Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/12732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Tayseer Ishag Faddul-
dc.contributor.authorSupervised, - Shawgy Hussein Abdalla-
dc.date.accessioned2016-02-14T11:30:04Z-
dc.date.available2016-02-14T11:30:04Z-
dc.date.issued2015-12-10-
dc.identifier.citationAhmed,Tayseer Ishag Faddul.Stability and Perturbed Metric-Preserved Mappings with Universal Theorem /Tayseer Ishag Faddul Ahmed ;Shawgy Hussein Abdalla .-Khartoum: Sudan University of Science and Technology, College of Science,2015 .-76p. :ill. ;28cm .-M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/12732-
dc.descriptionThesisen_US
dc.description.abstractIf Y is Gateaux smooth, strictly convex and admitting the Kadec- Klee property, then we has the following sharp estimate ∥Tf(x)-x∥ ≤2ε, for all x∈X. Let X, Z be two real Banach spaces and ε ≥ 0, we show that if there is a mapping ƒ: X→ Z with ƒ(0)=0 satisfying |∥f(x)-f(y)∥-∥x-y∥|≤ε for all x,y∈X, then we can define a linear surjective isometry U:X^*→Z^*∕N for some closed subspace N of Z^* by an invariant mean of X. There is a linear surjective operator T: Y→ X of norm one such that ∥Tf(x)-x∥≤2ε,for all x∈X ; when the 𝜀-isometry ƒ is surjective, it is equivalent to Omladič - Šemrl Theorem: There is a surjective linear isometry U:X→Y so that ∥f(x)-Ux∥≤2ε,for all x∈X.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMathematicsen_US
dc.subjectConcussion MAPPINGS clipboarden_US
dc.subjectGlobal provenen_US
dc.titleStability and Perturbed Metric-Preserved Mappings with Universal Theoremen_US
dc.title.alternativeإستقرار و إرتجاج الرواسم الحافظة- المترية مع المبرهنة العالميةen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Stability and Perturbed Metric....pdfResearch713.99 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.