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Abstract

We show that if a pair of weights (u,v) satisfies a sharp A, - bump condition
in the scale of all log bumps certain loglog bumps , then Haar shifts map LP
(v) into LP (u) with a constant quadratic in the complexity of the shift . This
in turn implies the two weight boundedness for all Calder6n — Zygmund
operators. We obtain a generalized version of the former theorem valid for a
larger family of Calder6n — Zygmund operators in any ambient space . We
present a bilinear Th theorem for singular operators Calderon — Zygmund
type. Extending the end point results obtained to maximal singular. Another

consequence is a quantitative two weight bump estimate.
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Chapter 1

Two-Weight Boundedness of Calderon-Zygmund Operators

We give a partial answer to a long-standing conjecture. We also give a partial result for a
related conjecture for weak-type inequalities. We combine several different approaches to
these problems; we use many of the ideas developed to prove the A, conjecture. As a by
product of the work we also disprove a conjecture by Muckenhoupt and Wheeden on
weak-type inequalities for the Hilbert transform: (The Hilbert transform is a linear
operator that takes a function u(t) and produces a function H(u)(t) with the same domain.
The Hilbert transform is important in signal processing, where it derives the analytic
representation of a signal u(t). This means that the real signal u(t) is extended into the
complex plane such that it satisfies the Cauchy—Riemann equations. For example, the
Hilbert transform leads to the harmonic conjugate of a given function in Fourier analysis,
and harmonic analysis. Equivalently, it is an example of a singular integral operator and
of a Fourier multiplier)[5].

We show several partial results related to a pair of long-standing conjectures in the
theory of two-weight norm inequalities. To state the conjectures and the results we recall
a few facts about Orlicz spaces. Given a Young function A, the complementary function

A is theYoung function that satisfies
t<A'(ATI() < 2t, t>0.

We will say that a Young function A satisfies the B, condition, 1 < p <o, if for

some ¢ >0,

< 00,

[ECE

tp' t
If A and A are doubling (i.e., if A(2t) < CA(t), and similarly for 4), then 4 € B, if and
only if

o p-1
[[Gw) <=

Given p,1 < p < oo, let A and B be Young functions such that A € Bp,andf? € B,. We
say that the pair of weights (u, v) satisfies an A, bump condition with respect to A and B
if



supllt/#] 2] < )

where the supremum is taken over all cubes Q in RY and the Luxemburg norm is
defined by

Ifllag = inf {/1 >0: IQIfQ A(f )| /Ddx < 1}

If (1) holds, then it is conjectured that
T: LP(v) - LP(u). (2)
Similarly, if the pair (u, v) satisfies the weaker condition

1/ -1/
suplla] o] < o 3)

then the conjecture is that
T:LP(v) - LP*(u). (4)
The conditions (1) and (3) are referred to as A, bump conditions because they may be

thought of as the classical two-weight A, condition with the localized LPand LP norms
“bumped up” in the scale of Orlicz spaces. They first appeared in connection with
estimates for integral operator related to the spectral theory of Schrédinger operators. The
bump condition considered was the Fefferman—Phong condition that used “power”
bumps: i.e., Young functions of the form A(t) = t"?,r > 1. Power bumps were
independently introduced by Neugebauer. Bump conditions in full generality were
introduced by Pérez .

It was proved for p = 2 in any dimension and for any Calderén-Zygmund operator

using Bellman function techniques.

Theorem (1.1)[1]: Given p=2, suppose the pair of weights (u,v) satisfies (1), where A €
B, and B € B,. Then every Calderon-Zygmund singular integral operator T satisfies
ITf Nl 2y < ClIfl 2y, Where C depends only on T, the dimension d, and the suprema

in (1).



Certain additional results are known in the special case that A and B are “logbumps”: that

is, of the form

tP'

— 14 p_1+6 A ~x ——

A(t) = tPlog(e + t) , A(t) oa et D" (5)
_ P-148 B4y~ —

B(t) = tPlog(e+ t) , B(t) oo T (6)

where 8 > 0, 8 = 8/(p— 1), 8" = 8/(p' — 1). But even in this case the result for all
Calderén —Zygmund operators was unknown. The weak-type conjecture is only known
for log bumps.

One can motivate the conjectures (1) = (2) and (3) = (4) (and the related conjectures we
consider below) by considering a pair of conjectures due to Muckenhoupt and Wheeden.
First, they conjectured that a singular integral operator (in particular, the Hilbert
transform) satisfies (2) provided that the Hardy-Littlewood maximal operator: (Maximal
functions appear in many forms in harmonic analysis (an area of mathematics). One of
the most important of these is the Hardy—Littlewood maximal function. They play an
important role in understanding, for example, the differentiability properties of functions,
singular integrals and partial differential equations. They often provide a deeper and more

simplified approach to understanding problems in these areas than other methods.)[6]
satisfies

M: LP(v) - LP(u),
M:LP (ulP) - LP (11 7P),
They also conjectured that (4) holds if the maximal operator satisfies the

second, Lp,inequality. Proved that a sufficient condition for each of these estimates to

hold for M is that the pair (u, v) satisfies

1/ -1/
suplla/] v, <o

(7)
SupQ”ul/p”A’Q”v_l/p”p'lQ < %, (8)
in particular, both these conditions hold if (1) holds.

Given the falsity of the Muckenhoupt-Wheeden conjectures (even for p =2),
the A, bump conjectures become even more interesting. Moreover, Theorem (1.1) and

the other results listed above strongly suggest that it should hold in the full range of p,
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dimensions, and Calderon—-Zygmund operators. Here we consider two even stronger
conjectures, motivated by the fact that the “separated” bump conditions (7) and (8) are

sufficient for the maximal operator inequalities in the original conjecture.

Conjecture (1.2)[1]: Given p, 1< p <o, suppose the pair of weights (u,v) satisfies (7)
and (8), where A € B, and Be B,. Then every Calderon-Zygmund singular integral
operator T satisfies ||Tf|[,p) < ClIf|lr), Where C depends only on T, the dimension

d, and the suprema in (7) and (8).

Conjecture (1.3)[1]: Given p, 1 < p <o, suppose the pair of weights (u,v) satisfies (8)
where A€ B, . Then every Calderén-Zygmund singular integral operator T
satisfies || Tf || ,p=@y < CIIflL» ), where C depends only on T, the dimension d, and the

supremum in (8).
We can prove Conjecture (1.2) in the special case when A, B are log bumps.

Theorem (1.4)[1]: Given p,1< p <oo, suppose the pair of weights (u,v) satisfies (7) and
(8), where A and B are log bumps of the form (5) and (6). Then every Calderon-
Zygmund singular integral operator T satisfies |[Tf|[,»@) < ClIf |l r(), Where C depends

only on T, the dimension d, and the suprema in (7) and (8).

The techniques also immediately yield Conjecture (1.3) for log bumps. This gives

anew proof of the result originally. For completeness we include it here.

Theorem (1.5)[1]: Given p,1< p <o, suppose the pair of weights (u,v) satisfies (8)
where A is a log bump of the form (5). Then every Calderén-Zygmund singular integral
operator T satisfies ||Tf || p=y < CIIflLp ), Where C depends only on T, the dimension

d, and the supremum in (8).

The method to prove Conjectures (1.2) and (1.3) for a subset of the class of bump

functions referred to as loglog-bumps:

t?’

A(t) = tPlog(e + )P tloglog(e€ + t)P~148 "A(t) ~ .
© 9 ) glog( ) © log(e +t) loglog(e® + t)1+6

(9)



: , : — tP
B(t) = tPlog(e + t)P "tloglog(e® + t)P ~1+9, B(t) ~ -
log(e + t) loglog(e® + t)1+3

Where 6 >0. These bump conditions are well known, but have been difficult to work
with. No results were known for loglog-bumps that were not proved for bump conditions

in general. However, we can show the following results, both of which are new.

Theorem (1.6)[1]: Given p, 1 < p <oo, suppose the pair of weights (u,v) satisfy (7) and
(8), where A and B are loglog-bumps of the form (9) and (10) with & sufficiently large.

Then every Calderon-Zygmund singular integral operator T satisfies ||Tf]|,pq) <
Cllf |l ,»w, where C depends only on T, the dimension d and the suprema in (7) and (8).
Theorem (1.7)[1]: Given p, 1 < p <oo, suppose the pair of weights (u,v) satisfies (8)
where A is a loglog-bump of the form (9) with & sufficiently large. Then every Calderdn-
Zygmund singular integral operator T satisfies ||Tf|| p=@) < Cllfllp@), Where C
depends only on T, the dimension d and the supremum in (8).

Reformulate the results and reduce the problem to proving the corresponding results for a

general class of dyadic shift operators. It is important to note that in most of the proof we

only need to assume that A € B, Be B,; only at one step are we forced to assume that

A, B are log bumps. We will use the notation
(e =z [ fGa
= — x)dx.
°oer)

We also restate the weighted norm inequalities in an equivalent form. Let ¢ = v1=P’; then

we can rewrite (7) and (8) as

sup(u)é/p”al/p,”BQ < o, (11)
p .

supQ”ul/p”AIQ(c)g/p’ < oo, (12)

By the properties of the Luxemburg norm we have that either condition implies the two-

weight A, condition:

(10)



sgp(u)é/p(a)gp' < o, (13)

Similarly, we can restate the conclusions of Theorems (1.1) and (1.4) as
ITFD ey < Cliflley, 1T ey < Clif lle
The B,, condition is closely connected to a generalization of the maximal operator.

Recall that the Hardy-Littlewood maximal operator is defined to be
Mf(x) = sup(Ifq = suplifllie-
Q3x Q3x

Given a Young function A, we define the Orlicz maximal operator M, by
Myf(x) := SUP”f”A,Q-
03x
Theorem (1.8)[1]: Fix p, 1 <p <oo, and let A be a Young function such that A € B,,.
Then My: LP — LP.

The B, condition is also sufficient for a two-weight norm inequality for the Hardy-

Littlewood maximal operator.
Theorem (1.9)[1]: Fix p, 1 < p < oo, and let B be a Young function such that B € By. If
the pair of weights (u,0) satisfies
sup(w” 0% 15 4 .. (14)
then
IM(fllrwy < CllfIILp (o) (15)

We now turn to the definition of the dyadic Haar shift operators that will replace an
arbitrary Calderon-Zygmund operator.

Definition (1.10)[1]: Given a dyadic cube Q,hg,is a (generalized) Haar function

associated to a cube Q if

ho) = ) cqxg(),
Q'ech(Q)
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Where ch(Q) is the set of dyadic children of Q and [¢,| < 1.

Definition (1.11)[1]: We say that an operator S has a Haar shift kernel of complexity

(m,n) if

SFG) = ) So(h),
Q
where

1
S =1gr 2, hedhy
QQ'<Q
€(Q)=2"m¢(Q)
(QH=2""(Q)

and h, and h,- are generalized Haar functions associated to the cubes Q' and Q"

respectively. We say that S is a Haar shift of complexity (m,n) if it has a Haar shift kernel

of complexity (m, n), and it is bounded on L?(dx).

To prove Theorems (1.4) and (1.5) it will suffice to prove that they hold for Haar shift
operators of complexity (m,n) with a constant that grows polynomially in 7 =

max(m,n) + 1. We will prove the following.

Theorem (1.12)[1]: Given p, 1 < p < oo, suppose A and B are log-bumps of the form (5),
(6), and the pair of weights (1, o) satisfies (11) and (12). Given any dyadic shift S of
complexity (m,n), = = max(m,n) + 1, [IS(fo)ll.pwy < CT3|If |l p sy, where C depends

only on the dimension d and the suprema in (11) and (12).

Theorem (1.13)[1]: Givenp, 1 <p < o, suppose A is a log-bump of the form (5), and
the pair of weights (u,0) satisfies (12). Given any dyadic shift S of complexity (m,n),
ISfolLp oy < CT3||f||Lp(a), where C depends only on the dimension d and the

supremum in (12).

To prove the strong-type inequality we follow the argument used by Hytoénen in the
one-weight case. Fix a function f that is bounded and has compact support. For each
N>0, let Qy = [—2V,2V]%. By Fatou’s lemma,



1/p
ISFlLpy < liminf (fQ IS(fo)(x) — msqy[Pulx) dx> )

N—-ow

where mg 4 is the median value of S(fo) on Qy. Fix N. Using the remarkable
decomposition theorem of Lerner, they show that there exists a family of dyadic cubes

L = {Q}}and pairwise disjoint sets {£/} such that Ef c QF,|Ef| = % |Q¥], and

( f |s<fa>(x)—ms(fa)|”u(x>dx)
Qn

T

< CtliM(follpey + C (flo), wiXgk 16
WGDlusco + €7D 1) 1710y a4

i=1 LP (W)

(Here, given a dyadic cube Q, Q* denotes the i-th parent of Q.) Alternatively, we combine
it with the unweighted weak-type estimate with the right dependence on z we precede the

weak-type estimate of 1,5(1,<f) by a careful pointwise estimate of this function on Q.

This lets the reduce the weak-type estimate of this expression to the weak-type estimate

of 1,5(1,f) (with an error term that can be controlled).

By Theorem (1.9), [IM(fo)llpw) < CIIf |l p(s)- Therefore, it remains to estimate the
second term in (16). We will show that each term in the sum is bounded by Ct||f || 7 (4.

Note that this gives the estimate which is cubic in z.

Again, we show that this reduces to a two-weight estimate for apositive Haar shift
operator. We reorder the sum as follows: fix an integer i € [1,7] and sum over every

cube Q = (Qf)" and then over all cubes Q; € £ such that (Q5)" = Q. Then we have that

D10 gryixgr = D AIfloe D xw = xh(Iflo)e = SEf1o),
Jjk Q Q

REL
Ri=Q

where the last sum is taken over all dyadic cubes Q and

X3=ZXR-

ReL
R'=Q

8



Clearly, S, (hereafter we omit the superscript i) is a positive operator. We claim that it
is in fact a positive Haar shift of complexity at most (0,7— 1). From the definition we have
that

Sof = ;%Xéqf ,

and so in the notation used above we have that

1 .
So==1xb| f,
: IQIXQfo

Q'= Q hg = xq, the Q" are all the (i—1)-children of Q, and h," = ZRech(er) CRXR)

where cg = 1if R € L and cg = 0 otherwise. Thus S, has a Haar shift kernel of
complexity (0,i — 1),i < 7. To see that it is bounded on L?, we use the properties of the

cubes Qj’-‘. By duality, there exists g € L?,||gll, = 1, such that
IS:13 = [ () gpytorta ) dx
Rd j,k ] J

< 22 UN@D Dl < 2 [ MFMgGo) d
Tx R

The last integral is bounded by ||f]l,1lgll, by Holder’s inequality and the unweighted L?

inequality for the maximal operator.

Definition (1.14)[1]: Given a positive Haar shift operator S, define the associated

maximal singular integral operator by

S)0) = sup Se,() = sup D Sef®).

0<esv<wo 0<esv<o 0€D,e1(0Q)<v
To prove that ||S;(fo)llLpwy < CTllfllLp(s), We use the following result that is essentially
due to Sawyer .

Theorem (1.15)[1]: Let S be a positive Haar shift of complexity (m,n). Then the asso-

ciated maximal singular integral Sy satisfies



IS4 (C- ) le(o)-Lr )
lxoS (o)l 5,
o(Q)
+own lxoS *(XQu3||Lp(g) (17)
¢ u(Qr
Fix a cube Q,; using the notation from the definition of a Haar shift, we have that

XQOS(XQOU) = z Sg(o) + Xo, Z Sr(xQo0) < z Sg(0) + XQ0<0>Q0 (18)

RcQq R,QoCR RCQy

< TlIM( o)lp(s)srr) + Sup

The second inequality is straight forward. As we noted above, the pair (u,o) satisfies the

two-weight A, condition (13). Therefore, the LP (u) norm of the second term is bounded
by
1 1/p’
a0l (@ = (W)g (00, 0(Q)MP < Ca (@)
To estimate the LP (u) norm of the first term, we form the following decomposition:
K=K={QcQ: () =2%"nez,;
Ko = {Q € K:2° < W (0)y? < 2+,
P§ = all maximal cubes in K;
P& = {maximal cubesp’ € P € P?_,, such that (a)pr > 2(0’)p};

Pa=UP,{1.

nz0
Hereafter we suppress the index i; this will give a sum with T + 1 terms. Given Q € K,

let I1(Q) denote the minimal principal cube that contains it, and define
Ko(P) = {Q € Kz:11(Q) = P}.

We will estimate the LP (u) norm of the first sum on the right-hand side of (18) using

the exponential decay distributional inequality originated. Below, S is any positive

10



generalized Haar shift that is bounded on unweighted L2. In particular, we will take S to

be one of the positive Haar shifts S, from above.

Theorem (1.16)[1]: There exists a constant c, depending only on the dimension and the
unweighted L? norm of the shift, such that for any P € P¢,

u (x € P: |k ()] > t%) < et (P)

It follows from Theorem (1.16) that for some positive constant c,

D Sk

RSQ

p\ /P
<oy (Tun(G)) - a9

LP (u) a Pepa

We sketch the proof of (19) following the beautiful calculations .

Z&@=EZZ&W@,

REQ =0 a Pep2

and so

D Sx(@)

< (T+1)Z

Z SK“(P)(U)

RSQ LP (w) a Pepa LP(w)
Fix a. Using Fubini’s theorem we write
Z Skap) (o)
Pepa LP(w)
p 1/p

N f Z,PZ X{Sxa(p)(d)e(j,jﬂ) %}SK%P )(@)(x) | ulx) dx
j Pepa

14
: a(P)
= Z(I D <f [Z X{Ska(P)(U)E(J'J+1) %} W‘ u(x) dx)

pepa

1/p

By the choice of the stopping cubes P € P% we have that

11



Xsxapy @G+ 2 TP

[ a(P)|"

a(P)\"
s Z A (sgapy @i+ 55 )}( |P| ) '
pepa IPI

2P in the sum on the left are super-exponential. This

[P]
beautiful observation lets a write

Z Skap) (o)

Pepa

This follows because the ratios

LP(u)
Z(” K (Z( ) (5@ € 6.+ I;R))

Then by the distributional inequality from Theorem (1.16):

1/
sewa], < Tor v (6 o)

Pepa Pepa

This gives (19).

We can no longer assume that a pair of weights (u,0) satisfies the general A, bump

condition and we must instead make the more restrictive assumption that we have log
bumps. Before doing so, however, we want to show how the proof goes and where the
problem arises for general bumps.We will then give the modification necessary to make

this argument work for log bumps.
Define the sequence

{IPI Q = P,forsome cube P € P¢
Ho =1 o, otherwise;

then the inner sum in (19) becomes
Z u(Q) (G(Q))
& 11Vl

But by Holder’s inequality in the scale of Orlicz spaces,

12



1 1 1
—— = (oPor)y < C|lo? or

QI

Therefore, by (11),

a(Q) L 2 ’

B ‘

< |le*® inf Mz(a/Pyy).
Q.B QB yeq

u(Q) (o(Q\° PSRy
2,01 Ciar) e <K 2, vainfiate oy

To complete the proof we need two lemmas.
Lemma (1.17)[1]: {uq} is a Carleson sequence.
The second is a folk theorem.

Lemma (1.18)[1]: If {uy} is a Carleson sequence, then

Z Uo inf xo, F(x) = jF(x)dx.
Q

QcQo Qo

Combining these two lemmas with Theorem (1.8) (since B € By,,) we see that

w(@ (@)Y’ o »
2. ot Clgr) 0 SK? D wainf Ma(e' )" = K*|Ma(o )|

Q Q,QcQo

< K701 gy = KP0Q0).

This would complete the proof except that we must now sum over a, and in (19) this
sum goes from —oo to the logarithm of the two-weight A,, constant of the pair (u,0). We
cannot evaluate this sum unless we can modify the above argument to yield a decay
constant in a. We use the fact that the parameter a run from 0 to the logarithm of
A, constant: this follows since by Holder’s inequality the A, constant of any weight is at
least 1. In the two-weight case the A, constant can be arbitrarily small, and therefore we

must sum over infinitely many values of a. We are able to get the desired decay constant

only by assuming that we are working with log bumps.

We modify the above argument as follows. Essentially, we will use the properties of

log bumps to replace B with a slightly larger Young function. Define By(t) =

13

(20)

(21)



tP log(e + t)p 1+ ; then we again have that B, € B,. Instead of (21) we will prove

that there exists vy, 0 <y <1, such that

w(@ (G@V /
QCZQ |Q| ( IQI ) I <K 1-y)ppayp QCZQO'HQ lnfMBo(o'l pXQ )p (22)

Given inequality (22), we can repeat the argument above, but we now have the decay

term 2%YP which allows to sum in a and get the desired estimate.

To prove (22) suppose for the moment that there exists y such that

lo% ., < Calla® [l ™2 @.dx/Ioly (23)
Given this, fix a cube Q € P*—we can do this since otherwise u, = 0. Then
@<@>I) < (u)g a% ’ | 0% ’ < (u)g | a% R ‘ ai Yp, 0% ’
el \ 1Q] Bo.Q Bo.Q B.Q 1P (i) Bo.Q
11 a-vp 101 Yp 1ap
B ((u)’é ” B.Q> .<<u)g ” t? (o ﬁ;)> '|05 Bo.Q

< K@-7p . ((u)é/wa)(lz/ﬂ')yp : ”01/10”;0, < KA-vp . parp . ||01/p||BOQ

< KA-1vp.2avp . inf MEO(Ul/p)(QO)p-
XEQ

Inequality (22) now follows immediately.

Therefore, to complete the proof we must establish (23). By the rescaling properties

of the Luxemburg norm, the right-hand side of this inequality is equal to

1
Where C(t) = B(t'-v). Therefore, by the generalized Holder’s inequality in Orlicz

v

or

4
ov

¢.Q Q,

spaces, inequality (23) holds if for all t >1,

C‘l(t)tﬁ < Byt (b). (24)

14



A straightforward calculation shows that

1-y 1

tp
By'(t) =

C1(t) = B-1(t) ~

1, 6"

log(e + t)EJr 2p’

1-y +6(1—y) ’

logle+ t)? 7

By equating the exponents on the logarithm terms, we see that (24) holds if we take

B 5
2= 1+ &)

14

Therefore, with this value of y inequality (23) holds, and this completes the proof.

We give a direct proof of (23). The desire inequality obviously follows from the
following lemma.
Lemma (1.19)[1]: Given a probability measure 4, let f be a non-negative measurable

function. Let B, B, be logarithmic bumps as in (6) with§ = 7and § = % respectively.

Then there exists an absolute constant Cand y = y(p’,t) > 0 such that

If g < CIFIE AN (25)

LP ()

Proof. We will actually show that y = 2;_1)5 Define A:= [ |f|p'du. Since inequality

+(

(25) is homogeneous, we may assume without loss of generality that

Ifllpe= 1. (26)

Moreover, we may assume that A< 1: otherwise (25) can be achieved by choosing C
sufficiently large. Let € <1 and K be constants; we will determine their precise value (in

this order) below. Then we have that

15



p'—1+§
J.—log e+ ) dusf +f
{fsKe} {f2Ke)
' f p'—1+‘r
fr log(e + E)

<2 loge + )P +f L —du
ep rzke) €7 [log(e + K)]7

' fyp'-1+47

A T p'logc+ LHyp

< —T[log(e + K)]P **z + f— S —— T
ep eP [log(e + K)]E

A ' T
< —[log(e + K)]P ~'*2
gp

1
e? [log(e + K)]*/?

+ f F7'tog (e *a]

[ 77 t0g7 e + 1)

A ' T
< — [log(e + KPP 2 + [1 + Alog(e~H)P—1*7],
€

eP[log(e + K)]*/?

In the last line we used (26). Fix € so that
A= (Ep')1+c'

wherec= 1+ (p'—1) % In other words,

1
= (AV/PYY = 4 = .
= @Y =W, v =

Now choose K so that
[log(e + K)]"/? ~ P,
then
, . ' 2 ’
[log(e + K)]P ~1+7/2 ~ (e P)*P™D7 = (e7P)e.

If we substitute these values into the above calculation, we see that the right hand side is

dominated by a constant. Hence, by the definition of the Luxemburg norm,

— Y
Il < Ce = CIAIT, .
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This completes the proof.

The proof of the weak-type inequality uses essentially the same argument as above;
here we sketch the changes required. We repeat the argument that yields in equality (16),
replacing the LP(u) norm with the LP°(u) norm. Since the pair (u,0) satisfies the two-

weight A, condition we have the well known inequality that

IM(flp oy < ClIfllLp(oy

where the constant C depends only on the A, constant and the dimension. Therefore it
remains to estimate the LP*(u) norm of S.(|f|o). We have the following analog of
Theorem (1.15).

Theorem (1.20)[1]: Let S be a positive Haar shift of complexity (m, n). Then

lxoS” (ol 5,
u(@?

ISC )L (o)-rpeqy < TIM( )l Lp(6)-rPo) + SZLP

Given Theorem (1.20) the argument now proceeds exactly as before, using the bump
condition (12) to bound the testing condition. This completes the proof.

We will describe the principle changes. Following the argument, it will suffice to

prove the corresponding results for dyadic shifts.

Theorem (1.21)[1]: Given p, 1 < p <o, suppose A and B are loglog-bumps of the form
(9), (10) with 6 >0 sufficiently large, and the pair of weights (o) satisfies (7) and (8).
Given any dyadic shift S of complexity (m,n), z = max(m,n)+1, [S(fo)llpw) <
CT3||fll» (s, Where C depends only on the dimension d and the suprema in (7) and (8).

Theorem (1.22)[1]: Given p,1 < p <oo, suppose A is a loglog-bump of the form (9) with
6>0 sufficiently large, and the pair of weights («,0) satisfies (8). Given any dyadic shift S
of complexity (m,n), IS(fo)llLpey < CT?|IfllLp(s), Where C depends only on the

dimension d and the supremum in (8).

We will prove Theorem (1.21) by modifying the proof of Theorem (1.12) above;

Theorem (1.22) is proved similarly. The main step is to adapt Lemma (1.19) to work with

17



loglog-bumps. Let B be as in (10), and define B, similarly but with & replaced by 6/2.

Then arguing almost exactly as we did in the proof of Lemma (1.19), we have that

11,y g o

Ifllgop < Cllf g ez
1115

where e(t) = (log%)"‘,C = C(p,8), and k = k(p,d) withpk > 1 if & is large
enough.

Given (27) we have that

w(Q) (a(Q)\’ o |I” (lete|P
Tor Grar) = €aella ™1l olloI5
o (05"
< C(uyol|or/? ”B,Qe UTQ’ ”"l/p”go,o
|0 ”B,Q
N Ry
< ¢ (@) e\ | 1ol

(u>2/p||01/”'||3_q

To complete the proof, we need a bound in a for the first two terms. Since Q € P%,
we have that (u)clz/p(u)clz/p = 2%, Let b, — 1 be the logarithm of the supremum in (7).
Then there exists b,a < b < by, such that (u)}z/p”al/?‘"”w = 2P The sum in a will go

from —oo to by, so it will suffice to consider those terms where a <0.

lal
If b is negative and |b| > [a|/2, then the first term is bounded by 277 , and the second is

bounded by some constant. If b >0 or if it is negative but |b| < ";—' , then we estimate the

lal
first term by 2P0, and the argument in the second term is at most 2™z . Hence the second

pa
term is bounded by ﬁ By the assumption, px > 1 and so the series Y. o[22 +
a

Cc
||7] converges.
a

We prove that the weak-type conjecture of Muckenhoupt and Wheeden discussed is

false for the Hilbert transform when p = 2. We in fact prove a stronger result.
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For brevity, we introduce some additional notation. Let 0 = v~! and let M,f =
M(fo). Define M, H, and H,, similarly, where H is the Hilbert transform. Then we can

reformulate the conjecture as follows: if

M,: L*(u) - L?(o). (28)
then
H,: [2(0) - L¥*(w). (29)

We will show by contradiction that this is not true in general. Suppose to the contrary
that if the pair (u,v) satisfies (28), then (29) holds. Then for any f € L?(u) and any cube

Q,

f Hsfudx < ”Ho'f”LZ'”(u)||XQ||L2_1(u) < ||HJ||L2(0')—>L2'°°(u)”f"LZ(O')u(Q)l/Z'
Q

Let f = H, (xo)- Then by duality (since H, is the adjoint of H,) we have that the pair

(u,v) satisfies the testing condition

| G Podx < cu (320)
Q

The same argument shows that if the pair (u, o) satisfies
M,: L?(0) = L*(w), (31)

then this pair also satisfies the testing condition

| oG Pudx < co@) (32)
Q

However, we have the following testing condition result for the Hilbert transform
when p = 2.

Theorem (1.23)[1]: Let H be the Hilbert transform. Then
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IH( Dl 2012
1H G
a(Q)/?

< IMC Ol zy-rzqy + IMC W 2y-r20) + sgp

”H(XQu)”LZ(J)
u(Q)'?

+ sup
Q

Therefore, by the assumption and Theorem (1.23), we have that if a pair of weights
(u,0) satisfies (28) and (31), then H: L*(c) — L*(u). Therefore, the weak-type conjecture

of Muckenhoupt and Wheeden cannot hold.
We have proved a stronger result.

Theorem (1.24)[1]: There exists a pair of weights (u,o) such that (28) and (31) hold, but
the Hilbert transform does not satisfy the weak-type inequality H,: L?(o) — L*>*(u).

For the convenience we want to explain why these two results are in fact equivalent.

If M, M, H,,, H,all satisfy the testing conditions (30) and (32) (replacing H with M
when dealing with the maximal operator), then all four of them are bounded in
corresponding pairs of weighted spaces. This gives Theorem (1.23). Conversely, suppose
that the right-hand side of the inequality in Theorem (1.23) is finite. Then (30) and (32)
are both satisfied. Moreover, M,, and M, are both bounded on the corresponding pairs of
weighted spaces. Therefore, trivially, M,,, M, also satisfy the corresponding testing
conditions. Thus, all four operators satisfy the testing conditions, and then H, : L?>(u) —
L?*(0) and H, : L*(0) — L?(u) as well as the corresponding norm inequalities for the

maximal operators.

We noted that the weak-type conjecture we just disproved followed from another

conjecture of Muckenhoupt and Wheeden: that

u({x: |[Hf (x)| >t}) < %f |f|Mudx (33)

(This implication is a straightforward duality argument: the result above gives another

(indirect) proof of this fact.
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We note that there is a weaker conjecture than (33) which has also been shown to be

false. In the one-weight case it was conjectured that for all w € A,,

C
w({x: Hf (x) >t}) S?[W]Alf |flwdx , (34)

where [w]4; = |

|MW
w

. The counter example to (33) is not in A;. Essentially,
LOO

disproving (34) amounts to finding a “smooth” bad weight, which is even more difficult
to build than the weight of Reguera—Thiele. While no explicit example has been
constructed, the existence of such a weight has been proved using Bellman function

techniques: it was shown that there exist weights in A; such that

1l uyr1m0y 2 €Wl log > [wla, (35)
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Chapter 2

Sobolev Spaces on Domains

We need to check the boundedness of not only the characteristic function, but a finite
collection of polynomials restricted to the domain. we find a sufficient condition in terms

of Carleson measures for p < d, and, in the particular case s = 1.

Section(2.1): Oriented Whitney Convering and Approximating
Polynomials with Derivatives of Tf

Given an open set U c R%, we say that a function is in the Sobolev space W™ (U)if it

has derivatives up to order n in the weak sense in U and all of them are integrable in the

LP sense.We say that f € WP (U) if those derivatives are in the space L?_ . (U) instead.

loc loc

Definition (2.1.1)[2]: We say that a measurable function K € W, (R*\{0}) is a

loc

smooth convolution Calderon-Zygmund kernel of order n if

[VK(x)| < for0 <j<n.

|x|d+j

and that kernel can be extended to a tempered distribution W in R in the sense that for

any Schwartz function ¢ € S with 0 € sup(¢),
(W, ¢) = (K * $)(0).
Abusing notation, we will write K instead of W.

We will use the classical notation f for the Fourier transform of a given Schwartz

function,

) = f e2MxE £ () dx

R4

And f will denote its inverse. It is well known that the Fourier transform can be extended

to the whole space of tempered distributions by duality and it induces an isometry in L?.
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Definition (2.1.2)[2]: We say that an operator T:S — S is a smooth convolution
Calderon-Zygmund operator of order n with kernel K if K is a smooth convolution

Calderén-Zygmund kernel of order n such that K € L ., T is defined as
To=Kx¢:=(R.$)

forany ¢ € S and T extends to an operator bounded in LP forany 1 < p < .

For instance, that this boundedness property is equivalent to having K € L*.

It is a well-known fact that the Schwartz class is dense in LP for p < o« . Bearing this in

mind, we get that given any f € LP and x & supp(f),

TF(X) = j K(x = y)f ) dy.

Example (2.1.3) [2]: In the complex plane, the Beurling transform is defined as the

principal value

Bf(z):= —llim M

dm(w
Te=0 1 sise (z —w)? (w)

It is a smooth convolution Calderon-Zygmund operator of any order associated to the

kernel
1
K(Z) = -
VA

and its multiplier is

Thus, the Beurling transform is an isometry in L2.

Definition (2.1.4)[2]: Let Q c R* be a domain (open and connected). We say that a
cube Q with side-length R > 0 and center x € dQ is an R-window of the domain if it

induces a local parameterization of the boundary, i.e. there exists a continuous function
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Ag ¢ R4~ — R such that, after a suitable rotation that brings all the faces of Q parallel to

the coordinate axes,

QnQ={y) ER"IXRINQ: yg3 > A;(1)}

We say that a bounded domain Q it is a (6§, R)- Lipschitz domain: (A Lipschitz
domain (or domain with Lipschitz boundary) is a domain in Euclidean space whose
boundary is "sufficiently regular" in the sense that it can be thought of as locally being
the graph of a Lipschitz continuous function. The term is named after the German
mathematician Rudolf Lipschitz.)[7] if for each x € dQ there exist an R-window

centered in x with A, Lipschitz with a uniform bound ||VA||, < .

We say that an unbounded domain Q is a special -Lipschitz domain if there exists a
Lipschitz function A such that ||VA||., < 6 and

Q= {(y,y5) ERT"I xRy, > A[)}

With no risk of confusion, we will forget often about the parameters 6 and R and we

will talk in general of Lipschitz domains and windows without more explanations.

Theorem (2.1.5)[2]: Let Q be a bounded C**¢ domain (i.e. a Lipschitz domain with
parameterizations in C1*€) for a given £ >0, and let 1 <p <o and 0 < s < 1 such
that sp > 2. Then the Beurling transform is bounded in WP (Q) if and only if B(Xy) €
WSP(Q).

This was proved in fact for a wider class of even Calderén-Zygmund operators in the
plane. We considered the extension of the Theorem (2.1.5) to higher orders of

smoothness s and other ambient spaces R%. We have restricted ourselves to the study of

the classical Sobolev spaces, where the smoothness is a natural number.

Theorem (2.1.6)[2]: Let Q be a Lipschitz domain, T a smooth convolution Calderén-

Zygmund operator, neN and p > d. Then the following statements are equivalent.

a) The operator T is bounded in W™P(Q).
b) For any polynomial restricted to the domain,P € p™~1(Q), we have that T(P) €
WwmP(Q).
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This result remind the results by Rodolfo H. Where the characterization of some
generalized Calderon-Zygmund operators which are bounded in the homogeneous
Triebel-Lizorkin spaces in the whole ambient space is given in terms of its behavior on
polynomials. Vihikangas obtained some T1 theorem for weakly singular integral
operators on domains, but in that case, roughly speaking, the image of the characteristic
function being in a certain BMO-type space was shown to be equivalent to the
boundedness of T : LP(Q) —» W™P(Q) where m is the degree of the singularity of T's

kernel.

One can see that, if ¢ > s and Q is a C1*¢ domain then BX, € WS?(Q), so we have
that, assuming the conditions in the Theorem (2.1.5) for Q, s and p, one always has the
Beurling transform bounded in WSP(Q). With this result, they could deduce the next

remarkable theorem that we state here as a corollary.

Corollary (2.1.7)[2]: Assuming Q, s and p to be as in the previous theorem with the

restriction € > s ,if we have a function u such that supp (1) < Qand ||u|l, < 1, we can

define the principal solution of the Beltrami equation

0¢(2) = u(2)d¢(2),
as ¢(z) = z + C(h)(z) where C stands for the Cauchy transform. Then
uEWsSP(Q) - heWs?(Q)
Victor Cruz and Xavier Tolsa worked to find a sufficient condition weaker than & >
s, that if Q < C is a Lipschitz domain and its unitary outward normalvector N is in the
Besov space B;;f/ P then one has B(Xq) € WSP(Q). Taking into account that for anyn

e> 0,B5,"" c ws/P=er if sp > 2 we can use the Sobolev Embedding Theorem to

deduce that the parameterizations are indeed in C1*¢€ for some ¢ > s, leading to the
boundedness of the Beurling transform. That this geometric condition is necessary when
the Lipschitz constants are small. The result can be formulated similarly for= n > 2.

We are trying to see which conditions can be weakened.

We work with Carleson measures to find a sufficient condition for p < d. This

condition is in fact necessary for s =1.
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Theorem (2.1.8)[2]: Given a Calderon-Zygmund smooth operator of order 1, a
Lipschitz domain Qand 1 < p < o , the following statements are equivalent.
i. Tisabounded operator on WP (Q).

ii.  The measure |VTXq(x)|Pdx is a Carleson measure in the sense of Definition
(2.2.9)

We write p™ for the vector space of polynomials of degree smaller or equal than n (in

R%). Givenaset U c R%, we write p™(U) for the family of functions p.XU with p € P™.

The polynomials and derivatives that we need to use will be written with the
multiindex notation. For any multiindex « € N¢ (where we assume the natural numbers
to include the 0),a = (ay,...,@z), we define its modulus as |«| =Zj-1=1ai and its

factorial a! := Hj-lzl a;!, leading to the usual definitions of combinatorial numbers. For

x € R we write x% := jlzlxjaj and for ¢ € CZ (infinitely many times differentiable
_ lal
with compact support),D%¢ := a—qb.

1 d
oxy ..oxg

In general, for any open set Q, and any distribution f € D(Q), we define the

derivative in the sense of distributions, i.e.
(Df,¢) == (=D)I¥I(f,D*¢) for every ¢ € CX(Q)
If the distribution is regular, i.e. D*f € Lj,., we say it is a weak derivative.

We say that f € LP(Q) is in the Sobolev space W™P(Q) if it has weak derivatives up

to order nand D“f € LP(Q) for |a|] < n. We will use the norm

I lwmoie = D 1D Fllncay

asn

For Lipschitz domains, it is enough to consider the higher order derivatives,
If llwney = Iflle + IV fllLp (o)
Where |V'f| = Xjq1=n ID*f].

We will solve a Neumann problem by means of the Newton potential: given an

integrable function with compact support g € LY (R%), its Newton potential is
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lx — y|*74

mg(ﬂdy ifd>2,

Ng(x) =f

log|x — y| .
NgGo = [ 2290y if d =2

where w, stands for the surface measure of the unit sphere in R%. Recall that the gradient

of Ngisthe (d - 1)-dimensional Riesz transform of g,

TNg() = R Vg() = [~ g@)dz

wyl|x —
It is well known that ANg(x) = g(x) for x € R%.

We recall now two results that we will use every now and then. The first is the
Leibnitz' Formula, which states that for f € W™P(Q) and |a| < n, if ¢ € CX(Q), then
f.¢ € W™P(Q) and

De(f.9) = ) () DFPDe S (2)
f=sa

The second is the Sobolev Embedding Theorem for Lipschitz domains, which says
that for any Lipschitz domain Q, we have the continuous embedding

Wir(Q) c c*h (@) 3)

d
of the Sobolev space WP (Q) into the Holder space ¢”'7(Q). Recall that

lf () — fF(¥)
Ifllcos@ = Iflle + sup —————
x,yEQ |x — yl
XEY

Consider a given dyadic grid of semi-open cubes in R

Definition (2.1.9)[2]: We say that a collection of cubes W is a Whitney covering of a
Lipschitz domain Q if

W1. The cubes in W are dyadic.

W?2. The cubes have pairwise disjoint interiors.
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W3. The union of the cubes in Wis Q .
W4, There exists a constant Cy,, such that
Cwt(Q) < dist(Q,0Q) < 4Cy£(Q)
WS5. Two neighbor cubes Q and R (i.e.Q N R # ¢, Q # R) satisfy £(Q) < 2¢(R).
W6. The family {10Q},ew has finite superposition, i.e. ¥.oew X109 < C.

We do not prove here the existence of such a covering because this kind of coverings

are well known.

We consider the R-window Q to be a cube centered in x € dQ, with side-length R
inducing a Lipschitz parameterization of the boundary. Given a(§, R)-Lipschitz domain,

we can choose a number N ~ H%~1(9Q)/R%* of windows {Q,}}_; such that

N
o 4
an]Ulan, (4)

where §, < % and c, > 2 are values to fix later. Notice that

{x € Q: dis(x,0Q) > £} is a connected set for any " small enough. (5)

Each window Qy is associated to a parameterization A, in the sense that, after a rotation,

QNQr={@y) €E R XRINQ: y5 > A (D)}

Thus, each Q,, induces a “vertical” direction, given by the eventually rotated y, axis. The
following is an easy consequence of the previous statements and the fact that the domain

is Lipschitz.

W7. The number of Whitney cubes in %Qk with the same side-length intersecting a given

vertical line is uniformly bounded where the “vertical” direction is the one induced by

the window.

This is the last property of the Whitney cubes we want to point out. We give some
structure to construct paths connecting Whitney cubes. First, we use that the vertical

direction allows us to say that one cube is above another one:
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Definition (2.1.10)[2]: We say that a cube S is above Q with respect to Q, if Q,S c
%Qk, there is aline parallel to the vertical direction induced by Q,, intersecting the interior

of both cubes and there exists a point x € S such that for any y € Q,x,; > vy, in local

coordinates.

In order to give a structure to the covering, we distinguish the cubes in the central

region from those which are close to the boundary of the domain.

Definition (2.1.11)[2]: We say that Q is central if sup,¢, dist(x, 0Q) > ?R, We
0

call W, to this subcollection of cubes.

We say that Q is peripheral if it is not central.

Taking ¢y, c; and the Whitney constants big enough, if Q is peripheral, then Q c
600y for some 1 < k < N. We call W, to each subcollection of peripheral cubes. Those

subcollections are not disjoint.

On the other hand we call windowpane to §,Q; N Q. We will choose §, in such a
way that the cubes contained in a windowpane will have “enough room over them”
inside Q,. Namely, taking 6, small enough we can grant that for every peripheral cube

Q € W, there exists a cube S above Q with respect to Q,  such that

SUpyeq dist(x, 0Q) > % due to the Lipschitz character of Q. Choosing &, even smaller,

if necessary, ;;5 > %R, so we can say that for any peripheral cube Q € W, there is
1
another cube S which is at the same time central and above Q with respect to Qy.

There is a minimal length ¢, such that any central cube Q € W ghas £(Q) > ¢,.
There is amaximal side-length ¢; such that any cube Q € U, Wy, has ¢(Q) < ¢,.We have

t1 = £, = R with constants depending on the Lipschitz character.

We provide a tree-like structure to the family of cubes so that we can refer to the

neighbor cubes easier.

Definition (2.1.12)[2]: We say that C = (Q4, Q ... , @y) is a chain connecting Q, and
Qu if Q; and Q;,, are neighbors for any i < M. We will call the “next” cube to N.(Q;) =

Qi1-
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We want to have a somewhat rigid structure to gain some control on the chains we

use, so we need to introduce the “chain function” [.,.]: W x W - U, WM. We state

three rules. The first one is on the Definition of chain function.

First rule:

e 1.1:Foranycubes Q,S € W,[Q,S] is a chain connecting Q and S.

e 12: Given two cubes Q,SeW, if [Q,5] = (Q,Q;...,Qy) then [Q,S] =

(QM' ELL Ql)

We will also write [@, S] for the non-ordered collection {Q;}Z, so that we can say

that Q; € [Q, S].

Given two cubes Q,S, we will use the open-close interval notation: (Q,S) :=
[Q,SI\{Q,5},[Q,5) := [Q,SI\{S}, (Q,S]: = [Q, SI\{@}

Now we can state the second rule, concerning the central cubes. For that purpose,

assume that we have fixed a central cube Q,.

S eI I
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T 3

R
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Figure (2.1): Second rule, 2.2.
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(a) [Q, Qo] (b)
[S, QO] (C)[Q,S]

Second rule:

2.1 For any central cube Q € W,, [Q, Qo] is a chain of central cubes connecting these two

cubes with minimal number of steps.

2.2 For any central cubes Q,S € W, with S € [Q, Q,], then [S, Qy]<[Q, Q,]. Thus, we
can define [Q,S] = [Q, Qu]\[S, Qo] (see Figure 2.1).

2.3 Given two different central cubes Q and S, let Qs € [Q, Qo] and S, € [S, Qo] be the
first pair of cubes which are neighbors. Then, [Q,S] = [Q, Q5] U Y[SQ,S] (see Figure
2.2).

This completes the central structure. For any cube Q < 6,Q, we define [Q, Qylx as a
chain connecting Q and Q, and such that for any cube S € [Q, Q1. S is either central or
above Q with respect to Qy, and in case S is central, then [Q, Qolx = [Q,S]x U [S, Qol,
where [Q, S]j is the subchain of [Q, Qy], limited by Q and S (see Figure 2.3)

Figure (2.3): [Q,Qolx for Q < 6,0Qy.

Now we can add the rule for peripheral cubes.
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Third rule:

3.1: Given two different peripheral cubes which are both contained in, at least, one
common windowpane Q,S € W, fixk and use [,],: Call Qs € [Q,Qylx and

So € [S,Qolx to the first pair of cubes which are neighbors. Then, [Q,S] =
[Q; QS]k U [SQiS]k where [Ql QS]k c [Ql QO]k and [S! SQ]k = [S! QO]k'
3.2: For any peripheral cube S, fix any k such that S € W}, and define [S, Qo] := [S, Qplx.

3.3: Given two diferent cubes Q and S in any situation different from (2.1), use rule 2.3

Definition (2.1.13)[2]: Given a Lipschitz domain Q , we say that
W,{Q,}¥ -1, Qo, [.,. 1}is an oriented Whitney covering of Q if W is a Whitney covering

of Q, Qy are windows as in (4), the cube Q, € W is a central cube of Q with respect to

those windows and [.,.] is a chain function satisfying the three rules explained before.

We say that the covering is properly oriented with respect to a window Q,, if the cubes in

the Whitney covering have sides parallel to the faces of Q.

Definition (2.1.14)[2]: If Q,S € [P, Q,] for some P and N[}},QO](Q) = S for some

j = 0, then we say that Q <S. We will saythat Q < Sif Q <Sand Q # S.

Definition (2.1.15)[2]: Given two cubes Q and S of an oriented Whitney covering, we

define the long distance

D(Q,S) = 4(Q) + £(S) + dist(Q,S)
Remark (2.1.16)[2]: One can see using the Lipschitz condition that, if two Whitney
cubes Q,S c %Qk, then

D(Q,S) = £(Q) + £(S) + dist,(Q,S)

where disty, is the usual horizontal distance between the vertical projections of Q and S in

the window Q.

Using that, the properties of the Whitney covering and the chain function rules 2.3,
3.1 and 3.3, one can also prove that, for P € [Q, Qs],
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D(P,S) = D(Q,S)
and
D(P,Q) = ((P)

Now we consider some properties of sums across regions and we relate them to the

Hardy-Littlewood maximal operator,

Mg(x) = sup fogdy

It is a well known fact that this operator is bounded in LP for 1 < p < oo.

Lemma (2.1.17)[2]: Assume that g € L},. and r > 0. Then

i.Ifn> 0,
Js 9)dx _infoMg
d+n ~ n
D(Q’SMD(Q.S) r
i.If n> 0,
Ji 9(x)dx
z ————— < inf Mgr"
d-n
D(Q,S)qD(Q,S) Q
iii. In particular,
Z f g(xX)dx s inf Mg £(Q)%
§<0 S Q
and, thus, ,
> syt ~ @)
§<Q

We used the Lipschitz character only to prove the last two inequalities.

Lemma (2.1.18)[2]: Leta > d — 1. Then
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D €S ~ (@)

S5<Q
with constants depending on a.

Proof. First assume that Q is not central. Selecting the cubes by their side-length, we can

write

o]

Z 0S)% = Z Z (277¢@)* = {’(Q)az 2774{S < Q : £(S) =277¢(Q)}
5<Q j=1 S<@Q j-1
($)=277¢Q)
Using W7 we get that
#{S < Q: €(S) = 2776(Q)} < 2@’
and thus
D ) s 0@ ) 27e@)
5<Q j=1
This is bounded if a > d — 1. By the same token, given an R-window Qy,
z 0(S)* < R® (6)
SC%Qk
If Q is central, use (6) in any region .

Lemma (2.1.19)[2]: Letb > a > d — 1. Then

4ON

———— < (g ((Q)*7°
SEW D(Q, )

Proof. Let us assume that Q € W,. First of all we consider the cubes contained in %Qk

and we classify those cubes by their side-length and their distance to Q:
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(5)? (2¢e@)’
sc%QkD(Q by = Z@JZ Sf(S)ZZkl’(Q) (2e(@)"

276(Q)=D(S,Q)< 2/+1¢(Q)

20" .
< t’(cz)a-bzz7 #(S: €(S) = 25(Q),D(S,Q) < 27*1¢(Q))

k,j
Notice that the value of j in the sum must be greater or equal than k because, otherwise,
the last cardinal would be zero.
Using again W7, we only have to bother about how many cubes of side-length
2k¢£(Q) can be fit in the section where one can find cubes at a horizontal distance smaller

than 27+t1£(Q)

(2.27+1 + 1)5(()))”1_1

#{S: €(S) = 2%¢(Q) and D(S,Q) < 2/*1¢(Q)} < C( 25000)

< Cz(j+3—k)(d—1)

Thus,

w
ﬂ a-b k(a+1-d)—j(b+1-d) a—b
D(Q,S)P < €(Q) Z Z 2k(a+1 j0+1-d) < ¢ 1(Q)

SCEQk j=0 k=—o

assoonasb>a>d—1.

On the other hand, when S ¢ %Qk the long distance D(Q, S ) is always bounded from

below by a constant times R (because Q < §,Q4), SO separating in windows and using
Lemma (2.1.19)

Z Dﬁc(zsga)b Z (dlamma Z Z O 2(Q)% b (7)

S¢Q SEW, j#k SEW

When it comes to a central cube Q € W, just apply an argument analogous to (7).
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We will fix a Whitney cube and approximate the function by some mean. Recall that the

Poincaré inequality says that, given a function f € WP (Q), with 0 mean in the cube,
If ey S C@IVSIlLreo)
with universal constants once we fix d and p.

If we want to iterate that inequality, we need also the gradient of f to have 0 mean on

Q. That leads us to define the next approximating polynomials.

Definition (2.1.20)[2]: Let Q be a domain. Let Q be a cube with 3Q < Q. Given
f € W™P(3Q), we define P{(f) € p™(Q) as the unique polynomial (restricted to Q)

of degree smaller or equal than n such that
foDPPYf dm = f,DPf dm
for any multiindex g € N® with |B] < n.
The existence of those polynomials is granted in the next lemma.
Lemma (2.1.12)[2]: The polynomial P3;" f € p™~1(Q) exists and is unique as
long as we fix Qand f € W"~1P(3Q).
Furthermore those polynomials have the next properties.
P1. Let Q be a cube with center x,. If we consider the Taylor expansion of

-1

P f () = XQO) Tyena Moy (v _xq)” (9)

[yl<n

then the coefficients m,, are bounded by

n—-1
oyl < en D IVFl o 2@
j=lyl

P2. Givenany 0 <j < n,any cube Q and any function f € W™ 1P (3Q),

f V(P  f — f)dm =0.
3Q
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P3. Furthermore, if f € W™P(3Q),for1 < p < oo we have
If = P3 oo < CE@MIVP Il peo
P4. Given asquare Q c R%,if p € P71,

D@y, Q)"
lp(I| < CW'IP“L”(Q)

where y € R%, and D(y, Q) = dist(y, Q) + £(Q).

P5. Given an oriented Whitney covering W with chain function [., . Jassociated to Q, and
given two Whitney cubes Q,S € W and f € W™P(Q),
_ £(8)*D(P,S)"*
IF =P Flagy S D, —geyar— 17" lien)

Pe[s,Q]

P6. If |a| < n,

DUPI f(y) =Py, (D) ()

Proof. Notice that (8) is a triangular system of equations on the coefficients of the

polynomial.

Indeed, if the polynomial exists and has Taylor expansion (9), then
_ B! B-
DYPI 5) = ) mop (v —x0)"
£ B

Fix y. When we integrate on the cube 3Q,

JC3QDyf dm = JcquyP?cEl fdm= Z mQ,Bﬁ(E{)(Q)) JCQ(0,1)yﬁ_ydy
B=

- Z Cpymop£(Q)F

Bzy

which is a triangular system of equations on the coefficients m g.

Solving for m,,,, we obtain the explicit expression
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Moy = —f3QDVf dm — Z Cpymopf(Q)IFY! (10)

B>y

For |y| = n — 1 this gives the value of mg,, interms of DY f,
1
my, = ﬁfmmf dm.

Using induction on n — |y| we get the existence and uniqueness of P%,* f. Taking
absolute values we obtain P1.

In P2 we write the Definition of the polynomial in a new fashion. This allows us to iterate

the Poincaré inequality

If = P37 < c||vf = Pt £l < CHQMIV Il o)

< ...
LP(3Q) — LP(3Q) —

that is P3.
Property P4 is left.
To prove P5, we consider the chain function in Definition (2.1.13) to write
If = P32 Fllagsy < IF = P Fllaesy + ) 1PE £ = Pt
PE[S,Q)

where we write N(P) instead of Nigo(P) from Definition (2.1.12). Using the

equivalence of norms of polynomials of bounded degree and the property P4,

||P§l;1f 3N(P)f||L1(S) ”P 3N(P)f||L°°(S) ( )d

£($)D(P, ™1
= 1P32" f = Piiorf Nl o spnanery ~2pynt

it p £(8)D(P, )"
” 3p [ — 3N(P)f||L1(3Pn3N(P)) 2(P)r-1¢(P)4

Taking into account P3 we get
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) B 2($)4Dp(P, S
“f — Pngf“Ll(S) < Z ”f_ P§Q1f||L1(3p) g(P)d+n—1
]

PE[S,Q

) £(5)4D(P, $)"
= IV*fll 1 czpy 2(P)d-1
PE[S,Q]

Finally, to prove P6, notice that for || < n — |a| — 1, we have

JchDﬁ(DaP%lf)dm = J£3QDB+aP§l(51fdm = JC3QDB+afdm = JC3QDB(Daf) dm

From now on, we assume T to be a smooth convolution Calderén-Zygmund operator of
order n. Recall that for f € LP and x & supp(f),

TF(x) = f K f () dy

where the kernel K has derivatives bounded by

VK ()| < |x|§+j for0 < j <n (11)

Given a function f € W™P(Q), we want to see that its transform T f is in some
Sobolev space and, thus, we need to check that its weak derivatives exist up to order n.

Indeed that is the case.

Remark(2.1.22)[2]: Using that S is dense in any Triebel-Lizorkin space Ej, with

finite exponents p and g and that W™? = FE™, we conclude that forany f € W™P(R%)

P2’
DT(f) = TD*(f) (12)
and, thus, the operator T is bounded in W™ (R%)

Definition (2.1.23): Let K € W (R*\{0}) be a smooth convolution Calderon-

Zygmund kernel of order n, f € LP,a € N% a multiindex with |a| < nand x ¢

supp(f). We define (13)

T@F(x) = f DK (x — y)f(y) dy
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Lemma (2.1.24)[2]: Let T be a smooth convolution Calderén-Zygmund kernel of
degree n and f € LP. Then Tf has weak derivatives up to order n in R*\suppf .

Moreover, for any multiindex a € N¢ with |a| < n,and x & suppf,
DATf(x) = T f(x)

Proof. Take a compactly supported smooth function ¢ € C5°(R%\suppf). We can use

Tonelli's Theorem and get

Tt = [ G - nre) dy ) dx
supp¢ Ysuppf

_ f j DK (x —y)p(x) dx F(y) dy.
suppf Ysuppop

Using the definition of distributional derivative and Tonelli's Theorem again,

(T@F, p) = (—1)° K(x -y)D*¢p(x) dx f(y) dy

suppf jsupp(b

= (~1)® j j K(x-y)f () dyD“(x) dx = (—~1D)N(T f, D)
supp Ysuppf

Lemma (2.1.25)[2]: Given a function f € W™P(Q), the weak derivatives of Tf in

Q) exist up to order n.
Before proving this, we consider the functions defined in all R<.

Proof . Take a classical Whitney covering of Q, W, and for any Q € W, define a bump

function ¢ € C5° such that x;o < @q < X3q. O the other hand, let {yo} _, bea

partition of the unity associated to {EQ :Q € W} Consider a multiindex a with |a| =

n. Thentake £,° = @, - f,and f;2 = f — £,° . One can define
90) = ) W) (TP + T )

QEW

This function is defined almost everywhere and is the weak derivative D*Tf.
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Indeed, given a test function ¢ € C;°(Q), then, since ¢ is compactly supported in
Q, its suppor tintersects a finite number of Whitney double cubes and, thus, the following

additions are finite:

(9. 8)= () e - TDUL +1q - TOLL )

QEW

= Z(TD“le,qbQ) + Z<T<“)f2‘9,¢>Q), (14)

Qew QEW

where ¢o =g - ¢
In the local part we can use (12), so
(TDf2 o) = (=DI*UTL2,D%(¢o))
When it comes to the non-local part, bearing in mind that fZQ has support away form
2Qand ¢, € Cy°(2Q), we can use the Lemma (2.1.24) and we get
(TOLL, o) = (—=DITL?, D%bq)
Back in (14) we have
(g.8) = Y (~DIEUTLL,D%g) + > (~DIUTLL,Dg)
Qew QEW

_ z (—DITF, Do) = (—DI*KTf, D)

QEW

thatis g = D*Tf in the weak sense.

Key Lemma (2.1.26)[2]: Let Q be a Lipschitz domain, W an oriented Whitney
covering associated to it, T a smooth convolution Calderén-Zygmund operator of order

n € N. Then the following statements are equivalent:

i. Forevery f € W™P(Q),
ITfllwnr@y < Clifllwne
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ii. Forevery f e W™P(Q),

DT I < CM Wnngay

QEW

Proof. Given a multiindex a with |a| =n , we will bound the difference,

Z ”DaT(f - P f)”Lp(Q) ~ ”V f”Lp(Q) (15)

QEW

Given a cube Q € W we define a bump function ¢, € Cg° such that X3y S Po =
2

X20and ||V gql| ~£(Q)/ forany j € N. Then we can break (15) into the local and

the non-local parts as follows:

;V||D“T(f—1’?61f)||fp(@
s ) [loer (volr - Pr0);

S LP(Q)
a n—1\[IF
+ 3 0Tt = 90)(f = PEg Ay = D+ @ (16)
QEW
First of all we bound the local term in (16),
® = Soew [0°T (0o = P3N,y S IV Wovcer (17)

To do so, notice that ¢, (f — P%;'f) € W™P(R?) and, by (12) and the boundedness of

Tin LP,
[T (90 = P55 1)) ]y = 1Ty 2 (907 = P3G )],

= C||D%(po(f — P3, f))”Lp(zo)

LP@Q

where ||. ||, ») stands for the operator norm in L? (RY).

Using first the Leibnitz formula (2), and then using j times the Poincaré inequality

(which can be used by the property P2 in Lemma (2.1.21), we get
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|07 (4o(r — P250)| Zu V00l moop 177 = P

LP(Q)

Z a5 APV = P =PIV i

Summing over all Q we get (17).

For the non-local part in (16),

@ =Y 1I0°T(xa = 9)(f = P3" Nl

QEW

we will argue by duality. We can write

@ = j IDT[(x0 = 90)(f — Pig" )] ()] g(x)dx (18)

Iallzpe1 &

Notice that given x € Q, by Lemma (2.1.24) one has
DT[(xa = wo)(f — P3g*f)]@)
:fa DK w) (1~ pow)) (F(w) — P35 f(w)) dw

Taking absolute values and using Definition (2.1.1), we can bound

_ Pn—l
|DaT[(XQ B (pQ)(f - P’§51f)](x)| = fn\iQ |f(w|)x - W?ig+§(W)| dw

If = P35 s
= Z D(Q,s)n+d (19)

SEW
By property P5 in Lemma (2.1.21) we have that

2(8)p(P, St
IF = Pl s D — a7 e

Pe[s,Q]

so plugging this expression and (19) into (18), we get
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p< sup 2f g(x)dx Z £ D, )" IV Il spy
a-1 n+d
lollger & &5, HP)TD@.S)

Finally, we use that P € [S, Q] implies D(P,S) < D(Q,S) (see Remark (2.1.16),

d n
@% < sup .[' g( )d f(s)d ||V fI|L1(3P)d
"g"p—lQSeW PE[s,Sg £(P)4~1D(Q, )™
LNV 1l 2 apy
+ e, L 9 gpyaip(g,synra ~ 21 H 22

Q.SEW P€[Qs,Q)]

We consider first the term 2.1 , where P € [S,S,] and, thus, by Remark (2.1.16),
D(Q,S) = D(P, Q). Rearranging the sum,

21s

v Jy 90G)dx
aup S f”ﬁf_(f” 2 dﬂZ{’(s)d
lglps1 & €(P) 5 D@ P) &

By Lemma (2.1.17),
D e© ~ £y
S<P

and

Jo 9@dx . inf,e5p Mg(x)
DQ P T T a(P)

We perform a similar argument with 2.2 . Notice that when P €[Q,Qs], w
have D(Q,S) = D(P,S), leading to

22< su v f”Ll(sp)zf o) 2(5)¢
2 S ||g||i,21 4 £(P)d-1 D(P S)d+1

By Lemma (2.1.17),
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2f g(X)dx < inf Mg(x)e(P)*
X€E3P

Q<P
and
£(5)¢ 1
— D(P,5)*+! ~(P)
Thus,
vr inf;p M
21+ 225 sup IV N car) infor TePyts sup Y IV - Mgllaap

d-1
lglps1 & €(P) ¢(P) lolly=14

and, by Holder inequality and the boundedness of the Hardy-Littlewood maximal

operator in LP

1D
(ZIIV”fIILp(P)> ( suplangnL,,(p)>
llgllLp=

Section (2.2): Carleson Measures and a Necessary Condition

Theorem (2.2.1)[2]: Let Q be a Lipschitz domain, T a smooth convolution Calderon-
Zygmund operator of order n € N and p > d. Then the following statements are

equivalent:

a) The operator T is bounded in W™P(Q).
b) For any polynomial restricted to the domain, P € p™ 1(Q), we have that
T(P) € W™P(Q)

Proof. The implication a)— b) is trivial.
To see the converse, fix a point x, € Q. We have a finite number of monomials

Py(x) = (x — x)*xq(x) for multiindices A € N®and |A| < n, so the hypothesis can

be written as (20)

ITP)lwnr@) < C
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Assume f € W™P(Q). By the Key Lemma, we have to prove that

_ P
Z 1T (P53 Iy S 1 lmne
QEwW
We can write the polynomials
_ 4
PR F) = xa() ) moy(x —xo),

lyl<n

where x,, stands for the center of each square Q. Taking the Taylor expansion in x,for

each monomial one has

P FO) = e Y may Y (1) G —x0) (g —x0)

lyl<n 0<sAs<y
Thus,
VTP N0 = ) may ) (3) (e —x0) T VERIO). (1)
lyl<n 0<sAsy

Recall the property P1 in Lemma (2.1.21), which states that

n-1 n-1
Moyl < € ) IV Fll sy @ M S Y [VIF] oy dicmei (22)

J=lvl J=lvl

Raising (21) to the power p, integrating in Q and using (22) we get

17PNy S D NV F gy D diamaU= A0 [T TP)Iy

j<n 0sAsy
i ~1IP
S L2 O WL T
j<n 0<As<y
with constants depending on the diameter of Q, p, d and n. By the Sobolev Embedding

Theorem, we know that ||V/£|| < C||vif|[w*P(@Q)as long asp > d. If we add

L*(@)

with respectto Q € W and we use (20) we get
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D 7T Dy = DNV gy D 1T TRy = I ey

Qew j<n 0sAsy

Lemma (2.2.2)[2]: Let Q be a Lipschitz domain, T a smooth convolution Calderén-

Zygmund operator of order n € N. Then the following statements are equivalent:

i. Forevery f € W™P(Q),

ITfllwne) < Clifllwne (23)

ii. Forevery window Q and every f € W™P(Q) with f|s,0)c = 0,

D AT ALy < M Bymaga (24)

QeWq

where the whitney covering W, is properly oriented with respect to Q, i.e., with the

dyadic grid parallel to the local coordinates (see Definition (2.1.13).

Sketch of the proof. To see that i) implies ii) just use the Key Lemma with an appropriate

dyadic grid.
To see the converse, one can choose a finite a collection of windows

{QiIN_, with N ~ H*"1(9Q)/R% " such that‘:—;’Qk is a covering of the boundary of Q,

call Q,to the inner region Q\ U % Qy, and let {1} be a partition of the unity related to the

covering {Qo} U {6oQx}¥—, . Consider a function f € W™P(Q). Since of €

W™P(R%), one can see that

IT Wollwrry < Cllof llwnray

Now, following the proof for the Key Lemma but replacing f by v, f and using an

appropriate Whitney covering for every single window, one can get

ITf oy < € Ieflwmr
k
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Choosing 1 as bump functions with the usual estimates on the derivatives [|[V/; | . <

R~/ , one can get (23) using the Leibnitz formula.

We stated in terms of trees, and relating measures in a Whitney covering with

measures in trees.

[}

u

Figure (2.4): y € Shy(x).

Definition (2.2.3)[2]: We say that a connected, loopless graph 7 is a tree, and we
will fix a vertex o € T and call it its root. This choice induces a partial order in T, given
by x = yif x € [o,y] where [o,y] stands for the geodesic path uniting those two

vertices of the graph (see Figure (2.4)). We call shadow of x in T to the collection
Shy(x) ={y € T:y < x}

We say that a function p : T — R is a weight if it takes positive values (by a function

we mean a function defined in the vertices of the tree).

Definition (2.2.4)[2]: Given h: T — R, we call the primitive Ih the function

Theorem (2.2.5)[2]: Let1 < p < oo and let p be a weight on 7" . For a nonnegative

function u, the following statements are equivalent:
i. There exists a constant C = C(u) such that
IThllpgy < CllRllpg)

ii. There exists a constant C = C(u) suchthatforanyr € T
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p

kD) | PP C Y @
x€Shr(r) \yeShr(x) x€Shr(r)

Forany 1 < p < oo, we say that a non-negative function p is a Carleson measure
for (1, p, p) if there exists a constant C = C(u) such that the condition i) is satisfied.
Given an R-window Q of a Lipschitz domain Q with a properly oriented Whitney

covering W, for any x € %Q, we write x = (%,x;) € R* 1 x R. Given a cube Q c

%Q, we define the shadow of any point x € Q as
g 7 1
Sh() = {y €@ N0 tyy < xgand 1% - Il < 72(Q)}.

Notice that if x is the center of the upper (n - 1)-dimensional face of Q, the vertical
projection of Sh(x) (which is a (n - 1)-dimensional square) coincides with the vertical

projection of Q (see Figure (2.5)). Finally, we define the vertical extension of Sh(x),
— 1
Sh() ={yeQ N0 ¢ ya< xg + 26Q and £ — Il <56@)}.

More generally, givenaset U C %Q we call its shadow

Sh(U) ={y € Q nQ: there exists x € U suchthat y; < x4 and x = y}.

Notice that we have a proper orientation in the Whitney covering. Thus, given a Whitney
cube Q, we call the father of Q, F(Q) to the neighbor Whitney cube which is immediately
on top of Q with respect to the vertical direction. This parental relation induces an order
relation (P < Q if P is a descendant of Q). This would provide a tree structure to the
Whitney covering W if there was a common ancestor Q, for all the cubes. This does not

happen, but we can add a “formal” cube Q, (root of the tree) and writing Q < Q, for any
Q c%Q, since we will only consider functions and measures supported in the

windowpane §,Q NQ . If we call T to the tree with the Whitney cubes as vertices

complemented with Q, and the structure given by the order relation <, then for any

Whitney cube Q c %Q,
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Sh(Q):UP: U P

P<Q PeSht(Q)

(see Figure (2.5)).

Proposition (2.2.6)[2]: Given 1 < p < o and an R-window Q of a Lipschitz domain
Q with a properly oriented Whitney covering W, consider the weights p(x) =
dist(x,00)% P, p,,(Q) = £(Q)*P . For a positive Borel measure u supported on

6oQ N Q, the following are equivalent:

i. Foranya € §,Q0 NnQ

. ) d
j~ p(X)l—P (M(Sh(x) N Sh(a)))pwxaﬂ)d < C,u(Sh(a))

Sh(a)
ii. Forany P € W,
P
YD | pw@r < ey . (25)
Q<P \P=Q Q=P

When d = 2 and the domain is a disk, the first condition is equivalent to u being a
Carleson measure for the analytic Besov space B,(p), i.e., for any analytic function

defined on the unit disc D,

a1 £ dm(z)
1 gy S IFIE ) = IF@IP + f (A= 12 DPp@)

Definition (2.2.7)[2]: We say that a measure satisfying the hypothesis of the previous
theorem is a (p, p)-Carleson measure for Q (or just a Carleson measure for Q when there

is no risk of confusion).

We say that a positive Borel measure u is a Carleson measure for a Lipschitz domain

Q if it is a Carleson measure for any R-window of the domain.

Now consider a given point x, € . We have a finite number of monomials

Py(x) = (x — x9)*xq(x) for multiindices 2 € N4 and |A| < n. Then,
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Theorem (2.2.8)[2]: If for every multiindex |1] < n
dua(x) = |V'TPy(x)|Pdx

defines a Carleson measure, then T is a bounded operator on W™P ().

e

Q

Figure (2.5): The shadows Sh(x) and Sh(Q) coincide when x is the center of the upper
face of the cube. Furthermore, P ¢ Sh(Q) ifand only if P € Shs (Q).

Proof. Consider a fixed R-window Q and a properly oriented Whitney covering W, i.e.
with dyadic grid parallel to the window faces. Making use of Lemma (2.2.2), we only

need to bound

DA TP I,y < CIF
QeEwW

for every f € W™P(Q) with f]|(5,0)c = 0.

Consider a function f € W™P(Q) with f||s,0)c = 0. Using the expression (9) and

expanding it as in (21) at a fixed point x, € Q, we have

DT Ay S D D Craa ). ImoyPITTEIE,

Qew lyl<ngsasy Qew

Moreover, taking induction on (10), the coefficients are bounded by
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moyS ) AQF Ty [f2oDPfdm| s Y CpyalfaoDPf dml
|Bl<n: Bzy |Bl<n: Bzy

SO

AT gy s D D 1F50DPf dml’ (@),

Qew |Bl<n Qew
0<A<p

Taking into account that f|(s,q)c = 0, we have f3pDP f dm = 0 for P close enough

to the root Q. Thus,

fsQDBf dm = Z (Jc3PDBf dm — Jc3N(P)DBf dm)
P€[Q,Qo0)

and we can use the Poincaré inequality to find that

p
DT gy s D Do | D e solvDPflam | 1wi(@). (26)
IBl<n z
QEW ﬂ_;ﬁQEW P2Q

By assumption, u; is a Carleson measure for every |A| < n, i.e. it satisifies both

conditions of Proposition (2.2.6). By Theorem (2.2.5), we have that, for any h € [P (pw),

p
YD e | m@s< ¢ ) @re@r (27)
QeW \PzQ QEW
where py, (Q) = £(Q)*?
Consider multiindices B and A with |B],|A] <n and take

h(P) = £(P)$3p VDB f|dm in (27).

Using Holder inequality and the finite overlapping of the triple cubes, we have
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p

D D P ap (9DFfldm | 1@ < € ) (F3 IVDPfldm)” £(@)°

QeEW \ P2Q Qew

<> [ 1wotsr ame@ ¥ s [ worsp am.
3Q

QEW

Plugging (28) into (26) for each B and A, we get

D IV Iy < CI I mncay

QEW

Remark (2.2.9)[2]: Given g € Ly(R%), consider the function

(¥ a)w)
R (2 —d)wglx — y|d-2

F(x):=N [(Rc(ld_l)g)da] (x) = [, do(y) forx € R¢

R((id—1)

For d> 2, where N denotes the Newton potential (1), stands for the vertical

component of the vectorial (d — 1)-dimensional Riesz transform R“@1 and do is the

hypersurface measure in dRE. This function is well defined since

z)|dz do
Iy =] o] = 190 2 o)

Z
-[, ( [ Rdﬁd"@) 9@) dz 5 Tl

and, thus, the right-hand side of (29) is an absolutely convergent integral for all x € R¢

55

with F(x) < lx"‘qlgiz. By the same token, all the derivatives of F are well defined, F is
d

C*(R%), harmonic and VF(x) = R@ D [(Réd‘l)g)da] (x). When d = 2 we have to

make the usual modifications.

Lemma (2.2.10)[2]: Consider a ball B; c R% centered at the origin with radius r;.

Letg € L! (Rf N iBl)and
h(x):= N [(R‘(id_l)g)da] (x) — Ng(x)
Then h has weak derivatives in R% and for any ¢ € C°(R2),
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f V¢ -Vhdm = ¢g dm.
R¢ R¢
Furthermore, for any x ¢ B, we have
—= gl ifd > 2,

[x]

|h(x)| =

xz2|log x|

(oglxll + 1 + n =& gl if d =2,

and
|U X | ~ I I 1 + Ogl | g

Remark (2.2.11)[2]: Notice that h can be understood as a weak solution to the

Neumann problem

{—Vh(x) = gx) ifx € RY,
dqgh(y) = 0 if y € OR%.

Sketch of the proof of Lemma (2.2.10). Let us define F as in (29). Then,
VF = R4 |(RS ™V g)do]
and h = F — Ng. Using Green's identities we would finish, but we have to check the
behavior of the integrands when approaching the boundary.
Given & > 0, consider the truncated versions g.(x) = g(x)x(x,>e(x) . Then,
writing F, = N[(Réd"l)gg)da], it is an exercise to check that F,is C' up to the

boundary, with d4F,(y) = R\ " g.(y) for all y € 9RL. Consider ¢ € ¢(R?). Using

the Green identities, since F, is harmonic in R¢, we have

j V¢ -VE.dm — | V¢ -VNg.dm
R R
+ +
_ (a-1) _
= $0qF:do — $Ry “gedo + | ¢g.dm = $9:
aR¢ aR¢ R¢ R¢
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(31)

(32)

(33)



Taking limits in the previous identity one gets (30).

To prove the pointwise bounds for Vh, recall that
Vh(x) = R(@-1 [(Réd_l)g)da] (x) — R4 Vg(x).

Given x € R¥\By, since supp(g) c iBl,

9(2)(x — 2)

|x — z|@

4ol < llglly (34)

P [x]a—1 .

|[R@Dg(x)| = cf

By

On the other hand, consider z € supp(g) and x & B, . Then, for y € dR¢ n
B(0,]x|/2) one has |x — y| = |x|, for y € dRE N B(0,2|x|)\B(0,|x|/2) one has

|y — z| = |x|and otherwise |y — x| = |y — z| = |y|. Thus,

j (J g(2)zyg dz (x —y)da(y))‘
arE \/B, ly —z|¢  |x —y[?

f <f IQ(Z)lzadZ>d0(3')
aR%NB(0,|x|/2) \/B, ly — z|¢ ) |x[¢7?

(J l9(2)|z4 dZ) do(y)
d _ d-1
ORINB(4|xl/2\BOxI/2) \VB;  IXI lx — y|

-0 (8" g)ae] 0] = <

N

—+

d
+ 19(2)|24 dz) ly‘;% (35)

LRz\(B(x,|x| /2)UB(0,|x|/2)) (Ll

: llgll1 do(y) _ 1
The first term can be bounded by C Ixlmbecause faRz S = C - The second
can be bounded by C % log %| using polar coordinates and the last one can be

bounded by ¢ %triviauy. Thus,

7"1”9”1
||

Xd
| x|

|R(d‘1) [(R((id_l) g)da] (x)| s ||9|C‘|gd”—11 + T1||)|C‘il|1 log

proving (32) since r; < [x].

To prove the pointwise bounds for h, recall that
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h(x) =N [(Réd_l) g) da] (x) — Ng(x)

When d > 2 we use the same method as in (34) and (35) using Newton's potential instead

of the vectorial (d — 1)-dimensional Riesz transform to get

llgll4 rillglls
h5(x)| < +
|h* ()] |x[4-2 |x[d-1

When d = 2 the Newton potential is logarithmic, but the spirit is the same. In this

case, arguing as before,

|x| + |x|log |x| + x, log x,
|x |2

|R* ()| < log |xlllglly +rllglls

Proposition (2.2.12)[2]: Given a window Q of a special Lipschitz domain Q with a
Whitney covering W, a finite positive Borel measure u supported on §,Q with
u(Sh(Q)) < CL(Q)*P foreveryQ € W, (36)

and given f € W1P(Q) define the Whitney averaging function

Af(x) = Z X () f3of )dy (37)

QEW
If A: WP(Q) - LP(u) is bounded, then u is a (p,p)-Carleson measure for p(x) =
dist(x,0Q)¢P.

Proof. We will argue by duality. Let us assume that the window Q = Q (O, g) is of side-

length R and centered at the origin, which belongs to dQ. Notice that the boundedness of

A is equivalent to the boundedness of its dual operator
A 1P - (W)

We also assume that u = 0 in a neighborhood of dQ. One can prove the general case by
means of truncation and taking limits since the constants of the Carleson condition (25)

and the norm of the averaging operator will not get worse by this procedure.

Fix a cube P. We apply the boundedness of A to the test function g = ygpn(p) to get
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MGy S 19,y = HSRCP)).

Thus, it is enough to prove that,

> u(sh@) 6@ s 14l o+ u(Sh(P)) (38)

Q=P (wrr@)
Given any f € WP(Q),using (37)
* X3
wa.f) = [aaran= 1{ D Bfegdu] am
0 Qew

where we wrote (., . ) for the duality pairing. Consider

glx) := X3§§x) fogdu= z X3Q(x)¢n(_5?Q)' (39)

Qew Q<P

Then,

(Ag,f) = j af dm

Q

Notice that g is in L* with norm depending on the distance from the support of u to dQ

by (36), but the norm of g in L! is well known:

gl = n(Sh(P)).

P )
//\ \\h—f”"//’f'\
A #,, — -
AT NN AT TR
A ~L | LA T
g i NN B g 5 g o\ - :
/ NSNS soPprs N C
% ¥ %%o i $§ 7
NNNSS T
™ 1 "
NN
Sh,(Q)



Figure (2.6): We divide R¢ in pre-images of Whitney cubes.

Consider also the change of variables w : RY - R%, w(%,x4) = (4, x4 + A(X))
where A is the Lipschitz function whose graph coincides with dQ, and to any Whitney
cube Q assign the set Q,, = w~(Q) and its shadow Sh,,(Q) = w~1(Sh(Q)) (see Figure
(2.6)). Then, for any x € R we define

go(x) := G(w(x))|det(Dw(x))| (40)

where det(Dw(.)) stands for the determinant of the jacobian matrix. Notice that still
lgollz, = lgll., = u(Sh(P)), and

o) = rgam = fow- gom. (41)
Q R¢
The key of the proof is using
h(x) = N|(RSVgo)do] () — Ngo(), (42)

which is the solution h € L},.(R%) of the Neumann problem

jdvqb.Vhdm = dcpgo dm forany ¢ € CZ(RY) (43)
R+

R+
provided by Lemma (2.2.10).

We divide the proof in four claims:

Claim (2.2.13)[2]:
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(A*g,qboa)_l):deh.Vq,’) forany ¢ € c2(R%)

Ry
Proof. Since w is bilipschitz, the Sobolev WP norms before and after the change of

variables w are equivalent. In particular, for ¢ € CC‘*’(R__CE), powt e WwP@land we

can use (41) and (43).

Now we look for bounds for [|0ahll,5(sn,,py)- The Holder inequality together with a

density argument would give us the bound
”A*g“(wlm(g))* < ”Vh”Li’ + /J(Sh(P)),

with constants depending on the window size R, but we shall need a kind of converse.

Claim (2.2.14)[2]:

10ahlls = IIA*gll( «+ u(Sh(P))

WP ()

Proof. Take a ball B, containing w~* (2Q). The duality between LP and LPgives us the
bound

f¢adhdm|.

loghll,» S sup
1P (Sha(P) pec®(BinRY)

llllp=1
To avoid problems in the boundary, we will consider h® to be the symmetric extension of
h with respect to the hyperplane x; = 0, h®(x,x4) = h(x,|x4|). One can see that h®
has global weak derivatives d;h° = (ajh)s for 1 <j <d-—1 and 9;h°(%,x4) =

—04h(x%, —xy) forany x; < 0. Thus,

f ¢d, h® dm| : (44)

l04Rll,» S sup
1P (Sha (P)) PeC®(By)
lgpllp<1

Given ¢ € CZ(B,), one can consider the function ¢(x) = ¢(x) — ¢p(x — ryey), where

ey denotes the unit vector in the d-th directionand r, = %diam(Bl), and take

(45)
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xd~
Ip(x) =f o(x,t)dt
Then, we have I, € CZ(3B;) with 941, = ¢ in the support of ¢ and ||6d1¢,||Z =
2ll¢ll5. Thus,
J Poqh*dm = (941¢,04h°) — f3Bl\Bl 0qlp0gh® dm

where we use the brackets for the dual pairing of test functions and distributions. Using
Holder's inequality and the estimate (32) one can see that the error term in (46) is

bounded by

[ loatsahe| am < oalgll Noah*l pconen < Cllgllou(sh(P))
3B1\B1

Notice that the constant C only depends on the Lipschitz constant &, and the window

side-length R.

It is well known that the vectorial d-dimensional Riesz transform,

ROF() =

d+1

. d s
P-UfRde()’) (y) foranyf €

is, in fact, a Calderon-Zygmund operator and, thus, it can be extended to a bounded

@ ,_ p@
4

operator in LP. Writing Ri(d) for the i-th component of the transform and R;j

Rj(d) for the double Riesz transform in the i and j direction, one has ;1 = Ri(l.d) Aly =

ARi(l.d)Id, by a simple Fourier argument. Thus, writing f, = Rg‘fi)ld,, we have Afy =
0aaly, SO
(0alg, 0gh®) = —(04alg, h°) = —(Afy, h®). (48)
We claim that
~(8fg, %) = —lim (A, %) = lim (Vf;, VAY) (49)
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where ¢ is a given function in C°(By), fp = Rf{fi)ld, with I, defined as in (45) and
fr = @rfp With @, a bump function in CZ°(B,,(0)) such that g oy < @ < X5,,(0)
IVo,| < 1/rand |Ap,| S 1/r2. The advantage of f; is that it is compactly supported,

while only the laplacian of f, is compactly supported.

Recall that Afy = 9441y € CZ(R%) so, by the hypoellipticity of the Laplacian
operator, f € C*(R%) itself. Thus, the second equality in (49) is trivial since f, are CZ

functions. It remains to proof

(Af, — Afp,hS) =5 0 (50)

To prove (49) recall that Af, is compactly supported, so taking r big enough we can

assume that

A[(Qpr - 1)fgb] = (A¢r)f¢ + 2V§0r : qub,

SO

follh*l |Vfs|IR®]
|(AfT—Af¢,hS)|Sj |¢r|2 +| ¢r| dm

B2r(0)\B(0)

It is left for the reader to prove (50) plugging (31) in this expression. One only needs to
use that fy, and Vf, are in any L7 space for 1 < q < oo,

We can use f°(x,x;) = f.(x,—x4) by a change of variables and, by Claim
(2.2.13), we obtain

ijr- VhS dm =j Vf, - Vhdm +J VLS -Vhdm = (A*g, (fy + f5) cw™ ).
R R¢

Summing up, by (46), (47), (48), (49) and (51) and letting r tend to infinity, we get
|| ¢ 0ae am| 5 .1y + £5) e 0™ + g lru(shP)).
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Using Holder inequality in (45) we have that ||I4|| < Cligll,. Now, 9;f, = 9;R\D1, =

Ré‘?adld,, sousing the boundedness of thed-dimensional Riesz transform in LP we get

Wfsllyw = Wl + 19750, < (sl + lloalsll ) < N, (53)
Summing up, by (44), (52) and (53) we have got that

10ahlle s sup  A"g,f o ")+ u(Sh(P)).

f”WLP(Rd)Sl

On the other hand, |If o w ™|, 1p@ =~ IIfIIW1,p(R$) for any f, so we have

96l S sup  Ag.f o@D+ W(SKP)) = Al 1

f IWl,p(Rd)Sl

y + u(Sh(P))

that is Claim (2.2.14).

We can make the big step towards the proof of (38).

Claim (2.2.15)[2]:

p
P p-d P Zd
D u(she@) e s Wkl + | | [ E 2 gw@)dz | dx
Q<P Q=P ¢ {Z zd>xd}
-D+Q@ (54)
Proof. Notice that in (42) we have defined h in such a way that
0gh(x) = RY™V [(RYVgo)do| (x) = RV go(x)
-1 <2dedJ do(y) X4 —Zd> )d
- z)dz
wa Joa \ Wa Japaly = 218 —y1@ " Jx 204 )9
Given x,z € R, consider the kernel of R*™ [(Réd"l)(-)) da] — RV,
2 d
Glx,z) = xdzdf :(}’) _+ xd—de’ (55)
Wa Jagaly — z|*|lx — y|* |x — z
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so that

-1
dzh(x) = —f G(x,z)g, (z)dz (56)
Wq Rf
We have the trivial bound
Zg — Xgq
G(x,z) + m)({zd>xd}(z) = 0, (57)

but given any Whitney cube Q < P, if z € Sh,(Q) we can improve the estimate. In

this case,

ey d T
aRznw-l(Sh(z))W z|* zg

f do(y) _ f do(y) 1
7]

rdnsh,@ |V — zI°

and, thus, when we consider x € Q, and z € Sh,(Q) we have

Zg —

Xd
m%{z‘pxd}(z) =

Glx,z) + Zxdzdf da(y)
3

Wa Jogaly — z|%x — y|?

- 2@z do(y) _ ¢(Q)
T @ Jarnshgiy 1y — 21t T L@

(58)

By the Lipschitz character of Q we know that | detDw(z)| ~ 1 for any z € R%.
Thus, by (39) and (40), given Q <P we have

H(sh@) =Y us) = |

Gw)dw ~ f Go(2)dz
& Sh(Q)

Sh,(Q)
Forany x € Q, using (57) and (58) together with (56) we get

Zg —Xg
z|4

ush@) = | 60 a@ @+ | §(0(2)dz Q)"
Ry

z:zd>xd} |x -

Za 'le‘jl §(w0(2)dz £(Q)* .

< 10ah(O1£(Q)% + f

{z:zg>x4} |x -
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Then, raising to the power p, averaging with respect to x € Q,, and summing with respect

—d

to Q < P with weight p,,(Q) = {’(Q)p 1 since (d—1)p + p% =

QU

0, we get Claim
(2.2.15).

We bound the negative contribution of the (d — 1)-dimensional Riesz transform in
Claim(2.2.15), i.e. we bound (2) .

Claim (2.2.16)[2]:

@ = Zf (J;”dnd}lx_ (a)(z))dz )Ij dx Su(Sh(P)).

Q<P

Proof. Consider x,z € R¢ withx,; < z; and two Whitney cubes Q and S such that
x € Q,andz € w 1(35)\w™1(3Q), then

Zqa~ Xa _ dist(w(z),00) - £(S)
lx-2z|¢™ D(S,Q% T DS, QF

On the other hand, when 35S n 3Q # @,
Zg — X

f Pra = Xal ) < p(0) ~ €(5).
0)_1(3Q) |X - ZI

Bearing this in mind and the fact that, by (39) 7(w(2)) S Yiew xaLw(2) —— 4@ one

m(3L)’

gets

/ P
0= (S

d
Q<P S<P D(s, Q)

Let us consider a fixed € > 0 and apply first the Holder inequality and then (36). We
get

@sZe(qyt( u(S)f(S)l-ﬂf)( u(S)f(S)“fp)P
S<P S<P

Z DG, Q)" DG, Q)"
W(S)E(SYI—P\ [ e(s)d-rrien)?
QZP“Q)d<Z DG, Q)" ><; D(s, Q)" >

64



By Lemma (2.1.19), the last sum is bounded by C£(Q)P*1*€P with C depending on € as

longasd >d —p+1+ep>d-—1,thatis, when pp%z<e<p7_1.Thus,
@ < Z w(S)L(S)1-€Pp(Q)d+e-Vp+p/p _ ZM(S){’(S)l—Eﬁ Z 2(Q)d-1+ep
N d B DS 0N
Q=P S=<P D(s, Q) T = D(S,Q)

Again by Lemma (2.1.19), the last sum does not exceed C£(S)~1+¢P with C depending on

easlongasd>d—-1+ep>d—1, i.e, when0<e<%= ijl. Summing up, we

need

-2 -1
max{p ,0}<6< P—_ .
p p
Such a choice of € is possible for any p > 1. Thus,

@ = ) u(s) = u(Sh(P)).
S<P
Being u a finite measure, u(Sh(P))Zj < u(Sh(P))u(8,Q)P~1. Thus, the last term in (54)
is also bounded due to Claim (2.2.14):

@ s lagl? o+ u(ShP) s 1A IPlIgIP,, . + u(Sh(P)) S u(Sh(P)) (59)
(W .P(R )) D)

Using Claim (2.2.15) together with Claim (2.2.16) and (59), we get that

S u(sh(P)) £@)7 < u(Sh(p)).

Q<P

Theorem (2.2.17)[2]: Given a Calderén-Zygmund smooth operator of order 1 and a

Lipschitz domain Q, the following statements are equivalent:

i.  Given any window Q with a properly oriented Whitney covering, and given any

Whitney cube P < 6,Q, one has,

p—d

p
> ([ wrowr) «@<c [ oo
Sh(Q) Sh(P)

Q<P

ii.  Tisabounded operator on WP (Q).
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Proof. The implication i = ii is Theorem (2.2.8).

To prove that ii = i we will use the previous proposition. Let us assume that we

have a properly oriented Whitney covering W associated to an R-window Q of a
Lipschitz domain Q, where we assume that the window Q = Q (0, g) is of side-length R

and centered at the origin, and define
du(x) 2= |VT (xa) (0)|P x5,0(x) dx
Notice that if T is bounded in W1?(Q) then, by Lemma (2.2.2),
D fsof 1@ = Wflhyrocay
QW

so the discrete averaging operator Ay : WP (Q) - LP(u) defined as

Aaf () = ) xg(F30f ) dy (60)

Qew
IS bounded.
Consider the Lipschitz function A whose graph coincides with the boundary of Q in
Q. We say that € is the special Lipschitz domain defined by the graph of A that coincides

with Q in the window Q. One can consider a Whitney covering W associated to Q such

that it coincides with W in &,Q. Consider the  version of the averaging operator,

AFGO) = Agf() = ) 200 Faof W)y for [ € WP (@),

QEW

It is easy to see that the boundedness of A, implies the boundedness of
A: WHP(Q) - LP(p)
(consider an appropriate bump function and use the Leibnitz formula).

In order to apply Proposition (2.2.12), we only need to show that u(Sh(Q)) <

C£(Q)*"P, which in particular implies that p is finite. Consider a bump function ®o

1

< < j S —
such that x5, (2Q) < @ < xsp(4Q) with |Vo,| s Q"
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Then,

u(she) = [ wrxGordrs |
Sh(Q) Sh(Q)

IVT (xa — @) (x)[Pdx + f VT o (x)[Pdx
9]
With respect to the first term, notice that given x € Sh(Q), dist (x, sup(xo — <pQ)) >

%{’(Q) so Lemma (2.1.24) together with (11) allows us to write

1 1

|VT()(Q - <pQ)(x)| < f dy < Q)

RA\Sh(2Q) ly - x|a+t

Being a Lipschitz domain, m(Sh(Q)) ~ £(Q)%, so

[ Wt - e eordx s @
Sh(Q)

p

Wip(@)’ and

The second term is bounded by hypothesis by a constant times ||qu ||

14 14 14 - -
el 1o = 12ell o * IVl S £@% + 2@ < (R? + D@,
Where R is the side-length of the R-window Q, proving that u satisfies (36).

In the case of the unit disk, we found in the Key Lemma that if T is a smooth convolution

Calderén-Zygmund operator of order 1 bounded in WP (D), then

Soewlfaof " [, IVTxo@)IP dm(z) < If 1105

for all fe WD) . If one considers du(z) = |VTxp(2)|Pdm(z) and p(z)(El)

(1 —|z|*)?7P, then, when f is in the Besov space of analytic functions on the unit disk
By (p),

15,6 = FOP + [ IfPa - 1227p() =D e
Byp(p) b (1 _ |Z|2)2 wP (D)

Using the mean value property (and (36) for the error term), one can see that if T is

bounded then for every holomorphic function f, the bound in (61) is equivalent to

I, IF@PIVTxp @) Pdm() < I3

(62)
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e, [Ifllrewy S ||f||Bp(p). The measure u is a Carleson measure for (Bp(p),P),

stablishing Theorem (2.2.17) for the unit disk by means in that article.

For Q c C Lipschitz, we also have

[ r@P T @Pane) = 1710,
Q

for any analytic function f. If Q is simply connected, considering a Riemann mapping

F: D —Q, and using it as a change of variables, one can rewrite the previous inequality as
) . 2
If o FIPu(F (0))|F (w)| dm(w)
D

SO j I(f o F)' (@)IP|F(@)|* " dm(w)
D

for every f analytic in Q. Writing dii(w) = u(F(w))|F(w)|*dm(w), and p(w) =

|F(0)(1 — |w]?|)?>7P, one has that given any g analytic on D,
lgllr @y = 195, 0

So far so good, we have seen that i is a Carleson measure for (Bp(p),p), if two
conditions on p are satisfied. The first condition is that the weight p is “almost constant”

in Whitney squares, i.e.,
forx,x, € Q € W = p(xy) = p(xy),
and this is a consequence of Koebe distortion theorem, which asserts that
IF(0)|(1 - |w?) ~ dist(F(w),00)

The second condition is the Bekollé-Bonami condition, which is

-1

p
f (1 = 1217 2p()dm(z) ( f @ - |z|2)P-2p(z))1-ﬁdm(z)) < m(Q)".
Q Q

If the domain € is Lipschitz with small constant depending on p (in particular if it is C*),

then this condition is satisfied.
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Chapter 3

Singular Integral Operators

We prove some new accretive type Littlewood-Paley results and construct a bilinear
paraproduct for a para-accretive function setting. As an application of a bilinear Tb
theorem, we prove product Lebesgue space bounds for bilinear Riesz transforms defined

on Lipschitz curves.

Section (3.1) : Almost Orthogonality Estimates and Convergence

Results

Tb Theorem: Let b, by, be para-accretive functions. Assume that T is a singular integral
operator of Calderén-Zygmund type associated to b, b;. Then T can be extended to a
bounded operator on L? if and only if My, T M,, satisfies the weak boundedness property

and My, T(b), M, T*(by) € BMO.

Theorem (3.1.1)[3]: Let by, by, b,be para-accretive functions. Assume that T is a bilinear
singular integral operator of Calderén-Zygmund type associated to by, by, b,. Then T

can be extended to a bounded operator from LP1 x LPz into LP for all 1 < p,p, <

oo satisfying %+ P—12= % if and only if M, T(M,, My, ) satisfies the weak

boundedness property and M, T'(by, by), My, T** (b, b2), Mp,T**(bs,by) € BMO.

Some convergence results for a reproducing formula of the form

o dt
J ¢t*¢t*f?=f'
0

For appropriate functions ¢,, which came to be known as Calderon’s reproducing
formula. The convergence of Calderon’s reproducing formula holds in many function
space topologies. This formula has since been generalized and reformulated in many
ways. For some general formulations of this Calderon reproducing formula. We consider
discrete versions of Calderon’s formula where we replace convolution with ¢, with
certain non-convolution integral operators indexed by a discrete parameter k € Z instead

of the continuous parameter t > 0. We prove a criterion for extending the convergence of
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perturbed discrete Calderdn reproducing formulas from LP spaces to the Hardy space H1.

We will prove:

Theorem (3.1.2)[3]: Let b € L” be para-accretive functions and 6, be a collection of
Littlewood-Paley square function kernels such that ®,b = ®,b = 0 for all k € Z. Also
assume that

z M,©Myf = bf

kezZ
for any f € ¢¢ such that b f has mean zero, where the convergence holds in L? for some
1<p<ow.If pecCd for some0 <& < 1such that b has mean zero, then bh¢p €
H! and

Z M,®Myp = b,

kez
where the convergence holds in H?.
Here ¢§ = ¢ (R™) denotes the collection of compactly supported, 5-Holder continuous

functions from R™ into C. Also we take the typical definition of the Hardy space H* with

norm ||fllgr = IIflle + X%, [IRf]l;2 . where R, is the £ Reisz transform in

R™or¢ = 1,...,n,R;,f = c,p.v. |y|y’f+1 * fand c, is a dimensional constant. Theorem

(3.1.2) tells ust hat anytime we have convergence of Calderon’s reproducing formula in

L? for some p, then it also converges in H, for appropriate operators and functions.

Proof. Define for k € Z, fi.(x) = M,0,M,¢. It easily follows that

fu(¥)dx = | Mp¢p(x)0; b(x)dx = 0.
R

Rn

Let R be large enough so that supp(¢) < B(0, R). We estimate

| fi G| < [[b]] e fRn (B (%, ¥) = Bk (x,0))b(y)$(y)dy

S | @FyDY(@F (x — y) + Y () |p ) |dy

R
S 2VERY (O * dY (x) + OF (x)) S 27* (DY (x) + DY (x)).
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We also estimate

| fiGl = 11b]] .=

fR 0,5 Y)PONGG) — Gy
< fanka*V (x = y)|x = YV (@Y () + Y (x))dy

S 27| DR = y)(@F ) + DY (x))dy S 27H(PY () + P ().

RM

So we have proved that [f(x)] S 27V*I(®N (x) + ®¥(x)). It follows from Lemma
(3.1.18) applied with j =0 that

fiellgr S (L + (k271

Therefore

SRS D Ml s Y A+ D2 <o,

kI<M |2 1kI<M kez

Hence Y x|<m fi is @ Cauchy sequence in H*, and there exists ¢ € H?! such that

QB = sz = szQkaQb

kezZ kezZ

But since the reproducing formula holds for b¢ in LPfor some 1 < p < o , it follows
that ¢ = b¢ and the reproducing formula holds for b¢ in H', which completes the
proof.

The need of Theorem (3.1.2) to prove Theorem (3.1.1) comes about in a product
construction used to decompose a bilinear singular integral operator T (as in Theorem
(3.1.1)). To prove Theorem (3.1.1), we follow the ideas to write T =S+ L, + L, +
L, \where My, S(by,b;) = My, S**(bo, by) = M,,S**(by,bp) =0 and Ly, Ly, L, are
bilinear  paraproducts.We  construct these  paraproducts so that they
satisfy My, Lo(by,b;) = My, T(by,b;) and My, L' (bo, by) = szL;gZ (b1,by) =0 in
BMO; likewise for L, and L,.The paraproduct L, is defined in terms of a generalized
Calderdn type reproducing formula, like the ones described in Theorem (3.1.2). The H*
convergence given by Theorem (3.1.2) implies BMO convergence of the formula by
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duality when paired with appropriate elements of H!, and eventually this convergence
yields My Lo(by,by) = My, T(by, by) for this paraproduct construction. For more details

on the construction of these paraproducts and the decomposition T = S + Ly + L; + L.

Definition (3.1.3)[3]: A function b € L* is para-accretive if b —1 € L* and there is a

co > 0 such that for every cube Q, there exists a sub-cube R cQ such that

1
Q]

= Co.

j b(x)dx
R

We introduce the Holder continuous spaces and para-accretive perturbed Holder spaces.
These are the functions spaces that we use to form an initial weak continuity assumption

for T in Theorem (3.1.1), similar to the linear Th theorem.
Definition (3.1.4)[3]: Definefor0 <§f<landf: R*"->C

Ul = sup L Q= O

X+y |x —3’|5

)

and the space €% = C3(R™) to be the collection of all functions f : R* — C such that
lIf|ls < . Also define C¢ = CZ(R™) to be the subspace of all compactly supported
functions in 9.1t follows that || - || is a norm on C¢. Despite conventional notation, we
will take C* and C{ to be the spaces of Lipschitz continuous functions to keep a notation

consistent. Let b be a para-accretive function and define hC{ to be the collection of

functions b f suchthat f € ¢§ with norm ||bf||,s = || flls. Also let (bC{f)' be the

collection of all sequentially continuous linear functionals on bC¢, i.e. a linear functional
W bCg > Cisin (bC8) if and only if
lim || fy — flls = 0 where fi, f € g = lim(W, bfi) = (W, bf),

where these are both limits of complex numbers. Given a topological space X, we say that

an operator T:X — (bC¢ ) is continuous if

limx, = xinX= Il(i_)q}O(T(xk),bf) = (T(x),bf) forall f € C¢.

k—o0
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Given a bilinear operator T : b;CS x b,CS — (byCS)' for some d > 0, define the

transposes of T for f,, f,3 € C¢

<T1*(b0f01 beZ)) b1f1> = (T*Z(b1f1’bofo)» blfl) = <T(b1f1' beZ)'bO fO)
Then the transposes of T are bilinear operators acting on the following spaces:
T boC¢ X b,C§ — (b,CE) and T?*: b, C¢ x byC§ — (b,C5) . One could more
generally define the transpose T'*on (b,C&)" x b,CZ , but this is not necessary for this

work. So we restrict the first spot of T1* to b, C{ instead of (b, C¢ )". Likewise for T2*.
Definition (3.1.5)[3]: A function K : R3™"\{(x,x,x) : x € R"} - C is a standard bilinear
Calderén-Zygmund kernel if

1
x =yl + [x —y,])2"

|K(x,y1,y2)|S(| when |x —yi| + [x —y,| # 0

|x — x|
x =yl + |x =y, )27’

|IK(x,y1,¥Y2) — K(x, y1,¥2)| S (|

when|x — x'| <max(|x —y4|, |x —y2|)/2
Iy, — v,
(lx = y1| + |x =y )27’
whenly; —y',| < max(|x =y, [x = y2[)/2

[y2 — ¥4l
K(,y1,y2) —K(x,y1,y2)| s )
K@y y2) = Koy Y2l = e =y ey

whenly, —y’,| <max(|x —y1l,[x = y2[)/2.

Let by, b1, b, € L (R™) be para-accretive functions. We say a bilinear operator T :

|K(X,y1,y2) - K(x,y'l,yz) S

b,C¢ X b,CS - (bocg)' is a bilinear singular integral operator of Calderén-Zygmund
type associated to by, by, b,, or for short a bilinear C-Z operator associated to by, by, b,, if
T is continuous from b, C¢ x b,C¢ into (b,CJ) for some d > 0 and there exists a standard

Calderon-Zygmund kernel K such that for all f;, f,, f; € € with disjoint support

(T (My, f1, Mp, f2), My, fo) = J

R31

K yny) | [ AOobGody:.
i=0

Note that this continuity assumption for T from b;C$ x b,C¢into (b,CS)"is equivalent to
the following: For any £y, f1, f2, 9, gx € CS such that g, — g in C¢, we have
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}j_{g(T(Mblgk, szfz)» My, fo) = (T(Myp, g, szfz); My, fo),

limyoo(T (Mp, f1, My, g1 ), Mp o fo) = (T (Mp, f1, Mp,9), My fo)»
limy o (T (Mp, f1, My, f2), My gi) = (T (Mp, f1, Mp,[2), Mp,9)-

It follows that the continuity assumptions for a bilinear singular integral operator T
associated to para-accretive functions by, by, b, is symmetric under transposes. That is, T
is a bilinear C-Z operator associated to by, by, b, if and only if T**is a bilinear C-Z
operator associated to b, by, b, if and only if T2* is a bilinear C-Z operator associated to
b,, by, by.

Definition (3.1.6)[3]: A function ¢ € Cy is a normalized bump of order m € N if
supp(¢) < B(0,1) and

sup |[0%¢]|p~ < 1.

|a|sm
Let by, by, b, € L* be para-accretive functions, and T be an bilinear C-Z operator
associated to by, by, b,. We say that M, ) T(M,, -, My, -) satisfies the weak boundedness
property (written M, (T (My, -, My, -) € WBP) if there exists an m € N such that for all

normalize dbumps ¢, ¢4, d, € Cy of order m,x € R™,and R>0
(T My, 7%, My, 5% ), My b5 ™)| < R™
Where ¢*F(u) = &(—).

It follows by the symmetry of this definition that M, ;T(M,,, -, My, -) € WBP if and
only if MblTl*(MbO My, -) € WBP if and only if M,,ZTZ*(M,,1 My, ) € WBP. We
define T on (b;C® NL*) x (b,C% NL*), so that we can make sense of the testing
condition M, ,T(b,, b,) € BMO as well as the transpose conditions. The definition we

give is essentially the same as the one given by Torres in the linear setting and by
Grafakos-Torres in the multilinear setting. Here we use the definition with the necessary
modifications for the accretive functions by, by, b,. A benefit of this definition versus the

ones is that we define T (by, b,) paired with any element of b,C¢, not just the ones with
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mean zero. Although one must still take care to note that the definition of T agrees with

the given definition of T when paired with elements of b,CS with mean zero.

Definition (3.1.7)[3]: Let by, by, b, be para-accretive function, T be a bilinear singular
integral operator associated to by, by, by, and f, f, € €% n L*. Also fix functions nk € C
for R > 0,i = 1,2 such that ny = 1 on B(0,R) and supp(nk) < B(0,2R). Then we

define

(T(b1f1’ beZ)’ bOfO)
= Il?i_rgo(T(mlzle»mzzbzfz),bofo)
2
S R AR IE)  FICALG D
R i=1

— Nk, W))bi ) dxdy, dy,,

where f, € C§ and Ry > 0 is minimal such that supp(f,) < B(0,R,/2) . When
R > 2R, we have

(T (1kbyfu, MRbaf2), bofo) = (T (nh,bfs, 1, bafs), bofo)
H(T (kb1 fur (M- 13,)b2f2), bofo)
+(T ((nk-nk, b1 i m3,b2 f2)  bo fo)
HT(h—nky)bsfi, (1 — 1R )b2 1), bofo)

= (T (nk,b1f1, Mk, b2 f2), bofo)

+ [ kG0, ) (10 = 12, 00) [ | i fidyo dy d,
R3M 4 A4

i=0

+ [ KO0y (k) =1k, 00)1h, 02 | [iO0AGI Yo dyy
R3m P G §

i=0
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+(T ((nh=nk, )b fur (W= )baf ) bofo) = 1+ 11+ LI +1V.

The first term | is well defined since Uf}obifi € b;C¢ for a fixed R,(depending on f;). We
check that the first integral term Il is absolutely convergent: The integrand of Il is
bounded by [|bo|| e [Ti=1 11bill.e]| fill o times

IK(Vo, ¥1, ¥2)1k, 1) MR (V2) — 1k, (72)) foo)l

_ Inky ) (72) = M2, (72)) fo (o)
- (Iyo = y1l + [yo — y21)*"

1Mk, 1) MR (V2) — n&, (12)) fo(Wo)l __Inr, 01 foOo)
~ (yo—yil +1yo = y21/2 + (Ro — Ro/2)/2)*™ ™ (Ro + |yo — y21)*"

This is an L*(R3™) function that is independent of R (as long as R > 4R,),

|771120(J’1) foo)l
rsn (Ro + [yo — y21)%"

dyo dys dy, < f Ink, 1) fo(¥o)l
0 1 2~

RD dyo dy: S || folli=Rg-
R2n 0

Since ng — 1 pointwise, by dominated convergence the following limit exists:

lim | Ko, y1, Y201k, @1) M (V2) — g, (V2)) 1_[ b;(y;) fi i) dy, dy; dy,

—00 3n
R =0

2
= f Ko, y1, ¥2)1k, 1) (1 =17, (V2)) H b;(vi) fi(y)dyody; dy,.
R3M i=0

So limg_, ., 11 exists. A symmetric argument holds for limg_,., 1/1.We consider IV minus

the integral term from (1)
v - j K(0, y1,¥2)bo (Vo) fo(¥o) nfi(Yi)n}i?(Yi)bi(y'i)dYO dy, dy,
R® i=1
= | KO0y = K(O,31,52)ba00) Fol)
2
X ﬂ(m% ) = Nk, D) fi )by (¥ dy, dy; dy, .

Again we bound the integrand by ||bo|| . [T51 |1bille || fil|Le times
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IK (Yo, y1,¥2) — K(0,¥1, ¥ | foo)l Mz (1) — ng, (1))
- [vol? Mk (1) — g, (V1)
 (Iyo = yul + lyo — y2 )2ty

[vol? Nk (1) — &, 1)l
T (Iyo = y1l/2 + Ro/4 + |yo — ¥al

< Rg| fo(Vo)l
(Ro + [yo — y1l + |yo — y2 )2V

| fo(o)l

Yan+y | fo(yo)l

which is an L*(R3") function:

f RY| foo)l
r3n (Ro + |yo —v1| + [Yo — ¥2l

< f RY| foo)l
rzn (Ro + [yo — y1 D™
Then it follows again by dominated convergence that

Yan+y dyo dy, dy,

dy, dy; s f | foo)ldyo < |l follioRo
Rn

Lim (T ((nk-k, )b fu, (n=n3, )b2f2)  bofo)

2
— f K (0,1, ¥2)bo(¥0) fo (o) ﬂfi(yi)(nfz Vi) — Nk, @))bi(y1)dyo dy, dy,
R3 i=1

2
= f (K(x»J’LYZ) - K(O')’p}’z))bo(x)fo(x) 1_[(1
R3m i=1

— ko D) fi )b (y)dyy dy, dx,
which is an absolutely convergent integral. Therefore T (b, f;, b, f,) is well defined as an

element of (b,C¢) for f,,f, € C° N L. Furthermore if f,, fi,f, € CS and byf, has

mean zero, then this definition of T is consistent with the a priori definition of T since

R—o0

tim [ K31, 700000600 | | £00 (0h50) = 1k, 00) ey dyo dy d,
R? i=1

bo(¥o) fo (YO)dYO>

R

= ( JR K(0,y1,72) [1[ b)) (1= 1k, 7)) dys dy2> <

=0,
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since both of these integrals are absolutely convergent. Also, when b, f;, has mean zero in
this way, the definition of (T'(by, b,), bof,) is independent of the choice of n} and n3.
We will also use the notation M, T(b,,b,) € BMO or My, ,T(by,by) = B for g €

BMO to mean that for all f, € C¢ such that b, f, has mean zero, the following holds:

(T (by, by), bofo> = (B, bofo)

Here the left hand side makes sense since T'(by, b,) is defined in (boC¢)’. The right hand
side also makes sense since bof, € H* for f, € CS where b,f, has mean zero. The
condition M,, T (b, b,) € BMO defined here is weaker than (possibly equivalent to)
T (b1, b,) € BMO when we can make sense of T'(b4, b,) as a locally integrable function.
This is because a definition of M, ;T (b, b,) € BMO only requires this equality to hold
when paired with a subset of the predual space of BMO, namely we require this to hold
for {by f: f € ¢ and b, f has mean zero}& H'. It is possible that this is equivalent
through some sort of density argument, but that is not of consequence here. So we do not
pursue it any further, and use the definition of M, T(b,,b,) € BMO that we have
provided. Furthermore, if T is bounded from LPt X LP2 into LP for some 1 < pq,p,,p <
oo, then T can be defined on L™ x L™ and is bounded from L™ x L* into BMO. Hence, if

T is bounded, then My, (T (by, by), My, T** (b, b;), My, T** (b1, by) € BMO.

We say (by definition) that M, Th, € BMO if there is a f € BMO so that
(Thy,by f) = (B,by f)forall f € CS where b, f has integral zero. This isequivalent to

the notion of Thy € BMO. We also abuse notation here in the sense that if M, ;Th, €
BMO as we defined it, then the appropriate identification of an element in BMO would
be Thy = B, not M, ,Th, = p as the notation suggests. We have two reasons for using

this notation.

The first is that we felt it necessary to mention the function b, in the requirement

Th, € BMO since, as a matter of definition, it does depend on b,.

The second reason is a bit more involved. Note that we do not assert the following:
If M, , Thy € BMO, then Th; € BMO. We don’t make this conclusion because 1) we

only deal with pairings of the form (Thy, b, f) for f € €& where by f has mean zero,
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and 2) we have not shown that the collection {b, f : f € CSand b, fhas mean zero} is
dense in H'. If this collection is in fact dense in H', then we conclude that M, Th, €
BMO(as we’ve defined it) implies Th; € BMO. It may be the case that this collection is
dense in H1, but it is not of consequence to us in this work. This discussion applies to the

bilinear conditions M, T (b1, b,) € BMO as well with the appropriate modifications.
DefineforN >0, k € Z,and x € R"

Zk‘n

e e

For f: R"™-C, we use the notation fi(x) = 2" f (2¥x). We will say indices

0 < p,py,p, < oo satisfy a Holder relationship if

1 N 1
P1 P2 (2)

Definition (3.1.8)[3]: Let 8, be a function from R?"into C for each k € Z. We call

1
p

{6, }xez a collection of Littlewood-Paley square function kernels of type LPK(A,N,y)
forA>0,N>n,and 0 <y < 1lifforall x,y,y' € R"andk e Z

16, (x, )| < AP (x — y) (3)

10, Y) = O Y] < Ay =y D@ =+ 7T k=YD

We say that {6, },c is a collection of smooth Littlewood-Paley square function kernels
of type SLPK(A,N,y) for A >0, N >n, and 0 <y < 1if it satisfies (3), (4), and for
allx,x',y € R"andke Z

161(x,y) = (X, )| < AKX =X [T B 7 (' =) =& 7 (' =), (5)

If {64} is a collection of Littlewood-Paley square function kernels of type
LPK(A,N,y) (respectively SLPK(A,N,y)) for some A >0,N >n, and 0 <y < 1,
then write {6,} € LPK (respectively {6} € SLPK). We also define for k € Z, x €
R™and f € L' + L

Or f(x) = | 6(x,»)f (V)dy.

R
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Definition (3.1.9)[3]: Let 8,be a functions from R3™ into C for each k € Z. We call
{0, }kez @ collection of bilinear Littlewood-Paley square function kernels of type
BLPK(A,N,y) forA>0,N >n,and 0 <y < 1if for all x,y;,y,,¥'1,y', € R™and k
€z

100 Y1, ym)| < APV (x — y )BT (x — y,) (6)
16 Ce, v, v2) — (¥ L v2)| < A%y =y ) @R (x = y2)

(7 (emy) + B (e y) ™)

16 Ce, v, ¥2) — 0 (, v, ¥ )| < A%y, —y', ) @8 (x — y1)

X (P (x—y2) + DT (x - y'2)): (8)
We say that {6, },cz is a collection of smooth Littlewood-Paley square function kernels

of type SBLPK(A,N,y) for A >0, N >n, and 0 <y < 1if it satisfies (3)-(5) and for
all x,x',y,,y, € R*andk e Z

16106, Y1, ¥2) = Ok (', 1, ¥2)| < AQ@FIx = ' DY Ty (@) (x = y) = &7 (' =
Yi))-

If {6,} is a collection of bilinear Littlewood-Paley square function kernels of
type BLPK (A, N,y) (respectively of type SBLPK(A,N,y)) for some A >0, N > n,and
0 <y <1, then we write {6,} € BLPK(respectively {6,} € SBLPK). We also define
fork €Z, x €R", andf,,f, € L} + L®

Or(fu, f2)(x) = J Ok (x, y1,¥2) fr(01) f2(y2)dy, dy,.

R21

Remark (3.1.10)[3]: Let 8, be a function from R3" to C for each k € Z. There exists
Ay >0,N;>n,and 0 <y < 1such that {6, } is a collection of Littlewood-Paley
square function kernels of type SBLPK (A4, Ny,y) if and only if there exist A, > 0, N, >
n,and 0 <y < 1suchthatforall x,y;,y,,51,¥'2 € Rtandk € Z

1616, Y1 Y2)| < A P32 (x — y)PR2(x — ¥2) (10)
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161, 71, ¥2) = 0 (%, Y"1, 72)| < A28 (2% |y — y'1])Y (11)
161 (x, 1, ¥2) = 0k (6, y1,¥'2)| < A 22 (2% |y, — ¥ 1) (12)
161 (2, 1, ¥2) = O (x', y1, y2)| < A 227 (2K |x — x"])Y. (13)

A similar equivalence holds for smooth square function kernels of
type BLPK(A,N,y),LPK(A,N,y) , and SLPK(A,N,y) with the appropriate

modifications.

Proof. Assume that {6,} € SBLPK(A1,N1,y), and define A, = 24, N, = N; +7,
and y = y It follows easily that (10) holds. Also

|9k(X, Y1, Y2) — Hk(x,y’l,yz)l < A1(2k|3’1 - y’ll))yfbg”y(x - ¥2)
X (@ (e = y2) + O (x = ') < 24,2272y, — ¥4 1)
A similar argument holds for regularity in the y, and x spots. Then 6,.satisfies (10)-(13).

Conversely we assume that (10)-(13) hold. Define n =%, Ay = A,, N, =
2

N,(1 —n) —ny, and y = ny. Estimate (6) easily follows since N; +y < N,. Estimate

(7) also follows since
' ' ny -
16, y1,Y2) = (.Y 1,y2) < A28y —y' )" 02 (x — yy)

% (q)gz(l—n) (x —yy) + @1:2(1—77) (x - 3"1))

;Y
< A1(2k|}’1 -y 1|) CDIkV“y (x —¥2)
X (OF Y (x —y) + O (x —y'D).
Note that this selection satisfies

N, +n
2

N, = N, —n(N,+y) = > n.

Then (7) holds for this choice of A;, N, and y as well. Estimates (8) and (9) follow with
a similar argument, and hence {6} is a collection of Littlewood-Paley square function
kernel of type BLPK (A4, N;,v). The proofs of the other equivalences are contained in the

proof of this one.
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We first mention a well known almost orthogonalitye stimate for non-negative functions:
If M,N >n,thenforallj,k € Z

f O (x —u) P} (u — y)du < O} (x — y) + O} (x — ¥).
RTL

Then next result is also a result for integrals with non-negative integrands, but this one

involves regularity estimates on the functions.

Proposition (3.1.11)[3]: If {Ox}kez € BLPK, thenforall j,k € Z,x,y,,y, € R"

f |9j(x' Yi,Y2) — 0, (x,u, yz)lq)',f”(u —y1)du
RTL

< 27079 (@ (x = 1) + OF (x = y1)) &} (x - y),

f 10,5, y1, ¥2) — 6, (x, y1, )| ON (u — yp)du
R‘l’l
< 270N (x — y,) (PN (x — ) + DY (x — y2),
and
j 1606 y1,2) = 65wy, u)| @™ (wa = y) @ (uz — y2)duy duy
R n
2
s 20| [l —y) + 00—y,
i=1

Proof. Since {6, }k € Z is of type BLPK (A, N,v), it follows that

f 16;(x, y1,¥2) — 6; (e, w, y2) | @, T (u — y,)du

Rn

< Y (x—y,) f (27w - yll)y(CIDJI.V+y(x —y1) + ) (x — )P (u— yy)du
Rn

< 200N —y,) | OF T (e —yp) + (07 (x —w)) Of (u - y1)du
R

S 200700 (x — y1) + O (x — y1)) O (x — y2).
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By symmetry the second estimate holds as well. For the third estimate, we make a similar

argument,

J.Z |9j (x, y1,¥2) — 0;(x, ul»u2)|¢2’+y(u1 - }’1)CDIIZ+Y(“2 — y2)du; du,

RZM

< f 160 y12) = 60y w) |0 (= y) O (1 — y2)dug dug
R?21

#1600y = 0,1 ) O (= y)OY Y (= )
R21

< 2v(J-k) CDJI-V(X - Y1)(q)]l‘v(x —¥2) + CDJI-V(x — uz))CD',l'”(ul — y)OF (u,

R21n

— y2)du, du,
+2y”_k)f CD]N(X —y1) + (CDJI'V(X - ul))q)]{v(x — uy) Dy (uy — 3’1)CDI;X+V(“2
R21’l
— y2)du, du,
= ZY(j_k)(q)]I'v(x —y1) + @Y (x - Jﬁ))(q)]l'v(x —¥2) + OF (x — y)).

This completes the proof of the proposition.

It is well-known that if N > nand f € L' + L, then ®, = | f |(x) S M f (x) forall k

€ Z, where M is the Hardy-L.ittlewood maximal function

1
Mf(x) = sup—
O = supig

[ 17 oy,
B

and here the supremum is taken over all balls B containing x. We use the kernel function

almost orthogonality estimates to prove pointwise estimates for some operators.
Proposition(3.1.12)[3]: If {4;}, {6} € LPK and there exists a para-accretive function b

such that A (b) = 0,(b) = 0 forallke Z, thenforall f € L' + L*andj,k € Z

10;MpA; f ()] S 27VUKM f (). (14)
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If {A.} € LPK,{6,} € SBLPK and there exists a para-accretive functions b such
that A, (b) = 0and

f B, (%, 1, y2)b(¥)dx = 0
Rn

forallkeZand y,,y, € R", thenforall f;,f, € L' +L*andj,k € Z
|AkMy0;( fi )| S 27YHHIM(M fr - M f)(x) (15)

If {11}, {12} € LPK,{6;} € BLPK and there exist para-accretive functions b,, b,and
i € {1,2}such that AL(b,) - A2(b,) = O, (by, b,) = 0for all k € Z, then for all 3, f, €
L' +L” andj,k € Z
10;(Mp, A} fr, My, A2 £) ()| S 27VV7KIM £, ()M £, (x). (16)

Here we use capital A,to be the operator defined by integration against the kernel lower

case A, just like @, and 6.

Proof. We first prove (14). Using that A; (b) = 0 and Proposition (3.1.11).

oM Ol < |

] @ - 6 mbdwd| £ )iy
< j 16,(x,w) — 6,06, )| OV (v — WIf )ldu dy

RZn
< 27U (0 « [F|(x) + OY * [f]®) S 27U~M f ().

With a symmetric argument, the same estimate holds replacing 2Y(J=%) with 2v(=)),
Therefore (14) holds. Now we prove (15). We first use that A, (b) = 0 to estimate

|AMy,0;( f1, f2) ()]

S »I
R21

< j DN (x —w) (27 |x — ul)y(d)]{vw (u— yl)d)]l.“y(u —y,) + CDJI-V+y(x
R31

A (%, u)b(u)(Bj(u, Y1, Y2) — Qj(x' yiuY2))dul |f1(v1) f2(y2)|dy; dy,

R

- )ﬁ)‘bjl'vw(x = ¥2)) x| fi(y1) f2(y2)|du dy; dy,
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s 27070 f Pl (=) (@] (= y) O (= y2) + O (e = y) &) (x

R31

—¥2)) X | fi(y1) fa(y2)ldu dy; dy,
= 200 [ aGe—w [ ()« 161 + 0 « lw) au
R i=1

S 2'UOMM f, - M f5)(x).
We also have

| MMy, 0;(f, £2) ()]

S —[
R21n

< 20Dy j

R31

(A (x, u) = Ak (x, y1))b(W)6; (u, y1, y2) du

RTL

| 1 (V1) f2(y2)|dyq dy,

(@F (x —w) + DY (x — y1)) 1_[ OV (u - y)| f;(y)ldy; du
< z(k-mj qa’,g(x—u)l_[q>}’* | fil(w)du
R™ i=1

4+2k=)y f

lx=y1]2]x—ul/2

2
oY -y | [ @) @yl ivolay; au
i=1

+2(k—j)V f

lx=y1l<

2
O | [or@—ylionldy du
1

= i=
= 206=Dv(1 + 11 + 1ID).
Note that 2=DY1 < M(M f; - M £,)(x), which is on the right hand side of (15). In I,

replace ®F (x — y;) with ®¥ ((x —w)/2) and it follows that II < I. So Il is bounded

appropriately as well. The final term, 111 is bounded by

Zjn 1 1
fl [£0) O + Iy w)dy; du

dDIIX(x _yl) (1 + 2j(|x —u|—|x— }’1|))N

[x—u|
x=y1 <5
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N

f OF (x =y @ (x —W Ay)IP}' * | f2|(W)dy, du
lx=y1l<|x—ul/2

S ( D (x - )’1)|f1(3’1)|d}’1> < CDJI'V(X - U)CDJI'V * IfZI(u)du>
R™ R

S OF * A1)} * |f2](x)

<MM fi - M fr)(x).

This verifies that (15) holds. For estimate (16) when j <k, we use that Ai(b,) -
AZ(b,) = 0 and Proposition (3.1.11)

10; (M, Ak * f1, My, Af * f2)(x)]

2
< [ 166ouu) = 6l [ [ I0aonu fooldy du,
RE® i=1
2
s 2070 [ T](@f @ - w) + 0 0= 30) 0w = 3l 0 e
R =1

< 2v(J-kK) 1_[ ]Rn (CD]’-V(x —y) + Y (x — y))| fi(y)ldy;

< 2v(i-Bpm f1(x)M f,(x).

Using that ©;(b,,b,) = 0, it follows that

|9j(Mb1Allc * fi, Mp, A, * fz)(x)l

2 m 2
[ [Howu -] [Awun|] [ fooidy: du
=1 i=1 i=1
2 2 2 m
< j (j n)lf;(yi,ui) - Hlﬁ;(yi,X) HQ)]{VW (u; — yl-)dui> 1_[ | iy dy;
R21 R21 =1 =1 i1 L

< 270D(ON # | f1](x) + O * | f1l(0))(PF * | Lol (x) + P = | ol (X))
< 2VCDM £ ()M fo ().

< f 10,(x, s, )|
R4n
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We see that Ai(x,y;)A%(x,y,) form a collection of kernels of type BLPK. Then (16)
holds as well.

Proposition (3.1.13)[3]: Suppose py: R > C for k € Z satisfy |pi(x,v)| S
®N (x — y)and N > n, and define Py

P f(x) = f Rt y) f()dy

RN

For fe L' +L”.If

f Be(x,y)dy = 1
Rn

forallke Zand x € R" then P f - finLPask— o forall f € LP when1 <p <

coand P,f - 0inLPask - —ocoforall f e LlP NLiforl < q<p < co.

Proof. For f € LP with 1 <p <

1P f = fllup =<f
(L

<| (] CD’(Y(y)If(x—Z"‘y)—f(x)l”dx> dy
RT RM

1
p P
dx>

| Pewx=279)(f =279 = £ )2y

| Py r oy = Py £ oy

RM

1
p P
dx)

< | OVOIIFC-2") Fllwdy.

Note that ®F (W[ f - =27%y) = f llr < 2| f |l1p PG (¥) Which is anL (R™) function

independent of k. So by Lebesgue dominated convergence and the continuity of

translation in || .|| .»

lmllPf = fllp< [ OO JimI1f ¢ =279) = fllwdy =0,
Rn
We compute
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1P f QO] S NOK L lIflla = 29| DF | ar (1] ]La.

So P f = 0 almost everywhere as k — —oo . We also have

P f (Ol s @+ | f1(x) SMS (),

and since f € LP(R"™), it follows that M f € LP(R™) as well when 1 < p < co. So by

dominated convergence

Jim NP f Wy = | Jim 1P f @lPdx = o.

Rn
This proves the proposition.

Corollary (3.1.14)[3]: Let b be a para-accretive function. Suppose s,: R?" - C forke Z

satisfy |s; (x, y)| S ®F (x — y) for some N > n, and define s

sef () = [ sy f )y

RM

for f e L' + L™ If

| suConb Gy = 1

for all k € Z andx € R™, then S;M, f — fandM,S, f — finLP as k— oo for all
f €LP(R")when 1 <p <o . Also SyM, f — 0and M,S, f — 0inLPask — —oofor
all f € LPnLiforl<gq<p<ow.

Proof. Define P, f = S,M, fwith kernel p,. It is obvious that |P,(x,y)| S ®¥(x —
y),and P, (1) = S,(b) = 1. So by Proposition (3.1.13), since f € LP it follows that
SkMp f = P f = fin LP when f € LPand 1 < p < o« . Also when f € LP n
L1 for1l < q <p <oo, it follows that S;M, f = P, f -0 as k - —oo . Also
M,S, f = M, P, (b~ f), so the same convergence properties hold for M, S,

These approximation to identities perturbed by para-accretive functions are important

to this work.

Definition (3.1.15)[3]: Let b € L* be a para-accretive function. A collection of

operators {Sy }xe, defined by
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Sef 0 = |

. skCoy) f ()dy

for kernel functions s, : R?™ — C is an approximation to identity with respect to b if
{sx} € SLPK, and

sk (6, 7) = sk (¥, ¥) = se(x,¥") + s (X, y)| < A2FM (2K [x — ')V (2¥ |y — ')
X (CDI,Z” (x—vy)+ CDIIZW(x' —-y)+ CDIILHV (x—y")+ CDI,Z”(x’ — y’))
| scambordy = [ siyeode= 1
R™ R™
We say that an approximation to identity with respect to b has compactly supported
kernel if s, (x,¥) = 0 whenever |x —y| > 27k
Proposition (3.1.16)[3]: Let b be a para-accretive function, {S; } be the approximation to
identity with respect to b that has compactly supported kernel, and 6, > 0. Then

M,SyM, f — bfand MyS_yM,f — 0in bC{ as N — oo for all f € C3°and 0 < 6 <

min(8,,y), Where yis the smoothness parameter for {s;} € SLPK.

Proof. Let f € Cf" and 0 < 4§ < §,. Without loss of generality assume that y = 6,
where y is the smoothness parameter of s,. We must check that ||[SyM, f — flls =

0 as N — oo. So we start by estimating

|(SvMp f(x) = f (X)) = (SvMp £ () = f )]

Rn(SN(xlu)(f(u) = f())b(wdu — Rn(SN(y.U)(f(u) = fO)bwdu

< ubnpoj P (w) — FY () du
RTL

Where F{(u) = sy(x,u)(f (w) — f (x)). Consider u € B(y,27"), and it follows
that

i (W) — By )l = IsnCow)(f () = f () = sy W) (f W) — f )
< IsvCewl [ f ) = fF O+ Isv(ow) —sy@ W (f W) = £ ()

(17)
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N

1 f 115o2™ 12 = y1°° + {1 f 15,2 (2V]x — y D%y — u|®

N

I f 15,2 |x = yI%

With a similar argument, it follows that for wu € B(x,27V),|F¥(w) — Fy (w)| s
11f1l5,2™ |x — yl|s,.- Now we may also estimate |F§(u)| in the following way for

u € B(x,27V), (18)
IFF@)| S 2™ f (@) = f IS || f 116,2™ [ = x]% < || f|]5,2"N 270N

Using the support properties of s, , we have that supp(F§ —F)) < B(x,27V) U

B(y,2V).Then it follows from (17), (18), and = € (0,1) that
0

s ~ -
IFi ) = By ] S (11 f 15,2™ 2 = y1%)20 (|| f [5,27N27%N) " 20

S 1 f 115, 2™ |x — y|027 o=V,

Therefore Sy\M,, f — fin||- ||s Since

|SvMy f () = f () = SuMpf O) = fF O _

< |F¥(u) — EY (w)|du
lx — y|® |x—y|5fRn N N

< 11 f 15,2 @0ON f 2V du < || f |15, 2 ComOW,
B(x,2~NYuB(y,27N)

This proves that SyM,, f — f in Cd as N - co. Now we conider S_yM, f as — oo. We

also have
|S_yMp, | (x) — S_yMpf (V)]
lx —y|®

< ”f””; <f +f )2-nN(2‘N|x—y|)5du
|x =y [x—u|<2N ly—u|<2N

S f 1127V,

1
< i _ylgntS-N(x,u) =S vl b f (Wdu

Note that ||f]|.~ < o since f is continuous and compactly supported. Therefore

SyMy f = fandS_yM, f - 0asN — oo in the topology of C¢.

We state a Calderon type reproducing formula for the para-acretive setting.
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Theorem (3.1.17)[3]: Let b € L”be a para-accretive function and S2for k € Z be
approximation to the identity operators with respect to b. Define D? = SP,., —SE.

There exist operators D? such that

DPM,DEM, f = b f
kzezkbkb (19)

inLP forall 1 <p <wand f € CJ such that b f has mean zero. Furthermore, D2 (b) =
DP*(b) = 0 and D! is defined by
DRf () = | d¢ (xy)f ()dy
Rn
Where {db*} € LPK, where d2*(x,y) = d? (y,x) are the kernels associated with D?*

We will use this formula extensively, and in fact, we need this formula in H* as well
to construct the accretive type para-product. We will prove that this reproducing formula

holds in H* in Theorem (3.1.2) and its Corollary (3.1.19). First we prove a lemma.
Lemma (3.1.18)[3]: If f: R™ — C has mean zero and

| f ()] s @Y (x) + O (x)
for some N > n and jk € Z then f € H'and || f||;2 S 1+]|j— k|, where the
suppressed constant is independent of j and k.

This is an extension of a result, which is Lemma (3.1.18) when j = k. We obtained a
quadratic bound, | j — k|?, for Lemma (3.1.18) using an argument involving atomic
decompositions in H!. Such a result suffices for a purposes, but thanks to suggestions
from Atanas Stefanov we are able to obtain the linear bound stated here. We present

Stefanov’s proof, which appears more natural.

Proof. The conclusion of Lemma (3.1.18) is well known for j = k. So without loss of

generality we take j # k, and furthermore we suppose that j< k. It is easy to see that
e s NPl + 1O S 1,

so we may reduce the problem to proving that ||R,f ||;: Sk— jfor£=1,...,n.The

strategy here is to split the norm ||R,f ||,» into two sets, where |x| < 27/ and
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where |x| > 27/. We will control the first by k — jand the second by 1. Definep = 1 +

k%j > 1, and use that ||R,||,pop S p’ to estimate

X peiez-iRef it < WX paezillorIRef 1w S 2775Pp'|| £ ]

< (k= 2/ (Qrifer 4 onkio) 5 o — . (20)

Note that here we use that p’ = k — j + 1 and hence 2"*=))/P" < 2™ Now it remains

to control

11X xj52-1Ref 112 < Z || X 2mapxj<com+rRe f || 12
m=—j

< D ltemauzn s ReCf Xigtazm-lls

==J

£ lemauzzn ReCf Kpysm-lla = T+IL (21)

m=—j

In order to estimate | from (21), we bound the terms of the sum by first breaking them

into two pieces using the mean zero hypothesis on f:

| |X2m<|x|szm+1R{’( f X|y|szm—1) [|2

J;"”L<|x|szm+1

Xe
ReCf tppean-)) = | s FO)y

JI‘XI>2m J|‘y|<2m -1 |X - |n+1 |x|n+1 | f (»)|dydx
+j f 2 (?l dydx = I, + I (22)
2Mm<|x|g2m+l Jyy|>2m-1 |x|

Let § = min(1,(N —n)/2) and N' = N —§ >n. Then the first term of (22) is
bounded by
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[ < |y| dydx < lyl° dvd
Sl W _1—|x|n+1lf(y)| ydx < Y | £ (y)|dydx
<2m x m J|y|<2m-

< 2-mo f YIS (OF ) + DY () dy
R

< 2-m5f (270N (y) + 27F D} (y))dy s 27U+m9,
R

Note that we absorb the 27%9 term into the 2779 term since k > j. The second term of (22)

is bounded by

1
Iy < f f — | f O)|dydx
2mg|x|s2m+1 J|y|>2m-1 |X|

< g-mn f f | f 0)ldydx
2mg|x|s2mt1 J|y|>2m-1

2—j(N—n) z—k(N—n) )
< f ( + >dy < 2—(j+m)(N—n) + 2—(k+m)(N—n)
ly|>2m-1

ly |V ly|V

< 2-(+m)(N-n).

Again we use that 27¥(¥=1) < 2=J(N=1) gjnce k > j and N > n. Now in order to estimate

Il from (21), we bound the terms of the sum using an L? bound for R?

[ X2maixjcam+1Re(f Xy is2m=1 )11t S |Xomepmjcomerl| 2| |Re(f Xy >2m-1)]l 12

< 2mn/2 ( j (@Y () + Y ) dy)
ly|>2m-1

/2< lsz(n—N) 22k(n—N) %
< 2mn J + ldy)
wisam-t | 1YIPY ly|>N

< 2mn/2(2—j(N—n) + 2—k(N—n)) <f
|y

1

1 2 .
dy | s 2-U+rm®W-n)
[y 2N >

[>2m-1

Using these estimates, it follows that (21) is bounded in the following way:

o [o0]

I +1I's Z P SALOLEES Z 2-UrmIN-1) g 1,

m=—j m=—j
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Therefore using (20) and (21), it follows that [|R,f||,: Sk — jfor£ = 1,...,n and
hence || f |lgr Sk —j.

Corollary (3.1.19)[3]: Le b € L™ be a para-accretive function, S2,DE,and DE be
approximation to identity and reproducing formula operator with respect to b as in
Theorem (3.1.17). Then for all § > 0 and ¢ € C¢ such that b¢ has mean zero,

ZMbﬁkaDkaq’) = ZMkaMb¢ = bo

k€eZ k€eZ
in H1.
Proof. By Theorem(3.1.17), it follows that the kernels of D, M, D, and Djare Littlewood-
Paley square function kernels of type LPK, that

DyMpDy(b) = (DiMpDy)*(b) = Di(b) = Dy (b) = 0,

and finally that

ZMbEkaDka¢ = ZMkabe = b¢

keZ kezZ
in LPfor all 1< p < oo when ¢ € C when b¢ has mean zero. Therefore it follows
fromTheorem (3.1.2) that the formula holds in H* as well.
Section (3.2): A Square Function-Like Estimate and Singular Integral
Operators with Application to Bilinear Reisz Transforms

Theorem (3.2.1)[3]: If {6,} € SLPK and there exist para-accretive functions by, b;, b,
such that

f 81 (X, y1, y2)bo (X)dx = f 81 (%, y1,y2)bs (1) by (v2)dy dys = 0
Rn

R21

for all x,y,,y, € R™and k € Z, then for all 1 <p, p;, p, < o satisfying (2), f; €
LPi fori = 0,1,2 wherep, = p'

2,

kezZ

| 0uC 60

2
<[ [isi
i=0

94



Proof. Since b;,b;* € Loo, it is sufficient to prove this estimate for b;f; in place of
fifori = 0,1,2. Fix 1 <p, p;, p, <o satisfying (2), f; € ¢ for i = 0,1,2 and

some § where b; f; has mean zero for i = 0,1,2. Define.

[ [rmea = w00, fi om0, o)

2
[ [ crme =m0, ficoms, s, fo0,

where Syand D, defined as in Theorem (3.1.17). Then it follows that

Ok (b1f1, b f2)
. b b b b
= I\ZIZ?XD @k (Mb]_SNlelfli MbZSNZszfZ) - Qk (Mb]_S—:IlVMblfl’ MbZS—?VszfZ)
N-1
. b b b b
= lim Or (M, Sis1Mp, f1, My, Si31 Mp, f2) — O (Mp, S M, f1, My, Si* My, f>)

N-ooo
j==N

= i NZ o] [ crm+a ] hm

j==N

where the convergence holds in LP. Then we approximate the above dual pairing in the

following way

)

jkez

"))

J,KEZ

Z f n Ok (b1 f1, b2f2) (x)bo (x) fo (x) dx

kezZ

| o] | turacaneostads
e L4

F2
f 0| | (Ao o)
R™ o)
These two terms are symmetric, so we only bound the first one. The bound for the other

term follows with a similar argument. By the convergence in Theorem (3.1.17), we have
that
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2.

jkez

»

jktez

| o] T (o rmoe s

1
f O | | (D2 MDY My fi, £)000Ba00) fo)dx
R ]

IA

1
|| Dewy DMy 0 [ | (BF My, DMy, £ GO foo)n
]

n
jkemez "R

1
b ~b b ~bg*
< > j D2 My, 00 | | (D2 My, DE M, i, ) GIMy, D" My fo ()
jkemez R" J

By Proposition (3.1.12) we also have the following three estimates

i
b | | =b b
anMbo@k _(Dglenglelfpfz)(x)
j

1
< 2ot ([ 08 w08 o)) 0
J

S 27VmKIMZ(M(D)* My, f) - M f3)(x).

1 1
b ~b b =b b
|Dm0Mb09k| |,(Dglenglelfpfz)(X)l sM(@k| |_(Dglenglelfl,fz))(X)
J J

< 2‘V|k‘j|M2(M(Dfle1f1) M £5))(x)

i 1

|D7?1°Mb0@k 1_[ .(DflelDflelfpfz)(x) | = Mz(l_[ .(DfthDflelfl'fZ))(x)
; J
< 27Vl f‘”MZ(M(Dflelﬁ) “Mf7)(x)

Taking the geometric mean of these three estimates, we have the following pointwise
bound

i
b | | =b b
|Drr{)Mb0@k _(Mlegleng1Mb1f1:f2)(x)|
j

—k| k=) j—{
[m=k| | k=]l , li~t|

< 2O S S M (M My, £) M )00,

Therefore
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1
> | kM| | O M0 My 160 B My o)l
R J

.k mezZ

s[> O (Mo 1) M )OI My fo ()l
R 1 0

" i ktmez
1
2
_fIm=kl  [k=jl | |Jj—£] 2
<\ > 2O S e, p) M)
jkOmez
LP
1
2
Im=k| | 1k=jl  JJ=¢1\ _p
(> 2O o
j,kfmez
LP’
1 1
b 2\* b :
s <2M2(M(D,?1Mb1f1)-Mf2)> (Z 1Dy MbofOP)
tezZ P mezZ Lp’
) 2
s (Z(M(D;Mblfl)Mfz>2> I follure
tez p
1
2 z Z
b
< (Z(M(Dbelfa)) 1M follsal followr = [ 11 Allins
tez Lp1 i=0

In the last three lines, we apply the Fefferman-Stein vector valued maximal inequality,

Holder’s inequality, and the square function bounds for Df,’l and 5,?{’* proved by David-

Journed-Semmes. By symmetry and density, this completes the proof.

Lemma (3.2.2)[3]: Let by, b1, b, € L*be para-accretive functions, and assume that T is
a bilinear C-Z operator associated to by, by, b,such that M, T(M,, -, My, -) € WBPfor

normalized bumps of order m. Then for all normalized bumps ¢, ¢4, ¢, R > 0 of order

m, and y,, 1,2 € R™ suchthat |y, —y;| < tR
|(T(M YuR s erR) M :VO:R>| < (1+ t)n+3mRn
b1%¥1 » b W2 »Mbo¥o ~ .
Proof. Let yy,y1,¥2, € R™, R >0, and define D = 1 4+ 2t. Then it follows that
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(T, @7 My, 8327, My o3| = (T (M, §7°7 My, 83 ), My o 33°7)|
Where ¢o(w) = ¢po(Du) and ¢;(w) = ¢; (Du+ @)fori = 1,2, If Ju| > 1, then
clearly DJu| >1, and

Yo lyo — vl

R

_y1|z Dlu| - > (1+28)ul—t > 1.

|Du+ R

So we have that supp(¢p;) € B(0,1). It follows that D~™¢; € C{° are normalized
bumps of order m, and it follows that

|(T(Mb1¢jlyo,DRMb2¢~)go,DR ),Mbo('g())/o.DR)l < D3™(DR)" < (1 + t)™*3mR™,
This completes the proof.

Lemma (3.2.3)[3]: Let by, by, b, € L™ be para-accretive functions. Suppose T is an

bilinear C-Z operator associated to by, by, b, with standard kernel K, and that

My T (M, -, My, -) € WBP. Also let S,f" be approximations to the identity with respect

to by and DY° = S0, — S2° with compactly supported kernels S,l(’i and d,’i" for k € Z

Then

0, (%, y1,¥2) = (T(bySP (1), b2SY? (4 ¥2)), body® (x,))

is a collection of Littlewood-Paley square function kernels of type SBLPK. Furthermore
0, satisfies

J 0, (x,y1,¥2)bo(x)dx = 0
RTl

Forall y;,y, € R™

Proof. Fix x,vy,,y, € R™and k € Z. We split estimate (6) into two cases: |x — y;| +

lx — y,] < 23%and |x —y;| + |x — y,| > 237%. Note that

P1(w) = spt (u+ 2%y, 2Fy))
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-k
iIs a normalized bump up to a constant multiple and s,fl(u, y1) = 2‘k"¢f’1'2 ().

Likewise s.* (u,y,) = 2"‘”¢>§’2’2_k(u) and  d2 (x,u) = 27%np % (u) where ¢

and ¢, are normalize bumps up to a constant multiple. Then
16C6,y1,¥2) | = (T(busg® Cy1) basg? (22)), body® (x,9))]

= 29 |7 (by )" by ) bopy® | 5 22k

Now if we assume that |x —y;| + |x —y,| > 237%, then it follows that |x — y; | >

22 kfor at least one i, € {1,2} and hence

supp(dy® (%)) 0 supp (s (1)) N supp(sy’ (¥2)) € B(x,27%) N B(y;5,27%) = 0.
Therefore, we can estimate 6, the kernel representation of T in the following way
|0k(x'y1Jy2)| =

| (K (ug, uq, uy)

R31n

2
— Ko, 1))b (o) (o) | | biCunsy (us yo)dug duy duy |
i=1

j j j lug — x|7 23" duy du, du,
|x—ug|<27k J |y, —uq|<27k Jy,—u, <27k (I = wq | + |x —uy P27+

j j j 27Yk23nk duy duy du,
lx—upl<27* |y —uq|<27k ]y, —u,|<27k QC7*+ |x —y1| + [x — y 2y

27Yk
< .
27k + |x — yq| + |x — yo )2ty

N

N

S O (x — y )OI (x — y,).

For (7), note that by the continuity fromb,C¢ x b,C¢ into (boCS ) and that S? =

PM p, p)-1 P has a Cy° kernel, we have fora € Ng with |a| = 1

1026, (x, v, 2)| = KT (b1sy* C,y1),b2sy* (532)), bodE (die(x )| s 222k,
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By symmetry, it follows that {6,} is a collection of smooth bilinear Littlewood-Paley
square function kernels. Now we verify that 6, has integral 0 in the x spot: By the

continuity of T from b, C x b,C¢ into (byCS )’

O (x, ¥1, ¥2) b (x)dx

R

= i (T (basP b)) b [ d b))

|x|<R
= Lm(T(bis* (y1), basi” (¥2)) An)

where we take this to be the definition of 1;. Now if we take R > 2 - 27%, then for
lu| < R — 27¥ it follows that

supp(d(u)) € B(w,27%) c B(O,|u| +27%) c B(0,R),

and hence for |u| < R — 2% we have that

Ar(w) = by(w) A2 (x,u)bo(x)dx = bo(wW)Dy° bo(u) = 0.

|x|<R
Also when |u| >R + 27%, it follows that sup'p(d,'if0 (,u)) N B(0,R) =/0, and hence
thatAz(u) = 0. So we have Az(x) = 0 for |[x] <R — 27*and for |x| > R + 27%.
Finally  ||Agllo < supy||d°(Lw)|r S 1 . Since  supp(d°(x,)) € B(O,R +

27®¥)\B(0,R — 27%),it follows that for R > 4(27% + |y,|), we may use the integral

representation

(T (bisP* (- y1), basy? (4¥2)) Ag)]

< [ IRGu v ub 0058 0 70225 (03,3000 0 dudy
R31

22kn

= R |
wa—yal<z=* Do —yi1<2=* Ssuppagy (It = V1] + Ju — v )27

dudv; dv,
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22kn

S R |
wa—-yal<zk Dy —ys1<a-k Jsuppag) (Ul = [v1 = y1l = Iy1 )"

dudv, dv,

22kn

= R | —
wa—ya 1<z Jpy—ys1<2-* Jsuppag) (R = 275 = vy = y1| = [y )"

2kn
sf _kf _kf Ran dudv, dv,
[v2—y2|<2 [vi-y1l<2 supp(4r)

S |supp(Ag)|R™*"

dudv, dv,

S 27kR=(HD),
This tends to zero as R—o . Hence 8 (x, y4,y,) has integral zero in the x variable.

Theorem (3.2.4)[3]: Let T be an bilinear C-Z operator associated to para-accretive
functions by, by, by. If My, ;T (My, -, M, -) € WBP and

MbOT(bpbz) = MblT*l(bo:bz) = szT*Z(blybo) =0,

then T can be extended to a bounded linear operator from LPt x LPzinto LP for all
1 < py,p, < o satisfying (2).
Note that in the hypothesis of Theorem (3.2.4), we take M, T (by,b;) = 0 in the

sense of Definition (3.1.7). For appropriate n%,n2 and all ¢ € C¢ such that by¢ has mean

zero
R@LTO’}’ (T (b1, Mib2), bo) = 0.
The meaning of MblT*l(bO, b,) = MbZT*Z(bl,bO) = 0 are expressed in a similar way.

Proof. Let T be as in the hypothesis, 1 < p,p;,p, < oo satisfy (2), and f,, f1,f> €
Cs such that b, f; have mean zero. Then by Proposition (3.1.16) and the continuity of T

from b, C¢ x b,CY into (byCS ), it follows that

(T (b1 f1, b212), bofoll
= Alli_r)zzo|(T(MblSIf’,1Mb1f1,MbZS,l\’,Zszfz),MboSf,"MbOfO)

b b b
— (T(S23 My, f1, My, S My, f2), My SZ5 My, fo)|
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N-1

b b
Z (T My, St My, fur My S M £2), Moo S Mo, fo)
k=—

= llm

b b b
- <T(Mb15k1Mb1f1' MDZSkZszfZ)'Mb()SkOMbofO>

3

kez

fRanE(blfp bzf2)bo (%) fo(x)dx| + fRnQ%(bofo, baf2)b1 (%) f1(x)dx

+

fﬂi(blfpbofo)bz(@ fa(x)dx

where

O fi f2) = DMy, T(My, Sy fir My, Si3 f2),

Ok(fuf2) = DMy, T" My S¢° frs Mp, Sy f2),

OF(fuf2) = DMy, T2 (My, Sty fis Mb,S°f)-
We focus on 0 = 6,to simplify notation; the other terms are handled in the same way.
Since My, T(M,, -,M,, -) € WBPand T has a standard kernel, it follows from Lemma

(3.2.3) that {6,,} € SBLPK and 6. (x,y1,y2)bo(x) has mean zero in the x variable for all
v1,Y2 € R™.

Now we show that 6,(b,,b,) = 0, which follows from the assumption that
My, T (by,b;) = 0:

Ok (b, b2) (x) = f (My, T (M, 57" y2)ba (57), My, 502 (-, ¥2)b2 (v2) ), 44 (x,)) dly
R2n

Lim (T (bink, bang), bod, (x,)) = 0,

where

nh(u) = f s% (w, )b () dy.
|[YI<R

We've used that M, T(b;,b;) = 0, and that np € C®°,np =1 on B(OR),

and supp(ns) < B(0,2R) for R sufficiently large. Then by Theorem (3.2.1), it follows
that
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Zl(al?(Mblfllszfz):Mb0f0)| S | follwer I fulleeall f211 ez

kez

A similar argument holds for @% with i = 1,2 again taking advantage of the facts

SN iz = i, and —+ — = i, Therefore T can be extended to a bounded operator from
p! 14 |41 P1 p/ |2

LP1 x LPzinto LPforall 1 < p,p,,p, < oo satisfying (2).

Lemma (3.2.5)[3]: Suppose {8;,} € SBLPK with decay parameter N > 2n, and define
K :R¥™\{(x,x,x): x € R"}>C

Kynyn) = ) 0u(®yn ).
kez

Then K is a bilinear standard Calderon-Zygmund kernel.

Proof. To prove the size estimate, we take d = |x —y;| + |x — y,| # 0 and compute

22kn
K, y1y2)l = Z
|K(x,¥1, ¥2)l kez(l+2k|x_y1|)N+V(1+2k|x—}’2|)N+V

22kn
2k -2
<S ZZ”+ ZWSdn

2k<g-1 2k>g-1

For the regularity in x, we take x,x,y;,y, € R™"with |x — x'| < max(|x — y4|, |x —

y.|)/2 and define d’ = |x" — y;| + |x" — y,|. Then

|K(X,y1,y2) - K(Xl,yl,yz)l

< Z (2%|x — x" |y 2%kn
- £t (14 2%|x =y DNV (1 + 2F|x — y,|)NHY

+ Z L L =1+
£ (1+ 2K = yn VY (1 + 2k|x' =y, DN+ '
We first bound | by |x — x'|¥ times

2k(2n+y)
Z 2k(2n+y)+ Z — < d—(2n+y)+d—(N+y) Z 2k(2n—N)

2k<g-1 2k>g-1 2k>g-1
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By symmetry, it follows that IT S |x —x'|¥d'~@™), but since |x — x'| < max(|x —

y1l, |x — y2|)/2, without loss of generality say |[x — y;| = |x — y,] it follows that

lx — ') |x — 1" |x —x'|¥
IIs— : < p S
(Ix" =yl + X =y 7 (Ix = ya] =[x = XY Jor =y [2HY
|x —x'1"
d2n+]/

With a similar computation for y,,y,, it follows that K is a standard kernel.

Theorem (3.2.6)[3]: Given para-accretive functions by, b,,b, € L and b € BMO,
there exists a bilinear Calderon-Zygmund operator L that is bounded from LPt X LPzinto
LP for all 1 <p,p;,p, < satisfying (2) with p = 2 such that My L(by,by) =
B My, L't (bo, by) = Mp,L"?(b1, bo) = 0.

Proof. Let by, by, b, be para-accretive functions, and S/¢,D.',and D' be the
approximation to identity and reproducing formula operators with respect to b; for i =

0,1,2 that have compactly supported kernels as defined in Theorem (3.1.17). Define

LCAf) = ) LeCfife) = ) DEoMy, (DL My B)(S) ) (S )

kez k€eZ

£y) = D te(6y) = ) | dl (o who@) DL My, B@sy (w, y1)sy? (w,y2)du.
kez kez “R"

It follows that L is bounded from LPt x LPz into L? for all 1 < py,p, < satisfying% =

1 1,

P1 P2

fR L(fuf)@ fo@dx| < ) f DMy, B)S (0S8 0ODE” fo ()b (X)dx

kezZ

1
2\ 2 1
b b b 2\2
3 <Z |M5£°*Mboﬁsk1f1$k2f2 ) Z(leofol )
kezZ 12 kez 12
1
) 2
S j Z[q’ﬁ'*lﬁl(x)@’zl'* | f21(0)]1%|1D,° Mboﬁ(x)lzdx> Il foll.z-
R ez
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1

(f Do)« |fﬂ(x)]pl|5£°*Mboﬁ(x>|2dx>
R

kez
1

(jz [OF * | £ (OIP2 DR My, B ()] dx) N foll,z

k€eZ

S foll2lfllepall f2llpa.

Note that in the last line we apply the discrete version of a well-known result relating
Carleson measure and square functions due to Carleson and Jones for the Carleson
measure

du(x,t) = z 1D boB ()28 =k

kez

For details of the discrete version of this result. This proves that L is bounded from

LP1 X LPz into L? for alll < p;,p, < oo satisfying (2) with p = 2. It is easy to check that

{£,.} € SBLPKwith size index N >2n: since d,lj" and s,f"are compactly supported kernels,

fori = 1,2 it follows that

G,y vl < |[boDi My | ., j |d® O = wsy (u = y1)s?(u = y2) |du
Rn

s 20 [ o™ (= )" P (u - y)du s 200 (x — ).

RTl
Hence the size condition (6) with size index N = 2n+1 and y = 1 follows
2 1

eyl S | [(Z0r™ 00—y ) = 032 (= y)@F (x - 3).

i=1
The regularity estimates (7)-(9) follow easily from the regularity of
dy° 5Pt and P Then by Lemma (3.2.5), L has a standard Calderén-Zygmund kernel
It follows from a result of Grafakos-Torres that L is bounded from LP* x LPzinto LPwhere
1 <py,p, <oo satisfy (2). We compute M, L(by,b,): Let § > 0,¢ € C{ such that
supp(¢) € B(0O,N) and by¢p has mean zero. Let nz(x) = n(x/R) where n €
Cy°satisfiesn = 1 on B(0,1), and supp(n) < B(0,2). Then
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(L(b1,b2), o)

= lim Dy My, B(x)Sy" My, 1 (X)Sy My, (X) Mp, Dy (b p) (x) dx
2-k<R/4 R™

+lim Y f Dy My, B(xX)Sy* My, 1 (X) Sy My, 1 ()M, Dy (boh) (x)dlx,
2k>R/4 R™
where we may write this only if the two limits on the right hand side of the equation exist.
As we are taking R—oo and N is a fixed quantity determined by ¢, without loss of
generality assume that R >2N. Note that for 27 < R/4 and |x| <N + 27K,
supp(spt (x,)) € B(x,27%) < B(O,N +2'%) c B(0,R).
Since ng = 1 on B(0,R), it follows that s,f"MbinR(x) = 1 for all |x| < N + 2 *when
27% < R/4. Therefore

lim Y [ B My BGIMy, D (o) ()
2-k<R/4 R™

_ ] D My, DMy, DMy (OB = (B, bo)

kezZ

Here we use the convergence of the accretive type reproducing formula in H! from

Corollary(3.1.19). For any k € Z, we have the estimates

b.
”SkleinR”Ll < |Inrllpr S RY,

- (23)
1S Mp el = [IMglle =1, (24)

and forany x € R™
D" My, d(x)| < j |d° (x,) = d°(x, 0)[1b(NPMIdy s | Ry If)ldy
R™ R™

S NY||g]] 2 2407,
Here we know that {d,lZ"} € LPK , so without loss of generality we take the
corresponding smoothness parameter y < §. Later we will use that y < & implies

¢ € C§ < ), sowehave that |p(x) — p(y)| S |x — y|?. Therefore
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Yokt Son DR My BCOSE My, 1 ()2 My, (X)Mp, D° (bop) (x)|dx <

bo* b b b
Yo-ksrya 1D’ MpoBllieol 1S Mp, M1 12115)* M, MR |12 [ |Mb, Dy (Bo) |10 S

Rn 22_k>R/4 zk(n+y) S R_y.

(25)

Hence the second limit above exists and tends to 0 as R—oo . Then (L(by, b,), bop) =

(B, byp)for all ¢ € CJ such that by has mean zero and hence My, L(by,by) = B.

Again for any ¢ € Cgsuch that b;¢ has mean zero and supp(¢) < B(0,N), we have
(L™ (bo, b), b1 $)|

= lim

R—oo

D, ] D" Mo B ()5 My, & ()S,* My, 11 () Dy My, 1 () bo () dx
R

kez

. ~Dbo* b b b
S }gggoz 1D My Bl1 1Sy Mp, D11 [1S3* M, Mg 15211 Dgc° Mpg g [0
kEZ

. b b
S Lim > 110 My, 8113 1D My, el
k€Z

We will now show that ||S,fle1qb||L1||D£°MbonR||Loo bounded by a in integrable
function in k (i.e. summable) independent of R, so that we can bring the limit in R inside

the sum. To do this we start by estimating

b b b
1S Mp, ()| SJ 1S, (6, y) — S (x, 0| ¢ (V)b (V) | dy
R‘)’l

< NY{|@]12]1by 11027 (@F (x) + DY (%))
and so ||S*My, ||, S 2 . We also have that [|S;*My,¢[|, S ll¢lls 1,
50 ||S* My, |, < min(1,27%). Also

b b
|D}, " Mpy g (X)) Sf |di” Co e () — nrCOIbe(¥)|dy
R‘n
< 2‘V"‘R‘VJ DN (x —y)(2¥|x — y|)Ydy S 27V*R7Y.
RTl
It follows that ||D°My ngll= < |Ingll= <1, and hence [|D°M, ngll <
min(1,277%). So when R >1, we have
1D My, gl |1 1Sg My, @112 S min(27YFRY, 2V%) < 271K,

and hence by dominated convergence
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* . b b , — —
(L' (bo, b2), b1 )| = E Lim 115, My, @12 11D M, gl S ) Lim 27YRTY = 0
keZ kez

Then My, L**(bo, b,) = 0 and a similar argument shows that M, L*?(b;, by) = 0, which
concludes the proof.
Now to complete the proof of Theorem (3.1.1) is a standard argument using the
reduced Th Theorem (3.2.4) and paraproducts constructioned in Theorem (3.2.6).
Proof . Assume that M, T(M,, -, M}, -) satisfies the weak boundedness property and
My, T (by, by), My, T* (Do, by), My, T*2(by, by) € BMO
By Theorem (3.2.6), there exist bounded bilinear Calderén-Zygmund operators L; such
that
My, Lo(by, by) = My, T(by, by), My, L5 (bo, by) = My, L (b1, bo) = 0,

MblLil(bo:bz) = My, T* (b, by), My, L1(by, by) = szLiz(bpbo) =0,

My, Ly (by,bo) = My, T**(by,by), My L5' (bo,by) = My, Ly(by,by) = 0
Now define the operator

2
=T — z L;,
i=0

which is continuous from b,C¢ X b,C¢ into (byCS)'. Also My S(My, -, My, -) satisfies
the weak boundedness property since M, T (M,, -, My, -) and My L;(M,, -, M, -) for i=
0,1,2 do. We have

My, S(b1,by) = My, T(by,by) = ) My Liby,by) = 0

My, S (b, b2) = My, T (bo, b2) = )" My, L (bo, ba) = 0

i= O

My, $%(by, be) = My, T**(by, bo) — ZMDZL (b1 bo) = 0
Then by Theorem (3.2.4), S can be extended to a bounded linear operator from LP1 X LP2
into LP for all 1 < p,py,p, < oo satisfying (2). Therefore T is bounded on the same

indices. T is also bounded without restriction on p.

We prove bounds of the form
T fo flleary S | falleeaany |l 2l ez
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for parameterized Lipschitz curves I" and p, p1, p2 satisfying Holder.
Let L be a Lipschitz function with small Lipschitz constant A < 1, and define the
parameterization y(x) = x + iL(x) of the curve I' = {y(x) : x € R}. Define LP(I') to

be the collection of all measurable functions f : I' = C such that

1
P 1
Hfmmg=0'w@ww4)=f(ﬁ@@mmmmmy<w.
r R
The applications are in part motivated by the proof of L? bounds for the Cauchy
integral using the Th theorem. We define the Cauchy integral operator for appropriate
g:I'->Candz € G

Crg(z) = lim

-0+

f _9)ds
(E +ie)—z’

and parameterized Cauchy integral operator for f : R - C and x €R

f f)dy
i ) +ie) —y(x)

The bounds of Cr- on LP(I') can be reduced to the bounds of Cr- on LP(R). We formally

Crf(2) =

check the Tb conditions for C- with b, = b, = ¥’ needed to apply the Tb theorem of
David-Journé-Semmes: We check (1) C-(y") € BMO
j Y (y)dy d§
5 o) +ie) —y(x) = r @+ie)—yXx)
and (2) C;(y") € BMO, for appropriate ¢ € C§°
Y (y)dy . d§
Cv'(x) = lim - = lim — . —
= T ;) T AT G e @

The crucial role that Cauchy’s formula plays in this argument is to be able to evaluate the

Cry'(x) = = 2mi

limit from the definition of C, for nice enough input functions y'(x) f (x). In the
application,we use a similar argument except the role of Cauchy’s integral formula is
replaced with an integration by parts identity to verify the WBP and Tb conditions.

We look at the “flat” bilinear Riesz tranforms, which we generate from a potential

function perspective.Consider the potential function
1
x—y)2+ (x —y)HV?’

F(x,y1,y2) = ((

and the kernels that it generates:
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2x —y1— >
37
((x —y1)? +(x—y,)?)2

Ko(x,¥1,¥2) = 0,F(x,y1,¥2) =

xX—=y
Ki(x,y1,y2) = ayzF(x, Vi, Y2) = : EL
((x —y1)? + (x —y2)?):

X—=Y2

Ky (%, y1,¥2) = 0,,F(x,y1,y2) = 3
((c=y1)? + (x —¥2)2)?

We define the bilinear Reisz transforms as principle value integrals for f;, f, € Cp°
R0 = po [ Ky A £ dy,.
R
Here is it only interesting to study two of these three operators since R, = R; + R,. We
can be applied to the bilinear Riesz transforms R;: We formally check (1) R;(1,1) € BMO
RADE = - [ Feyy0mMdn dy, = o
R

) R* (1,1) € BMO

RIADOD = [ 0, F Gy y)dxdy,
R
= | @F G332 = 0, FCo ) dxdy,
R

= - [ PGy @) - 0y, ()dxdy; = 0,

and (3) R:21(1,1) € BMO

READOD = - |

F(x,y1,y2)0y, (1)dxdy, = 0.
RZ

Here we observe that the conditions R,(1,1),R;2(1,1) = 0 are identical arguments and
rely on the cancellation of the kernel K;. The R;* (1,1) condition relies on more than just
the cancellation K; ; it also exploits the symmetry of the kernel via the identity
0y, F(x,¥1,¥2) = 0xF(x,y1,¥2) — 0,,F(x,y1,¥,). This is the general argument that we
will use to prove LP bounds for bilinear Riesz transforms defined along Lipschitz curves,
which we define now.

For z,&,,&, € I, define the potential function
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1
((z=&)? + (z—-)HY

Fr(2,¢1,¢2) =

and the Riesz kernels generated by F:

Kro(2,61,€2) = 0,Fr(£,61,85) = ik ik
N R R G DD
Kr1(z,61,&;) = aleF(foli ) = ((Z—El)zz+_(§1— £,)2)3/2’
zZ— 52

Kr2(2,¢1,¢2) = aszr(Z» $1,82) = (Z—&)2 + (2 — Szz)z)g/z .

We will keep the notation z=y(x), & = y(y1), & =v(y,), yo =x, and &, = z.
Here we define v/. on C with the negative real axis for a branch cut, i.e. forw = re €
Cwithr>0and 8 € (—m, x|, we define vV = +re'®/2. We make this definition to be
precise, but it will not cause any issues with computations since we will only evaluate vw
for w € C with positive real part.

For appropriate g,,g, : I' = Cand z € I, we define

Crj (91, 92)(2) = p.v. JFZ Krj(2,§1,$2)91(§1)92($2)dé, d&;

= lim Krj(z,¢1,§2)91(§1)92(§2)d§1dE,. (26)

£20% JiRe(z—£1) 1 IRe(z-82)|>¢

Initially we take this definition for g; = f; o y~* for f; € C;°(R),j = 1,2, but even for
such gjit is not yet apparent that this limit exists. We will establish that this limit exists,
and furthermore that Cr;can be continuously extended to a bilinear operator from
LP1 (I') X LPz (I')into LP(I'). To prove these things, we will pass through
“parameterized” versions of F ,K;, and Cr; for j = 0,1,2 in the same way that David-
Journe-Semmes did to apply their Th theorem to the Cauchy integral operator . For
X,¥1,V2 € R, define

FrOoyny2) = Fr(y), vy, v(y2),  Krj(uyny2) = Kr(r(x), vy (), y(72)),
and for fi, f> € Cy°(R), define for x €R
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M, Cr; (V' fu¥' f2)(x) = p.v. fR zf(}(x,yl,yz) DAY )Y ()Y (v2)dy, dy,

= lim Ki(x,y1.2) fi() 027" () ¥ )Y (72)dy, dye.

E0F D=yl x—yal>e

for j = 0,1,2. We begin by proving that C}J for j = 0,1,2 is well defined, and find an
absolutely convergent integral representation for it that depends on derivatives of the
input functions f3, f, € Cy°(R).

Proposition (3.2.7)[3]: Let L be a Lipschitz function with Lipschitz constant A < 1 such
that for almost every x € R the limits

sl_i)m Y(x+¢) =y (x+) and slim Y(x—¢) = y'(x—)

exist. Then My,C},j(y’ fu,vY' fz)is an almost everywhere well defined function for
fi,f> € C5° (R) and j = 0,1,2. More precisely, for f;,f; € C5° (R) the limit in (27)
converges for almost every x € R and

MVIEF,1(V’f1’Y’f2)(X) = —j

. Fr(x; yu.Y2) fi 1) 2207 ()Y (v2)dy, dy,,

My, Cro(v' Ly ) (x) = _f

R

] Fr(ey1, )00 f; 027’ Gy (v dys dys.

Furthermore Cr; is continuous from y'C§(R) X y'C3(R) into (¥'C3(R))’, and for
fo f1.f2 € C5°(R),
(Er,o(ylf1'ylf2)'ylfo)

= = By i ) AODRODY 00 0)dxdy, dy;
Conts' fud o) = = [ FrCoya 3 o) FLOm) oY Y )y, dy

Cral fud f ¥ fo) = — f

o Fr(x: Y1, Y2)fo(X) fin) f2(2)Y' ()Y (1) dxdy; dy, .

Proof. Fix f,f; € C°, and we start by showing that M, Cr,(v' f1,¥' f2) can be

realized as a bounded function. Define fore > 0andx €R
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Ce(x) = 'II- | I Kr,1(”‘»)’10’2) 1) LGV Y )Y (v2)dy 1 dy,
x=y1llx=yz|>e

Note that aylﬁr(x, y1,¥2) = Kr1(x,y1,52)Y'(¥1), and we integrate by parts to rewrite
Ce

Celx) = J|‘ Lx=sl 0y, Fr(x,y1,¥2) i(01) L0207 ()Y (v2)dy, dy,
X=Y1,[x=Yy2[>€
) _f| Llx—2| Fr(6,y1,¥2) fi 1) 27 ()Y (72)dy1 dy,
x=y1l,|x=y2|>¢€

+ fl Frlux = ay) =) KOV @Y 02)
X—y,|>€

_fl I Frx,x + &y,) i(x + €) L7 ()Y (v2) dy,
xX—y,|>€
= _L ! I ﬁr(X;J’LYZ) fi 1) L0207 ()Y (v2)dy: dy,
X=Y1L|1X—=Y2 >
+fl | (F'r(x,x —£Y2) — F'p(x,x t &, YZ))fl(x —¢€) fz(YZ)Y’(x)V'(YZ)d}’z
xX—Yyo|>€

+fl I Frix,x + &) (filx — &) — fi(x + €)) L)Y ()Y (v2)dy,
X—yy|>e

= I (x) + I .(x) + 1I.(x).

We use that f; € C;° (R) to conclude that the when integrating by parts, the boundary
terms at y; = £oo vanish, leaving the y; = x + ¢ above. We now verify that the

limits of I.(x), II.(x), and II1I.(x) each existas & — 0.

I.converges: To compute this limit, we verify that the integrand of I, is an integrable

function. Note that ||L||,> = A < 1 implies
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| Fr(x'Y1;3’2)|

< 1

T Re((x —y1)? — (L(x) = L(y1))* + (x —y2)%* — (L(x) — L(y2))?) |2
- 1 1

TA=-DY2x =y +x =y,

Now let R, > 0 be large enough so that supp(f;) < B(0,R,) for j =12, and it

follows that

-IRZ | Fr(x' y1.¥2) fi 1) L2)Y ()Y (v2)ldy, dy,

M[ il ol

B CPORE lyiblyzl<Ro 1X = Y1l + 1% = y2| 1572
R, ,

S a-nre I A e || f2] e

Therefore I, converges to an absolutely convergent integral as € — 0.

11, — 0: First we make a change of variables in II, to rewrite

I, = ’[I I he(%,y2) filx — &) fo(x — ey)Y'(x — €y,)dy,, (28)
y2|>1
where he(x,y5) = ey’ () (Fr(x,x —e,x — ey,) — Fr(x,x + &,x — €y,)).

We wish to apply dominated convergence to I1, as it is written in (28). First we show that
the integrand converges to zero almost everywhere (in particular for every y, # 0 and x
such that y'(x) exists): Fory, >0 it follows that f,(x —ey,)y'(x —ey,) —
()Y (x=)ase > 0". When vy, <0, it follows that f,(x — ey,)y'(x — €y,) =
f(x)yY' (x+) as e » 0*. So either way, the limit exists for y, # 0 and almost every x.
Now we show that h.(x,y,) — 0 for almost every x,y, € R. For any x € R such that

y'(x) exists and y, # 0, we compute
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- (o
limey'(x) Fr(x,x — &,x —€y,) = lim Yy (x) _
-0 -0 ((Y(x)_)/(x—g))z n yzz(y(x)—y(x—eyz))z)

2 2
€ (ey2)

_ ¥ (x)
' () + 57 ()?)H?
It follows that ey'(x) Fr(x,x —&,x—¢ey,) » (1+y2)"2 as well. Therefore

=1 +yH™2

he(x,y,) —» 0ase — 0forall x,y, € R such that y'(x) exists and y, # 0. Now in order
to apply dominated convergence to (28), we need only to show that h.(x,y,) is
integrable in y, independent of €. Define g, = y(x) — y(x — t), which satisfies for all
s,teER
19:) = ly() —y(x =0l < |IY'l] wltl < 2]
Re(gi +g¢) = Re[(y(x) —y(x —5))?*] + Re[(y(x) — y(x — t))?]

> (1—-2A)(s?+t2).
Also it is easy to verify that if o = re'®,{ = pe'® € C both have positive real part,
ie.0,¢p € (—m/2,m/2),then
| Vo + /7| = Vrcos(8/2) + \[pcos(¢/2) = [T cos(8) + \[p cos(¢) =+ Re(w) +

VRe(9).
Here we use that,/cos(6) < cos(8/2) for 8 € (—m/2,m/2). Using these properties,

we bound h,

1
lhe (X, ¥2)| = € -
(gg +g§3’2)1/2 (gzs-l—ggh)l/z
_ |ggs _ggl 1
|ggs + ggy2|1/2|gg + ggyzll/z |(g§ + ggyz)l/z + (gze + ggy2)1/2|
|9—cl? +19¢]? 1
S¢€ 1/2 1/2 1
Re(g2: +g%,) " "Re(g? +93,) " " [Re(g? + 93,)1> + Re[(g2. + 92,)1"/>
e 2(2¢)? 1 __ 1 1

= (1=2)e? + (ey,)22(1 — D)2 (2 + (ey,)2)1/2 7 (1= )32 (1 + |y,|)3

Therefore |h.(x,v,)| < (1+ |y,])~3, and we can apply dominated convergence to (28).

Hence Il - 0as ¢ = 0.
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111, — 0: For this term, we use the regularity and compact support of f; to directly bound

AR f Fr(ox+ 69l 1k —€) — fi(x + Olf0)ldys |
e<|x—yy|<|x|+Rg+e

1
s 1/2_[
1-2 e<|x—y,|<|x|+Ro+e |x — 2l

_ = 11 fallie
AT

Recall we chose R, > 0 such that supp(f;) < B(0,R,) forj = 1,2. Hence III, -

Qell fillie=)ll fallpe= dy2

gllog(|x| + Ry + &) — log(¢)|.

Oase— 0, andso

lgif(} Ce(x) =C(x) = _LZ Fr(x,y1,52) fi 1) (207" ()Y (v2)dys dy,,

which is an absolutely convergent integral. This verifies the absolutely convergent
integral representation for C., in Proposition (3.2.7). It also follows from our estimate of

I, that C.(x) is bounded uniformly in x; hence for f, € C;° (R)ande >0
1C(0) fo()Y' ) s (=D 12|l falliee Rol fo (I,

and by dominated convergence

- ] Fr o ya y2)fo GO fL ) 0¥ ()Y () dxdy, dys
R3

= tim | €W @h@x= | €@ LGy

= (Cr,1()” fuv' 2,7 fo)
Furthermore since the bounds of I, II,, and III, are in terms of ||f;|[, ||f; ||, and
Ry for j = 0,1,2 it follows that C., is continuous from y'C(R) X y'C§(R) into
(¥'C3(R))'. By symmetry, the properties of C, follow as well. Also
(ér,o()”fpl" 2.7 fo)

= j lim kr,o(x: y1,¥2) fo(X) i) 2(72)7' ()Y )Y (v2)dy: dy, dx
R

-0
[x=y1l|x=y2|>€

= f lim axFF(xf v1,.¥2) foC) i) 2(072)7 )Y (2)dy, dy, dx
R

-0
[x=y1l|x=y2|>€
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= L lim a)ﬁﬁr(x' y1,¥2) fo(X) (1) 27207 )Y (v2)dy, dy, dx

-0
[x=y1l|x=y2|>€

+J. lim aJ’ZFF(x» y1,.¥2) fo(X) fin) )Y )Y (72)dy: dy, dx
R

£-0
[x=y1l|x=y2|>€

= (C~r,1()” LY £2).7 fo) + (ér,z()” Y 20,7 fo)

By the absolutely integrable representations of C;.; and C; ,, it follows that

(ér,o()” fuY £2).7'fo) = <C~F,1(V’ fuY 2.7 fo) + (ér,z(]” LY £2).7 fo)

= — f 3ﬁr(x'3’1;3’2) fo(x) fi (r1) 2(2)Y' (0¥ (v2)dxdy, dy,
- ]R3 Fr(x: y1,.¥2) fo(X) i) f2 2)Y' ()Y () dxdy, dy;,

= lim 0y1F'p(x, y1,.¥2) fo(X) fin) £2(02)7Y ()Y (v2)dxdy, dy,

-0
[x=y1l,|x=y2]>€

YVil|xX—=Y2 >& 1 dxd d

- F'p(x,x —&y2)fo(Dfilx — ) f2(¥2)y ()Y (y2)dx dy,

[x—y2|>€

+fl I Fr(x,y1,x + &) fo () fi(y) f2(x + &)y’ )y (y1)dx dyy

x—y1|>¢

_jl I ﬁr(x; yux =)o) fily)f2(x — &)y (x)y' (y1)dx dy,
x—y1|>€

= lim axﬁr(x: y1,¥2) fo(X) i) 2(72)7' )Y (v2)dxdy; dy, .

£20 Jlx—y; | Ix-y|>e
The boundary terms of the integration by parts here (the last 4 terms) tend to zero as
€ — 0in the same way as they did for /I, and 11, above. Now we will integrate by parts

one more time in x here to obtain an integral representation for Cr 4:
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lim axﬁr(x' y1,¥2) fo(X) (1) 2207 )Y (v2)dxdy, dy,

-0
[x=y1l|x=y2|>€

= lm- Ix—y1l,|x—y2|>eﬁr(x’ v1,¥2)fo () fi(v1) ()Y )Y (v2)dxdy, dy,
’ 'flyl—y2—£|>gﬁr(y 1= &Y1Y2) fon — &) 1) L02)Y )Y () dy: dy,
B flyl_y2+sl>ff(3’1 +&y1,Y2) for + € (1) 22)Y ()Y (v2)dys dy,
* 'fly1—y2+s|>eﬁr(y2 —&y1,Y2) fo(v2a — &) fi(y1) L (v2)Y' )Y (v2)dy, dy,
B 'f|y1—y2—s|>sﬁr(y 2 +&y1,Y2) fova + &) i) L)Y )Y (v2)dy: dy,
stm=| G f 6 AODROY 00y Odxdy; dy,

+ jl yl_y2|>fr(y1,y1 +&y2) forn) i + &) L)Y ()Y (v2)dy, dy,

B j|y1—y2|>sﬁr(y 1Y1 = &Y2) fon) filva — &) 020V ()Y (v2)dys dy:

* f|y1—y2|>gﬁ rV2yuY2 +8) fo(2) i) (02 + &Y' ()Y (v2)dy: dy,

_fl I FF(YZ,)’LYZ —€) for2) 1) 2(v2 — &)Y ()Y (v2)dy: dy,
V1—Y2[>€

= | oy ) i) FiOw) 0mY 0y G)dxdys dys.

Once again we use the same argument for the II, and Il .terms to verify that these

boundary terms (the last 4 terms) tend to zero as e - 0. Then the pairing identity for C.

holds as well. This completes the proof of Proposition (3.2.7).

In the next proposition we extend C- and C to product Lebesgue spaces.

Proposition (3.2.8)[3]: Let L be a Lipschitz function with Lipschitz constant A < 1 such

that for almost every x € R the limits
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limy'(x+e)=y'(x+) and Ilimy'(x—¢&)=y'(x-)
£-0+ -0+
exist. If L id differentiable off of some compact set and there exists ¢, € R such that

lim L'(x) = cy,

|x|—c0
then C},j is bounded LP1 (R) x LPz (R) into LP(R) for all 1 < p;,p, < oo satisfying (2)
for each j = 0,1,2. Furthermore, Cr; is bounded LP* (I') x LPz (I') into LP(I") for
alll < p,,p, < oo satisfying (2) for each j=0,1,2.

Proof. We will apply Theorem (3.1.1) to C, , with by = b; = b, = y'. Note that y'is
para-accretive since Re(y’) = 1and y’ € L®. Itis not hard to see that K- , is the kernel

function associated to C;. ;. It also follows from ||L||,~> = A < 1that K, is a standard

bilinear kernel:

. 1 lyC) — vl
K , V1) <
EraCore )l = G G = 7 + 3?7
1 1Yl

< ,
A-)32(x —y1)? + (x — y2)?
and

e ) < ly () —y)lly @) — vy lly' (r2)|
IR S A DT () -y
< 3 |1¥'[]5e0
T (A= ((x—y1)? + (x — )P
A simliar estimate holds for 0,Kr(x,y:,y,) and 9, Kr1(x,y1,¥2), which implies

that I?m(x,yl,yz) is a standard bilinear kernel. Now it remains to verify that Cr,
satisfies the WBP and the BMO testing conditions for by, = b, = b, = y'. Let
b0, D1, P, be normalized bumps of order 1, u € R, and R > 0. By Proposition (3.2.7), we
have

~ r 4 uR 1 3 UR 1 4 UR
, 1
|<Cr1()’¢ V' by )'V by )l

SJ |Fr(X:J’1’}’2)¢g'R(x)(¢f'R)’(}’1)¢g'R(yz))/'(X)]/'(yz)|dxdy1 dy,
R3

- 1 j‘ dxdy, dy, - R
ROL= D2 Jig g [x =1l + [x = y5] ~ (1= 1)172

So C, satisfies the WBP. Now we check the three BMO conditions of Theorem (3.1.1):
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MVIC},l(y’,y’) = 0 € BMO : Let ¢ € C;° (R) such that y'¢ has mean zero and

n € Cy S (R) such that 0 < n <1, n =1 on [-11], supp(n) c [-2,2], and
nr(x) = n(x/R). Again we use Proposition (3.2.7) and make a change of variables,

(Cra(Ynr Y MR), Y &)

= - fR . Fr (6, y1,72) ) )Y 0 (7)Y ()¢ (x)dy, dy, dx

= - fR 3RF"r(x,Ryl,Ryz)¢>(x)n’(yl)n(yz)y’(x)y’(Ryz)dxdyldYZ-
Then for y,,y, # 0, we can compute the pointwise limit
Llim RFr(x, Ry1, Ry2)Y'(Ryz)
. Ry'(Ry»)
R ((¥(x) —y(Ry1))? + (¥ (x) — v (Ry2))*)'/?

— lim V'(Ry»)
R*oo( 2 ()Y (Ry1))? 2<y(x)—v(Ryz))2)1/2
1 (Ry1)? 2 (Ry2)?

_ 1+ic _ 1
SO+ ic)? +yi(L+ic))VE T O + y)VE
Here we use that L is differentiable off of a compact set, that L'(x) — ¢, as [x|— <. And

L’Hospital’s rule to conclude that L(x)/x — cyas [x| — o . Now let R > 0 be large
enough so that supp(¢) < B(0,R/4), and using that supp(n’) < [—2,2]\[-1,1], we
have the estimate

- e , R|p()n' (1)
|RER(x, Ry, Ry2)Y' ()Y (Ry2) ¢ CoOn' (yn(v2)| = A=) x =Ry, + Ix — Ry,

o1 RI$CN ) _ 1 1
= =D Ral/2+R/2 =2l + Riy,l ~ A= D7 Il + [l

Then by dominated convergence

Here we also use that y'¢ has mean zero. Therefore Mylc},l(y’,y’) = 0 € BMO in the

é%(éﬂl(y,n& YR), V') = f
R

sense of Definition (3.1.7).
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M,,Cir(y',y") = 0 € BMO: Note that for every x,y,,y, € R such that |x — y,| + |x —

y2| # 0 we can write
Rr1(6y1,y2)7' Y )Y 72) = 0y, Fr1 (6, y1, 7)Y (07 (v2)
= axﬁr,1(x» V1, Y)Y )Y (v2) — ayzﬁl",l(x' Y1, Y2)Y ()Y (1)
= (KF,O(xrylryZ) - Kr,z(x»)’1’YZ))V’(X)V’(%)V’(YZ)-
Then it follows that M,,Cr1(M,, M, ) = M,,Cro(M,, M, ) —M,,Cr,(M,,
,M,, -), and so by Proposition (3.2.7)
(CEL MR YR, Y D) = (Cra (V' ¥ R), Y IR)
= (Cro(Y'd, Y 1R), Y NR) = {Cr2(¥'d, ¥ NR), V' IR)

= - f Fr(x,y1, 7207 0@ )Y 020 v2) 1R)' (x)dy, dy, dx
R3

+ jR sﬁr(x, y1,Y2)Y' ) Mr) 2)Y ()ng(x)dy, dy, dx.

These two expressions tend to zero by the same argument that (29) tends to zero as R—o
in the proof of the M,,Cr,(y',y") = 0 condition. Therefore M,/C/*(y',y") = 0 €
BMO as well.

M,.Ci*(y'.y") = 0 € BMO: By Proposition (3.2.7), we can compute

(CFA( MR, Y'MR), Y O)
= - f 3Fr(x.yl,yz)(nR)’(yl)V’(x)nR(x)y’(yz)¢(yz)dy1dyz dx.

Again, this expression is essentially the same as the one in (29), and hence tends to zero
as R—oo by the argument. Therefore M,,Cf2(y',y") = 0 € BMO.

Then by Theorem (3.1.1), C-;, can be extended to a bounded operator from LPx x LPz
into LPfor appropriate p,p;,p, . Now it is easy to prove that Cr-; can also be extended to
a bounded operator: Let 1 <p;,p, <o and 1/2 <p < o« satisfy (2). For g, €
LP1 (') and
g2 € LPz (I'), and it follows that
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1/p
11Cr1(91, 92D 1P ) = (f |Cp,1(gl,g2)(y(x))|p|)/’(x)|dx>
R

1 = _ _
< ||V’||L£op|| CI",l”p,pl,pz llg1° v e (R)||92 °y 1||Lp2 (R)

il J— 1 =~
= V121 " NP1 Crallppy o, 19111201 (11921 1, -

The bounds for Cpq, Cr 4, Cr o, and Cp, follow in the same way.
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Chapter 4

The L(logL)‘ Endpoint Estimate

We show the following estimate for the maximal operator T* associated to the singular

integral operator T:

1
IT* fllLreo ) S Ef If C)IMpaog yeW)(x) dx, w =0, 0<e<1.
RTl

This follows from the sharp L estimate

1.,
IT* fllpwy S p’(g)l/p ||f||Lp(M 1<p<oo,w>=00<6<1.

L(log L)p_1+6(w)),

As a consequence we deduce that

||T*f||L1,oo(W) S [wlg, log(e + [W]Aoo) | flwdx,
RTL

Section (4.1): Basic Definition and Dyadic Theory

The Muckenhoupt-Wheeden conjecture has been disproved by Reguera and Thiele.
This conjecture claimed that there exists a constant c such that for any function f and

any weight w (i.e. a nonnegative locally integrable function), there holds

HFll ooy < f \fIMwdx | 1)
R

where H is the Hilbert transform. The failure of the conjecture was previously obtained
by M.C. Reguera for a special model operator T instead of H. This conjecture was
motivated by a similar inequality by C. Fefferman and E. Stein for the Hardy—Littlewood

maximal function:

IMfll oy < cf |fIMw dx. (2)
R‘rl
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The importance of this result stems from the fact that it was a central piece in the
approach by Fefferman—Stein to derive the following vector-valued extension of the
classical LP Hardy-Littlewood maximal theorem: for every 1 <p, q < oo, there is a finite
constant ¢ = ¢, 4 such that

(Zil61Me

<c
LP(RM)

H(Zj(ij)q)% 3)

LP(RM)
This is a very deep theorem and has been used a lot in modern harmonic analysis explain-

ing the central role of inequality (2).

Inequality (1) was conjectured by B. Muckenhoupt and R. Wheeden during the 70’s.
That this conjecture was believed to be false was already mentioned where the best
positive result in this direction so far can be found, and where M is replaced by M, o415e,

i.e., a maximal type operator that is “e-logarithmically” bigger than M:

ITf o < f Flugog e Wdx w0,
Rn

Theorem (4.1.1)[4]: Let T be a Calderon—Zygmund operator with maximal singular
integral operator T*. Then forany 0 < e <1,

c 4
IT* flliseoqn S = j f O IMigoge(W)@ dx w20 @)
Rn
If we formally optimize this inequality in € we derive the following conjecture:
IT fllasoqy < e f f My 109109 W) dx w2 0,f € LZR™. ()
Rn

To prove Theorem (4.1.1) we need first an LP version of this result, which is fully
sharp, at least in the logarithmic case. The result will hold for all p € (1, o)but for

proving Theorem (4.1.1) we only need it when p is close to one.

There are two relevant properties that will be used (see Lemma (4.2.2). The first one
establishes that for appropriate A and all y € (0,1), we have (M,f)Y € A;with constant
[(M4f)¥]4,independent of A and f. The second property is that Mz is a bounded operator
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on LP'(R”) where A is the complementary Young function of A. The main example is
A(t) = tP(1 +1logTt)P~1*9, p € (1,0), & € (0, 0) since
WMall, g, S PRV
B(LP (R™) 0
by (25).
Theorem (4.1.2)[4]: Let 1 <p < and let A be a Young function, then
IT* Fllirawy < ot IMallsep @yl fllogaguimyy W = 0. (6)

In the particular case A(t) = tP(1 + log™t)P~*% we have

v

w = 0, 0<é6=<1.

1.,
IT* fllLeowy < CTP'PZ(E)”” IIfIILp(M

LUoglJp_1+6(M0)
Another worthwhile example is given by ML(lOgL)p_l(loglogL)p—1+5 instead  of

M yp-1+8 for which:

L(logL

1.,
IT* fllrgy < crp* @Y I N o ) w20, 0<8<1

L{log L)P—1(log log LyP~1+§ (W)

There are some interesting consequences from Theorem (4.1.1), the first one is related

to the one weight theory.

Definition (4.1.3)[4]:

1
W]a 1= su M(w dx.
Wla up Q)fQ (Wxo)
Observe that [w] 4 = 1 by the Lebesgue differentiation theorem.

When specialized to weights w € A, or w € A;, Theorem (4.1.1) yields the
following corollary. It was formerly known for the linear singular integral T, and this was
used in the proof, which proceeded via the adjoint of T; the novelty in the corollary below

consists in dealing with the maximal singular integral T* .

Corollary (4.1.4)[4]:

IT" fll oy S log(e + Wlay,) Jpn If IMwdx (7
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and hence
IT" flljreewy S [Wla, log(e + [Wla,) |f[wdx. (8)
Rn

Proof. To apply (4), we use log t < %for t > 1and a > 0 to deduce that

ML(lOg L)E(W) < EML1+EO_’(W)

1

Hence, if w € A, we can choose asuch that ae = Then, applying Theorem

Tn [W]Aoo '

(4.1.5)

M| =

1
~Miog1yr W) S — (€7 [Wla, ) Mirw (W) = —[wla,M(w)

and optimizing with € ~ 1/log(e + [w],,, ) we obtain (7).

Theorem (4.1.5)[4]: Let w € A, then there exists a dimensional constant z,, such that

(fQWrW)l/rW < zfQW

where

Corollary (4.1.6)[4]: Let u, o be a pair of weights and let p € (1,00). We also let
8,61,0, € (0,1]. Then:

(@) If

1/p’
kK = SupQ”ul/p”Lp(logL)p'1+5,Q (ﬁfQ O-dx) < (9)

then

1 1 ,
IT* (fo)llpoqy = 5K (g)l/p I/ llp () (10)
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(The boundedness in the case § = 0 is false)

(b) As consequence, if

K = sup ||ur —f adx)
Q LP(logL)P~1%81 g IQl 0
1
+ sup 1—[ u dx p||01/p,|| ' ' < o
o \Q] 0 LP (log L)P'~1+02,9 ’ (11)
then
1 1
. 1 /1N 1/1\r
IT* (Fo)ll oo < K 5_1(5_1) +5—2(5—2) 1 llo o (12)

We don’t know whether the factors %,i =1, 2 can be removed or improved from

the estimate (12). Perhaps the method is not so precise to prove the conjecture

formulated. However, it is clear from the arguments that these factors are due to the

appearance of the factor i in (4).

By a Calderén-Zygmund operator we mean a continuous linear operator
T:C(R™) — D(R™) that extends to a bounded operator on L?>(R™), and whose
distributional kernel K coincides away from the diagonal x =y in R™ X R™ with a

function K satisfying the size estimate
Kyl < —
xy)| £ ——
|x = yI"

and the regularity condition: for some & > 0,

|x — z|°
|K(x,y) — K(zy)| + |[K(y,x) — K(¥,2)| = ¢

)

|X — y|n+£
Whenever 2|x — z| < |x — y|, and so that
TF0) = [ Koy,
Rn
Whenever f € C;°(R™)and x & supp(f).
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Also we will denote by T the associated maximal singular integral:

Twm=mp_[xmwmwy f e co @™

>0
|ly—x|>¢

A Young function is a conve, increasing function A : [0,00) — [0, 0)with A(0) =
0, such that A(t) — o as t — oo. Such a function is automatically continuous. From these
properties it follows that A : [ty,0) — [0,0)is a strictly increasing bijection, where
to = sup{t € [0,00) : A(t) = 0}. Thus A~1(t) is well-defined (single-valued) for t > 0,
but in general it may happen that A=1(0) = [0, ¢,] is an interval.

The properties of A easily imply thatfor0 <e <landt =0
A(et) < €A(L). (13)

The A-norm of a function f over a set E with finite measure is defined by

If(X)I> dx

IFlae = Wfllaye = inf(A >0+ fea(P=21) dx < 1)

where as usual we define the average of f over aset E, f;f = éfb_ fdx.

In many situations the convexity does not play any role and basically the
monotonicity is the fundamental property. The convexity is used for proving that

Il Il is anorm which is often not required.

We will use the fact that

Ifllap < 1 if and only if fzA(f()])dx < 1. (14)

Associated with each Young function A, one can define a complementary function

A(s) = sup{st - A(t)} s > 0. (15)

t>0
Then A is finite-valued if and only if lim,,A(t)/t = sup;oA(t)/t = oo, which we
henceforth assume; otherwise, A(s) = oo for all s > sup;soA(t)/t. Also, A is strictly
increasing on [0, o) if and only if lim, A(t)/t = infiscA(t)/t = 0; otherwise
A(s) = 0forall s < infioA(t)/t.
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Such A is also a Young function and has the property that

st < A() + A(s),  t,s=0, (16)
and also

t < ATA () < 2t, t>0. (17)

The main property is the following generalized Holder’s inequality

1
= [ 1gldx < 2Wfllaclgse (18)
E1 ),

As we already mentioned, the following Young functions play a main role in the theory:
A(t) =tP(1 + log*t)P~1+e t,6 >0,p > 1.

Given a Young function A or more generally any positive function A(t) we define the

following maximal operator

My f(x) = Muf(x) = Sél;pllf a0 -

This operator satisfies the following distributional type estimate: there are finite

dimensional constants c,,, d,, such that

f

nt—>dx f>0t>0 (19)

lx €R™M,f(x) > )] < ¢, fA(d

R‘l’l
A first consequence of this estimate is the following LP estimate of the operator. A

second application will be used in the proof of Lemma (4.2.2).

Lemma (4.1.7)[4]: Let A be a Young function, then
”MA“B(Lp(Rn)) < crap(4) (20)

where a,(A) is the following tail condition that plays a central role in the sequel
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o 1/p
@) = (7°5%) 7 < = (21)

Examples of functions satisfying condition (21) are A(t) =t9,1 <q <p. More

interesting examples are given by

p

T T log7 s AW = tPlog(®Mlog log(®™**®,  p>1,6 >0.

A(t) =

Often we need to consider instead of the function A in (21) the complementary A.
We also record a basic estimate between a Young function and its derivative:
A(t) < tA(D) (22)
which holds for any t € (0, o) such that A" (t) does exist.

There is the following useful alternative estimate of (20) that will be used in the
sequel. We would like to stress the fact that we avoid the doubling condition on the
Young functions B and B, which is important in view of the quantitative applications to
follow: even if our typical Young functions are actually doubling, we want to avoid the

appearance of their (large) doubling constants in the estimates.

Lemma (4.1.8)[4]: Let B be a Young function. Then
IMpllzrrny)y < CuBp(B) (23)

where

Proof. We first prove that fora > 0

oo co

dB L
J ﬂEt)g J (%) dB(t). (24)

B~ 1(a) B~ 1(a)
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We discretize the integrals with a sequence a,: = n*a, where n > 1 and eventually we
pass to the limit n—1. Then

co o B7M(ak+1)

oo B~ (ak+1)
fd'iﬁt)=z f digt)s;m J dB(t)

B~1(a) k=1 B=1(ay) B~1(ay)

=1
= E ———— (Ag41 — Ag)-
-1 p
k=1B (ax)

Similarly,

C B (ak+1 - -
>Z(W> | o

B~1(ay)

[e'e) E_l . p
= z <M> (A1 — ax),

a
r k+1

&

where we used the fact that t — B(t)/t is increasing, so its reciprocal is decreasing
Moreover,

B (ax41) - B~'(a;) B (ar) (17) & 1 1

are1 e B(ap) = g B (ar) B N(ay)

and hence

o] o]

dB L
tf) < nP f (%) dB(t).

B~1(a) B~1(a)

Since this is valid for any n > 1, we obtain (24).
Now, let t; = max(1,ty), where t, = max{t: B(t) = 0}. Using B(t)dt/t <
dB(t) and applying (24) witha = B(t; +€) >0
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A

o

_ B(t) dt
w® = [ T
t1+6
1 1
[e'e) D ] p 4
< lim dBW ) @9y, (—_(t)> dB(t)
= o0 tpP < €50 B(t)
B~1(B(ty+¢€)) B~1(B(t1+e€))
1
(o] t p ~ P
——] dB(t ,
f (B(t)) ©
B(1)

where in the last step we used (17) with t = B(t; + €) to conclude that

B(t, +¢€) - B(t,)

t, +e t;

B 1(B(t, + €) = > B(1),

since B(t)/tis increasing and t; > 1.

We will consider B so that B(t) = A(t) = tP(1 + logTt)P~*%, § > 0. Then, for 0 <
§<1

A(t)
A'(t) < Zpt— t>1

and

A(L) = sup (t —tP) = (t — tP) = (- Dp".
te(0,1) t=p~1/®-1
Thus, by the lemma
. 1/p .
t\P , (P
IMallgLprnyy < Cn f (m) A(t) dt < cpp (E) (25)
(p-1P~P
Similarly for the smaller functional:
p—1+6

B(t) = A(t) = tP(1 +log* £)P"(1 +log*(1 + log™t)) § >0.
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A(t)

Then, using that A’'(t) <3p —, t > 1,when0 < § < 1 and hence by the lemma

1\ 1/P
”MA”B(LiJ(Rn)) < Cnp2 (E)

We will need the following variation of the Rubio de Francia algorithm.

Lemma (4.1.9)[4]: Let 1 <s <o and let v be a weight. Then there exists a

nonnegative sublinear operator R satisfying the following properties:

a) h<R(h),
b) IR swy < 2lhllLs @y,
¢) R(h)v'/s € A, with
[R(Wv/S],, < ¢

Proof. We consider the operator

M 1/s
s = LT

Since ||M||;s ~ $, we have

ISy = eSIfllsqy-

Now, define the Rubio de Francia operator R by

S*(h)
R(h) = Z 25 (ISl =)

It is very simple to check that R satisfies the required properties.
The new result is intimately related to a sharp two weight estimate for M.

Theorem (4.1.10)[4]: Given a pair of weights u,candp,1 < p < oo, suppose that

1/p

K =sup ifu(y) dy |lo?||, < o, (26)
Q IQIQ x.Q
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where X is a Banach function space such that its corresponding associate space
X satisfies Mg:LP(R™) — LP(R™). Then

||M(f0)||LP(u) S K ||MX||B(LP(R"))||f||LP(a) (27)
In particular if X = Ly with B(t) = tP(1 + log*t)?P~1*%, § > 0, then by (25)
1\ /P
IMllsaramy = IMsllsaram =~ @ (5)
where the last = is valid for 6 < 1.

We say that a dyadic grid, denoted by D, is a collection of cubes in R™ with the

following properties:

i. each Q € D satisfies |Q| = 2™ forsome k € Z;
ii. ifQ,PeDthen Q NP =0Q,P, orQ;
iii. foreach k € Z, the family D, = {Q € D:|Q| = 2™} forms a partition of R™.

We say that a family of dyadic cubes S c D is sparse if for each Q € S,

o= 3l
Q= 5l
ges

0%Q

Given a sparse family, S, if we define

E@=o\ | o

then

i.  the family {E(Q)}qes is pairwise disjoint,
ii. E(Q) cQ,and
iii. Q| <2|E(Q)|.
If S c D is a sparse family we define the sparse Calderon—Zygmund operator associated

to S as
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T5f = ) fo fdx - xo.

Q€S

As already mentioned the key idea is to “transplant” the continuous case to the

discrete version by means of the following theorem.

Theorem (4.1.11)[4]: Suppose that X is a quasi-Banach function space on R™ and T is a

Calderén—Zygmund operator. Then there exists a constant cy
IT* gy < cr supllT|Ipex) -
ScD

We will not prove this theorem, we will simply mention that a key tool is the
decomposition formula for functions found previously using the median. The main idea

of this decomposition goes back to the work where the standard average is used instead.
Section (4.2): Proof of Theorems
Lemma (4.2.1)[4]: Let w € A,. Then for any sparse family S c D
ITSFllagy < 8IWlagIMFllr oy (28)
Proof. The left hand side equals for f > 0
D fof dew(@ < ) inf MIDW(@) < ) (Fo(MPV2dw) w(@).
Qes Qes 2€0 Qes

By the Carleson embedding theorem, applied to g = (Mf)/?, we have

2
> (Fog dw)’ w(@) < 4KligliE,, = 4KIM Sl
Q€S

provided that the Carleson condition

D w@) < Kw(®) (29)
Q€s
QCR

is satisfied. To prove (29), we observe that
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> w@ = Z@ DY inf M(1w)(2) - 20E@)] < 2 f M(1,w)(2)dz
R

Q€S Q€es Q] Q€S
QCR QCR QCR

< 2[w]y w(R).
This proves (29) with K = 2[w],_, and the lemma follows.

Actually, in the applications we have in mind we just need this forw € A, c A, for

some fixed finite q.

The second lemma is an extension of the well known Coifman—-Rochberg Lemma:

Cn
1 -y

If vy €(0,1 then M@ €A, with [M(uW"]s, <
Lemma (4.2.2)[4]: Let A be a Young function and u be a nonnegative function such that
Myu(x) < o a.e. For y € (0,1), there is a dimensional constant c,, such that
[(MAu)y]Al < Cncy- (30)

Proof. We claim now that for each cube Q and each u

FoMu(uxo)(x)¥dx < Cn,yllulll/LQ. (31)

By homogeneity we may assume |lu|l,o =1, and so, in particular, that

fQA(u(x)) dx <1.

Now, the proof of (31) is based on the distributional estimate (19). We split the

integral at a level 1 > b, yet to be chosen:

1 [ d
fQMA(u)(Q)(x)V dx = IQ_IJ ytY |{x € Q: MA(u)(Q)(x) > t}|t—t
0

A %)
< 1J tVIQIdt + 1J tY fA(b lu(x)l)d dt
< — — + — a X —
|Q|0V t IQIAY i BN t
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1 [ b, dt o
< AV+@J. ytVanf - A(Ju(x))) dxt— < X + a,b,y f tY~2dt
2 Q 2
)4

A1,

= A + anbn1

With 1 = a,b,,, we arrive at

(anbn)”

JCQMA(UXQ)(x)ydx = 11—y

which is (31), in view of a normalization that ||ul|4, = 1.

Ma(wrams o) ~ suplluxamsol,,  x € Q (32)
P>oQ ’

where the constant in the direction < is dimensional (actually 3"). (32) shows that
M, (f)(Rn\3 Q) is essentially constant on Q.

Since A is a Young, the triangle inequality combined with (31) and (32) gives for every
y €q,

JCQMAu(x)ydx < 3nJC3QMA(uX3Q)(x)ydx + JCQMA(uXRn\3 o) (x)¥dx
14
Y n n Y
< Cnyllullaze + 3" sup (hoxemsell, ) < cnyMan)”.
This completes the proof of the lemma.

We have to prove

v
L

”T*f”Lp(w) = CTIj”MA”B(Li?(Rn))”f”LP(MA(Wl/P)P) w

1

and if we use the notation A,(t) = A (tE) this becomes

T fllpwy < CTﬁ”MA”B(Lz’:(Rn))||f||LP(MAp(w))-
By Theorem (4.1.11) everything is reduced to proving that
IT*Fllieewy S PIMallpuomplfllipu, oy S € D. (33)
Now, by duality we will prove the equivalent estimate

”Ts(fw)”Lp(MAp(W)l_p) S 15||MA||B(L1b(Rn))||f||Li-(W),
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because the adjoint of TS (with respect to the Lebesgue measure) is itself.

The main claim is the following:

Lemma (4.2.3)[4]:
”Ts(g)”Li’(MAp(w)l—iJ) S TS”M(g)”LiJ(MAp(W)l—iJ) ScD g = 0. (34)
Proof. Now
T°(g)
”Ts(g)”LiJ(MAp(W)l-ﬁ) = m
14

Lﬁ(MApW)

and by duality we have that for some nonnegative h with ”h”Lp(MApW) =1

T5(9)

MAPW

= f TS(g)hdx

LP(Ma,w) R

Now, by Lemma (4.1.9) withs=p and v = My, w there exists an operator R such that
a) h <R(h),
b) IRUDLp i,y < 2MRllioqus w,
) [R(R)(My,w)"P]a, < cp.

Hence,

175,10, sy < | T@RR .

Rn
We plan to replace TS by M by using Lemma (4.2.1). To do this we estimate the
A, constant of Rh, for a fixed g > 1 (in fact, ¢ = 3) using property (C) combining the
following two facts. The first one is well known, it is the easy part of the factorization

theorem: if w;, w, € Ay, then w = wyw, P € 4,, and

[W]Ap < [Wl]Al[WZ]Zzl

The second fact is Lemma (4.2.2).
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Now if we choose y = % in Lemma (4.2.2),

1-3

R(ss, S R4, = [RCDMay w37 (M w)e) L,
< RO My w)Pa [(My WP < cup[Ma(wh)e T30 < e
by the lemma and since A,(t) = A(t/?).
Therefore, by Lemma (4.2.1) and by properties (A) and (B) together with Holder,

| P@hax < [ @RM dx 3 RO, [ MR dx
Rn

R RT

M(g)

Ap

M(g)

AW

’

IRRllLP(vp,w) = NP
LP(Ma,w)

SPp

~

LP(Ma,w)

This proves claim (34).

With (34), the proof of Theorem (4.1.2) is reduced to showing that
”M(fw)”LiJ(MAp(W)l—i’) ) < C”MA”B(LZ'?(Rn))||f||Li7(w)

for which we can apply the two weight theorem for the maximal function (Theorem

(4.1.10) to the couple of weights (MAp(w)l‘ﬁ,w)with exponent p. We need then to
compute (26).
1/p

1 ) _ -
[ M oty | el < IR = el
Q

1l

=1,

Since A4,(t) = A(t*/P). Hence
”M(fw)”Li’(MAp(W)l—i’)) < C”ME”B(LI"(RH))||f||L15(W)

concluding the proof of the theorem.
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Proposition (4.2.4)[4]: Let D be a dyadic grid and let S c D be a sparse family. Then,

there is a universal constant ¢ independent of D and S such thatforany 0 <e <1

T oy < = [ M, Ddx wzo ()
Rn

Note that in order to deduce Theorem (4.1.1) from the proposition above, we need the
full strength of Theorem (4.1.11) with quasi-Banach function space, because the space
LY* is not normable. It is also possible to prove Theorem (4.1.1) directly (without going
through the dyadic model); this was an original approach, since the quasi-Banach version
of Theorem (4.1.11) was not yet available at that point. However, we now present a proof
via the dyadic model, which simplifies the argument.

Recall that the sparse Calderén—-Zygmund operator T* is defined by,

TS = ) fof dx - xq.

Q€S

By homogeneity on fit would be enough to prove

wix € R:TSf(x) > 2} < g j f@IM,, . W)COdx

We consider the CZ decomposition of f with respect to the grid D at level A = 1. There

is family of pairwise disjoint cubes {Q;} from D such that

Let 2 = U;Q;and 2 = U;3Q;. The “good part” is defined by

9= foxo,(® + FIX0 (),
j
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and it satisfies ||gllp0c < 2™ by construction. The “bad part” b is
b = Y;bjwhere b;j(x) = (f(x) — fo,)Xq;(x). Then, f = g + b and we split the level

set as

wi{x € RETSf(x) >2}<w(@) +w{x € (D) :TSh(x) > 1} + w{x € (D):TSg(x)
>1) =1 + 11 + Il

The most singular term is Ill. We first deal with the easier terms | and Il, which

actually satisfy the better bound
I + II S CT”f”Ll(MW)'
The first is simply the classical Fefferman-Stein inequality (2).

To estimate I = w{x € (2)¢:|TSg(x)| > 1} we argue as follows:

wi{x € (D |TSh(x)| > 1} < f |TShb(x)|w(x)dx SZ f TS (b)) (x) |w(x)dx

R™M\D j RM\D
< z f 1T (b)) () |w(x)dx
J R™3Q;
We fix one of these j and estimate now T5(b;)(x)for x ¢ 3Q;:
TS = Y fobjdy - xe@® = Y+ Y = >
Q€S QES,QCQ; Q€S,02Q; QES,Q2Q;

Since x €& Q;. Now, this expression is equal to

1
Q) T~ fopay - xo
QESQoQ; Q

and this expressionis zero by the key cancellation: fQ_ fy) — fQj) dy = 0. Hence Il =
]
0, and we are only left with the singular term 1II.

We now consider the last term Ill, the singular part. We apply Chebyschev’s

inequality and then (33) with exponent p and functional A, that will be chosen soon:
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I = wix € () :TSg(x) > 1} < TS9P

Lp(WX(ﬁ)C)

S (lj)p“MA”Z(Li’(Rn)) .l- |g|pMAp(W)((!~2)c)dx
RN

S GPIMAG oy | 191Ms, Gzl
Rn

using the boundedness of g by 2™ < 1, and denoting A4, (t) = A(tY/P).

Now, we will make use of (32) again: for an arbitrary Young function B, a

nonnegative function w with Mzw(x) < o a.e., and a cube Q, we have
Mpg (XR"\3QW) y) = Mpg (XR”\3QW) (2) (36)

for each y, z € Q with dimensional constants. Hence, combining (36) with the definition

of g we have

[ oMy, ox@erdx Y [ 17Gol dxing My, (wxae) = [ 1£GOIMy,w() d,
0 ] n

Qi
J Qj 1

and of course

j |91 My, (W)((_‘())c)dx S.
_QC

Combining these, we have

1l s (zé)pIIMgIIZ(L,j(Rn)) f |f IMa, (W)dx .

R4

We optimize this estimate by choosing an appropriate A. To do this we apply now
Lemma (4.1.8) and more particularly to the example considered in (25), namely B is so

that B(t) = A(t) = tP(1 + logTt)P~**%, § > 0. Then

TR 1/p 1/
IMallgsgnyy < cnf <(m) At) dt> Sp(g) 0<é<1
1
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Then 4,(t) = A(tY?) <t(1 + log*t)P~*% and we have

1\
Il < (ﬁ)p <g> f |f|ML(log L)p—1+5(w)(x) dx.

R4

Now if we choose p such that

€
p—1:§:5<1

p—1
Then (3)?(5) == ife <1
This concludes the proof of (35), and hence of Theorem (4.1.1.)

The essential difference is that we compute in a more precise way the constants

involved. We consider the set
N ={x € R": T"(fo)(x) > 1}

Then by homogeneity it is enough to prove

1 1 ...
u@"? 5 5 KDYf ) (37)
where we recall that
1/9
1
_ 1/p -
K = Slép”u ||Lp(logL)p—1+6’Q |Q|J odx < ® (38)
Q

Now, by duality, there exists a non-negative function h € LP (R™), ”h”L{;(Rn) =1, such
that

1

1
u(-Q)E = ug)(n

1 1 1 1
= f urhdx = urh(2) < — fIfIML(logL)e (uPh> odx
LP(R™) SRn

1/p 1/p

1 .
< z flflpadx fML(logL)s(ul/ph)p odx ,
R™ R™
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where we have used inequality (4) from Theorem (4.1.1) and then Holder’s inequality.

Therefore everything is reduced to understanding a two weight estimate for M4 1)e.

Lemma (4.2.5)[4]: Given a Young function A, suppose f is a non-negative function such

that ||l 4,9 tends to zero as [(Q) tends to infinity. Given a > 2™+ for each k € Z there

exists a disjoint collection of maximal dyadic cubes {Q]’-‘} such that for each j,

a* <|Ifllqr < 2"a, (39)

and

{x € R™M,f(x) >4"a"} c U 30
J

Further, let D, = U; QF and Ef = QF\(Qf N Dy4). Then the Ef’s are pairwise disjoint
for all j and k and there exists a constant @ > 1, depending only on a, such that |Q}‘| <
a'|Ejk|.
Fix a function h bounded with compact support. Fix a > 2™t for k € Z let

2, = {x €ER™ 4" < M,f(x) < 4"ak*1}.

Then by Lemma (4.2.5),

0, © U 3QF,  where ”f”A'Q]I_c > ak.
J

Lemma (4.2.6)[4]: Let A, B and C be Young functions such that
B 1(t)C(t) < kA™(t), t>0. (40)
Then for all functions f and g and all cubes Q,

||fg||A,Q < 2K||f||B,Q||9”C,Q- (41)

Proof. The assumption (40) says that if A(x) = B(y) = C(2), then yz < kx. Let us

derive a more applicable consequence:
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Let y,z € [0,), and assume without loss of generality (by symmetry) that B(y) <
C(z). Since Young functions are onto, we can find ay > y and x € [0,)such that
B(y) = C(z) = A(x). Then (40) tells us that yz < yz < kx. Since A is increasing, it

follows that.

422 < 4@ = C2) = max(B(),C(2) < B() + C(2). (42)

K

Letthens > |[f]|lgand t > ||gl|c. Then, using (42),

foa (Ifgl) < foB (|f|)+fQ (I€I>< 141

KSt

and hence

Ifgl) (Ifgl>
JCQ (ZKSt - JCQ 2kst)
This proves that ||fgll4 < 2kst, and taking the infimum over admissible s and t proves

the claim.

If A(t) =t(1 +log*t)?, the goal is to “break” M, in an optimal way, with
functions B and C so that one of them, for instance B, has to be B(t) =tP(1 +

log*t)P~1*% coming from (38).
We can therefore estimate M, using Lemma (4.2.5) as follows:
p

f (MA (u5h>>’5 o dx = zk: ka (MA (ﬁh)) o dx

Rn
<c Z aPa(Q)

k

<c Z a*?a(3Q)

k

¢ ) o(30)

oGOl e IRI g

1
urh

IA

A,0%

2]

<c

™M

ik
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by (41). Now since ||u1/P|| e < 307 B3k We Can apply condition (38), and since

the E/’s are disjoint,

p
w Ihllp |Ek|

<c fadx
2 |3Q|

I

KI’Z f M. (h)Pdx

jk gk
Ej

< K? f M. (h)Pdx

< Kp||MC||B(Lp(Rn)) fhp'dx,

if we choose C such that M. is bounded on LP(R™), namely it must satisfy the tail
condition (21). We are left with choosing the appropriate C. Now, 1 < p < ocoand § >

0 are fixed from condition (38) but e > 0 is free and will be chosen appropriately close

to 0. To be more precise we need to choose 0 < ¢ < %and let n =6 —pe. Then

t
(1 + log*t)e

ti/p , )
- (1 + lOg+t)s+ (p_ 1 +T])/p X tl/p(l +lOg+t)(p 1+n)/p

BT1()CTH(D),

ATL(t) =

where
B(t) ~ tP(1 +logtt)A+OP=141 = ¢P(1 4 [ogtt)P~1+0
and
C(t) =~ tP(1 + log*t)~1-@-Lm,

It follows at once from Lemma (4.1.7)that
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1\ /P 1 1/p
”MC”B(LI'J(Rn)) s (ﬁ) = (5 — pg) )
where we suppress the multiplicative dependence on p. If we choose ¢ = %we get the

desired result:

1/p

1/]9 < 1 1
u(@Q)P < 5 K (E) 1P o) (43)
This completes the proof of part (a) of Corollary (4.1.6).

To prove part (b) we combine Lerner’s Theorem (4.1.11),
IT*fllpy < cr suplIT*fllir
ScD

with the characterization of the two-weight inequalities for TS by testing conditions: a
combination of their characterizations for weak and strong norm inequalities shows in

particular that
”TS(- U)”Lp(cr)—mp(u) ~ ”TS(- O-)lle(a)—)Lp'w(u) + ”TS(- u)”Lﬁ(u)—)Lﬁloo(o')

Now, as it is mentioned after the statement of Corollary (4.1.6), since TSsatisfies estimate
(4) we can apply the same argument as the just given to both summands and since that
estimate has to be independent of the grid and we must take the two weight constant K
over all cubes, not just for those from the specific grid. This concludes the proof of the

corollary.
A conjecture related to Corollary (4.1.6) is as follows:

Conjecture (4.2.7)[4]: Let T*, p,u, o be as above. Let X be a Banach function space so

that its corresponding associate space X satisfies Mg: LP(R™) — LP(R™). If

1/p

K = sup||u'?|| LJ o dx < oo, (44)
Q X.Q |Q|Q

then
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||T*(f0')||Lp,oo(u) S K ”MX’”B(LI'J(RH))”f”Lp(a)-

As a consequence, if Y is another Banach function space with My: LP(R™) — LP(R™)

and if
1/p 1/p
K = sup||u'?|| if odrx | + if udx | |[e¥?, < oo,
Q *Q\ Q] ; Q1 re
then

IT* ey < K (IMgllgusny + IMyllaramy ) I lp
If we could prove this, we would get as corollary:

Corollary (4.2.8)[4]:

* 1 1/p 1
IT* ls@ray < cWIZF WILE + [014F

(46)

(47)

(48)

This last result itself is known, but not as a corollary of a general two-weight norm

inequality.
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List of Symbols

Symbol Bage
Sup : Supremum 2
Inf : Infimum 2
L”: Lebesgue Space 2
L?: Hilbert Space 3
max : Maximum 7
W™P : Sobolev Space 22
loc : Locally 22
L™ : Essential Lebesgue Space 24
Supp : Support 24
BMO : Bounded Mean Oscillation 25
B : Besov Space 26
dist : Distance 28
diam : Diameter 36
Eyq - Triebel-Lizorkin Space 40
L' : Lebesgue Space on the Real Line 57
det : Determinant 63
LPK : Littlewood-Paley Square Function Kernels 79
BLPK : Bilinear Littlewood-Paley Square Function Kernels 80
SBLPK : Smooth Bilinear Littlewood-Paley Square Function Kernels 80
LY : Dual Lebesque Space 88
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min : Minimum 89

Re : Real 113

a.e : Almost Everywhere 141
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