothness parameter for            .  

Proof. Let       
   and         . Without loss of generality assume that       , 

where   is the smoothness parameter of   . We must check that                

         . So we start by estimating 

                                          

 |∫                              
  

 ∫                              
  

| 

               ∫    
       

 
      

  
 

Where    
                             . Consider              , and it follows 

that 

   
       

 
                                                     

                                                                

(17) 
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With a similar argument, it follows that for                
       

 
     

         
         . Now we may also estimate     

      in the following way for 

            , 

   
                                   

                    
        

Using the support properties of   , we have that        
    

 
             

        .Then it follows from (17), (18), and  
 

  
       that 

   
       

 
      (          

         )
 

  (          
       )

   
 

  

           
                   

Therefore                       since 

                                        

      
 

 

      
∫    

       
 
      

  

            
        ∫      

                 

           
          

This proves that           in   
  as    . Now we conider          as   . We 

also have 

                        

      
 

 

      
∫                                   
  

 

  
         

      
.∫  ∫

                
/                 

           
     

Note that        < ∞ since f  is continuous and compactly supported. Therefore 

           and            as       in the topology of   
   

We state a Calderón type reproducing  formula for the para-acretive setting. 

  (18) 
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Theorem (3.1.17)[3]: Let      be a para-accretive function and   
 for k   Z be 

approximation to the identity operators with respect to b. Define    
       

    
 . 

There exist operators  ̃ 
  such that 

∑ ̃ 
     

           

   

 

in    for all 1 < p < ∞ and       
  such that b f has mean zero. Furthermore,  ̃ 

     

 ̃ 
              ̃ 

  is defined by 

 ̃ 
         ∫  ̃ 

               
  

 

Where     ̃ 
        , where  ̃ 

          ̌ 
        are the kernels associated with  ̃ 

   

We will use this formula extensively, and in fact, we need this formula in    as well 

to construct the accretive type para-product. We will prove that this reproducing formula 

holds in    in Theorem (3.1.2) and its Corollary (3.1.19). First we prove a lemma. 

Lemma (3.1.18)[3]: If          has mean zero and 

           
       

     

for some N > n and j,k   Z, then       and                    , where the 

suppressed constant is independent of  j and k. 

This is an extension of a result, which is Lemma (3.1.18) when  j = k. We obtained a 

quadratic bound,        , for Lemma (3.1.18) using an argument involving atomic 

decompositions in   . Such a result suffices for a purposes, but thanks to suggestions 

from Atanas Stefanov we are able to obtain the linear bound stated here. We present 

Stefanov’s proof, which appears more natural. 

Proof. The conclusion of Lemma (3.1.18) is well known for j = k. So without loss of 

generality we take        and furthermore we suppose that j< k. It is easy to see that 

               
           

           

so we may reduce the problem to proving that                  for            The 

strategy here is to split the norm            into two sets, where         and 

(19) 
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where         . We will control the first by     and the second by 1. Define      

 
 

   
  , and use that                  to estimate 

 

                                                
                   

               (               )         

Note that here we use that              and hence                . Now it remains 

to control 

 

                   ∑                        

  

    

 ∑                                    

 

    

  

 ∑                                    

 

    

           

In order to estimate I from (21), we bound the terms of the sum by first breaking them 

into two pieces using the mean zero hypothesis on  f : 

 

                                  

  ∫ |                    ∫
  
      

       
 

|   
           

  ∫ ∫ |
     
        

 
  
      

|             
              

 

 ∫ ∫
        

    
     

                   
          

Let                    and               Then the first term of (22) is 

bounded by 

(22) 

(20) 

(21) 
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   ∫ ∫
   

      
             

              
  ∫ ∫

    

       
            

              

      ∫     (  
       

    )  
 

      ∫ (      
             

      )  
 

            

Note that we absorb the      term into the      term since k > j. The second term of (22) 

is bounded by 

    ∫ ∫
 

    
             

                    

      ∫ ∫             
                   

  ∫ .
        

    
  
        

    
/  

        
                            

                 

Again we use that                    since k > j and N > n. Now in order to estimate 

II from (21), we bound the terms of the sum using an    bound for    

                                                                             

      .∫ (  
       

    )
 

        
   /

 

 

       .∫ 0
         

     
  
        

     
1

        
  /

 

 

      (                 ) .∫
 

     
   

        
/

 

 

                 

Using these estimates, it follows that (21) is bounded in the following way: 

      ∑          
 

    

  ∑               
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Therefore using (20) and (21), it follows that                for             and 

hence                .  

Corollary (3.1.19)[3]: Le     be a para-accretive function,   
     

       ̃  
 be 

approximation to identity and reproducing formula operator with respect to b as in 

Theorem (3.1.17). Then for all     and      
  such that b  has mean zero, 

∑   ̃         

   

  ∑        

   

     

in   . 

Proof. By Theorem(3.1.17), it follows that the kernels of  ̃     and   are Littlewood-

Paley square function kernels of type LPK, that 

 ̃             ̃      
                 

           

and finally that 

∑   ̃        

   

   ∑        

   

     

in    for all 1< p < ∞  when     
  when    has mean zero. Therefore it follows 

fromTheorem (3.1.2) that the formula holds in    as well. 

Section (3.2): A Square Function-Like Estimate and Singular Integral 

Operators with Application to Bilinear Reisz Transforms 

Theorem (3.2.1)[3]: If              and there exist para-accretive functions b0, b1, b2 

such that 

∫                    
  

  ∫                               
   

     

for all           
  and k   Z, then for all                satisfying (2),    

      for                          

∑|∫                      
  

|

   

 ∏          
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Proof. Since       
     , it is sufficient to prove this estimate for      in place of 

                . Fix               satisfying (2),       
  for           and 

some   where      has mean zero for          . Define. 

∏            
 

 
        

                 
           

∏            
 

 
        

               
            

where   
   and    

    defined as in Theorem (3.1.17). Then it follows that 

               

     
   
        

             
                  

              
         

     
   
∑   (       

               
       )    (     

             
       )

   

    

 

     
   
∑   ∏         

 

 
   ∏         

 

 

   

    

 

where the convergence holds in   . Then we approximate the above dual pairing in the 

following way 

|∑∫                             
     

|   ∑ |∫   ∏                       
 

   
|

     

 

                                                                          ∑ |∫   ∏                         
 

   
|

     

  

These two terms are symmetric, so we only bound the first one. The bound for the other 

term follows with a similar argument. By the convergence in Theorem (3.1.17), we have 

that 
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∑ |∫   ∏                         
 

   
|

     

  ∑ |∫   ∏   ̃ 
       

                            
 

   
|

       

  ∑ |∫  ̃ 
       

       
  

∏   ̃ 
       

                           
 

 
|

         

  ∑ ∫    
       ∏   ̃ 

       
                  ̃ 

   
 

 
            

           

 

By Proposition (3.1.12) we also have the following three estimates 

|  
       ∏ ( ̃ 

       
          )   

 

 
|

           .∏ ( ̃ 
       

          )
 

 
/    

            (    
              )     

   
       ∏ ( ̃ 

       
          )   

 

 
       ∏   ̃ 

       
           

 

 
    

                 
                    

   
       ∏   ̃ 

       
              

 

 
      ∏   ̃ 

       
               

 

 

                 
                  

Taking the geometric mean of these three estimates, we have the following pointwise 

bound 

   
       ∏      ̃ 

       
              

 

 
 

    (
     

 
  
     

 
  
     

 
)  (    

              )     

Therefore 
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∑ ∫    
       ∏   ̃ 

       
              

 

 
 ̃ 
              

           

 

 ∫ ∑    (
     

 
  
     

 
  
      

 
)  (    

              )     ̃ 
              

           
 

 ‖‖4 ∑    (
      

  
 
     

 
  
       

 
)  (    

              )
 

         

5

 

 

‖‖

  

 ‖‖4 ∑    (
     

 
  
     

 
  
      

 
)  ̃ 
         

 

         

5

 

 

‖‖

   

 

 ‖(∑  (    
             )

 

   

+

 

 

‖

  

‖(∑   ̃ 
         

 

   

+

 

 

‖

   

 

 ‖(∑     
             

 

   

+

 

 

‖

  

           

 ‖(∑(    
        )

 

   

+

 

 

‖

   

                       ∏           

 

   

  

In the last three lines, we apply the Fefferman-Stein vector valued maximal inequality, 

Hölder’s inequality, and the square function bounds for    
   and   ̃ 

    proved by David-

Journéd-Semmes. By symmetry and density, this completes the proof.  

Lemma (3.2.2)[3]: Let            
 be para-accretive functions, and assume that T is 

a bilinear C-Z operator associated to         such that                     for 

normalized bumps of order m. Then for all normalized bumps               of order 

m, and            
  such that              

|〈       
          

            
    〉|               

Proof. Let             
      , and define           Then it follows that 
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|〈       
          

            
    〉|  |〈      ̃ 

         ̃ 
            ̃ 

     〉| 

Where  ̃             and  ̃         (    
       

 
)for        . If |u| > 1, then 

clearly D|u| >1, and 

|   
     
 
|         

       

 
                   

So we have that        ̃          . It follows that     ̃     
  are normalized 

bumps of order m, and it follows that 

|〈      ̃ 
         ̃ 

            ̃ 
     〉|                       . 

This completes the proof.  

Lemma (3.2.3)[3]: Let            
  be para-accretive functions. Suppose T is an 

bilinear C-Z operator associated to          with standard kernel K, and that 

                    . Also let   
   be approximations to the identity with respect 

to    and   
         

     
   with compactly supported kernels   

   and   
   for k   Z. 

Then 

             〈 (    
              

         )     
        〉 

is a collection of Littlewood-Paley square function kernels of type SBLPK. Furthermore 

   satisfies 

∫                       
  

 

For all         
   

Proof. Fix            
  and k   Z. We split estimate (6) into two cases:        

          
    and                  

   . Note that 
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is a normalized bump up to a constant multiple and   
            

     
    
  

    . 

Likewise    
             

      
    
  

    and    
                 

          where    

and    are normalize bumps up to a constant multiple. Then 

               |〈 (    
              

         )     
        〉|

      | (    
    
  

     
    
  

)      
     |        

Now if we assume that                  
   , then it follows that |     |  

    for at least one           and hence 

       
                 

                 
                

           
       

Therefore, we can estimate   the kernel representation of T in the following way 

              

 ∫             
   

                   
         ∏        

                     

 

   

  

 ∫ ∫ ∫
      

                
                                                   

    

 ∫ ∫ ∫
                   

                                                       
    

 
    

                        
  

   
     
        

     
         

For (7), note that by the continuity from     
      

  into      
    and that   

   

             has a   
  kernel, we have for       

  with         

   
             |〈 (    

              
         )     

           〉|    
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By symmetry, it follows that {  } is a collection of smooth bilinear Littlewood-Paley 

square function kernels. Now we verify that    has integral 0 in the x spot: By the 

continuity of T from     
      

  into      
     

 

∫                    
  

     
   
〈 (    

             
        )    ∫   

              
     

〉 

                              
   
〈      

              
             〉 

where we take this to be the definition of   . Now if we take             then for 

          it follows that 

       
                                             

and hence for           we have that 

             ∫   
                

     

         
              

Also when            , it follows that        
                   , and hence 

that         . So we have           for             and for          . 

Finally                  
             . Since        

               

                it follows that for               , we may use the integral 

representation 

|〈      
              

             〉| 

  ∫                    
                  

                        
   

 

 ∫ ∫ ∫
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 ∫ ∫ ∫
    

                    
          

                              
 

 ∫ ∫ ∫
    

                      
          

                              
 

 ∫ ∫ ∫
    

   
          

                              
 

            
    

              

This tends to zero as R→∞ . Hence             has integral zero in the x variable.  

Theorem (3.2.4)[3]: Let T be an bilinear C-Z operator associated to para-accretive 

functions         . If                      and 

                  
                

               

then T can be extended to a bounded linear operator from        into    for all 

           satisfying (2). 

Note that in the hypothesis of Theorem (3.2.4), we take              = 0 in the 

sense of Definition (3.1.7). For appropriate   
     
 and all     

  such that     has mean 

zero 

   
    
〈    

      
        〉      

The meaning of     
              

            are expressed in a similar way. 

Proof. Let T be as in the hypothesis,              satisfy (2), and          

  
  such that      have mean zero. Then by Proposition (3.1.16) and the continuity of T 

from     
      

  into      
      it follows that 

 〈                 〉 

     
   
|〈       

             
              

       〉

 〈     
              

               
       〉| 
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| ∑ 〈         

               
                

       〉

   

    

 〈       
             

              
       〉| 

 ∑|∫   
                         

  
|

   

 |∫   
                         

  
|

 |∫   
                         

  
| 

where 

  
              

              
            

       

  
              

      
        

          
       

  
              

      
          

          
       

We focus on   
     to simplify notation; the other terms are handled in the same way. 

Since                     and T has a standard kernel, it follows from Lemma 

(3.2.3) that              and                  has mean zero in the x variable for all 

        
 . 

Now we show that             , which follows from the assumption that 

             : 

              ∫ 〈    (     
                    

              )    
       〉   

   
 

                                
   
〈      

      
       

       〉      

where 

  
       ∫   

               
     

  

We’ve used that                 , and that   
         

     on B(0,R), 

and        
             for R sufficiently large. Then by Theorem (3.2.1), it follows 

that 
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∑|〈  
                    〉|

   

                                  

A similar argument holds for   
 with          again taking advantage of the facts 

 

  
  
 

  
 
 

  
  and  

 

  
  
 

  
  
 

  
 . Therefore T can be extended to a bounded operator from 

       into   for all              satisfying (2).  

Lemma (3.2.5)[3]: Suppose             with decay parameter      , and define 

                         

             ∑           

   

  

Then K is a bilinear standard Calderón-Zygmund kernel. 

Proof. To prove the size estimate, we take                       and compute 

             ∑
    

            
               

   

   

  ∑     

      

  ∑
    

        
      

         

For the regularity in x, we take              
 with                      

       and define                     . Then 

                        

 ∑
               

                              
   

  ∑
               

                                
   

        

We first bound I by         times 

∑         

      

  ∑
        

        
      

                    ∑         
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By symmetry, it follows that                      , but since                

              , without loss of generality say                 it follows that 

   
       

                     
  

       

                   
  
       

          
 

 
       

     
 

With a similar computation for       , it follows that K is a standard kernel.  

Theorem (3.2.6)[3]: Given para-accretive functions            
 and        , 

there exists a bilinear Calderón-Zygmund operator L that is bounded from        into 

  for all             satisfying (2) with p = 2 such that             

 ,    
               

           . 

Proof. Let          be para-accretive functions, and   
      

         ̃ 
   be the 

approximation to identity and reproducing formula operators with respect to    for i = 

0,1,2 that have compactly supported kernels as defined in Theorem (3.1.17). Define 

 

            ∑          

   

   ∑  
       ̃ 

           
        

     

   

 

        ∑       

   

  ∑∫   
              ̃ 

            
          

           
     

  

It follows that L is bounded from         into    for all            satisfying 
 

 
 

 

  
  
 

  
: 

|∫                     
  

|  ∑∫  ̃ 
             

         
         

              
     

 

 ‖(∑| 
 ̃ 
       

  
      

    |
 

   

+

 

 

‖

  

‖∑(|  
    |

 
)

 

 

   

‖

  

 

  (∫ ∑   
            

           
   ̃ 
           

   

     
+
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  (∫ ∑   
            

    ̃ 
           

   

     
+

 

  

 (∫ ∑   
            

    ̃ 
           

   

     
+

 

  

         

                              

Note that in the last line we apply the discrete version of a well-known result relating 

Carleson measure and square functions due to Carleson  and Jones for the Carleson 

measure 

          ∑   ̃ 
          

       
   

  

For details of the discrete version of this result. This proves that L is bounded from 

        into    for all           satisfying (2) with p = 2. It is easy to check that 

           with size index N >2n: since   
         

  are compactly supported kernels, 

for         it follows that 

               ||   ̃ 
       ||  

∫ |  
         

          
        |  

  
 

                            ∫   
      

        
      

        
  

      
      

         

Hence the size condition (6) with size index N = 2n+1 and     follows 

              ∏( 
    

      
      )

 

 

 

   

    
             

             

The regularity estimates (7)-(9) follow easily from the regularity of 

  
      

          
  .Then by Lemma (3.2.5), L has a standard Calderón-Zygmund kernel ℓ. 

It follows from a result of Grafakos-Torres that L is bounded from        into   where 

          satisfy (2). We compute                            
  such that 

               and     has mean zero. Let                where   

  
 satisfies       on B(0,1), and                   Then 
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〈            〉

     
   

∑ ∫  ̃ 
            

            
               

            
  

       

  

     
   

∑ ∫  ̃ 
            

            
               

              
  

       

 

where we may write this only if the two limits on the right hand side of the equation exist. 

As we are taking R→∞  and N is a fixed quantity determined by  , without loss of 

generality assume that R >2N. Note that for           and            , 

       
                                              

Since       on         it follows that   
               for all          when 

        . Therefore 

   
   

∑ ∫  ̃ 
               

             
  

       

  

  ∫ ∑    ̃ 
                    

     
   〈     〉 

Here we use the convergence of the accretive type reproducing formula in    from 

Corollary(3.1.19).  For any k   Z, we have the estimates 

    
                         

   

    
                              

and for any        

   
             ∫    

           
                     

  
   ∫                 

  
 

           
        

Here we know that    
         , so without loss of generality we take the 

corresponding smoothness parameter        Later we will use that       implies 

     
    

 
 , so we have that                     . Therefore 

 

 

(23) 

(24) 



107 
 

∑ ∫   ̃ 
            

            
               

                        

 ∑    ̃ 
               

               
                  

                    

  ∑                        

Hence the second limit above exists and tends to 0 as R→∞ . Then 〈            〉  

〈     〉for all       
  such that     has mean zero and hence                 . 

Again for any      
 such that     has mean zero and                  , we have 

 〈              〉 

     
   
|∑∫  ̃ 

            
           

            
                 

     

|  

     
   
∑   ̃ 

               
              

               
           

   

   

    
   
∑    

              
           

   

  

We will now show that     
              

            bounded by a in integrable 

function in k (i.e. summable) independent of R, so that we can bring the limit in R inside 

the sum. To do this we start by estimating 

   
             ∫    

          
                     

  

                    
     

       
      

and so ‖  
      ‖     

  . We also have that ‖  
      ‖         

    , 

so ‖  
      ‖           

   . Also 

   
              ∫    

                               
  

 

         ∫   
   
                   

  
           

It follows that     
                      , and hence     

            

              So when R >1, we have 

    
               

                 
                      

and hence by dominated convergence 

(25) 
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 〈              〉  ∑    
   
    
              

           

   

  ∑    
   
       

   

      

Then     
              and a similar argument shows that     

             , which 

concludes the proof.  

Now to complete the proof of Theorem (3.1.1) is a standard argument using the 

reduced    Theorem (3.2.4) and paraproducts constructioned in Theorem (3.2.6). 

Proof . Assume that                 satisfies the weak boundedness property and 

                
              

                

By Theorem (3.2.6), there exist bounded bilinear Calderón-Zygmund operators    such 

that 

                                
                

              

     
               

                             
              

     
                

               
                              

Now define the operator 

       ∑  

 

   

  

which is continuous from     
      

  into      
   . Also                 satisfies 

the weak boundedness property since                 and                  for i= 

0,1,2 do. We have 

                         ∑            

 

   

                

    
               

          ∑     
         

 

   

     

    
                

          ∑     
           

 

   

    

Then by Theorem (3.2.4), S can be extended to a bounded linear operator from         

into     for all              satisfying (2). Therefore T is bounded on the same 

indices. T is also bounded without restriction on p.  

We prove bounds of the form 
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for parameterized Lipschitz curves   and p, p1, p2 satisfying Hölder. 

Let L be a Lipschitz function with small Lipschitz constant     , and define the 

parameterization                of the curve                  . Define       to 

be the collection of all measurable functions        such that 

              .∫         
     

 

/

 

 

  ∫                        
 

 

 

     

The applications are in part motivated by the proof of    bounds for the Cauchy 

integral using the    theorem. We define the Cauchy integral operator for appropriate 

                 

            
    
∫

      

         

  

and parameterized Cauchy integral operator for        and x   R 

 ̃             
    
∫

      

               

  

The bounds of    on       can be reduced to the bounds of  ̃  on      . We formally 

check the Tb conditions for  ̃  with              needed to apply the Tb theorem of 

David-Journé-Semmes: We check (1)  ̃            

 ̃            
    
∫

       

               

     
    
∫

  

            

        

and (2)  ̃ 
           , for appropriate       

  

 ̃ 
            

    
∫

       

               

       
    
 ∫

  

            

     

The crucial role that Cauchy’s formula plays in this argument is to be able to evaluate the 

limit from the definition of  ̃  for nice enough input functions              In the 

application,we use a similar argument except the role of Cauchy’s integral formula is 

replaced with an integration by parts identity to verify the WBP and Tb conditions. 

We look at the “flat” bilinear Riesz tranforms, which we generate from a potential 

function perspective.Consider the potential function 

            
 

                    
  

and the kernels that it generates: 
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We define the bilinear Reisz transforms as principle value integrals for          
  

                    ∫                                 
  

  

Here is it only interesting to study two of these three operators since          . We 

can be applied to the bilinear Riesz transforms   : We formally check (1) R1(1,1)   BMO 

              ∫                         
  

      

(2)   
               

  
              ∫                   

  

  ∫                                  
  

   ∫                              
  

     

and (3)   
                

  
               ∫                       

  
      

Here we observe that the conditions           
          are identical arguments and 

rely on the cancellation of the kernel   . The   
         condition relies on more than just 

the cancellation   ; it also exploits the symmetry of the kernel via the identity 

                                        . This is the general argument that we 

will use to prove    bounds for bilinear Riesz transforms defined along Lipschitz curves, 

which we define now. 

For            , define the potential function 
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and the Riesz kernels generated by F: 

                               
        

                     
  

                                
    

                    
  

                                 
    

                     
  

We will keep the notation                                , and      . 

Here we define √  on C with the negative real axis for a branch cut, i.e. for           

   with r > 0 and           , we define √    √      . We make this definition to be 

precise, but it will not cause any issues with computations since we will only evaluate √  

for       with positive real part. 

For appropriate            and       , we define 

 

                      ∫                                 
  

     
    
∫                                 
                       

 

Initially we take this definition for        
   for      

           , but even for 

such    it is not yet apparent that this limit exists. We will establish that this limit exists, 

and furthermore that     can be continuously extended to a bilinear operator from 

                            To prove these things, we will pass through 

“parameterized” versions of F     , and      for j = 0,1,2 in the same way that David-

Journé-Semmes did to apply their Tb theorem to the Cauchy integral operator . For 

           , define 

 ̃              (                )  ̃                                     

and for           
    , define for x  R 

 

(27) 

(26) 
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    ̃                          ∫  ̃                                               
  

     
    
∫  ̃                                                  
               

 

for          We begin by proving that  ̃    for         is well defined, and find an 

absolutely convergent integral representation for it that depends on derivatives of the 

input functions          
      

Proposition (3.2.7)[3]: Let L be a Lipschitz function with Lipschitz constant      such 

that for almost every x   R the limits 

   
    
                               

    
                

exist. Then     ̃                is an almost everywhere well defined function for 

         
      and j = 0,1,2. More precisely, for          

      the limit in (27) 

converges for almost every x   R and 

    ̃                       ∫  ̃             
                               

  
  

    ̃     
     

          ∫  ̃                  
      

                 
  

                 

Furthermore  ̃    is continuous from     
         

    into      
        and for 

            
      

〈 ̃                      〉

   ∫  ̃             
                                       

  
 

〈 ̃                      〉   ∫  ̃                  
                                

  
 

〈 ̃                      〉    ∫  ̃                         
                         

  
  

Proof. Fix           
  , and we start by showing that     ̃                 can be 

realized as a bounded function. Define for      and x   R 
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        ∫  ̃                                                 
               

 

Note that      ̃              ̃                  , and we integrate by parts to rewrite 

   

        ∫     ̃                                          
               

 

   ∫  ̃             
                               

               

 

 ∫  ̃                                         
        

 

 ∫  ̃                                         
        

 

   ∫  ̃             
                               

               

 

 ∫ ( ̃              ̃           )                            
        

 

 ∫  ̃                                                   
        

 

                        

We use that      
      to conclude that the when integrating by parts, the boundary 

terms at          vanish, leaving the            above. We now verify that the 

limits of                          each exist as     . 

           : To compute this limit, we verify that the integrand of    is an integrable 

function.  Note that                 implies 
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   ̃            

 
 

                                                      

 
 

        
 

             
  

Now let      be large enough so that  s                              , and it 

follows that 

∫    ̃             
                                

  

  
        

 

        
∫

     
              

             
        

            

 

 
  

        
     
                

Therefore    converges to an absolutely convergent integral as     . 

     : First we make a change of variables in     to rewrite 

 

     ∫                                        
      

  

    where                            ( ̃                 ̃              )  

We wish to apply dominated convergence to     as it is written in (28). First we show that 

the integrand converges to zero almost everywhere (in particular for every       and x 

such that                         it follows that                     

                  
 . When      , it follows that                    

                   
 . So either way, the limit exists for      and almost every x. 

Now we show that            for almost every        . For any x   R such that 

      exists and     , we compute 

 (28) 
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        ̃                    

   

     

(
              

  
  
  
                 

      
)
   

 
     

          
           

      
        

It follows that         ̃                     
       as well. Therefore 

            as     for all         such that       exists and     . Now in order 

to apply dominated convergence to (28), we need only to show that          is 

integrable in    independent of                          , which satisfies for all 

s, t   R 

                     |  
  |
  
          

     
    

                                           

                

Also it is easy to verify that if                     both have positive real part, 

i.e.                   then 

| √  √    √           √          √         √          √      

√       

Here we use that√                                    . Using these properties, 

we bound    

              |
 

(        
 )
   
 

 

(         
 )
   
|

   
    
    

  

|         
 |
   
|         

 |
   

 

|(        
 )
   
 (         

 )
   
|

   
     

      
 

  (         
 )
   
  (         

 )
   

 

   (         
 ) 

 

     (         
 )    

 
 

     

      

          
 

                         
 

 

        
 

         
 

 

Therefore                      
  , and we can apply dominated convergence to (28). 

Hence             . 
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      : For this term, we use the regularity and compact support of    to directly bound 

         ∫   ̃                                         
                 

 

 
 

        
∫

 

      
        

                    
                 

 
     
               

        
                          

Recall we chose    > 0 such that                                  . Hence       

         , and so 

   
   
               ∫  ̃             

                               
  

  

which is an absolutely convergent integral. This verifies the absolutely convergent 

integral representation for   ̃    in Proposition (3.2.7). It also follows from our estimate of 

   that       is bounded uniformly in x; hence for       
       and      

                         
         

                           

and by dominated convergence 

 ∫  ̃                 
            

                   
  

     
   
∫       

           
 

  ∫                  
 

 

 〈 ̃                      〉 

Furthermore since the bounds of                  are in terms of               
     , and 

   for j = 0,1,2 it follows that  ̃    is continuous from     
         

     into 

     
      . By symmetry, the properties of   ̃    follow as well. Also 

〈 ̃                     〉

  ∫    
   
∫  ̃                                                           
                

 

 ∫    
   
∫    ̃                                                  
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  ∫    
   
∫     ̃                                                    
                

 

 ∫    
   
∫     ̃                                                    
                

 

 〈 ̃                      〉  〈 ̃                      〉 

By the absolutely integrable representations of  ̃    and   ̃   , it follows that 

〈 ̃                     〉  〈 ̃                      〉  〈 ̃                      〉

   ∫  ̃                   
                                 

  

 ∫  ̃                          
                          

  
 

     
   
∫     ̃                                                  
               

 

 ∫     ̃                            
                   

               

 

 ∫  ̃                              
                

        

 

 ∫  ̃                              
                

        

 

 ∫  ̃                              
                

        

 

 ∫  ̃                              
                

        

 

     
   
∫    ̃                                                   
               

  

The boundary terms of the integration by parts here (the last 4 terms) tend to zero as 

    in the same way as they did for     and      above. Now we will integrate by parts 

one more time in x here to obtain an integral representation for     : 
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∫    ̃                                                   
               

     
   
 ∫  ̃            

                                       
               

 ∫  ̃                                                        
           

 ∫  ̃                                                        
           

 ∫  ̃                                                       
           

 ∫  ̃                                                        
           

 

    
   
 ∫   ̃             

                                       
               

 

 ∫  ̃                                                       
         

 

 ∫  ̃                                                       
         

 

 ∫  ̃                                                         
         

 

 ∫  ̃                                                       
         

 

   ∫  ̃             
                                       

  
  

Once again we use the same argument for the     and     terms to verify that these 

boundary terms (the last 4 terms) tend to zero as    . Then the pairing identity for  ̃    

holds as well. This completes the proof of Proposition (3.2.7). 

In the next proposition we extend  ̃  and    to product Lebesgue spaces. 

Proposition (3.2.8)[3]: Let L be a Lipschitz function with Lipschitz constant     such 

that for almost every x   R the limits 
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exist. If L id differentiable off of some compact set and there exists       such that 

   
     
            

then  ̃    is bounded                 into       for all            satisfying (2) 

for each j = 0,1,2. Furthermore,      is bounded                into       for 

all           satisfying (2) for each  j = 0,1,2. 

Proof. We will apply Theorem (3.1.1) to  ̃    with                  . Note that   is 

para-accretive since           and        . It is not hard to see that  ̃    is the kernel 

function associated to  ̃     It also follows from                  that   ̃    is a standard 

bilinear kernel: 

   ̃               
 

        
            

                    

 
 

        
        

               
  

and 

    ̃              
 

        
                                

                    

 
 

        
        

 

                     
  

A simliar estimate holds for    ̃             and     ̃            , which implies 

that   ̃             is a standard bilinear kernel. Now it remains to verify that  ̃    

satisfies the WBP and the BMO testing conditions for                  . Let 

         be normalized bumps of order 1, u   R, and  R > 0. By Proposition (3.2.7), we 

have 

|〈 ̃   ( 
   
        

   )     
   〉|

  ∫ | ̃            
      (  

   )
 
      

        
          |          

  
 

 
 

         
∫

         
                   

 
 

        
 

So  ̃    satisfies the WBP. Now we check the three BMO conditions of Theorem (3.1.1): 
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    ̃                    : Let     
      such that     has mean zero and 

      
      such that                 on [−1,1],                 , and 

              . Again we use Proposition (3.2.7) and make a change of variables, 

 

〈 ̃                  〉

   ∫  ̃                                                  
  

   ∫   ̃                                               
  

  

Then for          , we can compute the pointwise limit 

   
    
  ̃                    

    
   

        

                                  
              

     
   

       

(  
              

 

      
    

              
 

      
)
   
 

 
     

   
             

              
  

 

   
    

     
  

Here we use that L is differentiable off of a compact set, that          as |x|→ ∞. And 

L’Hospital’s rule to conclude that             as |x| → ∞ . Now let R > 0 be large 

enough so that                    , and using that                         , we 

have the estimate 

   ̃                                          
 

        
             

               

 
 

        
             

                      
 

 

        
 

         
  

Then by dominated convergence 

   
   
〈 ̃                  〉    ∫ . ∫

           

   
    

     
      

  
/

 

                  

Here we also use that     has mean zero. Therefore      ̃     
               in the 

sense of  Definition (3.1.7). 

(29) 
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    ̃ 
                   : Note that for every            such that           

        we can write 

 ̃                                    ̃                       

     ̃                             ̃                       

     ̃               ̃                                

Then it follows that      ̃                     ̃                   ̃        

       , and so by Proposition (3.2.7) 

〈 ̃   
                 〉  〈 ̃                  〉

 〈 ̃                  〉  〈 ̃                  〉

   ∫  ̃                                                   
  

 ∫  ̃                                                  
  

  

These two expressions tend to zero by the same argument that (29) tends to zero as R→∞ 

in the proof of the     ̃               condition. Therefore     ̃ 
              

     as well. 

    ̃ 
                    : By Proposition (3.2.7), we can compute 

〈 ̃   
                 〉

   ∫  ̃                                                 
  

  

Again, this expression is essentially the same as the one in (29), and hence tends to zero 

as R→∞  by the argument. Therefore      ̃ 
                    . 

Then by Theorem (3.1.1),  ̃    can be extended to a bounded operator from           

into   for appropriate           . Now it is easy to prove that      can also be extended to 

a bounded operator: Let             and         satisfy (2). For    

          and 

    
         and it follows that 
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                       .∫                    
          

 

/

   

          
   
    ̃                     

                  
           

          
   
          

   
    ̃                                          

The bounds for   ̃     ̃        , and      follow in the same way.  
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 Chapter 4  

The L(logL)
є
 Endpoint Estimate  

 

 We show the following estimate for the maximal operator     associated to the singular 

integral operator T: 

‖    ‖          
 

 
∫                          
  

                   

This follows from the sharp L
P 

estimate  

‖    ‖         
  
 

 
    

 
‖ ‖
  ( 

             
   )
                    

As a consequence we deduce that 

‖    ‖                    (         )∫       
  

  

 

Section (4.1): Basic Definition and Dyadic Theory 

The Muckenhoupt–Wheeden conjecture has been disproved by Reguera and Thiele. 

This conjecture claimed that there exists a constant    such that for any function   and 

any weight   (i.e. a nonnegative locally integrable function), there holds  

‖  ‖          ∫        
 

    

where H is the Hilbert transform. The failure of the conjecture was previously obtained 

by M.C. Reguera for a special model operator T instead of H. This conjecture was 

motivated by a similar inequality by C. Fefferman and E. Stein for the Hardy–Littlewood 

maximal function:  

‖  ‖           ∫          
  

 

 (1) 

 (2) 



124 
 

The importance of this result stems from the fact that it was a central piece in the 

approach by Fefferman–Stein to derive the following vector-valued extension of the 

classical    Hardy–Littlewood maximal theorem: for every 1 < p, q <  , there is a finite 

constant         such that  

‖(∑ (   )
 

 )
 

 ‖
      

    ‖(∑ |  |
 

 )
 

 ‖
      

. 

This is a very deep theorem and has been used a lot in modern harmonic analysis explain-

ing the central role of inequality (2). 

Inequality (1) was conjectured by B. Muckenhoupt and R. Wheeden during the 70’s. 

That this conjecture was believed to be false was already mentioned where the best 

positive result in this direction so far can be found, and where M is replaced by            

i.e., a maximal type operator that is “ϵ-logarithmically” bigger than M:  

‖  ‖            ∫              
  

                   

Theorem (4.1.1)[4]: Let T be a Calderón–Zygmund operator with maximal singular 

integral operator    . Then for any 0 <   ≤ 1, 

‖    ‖          
  
 
∫                          
  

           

If we formally optimize this inequality in   we derive the following conjecture:  

 

‖    ‖             ∫                            
  

                 
       

To prove Theorem (4.1.1) we need first an    version of this result, which is fully 

sharp, at least in the logarithmic case. The result will hold for all         but for 

proving Theorem (4.1.1) we only need it when p is close to one. 

There are two relevant properties that will be used (see Lemma (4.2.2). The first one 

establishes that for appropriate A and all        , we have (    
    with constant 

      
    independent of A and f. The second property is that   ̅ is a bounded operator 

(3) 

  (4) 

(5) 
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on   
 
     where   ̅is the complementary Young function of A. The main example is 

                                        since  

‖  ̅‖              
  
 

 
    

 
 

by  (25). 

Theorem (4.1.2)[4]: Let 1 < p <   and let A be a Young function, then  

‖    ‖           
 ‖  ̅‖           ‖ ‖                           

In the particular case                         we have  

‖    ‖           
    
 

 
    

 
‖ ‖
  ( 

             
   )
                   

Another worthwhile example is given by  
                    

     instead of 

              for which:  

‖    ‖         
    
 

 
    

 
‖ ‖
  ( 

                           
   )
               

There are some interesting consequences from Theorem (4.1.1), the first one is related 

to the one weight theory.  

Definition (4.1.3)[4]: 

          
 

 

    
∫          
 

  

Observe that         by the Lebesgue differentiation theorem. 

When specialized to weights      or      , Theorem (4.1.1) yields the 

following corollary. It was formerly known for the linear singular integral T, and this was 

used in the proof, which proceeded via the adjoint of T; the novelty in the corollary below 

consists in dealing with the maximal singular integral    . 

Corollary (4.1.4)[4]: 

                      ‖    ‖                         ∫          
   

    (6) 

 (7) 
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and hence   

‖    ‖                                ∫        
  

 

Proof. To apply (4), we use        
  

 
         and     to deduce that  

                
 

  
          

Hence, if      we can choose αsuch that    
 

       
 Then, applying Theorem 

(4.1.5) 

 

 
               

 

 
          

          
 

 
     
      

and optimizing with        (        ) we obtain (7).  

 

Theorem (4.1.5)[4]: Let     , then there exists a dimensional constant    such that  

(   
  )
    
       

where  

       
 

       
 

Corollary (4.1.6)[4]: Let u, ζ be a pair of weights and let         . We also let 

             . Then: 

(a) If  

                                     ‖ 
   ‖

                 
  (
  

   
∫     
 

)
    

     

then  

 

‖       ‖         
 

 
    
 

 
    

 
‖ ‖      

 (8) 

 (9) 

 (10) 
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(The boundedness in the case     is false) 

(b) As consequence, if  

 

       
 
‖ 
 

 ‖
                 

 .
  

   
∫     
 

/

    

     
 
.
  

   
∫     
 

/

 

 

‖    
 
‖
  
 
        

        
     

then                  

‖       ‖        (
 

  
(
 

  
*

 

  

  
  

  
(
 

  
*

 

 

+ ‖ ‖       

We don’t know whether the factors  
 

  
     , 2 can be removed or improved from 

the estimate (12). Perhaps the method is not so precise to prove the conjecture 

formulated. However, it is clear from the arguments that these factors are due to the 

appearance of the factor  
 

 
 in (4). 

By a Calderón–Zygmund operator we mean a continuous linear operator 

    
        ́    that extends to a bounded operator on       , and whose 

distributional kernel K coincides away from the diagonal               with a 

function K satisfying the size estimate  

           
 

        
 

and the regularity condition: for some ε > 0,  

                                          
        

          
  

Whenever             |, and so that 

        ∫             
  

  

Whenever      
                   . 

   (11) 

 (12) 
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Also we will denote by    the associated maximal singular integral:  

           
   
| ∫             

        

|              
      

A Young function is a convex, increasing function                           

 , such that A(t) → ∞ as t → ∞. Such a function is automatically continuous. From these 

properties it follows that                is a strictly increasing bijection, where  

                        . Thus         is well-defined (single-valued) for t > 0, 

but in general it may happen that                is an interval. 

The properties of A easily imply that for                  

                 

The A-norm of a function   over a set E with finite measure is defined by  

‖ ‖     ‖ ‖                     (
      

 
*          

where as usual we define the average of f over a set       
 

   
∫  
 
  . 

In many situations the convexity does not play any role and basically the 

monotonicity is the fundamental property. The convexity is used for proving that 

‖ ‖     is a norm which is often not required. 

We will use the fact that  

‖ ‖                                             

Associated with each Young function A, one can define a complementary function  

 ̅        
   
                               

 Then  ̅ is finite-valued if and only if                              , which we 

henceforth assume; otherwise,  ̅      for all                . Also,  ̅  is strictly 

increasing on [0, ∞) if and only if                               ; otherwise 

 ̅      for all                . 

(13) 

         (14) 

      (15) 
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Such  ̅ is also a Young function and has the property that  

 

            ̅           

and also  

           ̅                

 

The main property is the following generalized Hölder’s inequality  

 

   
∫       
 

    ‖ ‖   ‖ ‖ ̅     

As we already mentioned, the following Young functions play a main role in the theory: 

                                                

Given a Young function A or more generally any positive function A(t) we define the 

following maximal operator  

                      
   
‖ ‖     

This operator satisfies the following distributional type estimate: there are finite 

dimensional constants       such that  

 

                          ∫  (  
 

  
*

  

                 

A first consequence of this estimate is the following    estimate of the operator. A 

second application will be used in the proof of Lemma (4.2.2). 

Lemma (4.1.7)[4]:  Let A be a Young function, then  

‖  ‖                    

where        is the following tail condition that plays a central role in the sequel  

 (16) 

  (17) 

     (18) 

 (19) 

        (20) 
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                                               (∫
    

  
   

 

 

 
)
   

     

Examples of functions satisfying condition (21) are                 . More 

interesting examples are given by  

      
  

              
                                              

Often we need to consider instead of the function A in (21) the complementary  ̅. 

We also record a basic estimate between a Young function and its derivative:  

         ́    

which holds for any          such that    (t) does exist. 

There is the following useful alternative estimate of (20) that will be used in the 

sequel. We would like to stress the fact that we avoid the doubling condition on the 

Young functions B and  ̅, which is important in view of the quantitative applications to 

follow: even if our typical Young functions are actually doubling, we want to avoid the 

appearance of their (large) doubling constants in the estimates. 

Lemma (4.1.8)[4]:  Let  B be a Young  function. Then 

‖  ‖                    

where  

        4 ∫ .
 

 ̅   
/

 

   ̅   

 

    

5

   

 

 

Proof. We first prove that for      

 

∫
     

  

 

      

  ∫ .
 

 ̅   
/

 

  ̅   

 

 ̅     

   (24) 

       (21) 

 (22) 

 (23) 
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We discretize the integrals with a sequence       
  , where     and eventually we 

pass to the limit η→1. Then  

∫
     

  

 

      

  ∑ ∫
     

  

         

       

 

   

  ∑
 

        

 

   

∫      

         

       

 ∑
 

        
             

 

   

 

Similarly,  

∫ .
 

 ̅   
/

 

  ̅   

 

 ̅     

   ∑ ∫ .
 

 ̅   
/

 

   ̅   

 ̅        

 ̅      

 

   

 

 ∑ .
 ̅        

 ̅  ̅         
/

  

    

∫   ̅   

 ̅        

 ̅      

 ∑.
 ̅        

    
/

 

            

 

   

 

where we used the fact that     ̅      is increasing, so its reciprocal is decreasing. 

Moreover,  

 ̅        

    
  
 ̅      

    

        

        
    
 

  
    

 

       
    

 

        
 

 

and hence  

∫
     

  

 

       

     ∫ .
 

 ̅   
/

 

   ̅   

 

 ̅     

  

Since this is valid for any    , we obtain (24). 

Now, let              , where                  . Using           

      and applying (24) with              
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4 ∫

    

  
  

  

 

     

5

 

 

 

     
   
4 ∫

     

  

 

            

5

  

 

    
 
   
   
( ∫ (

   

 ̅   
*
  

 ̅           

  ̅   ,

  

 

 

 4 ∫ (
 

 ̅   
*
 

  ̅   

 

    

5

  

 

  

 

where in the last step we used (17) with            to conclude that  

 ̅              
       

    
  
      

  
        

since        is increasing and     .  

We will consider   so that  ̅                              . Then, for    

     

         
    

  
               

and  

 ̅        
       
                    |

           
            ́  

Thus, by the lemma  

 

‖  ̅‖    ́           4 ∫ (
 

    
*
 ́

 ́      

 

        ́

5

   

      
  (
 

 
*
   ́

 

Similarly for the smaller functional:  

 ̅                           (                 )
     
               

 (25) 
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Then, using that             
    

 
        , when        and hence by the lemma  

‖  ̅‖    ́           
 (
 

 
*
   ́

 

We will need the following variation of the Rubio de Francia algorithm. 

Lemma (4.1.9)[4]: Let         and let   be a weight. Then there exists a 

nonnegative sublinear operator   satisfying the following properties: 

a) h ≤ R(h), 

b) ‖    ‖       ‖ ‖       

c)             with  

                 ́ 

Proof. We consider the operator  

       
          

    
 

 

Since  ‖ ‖     ́, we have 

‖    ‖          ́‖ ‖       

 Now, define the Rubio de Francia operator R by  

       ∑
 

  
     

 ‖ ‖       

 

   

  

It is very simple to check that R satisfies the required properties.  

The new result is intimately related to a sharp two weight estimate for M. 

Theorem (4.1.10)[4]: Given a pair of weights      and          , suppose that  

 

      
 
4
 

   
∫        

 

5

   

‖    ́‖
   
      (26) 
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where X is a Banach function space such that its corresponding associate space 

 ́ satisfies    ́  
               Then  

 

‖     ‖         ‖  ́‖         ‖ ‖      

In particular if                   
 ́           ́        , then by (25)  

‖  ́‖           ‖  ̅‖              ́ 
 (
 

 
*
   

  

where the last ≈ is valid for δ ≤ 1. 

We say that a dyadic grid, denoted by D, is a collection of cubes in    with the 

following properties: 

i. each                        for some    ; 

ii. if       then               ; 

iii. for each    , the family               
    forms a partition of   . 

We say that a family of dyadic cubes      is sparse if for each       

|
|⋃  ́

 ́  

 ́  

|
|   
 

 
     

Given a sparse family, S, if we define  

          ⋃  ́

 ́  

 ́  

  

then 

i. the family {         is pairwise disjoint, 

ii.        , and 

iii.             . 

If     is a sparse family we define the sparse Calderón–Zygmund operator associated 

to S as  

 (27) 
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      ∑             
   

  

As already mentioned the key idea is to “transplant” the continuous case to the 

discrete version by means of the following theorem. 

Theorem (4.1.11)[4]: Suppose that X is a quasi-Banach function space on    and T is a 

Calderón–Zygmund operator. Then there exists a constant    

‖  ‖            
   
‖  ‖      

We will not prove this theorem, we will simply mention that a key tool is the 

decomposition formula for functions found previously using the median. The main idea 

of this decomposition goes back to the work where the standard average is used instead. 

Section (4.2): Proof of Theorems 

Lemma (4.2.1)[4]: Let       Then for any sparse family     

                                   ‖   ‖             ‖  ‖      

Proof. The left hand side equals for     

∑          

   

   ∑    
   
         

   

   ∑(      
     )

 
    

   

  

By the Carleson embedding theorem, applied to           , we have 

∑(      )
 

    

         ‖ ‖     
     ‖  ‖      

provided that the Carleson condition  

 

∑            
    
   

 

is satisfied. To prove (29), we observe that  

  (28) 

     (29) 
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∑    
    
   

  ∑
    

   
    
   

       ∑     
   
                    

    
   

    ∫             

 

              

This proves (29) with           and the lemma follows.  

Actually, in the applications we have in mind we just need this for         for 

some fixed finite q. 

The second lemma is an extension of the well known Coifman–Rochberg Lemma:  

                                                    
       

  
     

 

Lemma (4.2.2)[4]: Let   be a Young function and   be a nonnegative function such that 

         a.e. For          there is a dimensional constant    such that  

      
             

Proof. We claim now that for each cube   and each    

 

            
          ‖ ‖   

 
  

By homogeneity we may assume  ‖ ‖     , and so, in particular, that  

               . 

Now, the proof of (31) is based on the distributional estimate (19). We split the 

integral at a level       , yet to be chosen: 

    (   )   
       

 

   
∫      |{         (   )      }|

  

  

 

 

     

  
 

   
∫      

   

 
   
 

   

 

 

∫      

 

 

∫  .  
      

 
/

 

   
  

 
   

     (30) 

 (31) 
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∫      

 

 

∫
  
 
             

  

  
 

              ∫  
     

 

 

 

           
 

     
      

With         , we arrive at  

            
      

      
 

     
   

which is (31), in view of a normalization that ‖ ‖     . 

  (        )        
   
‖        ‖   

                                    

where the constant  in the direction  ≤  is dimensional (actually 3
n
). (32) shows that 

  (        ) is essentially constant on Q. 

Since A is a Young, the triangle inequality combined with (31) and (32) gives for every  

   ,  

        
                      

                       
    

      ‖ ‖    
 
       

   
(‖        ‖   

)
 

            
   

This completes the proof of the lemma. 

We have to prove  

‖   ‖           ́‖  ̅‖    ́     ‖ ‖                                

and if we use the notation         ( 
 

 * this becomes  

‖   ‖          ́‖  ̅‖    ́     ‖ ‖            

By Theorem (4.1.11) everything is reduced to proving that  

      ‖   ‖       ́‖  ̅‖    ́     ‖ ‖                         

Now, by duality we will prove the equivalent estimate  

‖      ‖  ́       
   ́   ́‖  ̅‖    ́     ‖ ‖  ́     

 (33) 

 (32) 
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because the adjoint of     (with respect to the Lebesgue measure) is itself. 

The main claim is the following: 

Lemma (4.2.3)[4]: 

‖     ‖  ́       
   ́   ́‖    ‖  ́       

   ́                      

Proof. Now  

‖     ‖  ́       
   ́  ‖

     

    
‖

  ́      

 

and by duality we have that for some nonnegative h with  ‖ ‖           

‖
     

    
‖

  ́      

 ∫         

  

 

Now, by Lemma (4.1.9) with s =p and        there exists an operator R such that 

a)        , 

b) ‖    ‖          ‖ ‖ 
       

  

c)            
         ́  

Hence,  

‖     ‖
  ́(      

   ́)
  ∫           

  

  

We plan to replace    by M by using Lemma (4.2.1). To do this we estimate the 

   constant of Rh, for a fixed     (in fact,    ) using property (C) combining the 

following two facts. The first one is well known, it is the easy part of the factorization 

theorem: if         , then        
      , and  

                   
    

The second fact is Lemma (4.2.2). 

 (34) 
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Now if we choose   
 

 
 in Lemma (4.2.2),  

                               
 

 (      
 

  *
   

    

             
 

           
 

     
         ́     

 

  
 

     
        ́ 

by the lemma and since            
      

Therefore, by Lemma (4.2.1) and by properties (A) and (B) together with Hölder,  

∫          

  

 ∫             

  

          ∫            

  

  ́ ‖
    

    
‖

  ́      

‖  ‖             ́ ‖
    

    
‖

  ́      

  

This proves claim (34).  

With (34), the proof of Theorem (4.1.2) is reduced to showing that 

‖     ‖  ́       
   ́       ‖  ̅‖    ́     ‖ ‖  ́    

for which we can apply the two weight theorem for the maximal function (Theorem 

(4.1.10) to the couple of weights        
   ́   with exponent  ́ . We need then to 

compute (26). 

4
 

   
∫       

   ́  

 

5

   ́

‖    ‖
   
 ‖ ‖    

    
‖    ‖

   
 ‖    ‖

   

  
‖    ‖

   

    

 

Since            
    . Hence  

‖     ‖  ́       
   ́       ‖  ̅‖    ́     ‖ ‖  ́    

concluding the proof of the theorem. 
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Proposition (4.2.4)[4]: Let D be a dyadic grid and let     be a sparse family. Then, 

there is a universal constant c independent of  D and S such that for any         

 

‖   ‖          
 

 
∫                 
  

                        

Note that in order to deduce Theorem (4.1.1) from the proposition above, we need the 

full strength of Theorem (4.1.11) with quasi-Banach function space, because the space 

     is not normable. It is also possible to prove Theorem (4.1.1) directly (without going 

through the dyadic model); this was an original approach, since the quasi-Banach version 

of Theorem (4.1.11) was not yet available at that point. However, we now present a proof 

via the dyadic model, which simplifies the argument. 

Recall that the sparse Calderón–Zygmund operator    is defined by,  

      ∑           
   

  

By homogeneity on fit would be enough to prove  

                      
 

 
∫                 
  

          

We consider the CZ decomposition of  f  with respect to the grid D at level      . There 

is family of pairwise disjoint cubes {  } from  D such that  

   
 

     
∫         

  

 

Let     ⋃     and   ̃  ⋃     . The “good part” is defined by  

   ∑          

 

                 

 (35) 
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and it satisfies ‖ ‖    
 by construction. The “bad part” b is 

   ∑                                . Then,       and we split the level 

set as  

                     ̃        ̃                       ̃          

                     

The most singular term is III. We first deal with the easier terms I and II, which 

actually satisfy the better bound  

           ‖ ‖        

The first is simply the classical Fefferman–Stein inequality (2). 

To estimate           ̃                we argue as follows:  

       ̃                ∫               

    ̃

 ∑ ∫                  

    ̃ 

 ∑ ∫                  

       

 

We fix one of these j and estimate now   (  )             :  

            ∑                

   

  ∑

        

 ∑

        

   ∑

        

 

Since       . Now, this expression is equal to  

∑
 

   
∫                         
          

 

and this expressionis zero by the key cancellation: ∫                  
  . Hence II = 

0, and we are only left with the singular term  III. 

We now consider the last term III, the singular part. We apply Chebyschev’s 

inequality and then (33) with exponent  p and functional  A, that will be chosen soon:  
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          ( ̃)
 
              ‖   ‖     

( ̃)
  

 

   ́  ‖  ̅‖    ́     
 

∫             ̃      

  

   ́  ‖  ̅‖    ́     
 

∫            ̃      

  

  

using the boundedness of   by     , and denoting           
    . 

Now, we will make use of (32) again: for an arbitrary Young function B, a 

nonnegative function w with                 and a cube Q, we have  

                                

for each       with dimensional constants. Hence, combining (36) with the definition 

of   we have  

∫            ̃     

 

 ∑ ∫          

  

   
  

        ̃   

 

 ∫                  

 

 

and of course  

∫   

  

   (    ̃  )     

Combining these, we have  

      ́  ‖  ̅‖    ́     
 

∫            

  

  

We optimize this estimate by choosing an appropriate A. To do this we apply now 

Lemma (4.1.8) and more particularly to the example considered in (25), namely B is so 

that  ̅                              . Then  

‖  ̅‖    ́          ∫ .(
 

    
*
 ́

 ́      /

   ́

  (
 

 
*
   ́

 

 

                 

         (36) 
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Then            
                       and we have  

       ́  (
 

 
*
   

∫                           

  

  

Now if we choose p such that  

       
 

 
       

Then    ́  (
 

 
)
   

 
 

 
          . 

This concludes the proof of (35), and hence of Theorem (4.1.1.) 

The essential difference is that we compute in a more precise way the constants 

involved. We consider the set 

                            

Then by homogeneity it is enough to prove  

         
 

 
    
 

 
    ́‖ ‖      

where we recall that  

 

       
 
‖    ‖

                
4
 

   
∫     

 

5

   ́

    

Now, by duality, there exists a non-negative function      ́     ‖ ‖  ́      , such 

that  

    
 

   ‖ 
 

   ‖
      

 ∫  
 

    

 

   
 

       
 

 
∫            ( 

 

  *    

  

  
 

 
4 ∫        

  

5

   

4 ∫             
      ́

  

   5

   ́

  

     (37) 

 (38) 
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where we have used inequality (4) from Theorem (4.1.1) and then Hölder’s inequality. 

Therefore everything is reduced to understanding a two weight estimate for            . 

Lemma (4.2.5)[4]: Given a Young function A, suppose f is a non-negative function such 

that ‖ ‖     tends to zero as      tends to infinity. Given         , for each     there 

exists a disjoint collection of maximal dyadic cubes    
   such that for each j,  

 

   ‖ ‖
    
         

and  

                 
      ⋃   

 

 

 

Further, let    ⋃   
 

  and    
    

     
       . Then the   

    are pairwise disjoint 

for all j and k and there exists a constant    , depending only on a, such that    
    

    
  . 

Fix a function h bounded with compact support. Fix         ; for     let  

         
                  

        

Then by Lemma (4.2.5),  

   ⋃   
 

 

                     ‖ ‖
    
      

Lemma (4.2.6)[4]: Let A, B and C be Young  functions such that  

                                    

Then for all functions f and   and all cubes Q,  

‖  ‖        ‖ ‖   ‖ ‖     

Proof. The assumption (40) says that if               , then      . Let us 

derive a more applicable consequence: 

        (39) 

 (40) 

 (41) 
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Let           , and assume without loss of generality (by symmetry) that B(y) ≤ 

C(z). Since Young functions are onto, we can find a  ́                such that 

   ́             . Then (40) tells us that      ́    . Since A is increasing, it 

follows that. 

 
  

 
                                               

Let then    ‖ ‖  and    ‖ ‖ . Then, using (42),  

   (
    

   
*     (

   

 
*     (

   

 
*          

and hence  

   (
    

    
*   
 

 
   (

    

    
*       

This proves that  ‖  ‖      , and taking the infimum over admissible s and t proves 

the claim.  

If                    , the goal is to “break”   in an optimal way, with 

functions B and C so that one of them, for instance B, has to be            

            coming from (38). 

We can therefore estimate     using Lemma (4.2.5) as follows:  

∫ .  ( 
 

  */

 ́

    

  

  ∑ ∫ .  ( 
 

  */

 ́

    

   

 

   ∑   ́     

 

 

   ∑   ́ (   
 )

 

 

   ∑ (   
 ) ‖ 

 

  ‖
    
 

 ́

   

 

                  ∑     
  ‖    ‖

    
 

 ́

   

‖ ‖
    
 

 ́
  

 (42) 
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by (41). Now since ‖    ‖
    
   

 ‖    ‖
     

 , we can apply condition (38), and since 

the   
    are disjoint, 

                                     ∑(
 

|   
 |
∫     

   
 

,

   

‖ 
 

 ‖
     

 

 ́

‖ ‖
    
 

 ́
|  
 | 

                                       ́∑ ∫     
 ́  

  
    

 

                                        ́ ∫      
 ́   

  

 

                                        ́‖  ‖    ́     
 ́

∫   ́  

  

  

if we choose C such that    is bounded on   ́      namely it must satisfy the tail 

condition (21). We are left with choosing the appropriate C. Now,       and   

  are fixed from condition (38) but      is free and will be chosen appropriately close 

to 0. To be more precise we need to choose       
 

 
 and let        . Then  

                     
 

           

  
    

                     
        ́                   

                

where  

                                                 

and  

         ́               ́      

It follows at once from Lemma (4.1.7)that  
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‖  ‖    ́       (
 

 
*
   ́

   (
 

      
*
   ́

  

where we suppress the multiplicative dependence on p. If we choose    
 

  
 we get the 

desired result:  

 

         
 

 
   (
 

 
*
   ́

‖ ‖      

This completes the proof of part (a) of Corollary (4.1.6). 

To prove part (b) we combine Lerner’s Theorem (4.1.11), 

‖   ‖            
   
‖   ‖       

with the characterization of the two-weight inequalities for    by testing conditions: a 

combination of their characterizations for weak and strong norm inequalities shows in 

particular that 

‖      ‖            ‖ 
     ‖               ‖ 

     ‖  ́      ́      

Now, as it is mentioned after the statement of Corollary (4.1.6), since   satisfies estimate 

(4) we can apply the same argument as the just given to both summands and since that 

estimate has to be independent of the grid and we must take the two weight constant K 

over all cubes, not just for those from the specific grid. This concludes the proof of the 

corollary. 

A conjecture related to Corollary (4.1.6) is as follows: 

Conjecture (4.2.7)[4]: Let           be as above. Let X be a Banach function space so 

that its corresponding associate space  ́ satisfies    ́  
 ́        ́    . If  

 

      
 
‖    ‖

   
4
 

   
∫     

 

5

   ́

     

then  

 (43) 

 (44) 
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                       ‖      ‖           ‖  ́‖    ́     ‖ ‖       

As a consequence, if Y is another Banach function space with   ́  
              

and if  

 

      
 
‖    ‖

   
4
 

   
∫     

 

5

   ́

 4
 

   
∫     

 

5

   

‖    ́‖
   
    

then  

‖      ‖         (‖  ́‖    ́       ‖  ́‖         ) ‖ ‖      

If we could prove this, we would get as corollary: 

Corollary (4.2.8)[4]: 

‖  ‖                
   
     
   ́
       

   
 

This last result itself is known, but not as a corollary of a general two-weight norm 

inequality. 

 

 

 

 

 

 

 

 

 

 

 

          (45) 

 (46) 

 (47) 

          (48) 
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L
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L
2 
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loc : Locally 22 

L
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L
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