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Abstract 
 

     If Y is Gateaux smooth, strictly convex and admitting the Kadec- Klee 

property, then we has the following sharp estimate ∥ (ݔ)݂ܶ − ݔ ∥  ≤    ,ߝ2

for all ݔ ∈ ܺ. Let X, Z be two real Banach spaces and ε ≥ 0, we show that  

if there is a mapping ƒ: X→ Z with ƒ(0) = 0 satisfying 

 | ∥ (ݔ)݂ − (ݕ)݂ ∥ −∥ ݔ − ݕ ∥ | ≤ ,ݔ ݈݈ܽ ݎ݋݂ ߝ ݕ ∈ ܺ, then we can define 

a linear surjective isometry ܷ: ܺ∗ → ܼ∗ ∕ ܰ for some closed subspace N 

of ܼ∗ by an invariant mean of X. There is a linear surjective operator  

ܶ: ܻ →  ܺ of norm one such that ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ ; 

when the ߝ-isometry ƒ is surjective, it is equivalent to Omladič - Šemrl 

Theorem: There is a surjective linear isometry ܷ: ܺ → ܻ so that 

∥ (ݔ)݂ − ݔܷ ∥≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.    
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  الخلاصة

  
كلى و اذا ینتج لنا  - ھو ملسان جاتوكس و التحدب التام و یقبل خاصیة كادیك Y اذا كان 

∥التقدیر القاطع اللآتى  (ݔ)݂ܶ − ݔ ∥≤ 2ε  ݔلاجل كل ∈ فضائى باناخ  X, Zلیكن .  ܺ

ܺ :ƒاوضحنا انھ اذا كان یوجد راسم  ߝ0 ≤ الحقیقیین و → ƒ(0)مع  ܼ = یحقق  0

| ∥ (ݔ)݂ − (ݕ)݂ ∥ −∥ ݔ − ݕ ∥ | ≤ ,ݔلاجل كل  ߝ ݕ ∈ اذا یمكننا ان نعرف  ܺ

:ܷالایزومترى الشامل الخطى  ܺ∗ → ܼ∗ ∕ الى  Nلاجل بعض الفضاء الجزئى المغلق  ܰ

ܻ :ܶیوجد مؤثر شامل خطى .  Xبواسطة وسط ثابت الى   ∗ܼ → لھ نظیم واحد حیث   ܺ

∥ان  (ݔ)݂ܶ − ݔ ∥≤ 2ε  ݔلاجل كل ∈ ھو شامل وھو مكافئ  ߝ-الایزومترى ƒعندما  ܺ

ܺ :ܷیوجد ایزومترى خطى شامل : سیمرل - لمبرھنة  أملدیك →   علیھ ان ܻ

  ∥ (ݔ)݂ − ݔܷ ∥≤ 2ε  ݔلاجل كل ∈ ܺ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



V 
 

 The Contents 
  

   I Dedication 
   II Acknowledgements 
   III Abstract 
   IV Abstract (Arabic) 
   V The Contents 

  Chapter 1 
Non linear Non surjective ߝ-isometries of Banach spaces 

    1 Section (1.1) Application and Stability Version of Reflexive 
Banach Space 

    18 Section (1.2) ߝ-isometry in Reflexive Space and sharp 
estimates of a Certain class of Reflexive spaces 

  Chapter 2  
Stability Characterization  

    26 Section (2.1) ߝ- isometry and linear isometry with Stability 
Characterization of ߝ-isometry or Reflexive Spaces 

    40 Section (2.2) Stability properties in general Banach Space 
  Chapter 3 

Stability of ߝ-isometries of Banach Spaces 
    46 Section (3.1) Sharp inequality of weak stability of ߝ-isometries 
    58 Section (3.2) Sharp Stability Results of a Certain Class of ߝ-

isometries 
  Chapter 4  

Almost Surjective ߝ-isometries of Banach Spaces  
    63 Section (4.1) Almost Surjective ߝ-isometries of Banach Spaces 
    69 List of Symbols 
    70 References 

 

 
 
 
 
 
 
 
 



1 
 

Chapter 1 
Non linear Non surjectiveߝ–isometries of Banach Spaces 
      Let X, Y be two Banach spaces, 0 ≤ ߝ. And let ƒ: ܺ → ܻ be an  

isometry with ƒ(0) -ߝ = 0. We show first that for every ݔ∗ ∈ ܺ∗, there exists 

∅ ∈ ܻ∗,with ∥ ∅ ∥=∥ ∗ݔ ∥≡ ,∅〉|  such that ݎ 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤

,ݎߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. We Show that if Y is reflexive and if ܧ ⊂ ܻ is α-

complemented in Y, then there is a bounded linear operator ܶ: ܻ → ܺ with 

∥ ܶ ∥≤ ∥ such that ߙ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. 

Section(1.1) Applications And Stability Version of Reflexive 

Banach Space 

Let X, Y be two Banach Spaces and 0 ≤ ߝ. A mapping ƒ: ܺ → ܻ is said to be 

an ߝ–isometry provided 

| ∥ (ݔ)݂ − (ݕ)݂ ∥ −∥ ݔ − ݕ ∥ | ≤ ε , for all x, y ∈ X. 

If 0 = ߝ, then the mapping ƒ is simply called an isometry; and it is said to be 

A surjectiveߝ–isometry if, in addition, ƒ(ܺ) = ܻ. The study of ߝ–isometry has 

been divided into four cases: 

(i) ƒ is surjective and 0 = ߝ;  

(ii) ƒ is non–surjective and 0 = ߝ; 

(iii) ƒ is surjective and 0 ≠ ߝ; and 

(iv) ƒ is non–surjective and 0 ≠ ߝ. 

A celebrated result, known as the Mazur–Ulam Theorem is a perfect answer 

to case (i). 

Theorem (1.1.1)[1] (Mazer-Ulam). Suppose that ƒ: ܺ → ܻ is a surjective 

isometry with ƒ(0) = 0. Then ƒ is linear.  

    The following mapping ݂: ℝ → ℓஶ
ଶ   defined for ݐ ∈ ℝ by ݂(ݐ) = ,ݐ)  (ݐ݊݅ݏ

shows that an into isometry ƒ with ƒ (0) = 0 is not necessarily linear. While a 

remarkable result about non-surjective isometry (i.e.,Case(ii)) was given by 

Figiel in 1967,which plays an important role in the study of isometric 
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embedding and of Lipschitz-free Banach space. Godefro and Kalton show 

some deep relationship between isometry and linear isometry. 

Theorem(1.1.2)[1](Figiel). Suppose that ƒ: ܺ → ܻ is an isometry with       

ƒ(0) = 0. Then there exists a linear operator ܨ: (݂)ܮ ≡ (ݔ)തതതതതതത݂݊ܽ݌ݏ → ܺ with 

∥ ܨ ∥= 1 such that ݂ߧܨ =  on X. We call the operator F in the (the identity) ܫ

Theorem above Figiel's operator. We refer the reader for more detailed 

discussions of geometric embedding and related topics. 

    In1945, Hyers and Ulam proposed the following question: whether for 

every surjective ߝ–isometry ƒ: ܺ → ܻ with ƒ(0) = 0 where exists a surjective 

linear isometry ܷ: ܺ → ߛ ݀݊ܽ ܻ >  ݐℎܽݐ ℎܿݑݏ 0

                     ∥ (ݔ)݂ − ݔܷ ∥≤ ,ߝߛ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                        (1) 

After many years efforts of a number of mathematicians, the following sharp 

estimate was finally obtained by Omladič and Šemrl 

Theorem(1.1.3)[1] (Omladič–Šemrl).If ƒ: ܺ → ܻ is a surjective ߝ–isometry 

with ƒ(0) = 0, then there is a surjective linear isometry ܷ: ܺ → ܻ such that 

∥ (ݔ)݂ − ݔܷ ∥≤ 2ε, for a݈݈ ݔ ∈ ܺ. 

Therefore, answers to the first three cases are perfect. The study of non-

surjective ߝ–isometry (i.e.,case(iv)) has  also brought to mathematicians᾿ 

attention. First proposed the following problem in 1995, and then he showed 

that the answer is affirmative if both X and Y are ܮ௣  ݏ݁ܿܽ݌ݏ. 

Šemrl and Väisälä further presented a sharp estimate of (2) With ߓ = 2 if 

both X and Y are L୮–spaces for 1 < p < ∞. 

Problem(1.1.4)[1]. Whether there exists a constant γ > 0 depending only on  

X and Y with the following property: For each ߝ–isometry ƒ: ܺ → ܻ with   

ƒ(0) = 0 there is abounded linear operator ܶ: (ƒ)ܮ → ܺ such that 

        ∥ (ݔ)݂ܶ − ݔ ∥≤ γߝ, ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                                      (2) 

As we have known, the answer to Problem (1.1.4) is affirmative for             

 . ∞ > ௣ –spaces with 1< pܮ
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However, Qian presented the following simple counterexample. 

Example(1.1.5)[1] (Qian). Given 0 < ߝ, and let Y be a separable Banach 

space admitting an uncomplemented closed subspace X. Assume that g is a 

bijective mapping from X onto the closed unit ball ܤ௬ of Y with ݃(0) = 0. 

We define a map ƒ: ܺ → ܻ by ݂(ݔ) = ݔ + (ݔ)݃ߝ ∕ 2 for all ݔ ∈  ܺ. Then ƒ is 

isometry with ƒ(0)–ߝ = 0 and ܮ(ƒ) = ܻ. But there are no such T and Υ 

satisfying (2). Qian's counterexample, incorporating of an early result of 

Lindenstrauss and Tzafriri (a Banach space satisfying that every closed 

subspace is complemented is isomorphic to a Hilbert space) entails the 

following result. 

Theorem (1.1.6).[1] A Banach space Y satisfying that for every closed 

subspace X ⊂Y and every ߝ–isometry ƒ: ܺ → ܻ with ƒ(0) = 0 there exist 

bounded linear operator ܶ: (ƒ)ܮ → ܺ and ߓ > 0 such that (2) holds if and 

only if Y is isomorphic to a Hilbert space. 

     This disappointment  makes us to search for(i) some weaker stability 

version satisfied by every ߝ–isometry, and (ii) some appropriate 

complementability assumption on some subspaces of Y associated with the  

mapping such that the strong stability  result (2) holds. For an ߝ–isometry 

ƒ: ܺ → ܻ with ƒ(0) = 0, we introduce the following  subspace E of  Y 

associated with the mapping  ƒ , which will play an important part in the 

sequel. Let ܨ = ∗ݕ}  ∈ ܻ∗: (ƒ)ܥ is bounded on∗ݕ ≡ ,(ܺ)݂)തതത݋ܿ −݂(ܺ))} 

ܧ ⊂ ܻ is defined as the annihilator of the subspace ܨ ⊂ ܻ∗, ݅. ݁. 

ܧ            = ݕ} ∈ ܻ: ,∗ݕ〉 〈ݕ = 0, ∗ݕ ݈݈ܽ ݎ݋݂ ∈  (3)                                          {ܨ

     From Qian's counterexample we can observe that for every Banach space 

Y containing an uncomplemented closed subspace X, and for every 0 < ߝ, 

there exist an ߝ–isometry ƒ from X to Y with ƒ(0) = 0 and with ܧ = ܺ such  

That (2) of Problem (1.1.4) fails for ƒ. In other words, the assumption that E 

is complemented in Y is essential for the study of the stability property (2) of 
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an ߝ–isometry ƒ. Before describing the main results of this chapter, we first 

introduce same notations to be used in the sequel. The letter X will always be 

a Banach space, and ܺ∗ its dual. We denote by ܤ௫ (resp.,ܵ௫) the closed unit 

ball (resp., the unit sphere) of X. For a sub set ܣ ⊂ ܺ ,  stands for the ܣ̅

closure of A, and ܿܣ ݋ (ܿ݋തതത ܣ) for the (closed) convex hull of A. Let ƒ: ܺ → ܻ 

be an ߝ–isometry for some 0 ≤ ߝ with ƒ(0) = 0; (ƒ)ܮ  = the closure of the 

linear span of ƒ(ݔ); 

ఌܯ = {∅ ∈ ∅ߚ ݁݉݋ݏ ݎ݋݂(݂)ܥ ݊݋ ߝ∅ߚ ݕܾ ݀݁݀݊ݑ݋ܾ ݏ݅∗ܻ > 0}; 

ܯ =the closure of  ܯఌ  . We should mention here that the set ܯఌ = {∅ ∈

ܻ∗is bounded on ܥ(݂) if ߝ ≥ ߝ if ,(ƒ)ܥ the annihilator of ,ୄ(ܨ)ܥ = ; 0 = 0. 

    This chapter is organized as follows. In the second section, after giving 

an improvement of a one –dimensional lemma which is presented in 

Qian, we show the following result, which can be understood as a weak  

stability version; on the other hand, because it plays a central rule and is 

used  frequently in every section of this  chapter ,we call it the Main 

Lemma. 

Lemma (1.1.7)[1] (Main lemma). Let X and Y be Banach spaces, and let    

ƒ: ܺ → ܻ be an ߝ-isometry for some 0 ≤ ߝ with ƒ(0) = 0. Then for 

every ݔ∗ ∈ ܺ∗ , there exists ∅ ∈ ܻ∗  with ∥ ∅ ∥=∥ ∗ݔ ∥≡  such that ݎ

                 | 〈∅, f(x)〉 − ,∗ݔ〉 |〈ݔ ≤ ,ݎߝ4  (4)                                          .ܺ߳ݔ ݈݈ܽ ݎ݋݂

We present three examples of simple  applications of the Main Lemma: 

the first one is , motivated by Dutrieux and Lancien's observation –an 

equivalence Theorem of Figiel's Theorem, a generalization of the  

equivalence theorem from isometry to ߝ–isometry; and  the second one  

is that if  ܻ = ℓஶ (߁) for a non-empty set߁, then the  answer to Problem 

(1.1.4) is positive with ߓ = 4; and the third one is the for an ߝ–isometry from 

an n-dimensional space to a Banach space, the answer to Problem (1.1.4) is 

always affirmative with ߓ = 4݊.For each ߝ–isometry ƒ, making use of the 
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Main Lemma, we define first a set- valued "linear" mapping V associated 

with ƒ, we discuss then the  properties of the  operators V and Q:ܺ∗ →  ܯ/∗ܻ

define by ܳݔ∗ = ∗ݔܸ +  We show finally the following stability version in .ܯ

reflexive spaces. 

Theorem (1.1.8)[1]: Let X, Y be Banach spaces and Y be reflexive, and let 

ƒ: ܺ → ܻ be an ߝ–isometry with ƒ(0) = 0. If ߙ ݏ݅ ܧ–complemented in Y, 

then there is a bounded linear operator ܶ: ܻ → ܺ with ∥T∥≤  such that  ߙ

∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. 

It is shown by Šemrl and Väiälä that for the ߝ–isometry ƒ: ܺ → ܻ if Y is 

uniformly convex then the following limit always exists and defines a linear 

isometry T : ܺ → ݔܶ , ܻ ≡  lim௧→ஶ(݂(ݔݐ))/ݐ ݔ ݈݈ܽ ݎ݋݂   , ∈ ܺ. 

Motivated by the result above, we discuss existence of such limits in general 

reflexive Banach spaces. As a result, we show the following result. 

Theorem (1.1.9)[1]. Suppose that X, Y are Banach spaces and that Y is 

reflexive, and suppose that ƒ: ܺ → ܻ is an ߝ–isometry for some 0 ≤ ߝ with 

ƒ(0) = 0. If, in addition, the subspace ܧ ⊂ ܻ is strictly convex, then for all 

ݔ ∈ ܺ  

ݔܶ = ݓ − lim
ఒ→ାஶ

 ߣ/(ݔߣ)݂

Exist and ܶ: ܺ →  .is a linear isometry ܧ 

Theorem (1.1.10)[1]. Suppose that X is a Banach space and that Y is a 

reflexive, Gateaux smooth and strictly convex Banach space admitting the 

Kadec–Klee property (A Banach space is said to have the Kadec-Klee 

property or (H-property) if weakly convergent sequence on the unit sphere is 

convergent in norm. Recall that sequence {ݔ௡} ⊂ ܺ is said to be ߝ-separated 

sequence for some 0 < ߝ if  ݌݁ݏ(ݔ௡) = inf {∥ ௡ݔ − ௠ݔ ∥: ݊ ≠ ݉} >  A .ߝ

Banach space is said to have uniform Kadec-Klee property (UKK) if for 

every 0 < ߝ there exist 0 < ߜ such that for every sequence (ݔ௡) in ܵ(ݔ) with 

sep(ݔ௡) > ௡ݔ ݀݊ܽ ߝ
௪
→ ∥ we have ݔ ݔ ∥< 1 − ܺ :Suppose that ƒ .[5](ߜ →  ܻ 
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is an ߝ–isometry with ƒ(0) = 0, and that the subspace ܧ ⊂ ܻ associated with 

ƒ is ߙ–complemented in Y. Then there is a linear operator ܶ: ܻ → ܺ with 

 ∥ ܶ ∥≤ ∥  such that  ߙ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ2 ݔ ∈ ܺ.The following Lemma is an 

improvement of a result of Qian from 5ߝ to 3ߝ. 

Lemma (1.1.11)[1]. Let Y be a Banach space, and let ƒ: ℝ → ܻ be an  

isometry with ƒ(0) –ߝ = 0. Then there is a linear functional ∅ ∈ ܻ∗ with 

∥ ∅ ∥= 1 such that 

                  |〈∅, 〈(ݐ)݂ − |ݐ ≤ ݐ ݈݈ܽ ݎ݋݂  ߝ3 ∈ ℝ.                                            (5) 

Proof: Given ݊ ∈ ℕ, let ∅௡ ∈ ܻ∗ with∥ ∅୬ ∥= 1 such that 

2݊ − ߝ ≤∥ ݂(݊) − ݂(−݊) ∥= 〈∅௡ , ݂(݊) − ݂(−݊)〉 ≤ 2݊ +  .ߝ
Then, 

݊ + ߝ ≥ 〈∅௡ , ݂(݊)〉 =∥ ݂(݊) − ݂(−݊) ∥ +〈∅௡, ݂(−݊)〉 ≥ ݊ −  ,ߝ2
And 

−݊ − ߝ ≤ 〈∅௡ , ݂(−݊)〉 = 〈∅௡, ݂(݊)〉−∥ ݂(݊) − ݂(−݊) ∥≤ −݊ +  .ߝ2

Note that for every t ∈ [0, ݊], 

〈∅௡ , 〈(ݐ)݂ = 〈∅௡ , ݂(݊)〉 − 〈∅௡, ݂(݊) − 〈(ݐ)݂ ≥ (݊ − (ߝ2 − (݊ − ݐ + (ߝ =

ݐ −  We have . ߝ3

ݐ            − ߝ3 ≤ 〈∅௡ , 〈(ݐ)݂ ≤ ݐ + ݐ ݈݈ܽ ݎ݋݂  .ߝ ∈ [0, ݊]                                (6) 

On the other hand, for every t ∈ [−݊, 0], 

ݐ − ߝ ≤ 〈∅௡ , 〈(ݐ)݂ = 〈∅௡ , ݂(−݊)〉 + 〈∅௡, (ݐ)݂ − ݂(−݊)〉

≤ (−݊ + (ߝ2 + ݐ) + ݊ + (ߝ = ݐ +  ,ߝ3

That is, 

ݐ     − ߝ ≤ 〈∅௡ , 〈(ݐ)݂ ≤ ݐ + ,ߝ3 ݐ ݈݈ܽ ݎ݋݂ ∈ [−݊, 0].                                   (7) 

Combining (6) with (7), we obtain 

      |〈∅௡ , 〈(ݐ)݂ − |ݐ ≤ ݊ ݈݈ܽ ݎ݋݂   ,ߝ3 ∈ ℕ ܽ݊݀ ݐ ∈ [−݊, ݊].                        (8) 

Note that∥ ∅௡ ∥= 1 for all n. Alaoglu's Theorem implies that there is a net 

(∅ఈ) in (∅௡) ݓ∗–converging to a functional ∅ ∈  ௒∗. This and (8) entail thatܤ

ߝ3− ≤ 〈∅, 〈(ݐ)݂ ≤ ݐ + ݐ ݈݈ܽ ݎ݋݂   ,ߝ3 ∈ ℝ . And clearly, ∥ ∅ ∥= 1. 
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    To show the Main Lemma of this chapter, we need some Gateaux 

differentiability results about norm of Banach space.  Recall that a Banach 

space X is said to be Gateaux differentiability space (GDS) provided every 

continuous convex function on X is densely Gateaux differentiable. This is 

equivalent to that every equivalent norm on X is somewhere Gateaux 

differentiable. A point ݔ∗  in a ݓ∗ −closedconvex set ܥ ⊂ ܺ∗ is said to be 

a ݓ∗- exposed point of C provided there exists a point ݔ ∈ ܺ such that 

,∗ݔ〉 〈ݔ > ,∗ݕ〉 ∗ݕ ݈݈ܽ ݎ݋݂ 〈ݔ ∈ ∗ݕ ℎݐ݅ݓ ܥ ≠  In this case, the point x is . ∗ݔ

called a ݓ∗ –exposing functional of C and exposing C at ݔ∗ . We denote 

by ݓ∗ –exp C the set of all ݓ∗– exposed points of C. For a convex function ƒ 

defined on a Banach space X, its sub differential mapping ߲݂: ܺ → 2௑∗ is 

defined for ݔ ∈ ܺ  by ߲݂(ݔ) = ∗ݔ} ∈ ܺ∗: (ݕ)݂ − (ݔ)݂ ≥ ,∗ݔ〉 ݕ −  for all , 〈ݔ

ݔ ∈ ܺ  }. It is easy to observe that if ݂ =∥. ∥ (the norm of X), then ߲ ∥ ݔ ∥

ݔ) ≠ 0)  is always non-empty and ݔ∗ ∈ ߲ ∥ ݔ ∥  if and only if 〈ݔ∗, 〈ݔ =∥ ݔ ∥

∥ ℎݐ݅ݓ ∗ݔ ∥= 1. The following result s are classical. 

Proposition (1.1.12)[1]. Suppose that X is a Banach space and that ܥ ⊂ ܺ∗  

is a non-empty ݓ∗-compact convex set (Z is dual Banach space the closed 

unit ball of Z is weak star compact)[6] . Then ݔ∗ ∈  exposed point–∗ݓ is a  ܥ

of C, and is ݓ∗–exposed by ݔ ∈ ܺ if and only if ܿߪ ≡ sup ܿ  is Gateaux 

differentiable at x and with Gateaux derivative ݀(ݔ)ܿߪ =  .∗ݔ

Theorem (1.1.13)[1]. A Banach space X is a Gateaux differentiability space 

if and only if every non- empty ݓ∗–compact convex set of its dual (of cause, 

including  the closed unit ball of its dual) is the ݓ∗–closed convex hull of its 

 .exposed points–∗ݓ
Lemma (1.1.14)[1] (Main lemma). Let X, Y be Banach spaces, 0 ≤ ߝ, and 

let ƒ: ܺ →  ܻ be an ߝ–isometry with ƒ (0) = 0. Then for every ݔ∗ ∈ ܺ∗ there 

is a linear functional ∅ ∈ ܻ∗  with ∥ ∅ ∥=∥ ∗ݔ ∥=  such that  ݎ

     |〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ,ݎߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                        (9) 
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Proof: The proof shall be divided into two parts. In the first part we show 

that it is true if X is finite –dimensional. Then, making use of this result we 

show in the second part that the Lemma holds for a general Banach space X. 

Assume that dim ܺ < ∞. Note X is a GDS. Then the closed unit ball ܤ௑∗  of 

ܺ∗  is the ݓ∗–closed convex hull of its ݓ∗–exposed points (Theorem 

(1.1.13)). Without loss of generality we can assume that r =  1 . We show 

first that (9) is valid for some  ∅ ∈ ܵ௒∗  , if ݔ∗ ∈ ܵ௑∗   is a ݓ∗-exposed point 

of ܤ௑∗  . By Proposition (1.1.12), there is a Gateaux differentiability point 

଴ݔ ∈ ܵ௑  such that ∥ ଴ݔ ∥= ݔ Therefore, for every . ∗ݔ ∈ ܺ, 

Lim௧→ାஶ(∥ ଴ݔݐ + ݔ ∥ (ݐ− = lim௧→ାஶ
∥௫బାቀభ

೟ቁ௫∥ି∥௫బ∥
భ
೟

= ,∗ݔ〉  (10)           .〈ݔ

Let ݃: ℝ → ܻ be defined for t by ݃(ݐ) =  isometry-ߝ Then g is an .(଴ݔݐ)݂

with ݃(0) = 0. By Lemma (1.1.11), there is a linear functional ∅ ∈ ܵ௒∗  such 

that 

         |〈∅, 〈(଴ݔݐ)݂ − |ݐ ≤ ,ߝ3 ݐ ݈݈ܽ ݎ݋݂ ∈ ℝ.                                              (11) 

It entails that 

ݐ − ߝ3 − 〈∅, 〈(ݔ)݂ ≤ 〈∅, 〈(଴ݔݐ)݂ − 〈∅, 〈(ݔ)݂ ≤∥ (଴ݔݐ)݂ − (ݔ)݂ ∥≤

∥ ଴ݔݐ − x ∥ +ε. 

Therefore, for all ݐ > 0, 

∥ ଴ݔݐ − ݔ ∥ ݐ− + 〈∅, 〈(ݔ)݂ ≥  .ߝ4−

Let t→ +∞ in the inequality above. Then (10) yields 

,∗ݔ〉              〈ݔ − 〈∅, 〈(ݔ)݂ ≤  (12)                                                                .ߝ4

On the other word, we substitute –t for t in (11). Then 

ݐ − ߝ3 + 〈∅, 〈(ݔ)݂ ≤ −〈∅, 〈(଴ݔݐ−)݂ + 〈∅, f(x)〉 ≤∥ ଴ݔݐ−)݂ − f(x) ∥≤

∥ ଴ݔݐ + x ∥  .ߝ+

Consequently, 

∥ ଴ݔݐ + ݔ ∥ ݐ− − 〈∅, 〈(ݔ)݂ ≥  .ߝ4−
Let t tend to +∞  in the inequality above. Then (10) again implies that 

,∗ݔ〉                〈ݔ − 〈∅, 〈(ݔ)݂ ≥  (13)                                                           .ߝ4−
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Inequality (9) follows immediately from (12) and (13).         

    Next, we show that for every ݔ∗ ∈ ܵ௑∗ there exist  ∅ ∈ ܵ௒∗satisfying (9). 

Let  ݔ∗ ∈ ܵ௑∗ . ∗ݓ)݋ܿ ݁ܿ݊݅ܵ − exp  ௑∗ (by Theorem (1.1.13)ܤ ௑∗) is dense inܤ

and noting dim X< ∞ ), there is a sequence(ݔ௡) ⊂ ∗ݓ)݋ܿ −  (∗௑ܤ݌ݔ݁

converging to ݔ∗ . Note that for every ݔ௡
∗  there exist ݉ ݓ∗–exposed points 

௡భݔ)
∗ , ௡మݔ

∗ , … , ௡೘ݔ
∗ ) and m non–negative numbers (ߣ௡భ , ௡మߣ , … ,  ௡೘) withߣ

∑ ௡ೕߣ
௠
௝ୀଵ = 1  for some ݉ ∈ ℕ such that ݔ௡

∗ =  ∑ ௡ೕݔ௡ೕߣ
∗௠

௝ୀଵ   . Then by the 

fact we have just proven that there exist m functional (߶୬భ , ϕ୬మ , … . , ϕ୬ౣ) ⊂

ܵ௒∗  satisfying 

        ቚ〈∅௡, 〈(ݔ)݂ − ௡ೕݔ〉
∗ , ቚ〈ݔ ≤  (14)                                                           ,ߝ4

For allݔ ∈ ܺ, and 1 ≤ ݆ ≤ ݉ .  Let   ߰௡ = ∑ ௡ೕ∅௡ೕߣ
௠
௝ୀଵ . Then  ∥ ߰୬ ∥≤ 1, 

and 

         |〈߰௡, 〈(ݔ)݂ − ௡ݔ〉
∗ , |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂            ,ߝ4 ∈   ܺ.                           (15)                  

Since (߰௡) is relatively ݓ∗–compact, there must be a subset of (߰௡) ݓ∗– 

converging to some ∅ ∈ ௡ݔ) ௒∗ . This, (15) andܤ
∗ ) being convergent to ݔ∗  

together imply the following inequality 

|〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂    ,ߝ4 ∈ ܺ. 

Clearly, ∥ ∅ ∥=∥ ∗ݔ  ∥= 1. Thus we have shown (9) for every finite-

dimensional space X. We will finally show that (9) holds for a general 

Banach space X. Recall that Bishop–Phelps' Theorem states that norm–

attaining functionals are always dense in the dual ܺ∗ of X. According to this 

Theorem, it suffices to show that (9) is true for every norm–attaining 

functional ݔ∗ ∈ ܺ∗ with ∥ x∗ ∥= 1. (Indeed, suppose that (9) holds for every 

norm–attaining functional, i.e. for every norm–attaining functional ݔ∗ ∈ ܺ∗ 

with ∥ x∗ ∥= 1, there is ∅ ∈ ܻ∗ with ∥ ∅ ∥=∥ ∗ݔ ∥= 1 such that (9) holds. 

Then for every (general) ݔ∗ ∈ ܺ∗with ∥ x∗ ∥= 1,by the Bishop–Phelps 

Theorem there is a sequence (ݔ௡
∗ ) ⊂ ܺ∗ of norm–attaining functionals 
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with∥ x୬
∗ ∥= 1 such that ݔ௡

∗ → ∋ For each n . ∗ݔ ℕ , let ∅௡ ∈ ܻ∗ with 

∥ ∅௡ ∥= 1  be the functional corresponding to ݔ௡
∗  such that |〈∅௡ , 〈(ݔ)݂ −

௡ݔ〉
∗ , |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂    ,ߝ4 ∈ ܺ. Then ݓ∗–relative compactness of (∅௡)  

entails that there is a ݓ∗–cluster point ∅ ∈ ܻ∗ of (∅௡) . It is easy to see that 

(9) holds again for such the functionals ݔ∗ and ∅ .Given such norm–attaining 

functional ݔ∗ ∈ ܺ∗, let ݔ଴ ∈ ܵ௑ such that  〈ݔ∗, 〈଴ݔ = 1 , and let ℱ be the 

collection of all finite–dimensional subspace of X containing ݔ଴ .Since every 

ܨ ∈ ℱ is a GDS by (9) we have just proven, there exists ∅ி ∈ ܵ௒∗ such that 

   |〈∅ி , 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂    ,ߝ4 ∈  (16)                                      .ܨ 
 

Let Φி = {∅ி ∈ ∥ ℎݐ݅ݓ (16) ݏ݂݁݅ݏ݅ݐܽݏ  ∗ܻ ߶ி ∥≤ 1},and let 
Φ = ൛Φி: ܨ ∈ ℱൟ. 

It is clear that for every ܨ ∈ ℱ , Φி , is a non-empty ݓ∗–compact convex set 

of  ܻ∗ . Since for all ܨ, ܩ ∈ ℱ, Φி ∩ Φீ ⊃ Φு, (where H = span {F, G}, 

they have the finite intersection property .Since every Φி is ݓ∗-compact, 

they have a non- empty intersection, and any element  ∅ of this intersection is 

clearly a solution of (9). The following result was first noticed by Dutrieux 

and Lancien, and it is equivalent to Figiel's Theorem. 

Theorem (1.1.15)[1]. Let ƒ: ܺ →  ܻ be an isometry with ƒ(0) = 0.Then for 

all ݔଵ, ,ଶݔ … . , ௡ݔ ∈ ܺ, and for all ߣଵ, ,ଶߣ … . , ௡ߣ ∈ ℝ with ∑ ௝|௡ߣ|
௝ୀଵ = 1 , we 

have 

∥ ෍ (௜ݔ)௜݂ߣ
௡

௜ୀଵ

∥≥∥ ෍ ௜ݔ௜ߣ

௡

௜ୀଵ 

∥. 

Motivated by the theorem above, as an application of Lemma (1.1.14), we 

will show an analogous result of the theorem for ߝ–isometry. 

Theorem (1.1.16)[1].  Let X and Y be Banach spaces, and let ƒ: ܺ → ܻ be an 

isometry with ƒ(0) –ߝ = 0. Then 
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∥ ෍ (௜ݔ)௜݂ߣ
௡

௜ୀଵ

∥ ߝ4+ ≥∥ ෍ ௜ݔ௜ߣ

௡

௜ୀଵ 

∥. ,ଵݔ ݈݈ܽ ݎ݋݂ ,ଶݔ … , ௡ݔ ∈ ܺ 

And for all ߣଵ, ,ଶߣ … , ௡ߣ ∈ ℝ satisfying ∑ ௜|௡ߣ|
௜ୀଵ = 1. 

Proof: Given ݔଵ, ,ଶݔ … , ௡ݔ ∈ ܺ , let ܺ௡ = ,ଵݔ)݊ܽ݌ݏ ,ଶݔ … ,  ௡) . By Lemmaݔ

(1.1.14) for every ݔ∗ ∈ ܺ௡
∗   there is a linear functional ∅௫∗ ∈ ܵ௒∗   such that 

|〈∅௫∗ , 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ௡ܺ߳ݔ ݈݈ܽ ݎ݋݂    ,ߝ4 . 

It entails that ∥ ∑ (௜ݔ)௜݂ߣ ∥௡
௜ୀଵ ≥ ∗௫∗∈ௌ೉೙݌ݑݏ

〈∅௫∗ , ∑ ௡(௜ݔ)௜݂ߣ
௜ୀଵ 〉 =

∗௫∗∈ௌ೉೙݌ݑݏ
(〈∅௫∗ , ∑ ௡(௜ݔ)௜݂ߣ

௜ୀଵ 〉 − ,∗ݔ〉 ∑ ௜ݔ௜ߣ
௡
௜ୀଵ 〉 + ,∗ݔ〉 ∑ ௜ݔ௜ߣ

௡
௜ୀଵ 〉) ≥

∗௫∗∈ௌ೉೙݌ݑݏ
,∗ݔ〉| ∑ ௜ݔ௜ߣ

௡
௜ୀଵ 〉| − ∑ ∗௜||〈߶௫ߣ| , 〈(௜ݔ)݂ − ,∗ݔ〉 ௜〉|௡ݔ

௜ୀଵ ≥

∗௫∗∈ௌ೉೙݌ݑݏ
,∗ݔ〉| ∑ ௜ݔ௜ߣ

௡
௜ୀଵ 〉| − ߝ4 =∥ ∑ ௜ݔ௜ߣ

௡
௜ୀଵ ∥ ,ߝ4− ,ଵߣ ݈݈ܽ ݎ݋݂ ,ଶߣ … , ௡ߣ ∈

ℝ  ݃݊݅ݕ݂ݏ݅ݐܽݏ ∑ ௜|௡ߣ|
௜ୀଵ = 1. Consequently,                                                       

∥ ∑ ௡(௜ݔ)௜݂ߣ
௜ୀଵ ∥ ߝ4+ ≥ ∥ ∑ ௜ݔ௜ߣ

௡
௜ୀଵ ∥. 

The following Theorems are also simple applications of Lemma (1.1.14). 

Theorem (1.1.17) [1]. For any setΓ, let ܺ = ℓஶ(Γ)  and Y be a Banach 

space. If ƒ: ܺ →  ܻ is and ߝ–isometry for some ߝ > 0, then there exists an 

operator ܵ: ܻ → ܺ with ∥ ܵ ∥= 1  such that 

             ∥ (ݔ)݂ܵ − ݔ ∥≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ                                                (17) 

Proof: Since Fréchet differentiability points are dense in ℓஶ(߁),  ∗௑ܤ

Is the ݓ∗–closed convex hull of its ݓ∗ –strongly exposed points (in fact, the 

set of all ݓ∗–strongly exposed points of Bଡ଼∗ is just(݁஌)ఊ∈୻,all of the standard 

unit vectors of ℓଵ(Γ) . Given any ߛ ∈ Γ, let ߜఊ ∈ ܵ௑∗  by defined for y∈ ܻ by 

(ݔ)ఊߜ = ,(ߛ)ݔ ݔ ݈݈ܽ ݎ݋݂ = ൫(ߛ)ݔ൯ఊ∈୻ ∈ ܺ. 

Then by Lemma (1.1.14) there exists ∅ఊ ∈ ܵ௒∗ such that |〈∅ఊ , 〈(ݔ)݂ −

ఊߜ〉 , |〈ݔ ≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. Now, let ܵ: ܻ → ܺ be defined by 

S(ݕ) =  ( 〈∅ఊ, ∥ ,ఊ )ఊ∈୻ . Clearly݁〈ݕ ܵ ∥= 1  and ∥ ݔ−(ݔ)݂ܵ ∥=

,ఊ∈୻ห〈߶஌݌ݑݏ 〈(ݔ)݂ − ఊߜ〉 , ห〈ݔ ≤  .ߝ4
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Theorem (1.1.18)[1]. Suppose that ܺ. ܻ are Banach spaces with ݀݅݉ ܺ =  ݊, 

and suppose that ƒ: ܺ → ܻ is an ߝ–isometry with ƒ (0) = 0. Then there is a 

continuous linear operator ܵ: ܻ → ܺ with ∥ ܵ ∥≤ ݊  such that 

∥ (ݔ)݂ܵ − ݔ ∥≤ ,ߝ4݊ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. 

Proof: Since ݀݅݉ ܧ = ݊, by Auerbach's Theorem, there exist ݊  

vector (ݔ௜)௜ୀଵ
௡ ⊂ ܵ௑  and n vectors (ݔ௜

∗)௜ୀଵ
௡ ⊂ ܵ௑∗ such that 〈ݔ௝

∗, 〈௜ݔ =  ௜௝ . Byߜ

Lemma (1.1.14), there exist ݊ linear functional (∅௜
 )௜ୀଵ

௡ ⊂ ܵ௒∗ such that for 

all 1 ≤ ݅ ≤ ݊ 

              |〈∅௜ , 〈(ݔ)݂ − ௜ݔ〉
∗, |〈ݔ ≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                  (18) 

We define ܵ: ܻ →  ܺ for ݕ ∈ ܻ by ܵ௬ = ∑ 〈∅௜ , ௜ݔ〈ݕ
௡
௜ୀଵ  . Then ∥ ܵ ∥≤ ݊  and 

(18) yields 

∥ ݔ − (ݔ)݂ܵ ∥=∥ ෍ ௜ݔ〉)
∗, 〈ݔ − 〈∅௜ , ௜ݔ(〈(ݔ)݂

௡

௜ୀଵ
∥

≤ ෍ ௜ݔ〉|
∗, 〈ݔ − 〈∅௜ , |〈(ݔ)݂ ≤ .ߝ4݊   

௡

௜ୀଵ
 

We shall deal with ߝ–isometry between two Banach spaces, and show a 

stability  version of reflexive Banach spaces. To begin with, we recall some 

notations. For a sub set  ⊂ ܺ , we denote by ܩ∘ = ∗ݔ} ∈ ܺ∗: ,∗ݔ〉 〈ݔ ≤ 1, for 

all ݔ ∈ °ܩ the polar of G, and ,ܩ
 
°   of ܩ is defined by 

°ܩ
 
° = ݔ} ∈ ܺ: ,∗ݔ〉 〈ݔ ≤ 1, ∗ݔ ݈݈ܽ ݎ݋݂ ∈ . {°ܩ  stands for the annihilator of  ୄܩ

G. i.e.ୄܩ = ∗ݔ} ∈ ܺ∗: ,∗ݔ〉 〈ݔ = ݔ ݈݈ܽ ݎ݋݂   ,0 ∈  ,Analogously . {ܩ

ୄܩ
 

ୄ = ݔ} ∈ ܺ: ,∗ݔ〉 〈ݔ = 0} for all ݔ∗ ∈  The following results are either. ୄܩ

classical, or, easily to be verified. 

Proposition (1.1.19)[1]. Suppose that G is a subset of a Banach space X. 

Then 

(i) ܩ∘ is aݓ∗ –closed convex set and ୄܩis a ݓ∗–closed subspace in ܺ∗; 

(ii)°ܩ∘ = ܩ)തതത݋ܿ ∪ {0}), ୄܩ  ݀݊ܽ
 

ୄ =  ;ܩതതതതതതത݊ܽ݌ݏ

(iii) ܩ∘ =  ;if G is  a subspace ୄܩ

(iv) IF ܯ ⊂ ܺ∗ isa ݓ∗-closed subspace, then ( ܩ)ୄ
 

ୄ =  .ܯ
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Recall that for an ߝ–isometry ƒ: ܺ → ܻ with ƒ(0) = 0 and ߝ ≥  0.  (ƒ)ܥ

denotes the closed absolutely convex hull of  ƒ(ܺ), E the annihilator of the 

subspace ܨ ⊂ ܻ∗  consisting of all functional bounded on ܥ(ƒ),and 

ఌܯ = {߶ ∈ ܻ∗ ∶ ߚ݁݉݋ݏݎ݋ఌ݂ߚ ݕܾ ݀݁݀݊ݑ݋ܾݏ݅∅ >  .{(݂)ܥ݊݋ 0

Note that the set ܯఌ = {∅ ∈ ܻ∗: ∅ is bounded on ܥ(ƒ)} ݂݅ ߝ >  ୄ(ܨ)ܥ = ;0

the annihilator of ܥ(ƒ), if 0 = ߝ, Since ܥ(ƒ) is symmetric, ܯఌ is a linear 

subspace of ܻ∗ with ܯఌ =∪௡ୀଵ
∞  ,Therefore . ∘(݂)ܥ݊

ܧ  =∩ {ker  ∅: ∅ ∈ {ఌܯ = ୄ ܯ
ఌ. 

Lemma (1.1.20)[1]. With the notions as the same as above, then the 
following assertions are equivalent. 
(i)ܥ(ƒ) ⊂ ܧ + ⊃ some bounded set B ݎ݋݂ ܤ ܻ; 

(ii)  ܯఌ  is ݓ∗–closed; 
(iii)  ܯఌ  is closed. 
Proof: (i)⟹ (ii). Since B is bounded ܯఌ =  .closed-∗ݓ Therefore, it is.°ܧ

(ii)⟹ (iii) is trivial. 
(iii) ⟹ (ii). Since ܯఌ is closed in ܻ∗, it is a Banach space. Since ܥ(݂)°  

is ݓ∗–closed in ܻ∗, it is necessarily closed. Note that ܯఌ = ⋃ ஶ°(݂)ܥ݊
௡ୀଵ . 

Baire's Category Theorem implies that ܥ(݂)° is a (norm) neighborhood of 0 

in ܯఌ . This and ݓ∗-closedness of ܥ(݂)° entail that ܯఌ is ݓ∗–closed. 

(ii) ⟹ (i). Since ܯఌ
° = ఌܯ

ୄ  is aݓ∗–closed subspace, and since  ఌܯ
ୄ =  ,  ܧ

according to Proposition (1.1.19) ( ܻ ∕ ∗(ܧ = ୄܧ = (  ఌܯ
ୄ )ୄ = ఌܯ . By the 

Banach Steinhauss Theorem we see that ܥ (ƒ)/ܧ is a bounded subset of the 

quotient space ܻ/ܧ, or equivalently, ܥ(݂) ⊂ ܧ +  for some bounded ܤ

set ܤ ⊂ ܻ. 

     For every ߝ–isometry ƒ, we will define a set -valued mapping ℓ: ܺ∗ → 2௒∗. 

Inequality (9) of Lemma (1.1.14) says that for ݔ∗ ∈ ܺ∗ , there exist ∅ ∈ ܻ∗ 

and ߚ > 0 such that 

     |〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝߚ ∈ ܺ.                                           (19) 

∗ݔℓ ݐ݁ܮ        = {∅ ∈ ߚ  ݁݉݋ݏ ݎ݋݂(19)ݏ݂݁݅ݏ݅ݐܽݏ∗ܻ > 0}.                         (20) 
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Lemma (1.1.21)[1]. With the mapping ℓ as the same as above, then (i) ℓ is 

non-empty convex-valued and with                                                                           

   ∥ ∗ݔ ∥= inf  {∥ ∅ ∥: ∅ ∈ ℓݔ∗} = min{∥ ∅ ∥: ∅ ∈ ℓݔ∗} , ∗ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ∗ (21) 

(ii) ℓ satisfies that for all ݔ∗, ∗ݕ ∈ ܺ∗  and ߙ ∈ ℝ, 

ℓ(αx∗) = αℓx∗  and ℓ(x∗ + y∗) = ℓx∗ + ℓy∗;  

(iii) ℓ0 = Mகܽ݊݀ ℓݔ∗ = ∅௫∗ + Mக, where ∅ = ∅௫∗ satisfies (9); 

(iv) ℓ is properly injective, i.e. if ݔ∗ ≠ ∗ݔthen ℓ ,∗ݕ ∩  ℓݕ∗ = ∅. 

Proof: (i) Non-emptiness and convexity of ℓݔ∗,and the inequality∥ ∗ݔ ∥≥

inf  {∥ ∅ ∥: ∅ ∈  ℓݔ∗} follow from (9) of Lemma (1.1.14) .To show∥ ∗ݔ ∥≤

inf  {∥ ∅ ∥: ∅ ∈  ℓݔ∗}, let ∅ ∈  ℓݔ∗  .Then by definition of ℓ ,there exists 

ߚ > 0 such that 

|〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝߚ ∈ ܺ. 

Given ߜ > 0, we choose ݔ଴ ∈ ܵ௑  such that 〈ݔ∗, 〈଴ݔ >∥ x∗ ∥  and , ߜ−

substitute ݊ݔ଴ for ݔ in the inequality above . Then we obtain that for all 

݊ ∈ ℕ, 

ቤ〈∅,
(଴ݔ݊)݂

݊
〉 − ,∗ݔ〉 ଴〉ቤݔ ≤

ߝߚ
݊

. 

Note that ݊ − ߝ ≤∥ (଴ݔ݊)݂ ∥≤ ݊ + ݊ By letting .ߝ → ∞ in the inequality 

above, we observe that 

∥ ∅ ∥≥  lim௡ ,∅〉݌ݑݏ 〈݊/((଴ݔ݊)݂) = ,∗ݔ〉 〈଴ݔ >∥ ∗ݔ ∥  .ߜ−

Arbitrariness of ߜ entails that ∥ ∅ ∥ ≥ ∥ x∗ ∥. 

(ii) Homogeneity of ℓ and the one side inclusion ℓ(ݔ∗ + (∗ݕ ⊃ ℓݔ∗ + ℓݕ∗ 

immediately follow from definition of ℓ .To show ℓ(ݔ∗ + (∗ݕ ⊂ ℓݔ∗ + ℓݕ∗, 

let  ߰ ∈ ℓ(ݔ∗ + ∅ and (∗ݕ ∈ ℓݔ∗ .Then there exist ߚଵ, ଶߚ > 0 such that for 

all ݔ ∈ ܺ, 

|〈߰, 〈(ݔ)݂ − ∗ݔ〉 + ,∗ݕ |〈ݔ ≤ ,∅〉|݀݊ܽߝଵߚ 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤  ߝଶߚ

Let ߤ = ߰ − ߶ .Then 



15 
 

,ߤ〉| 〈(ݔ)݂ − ,∗ݕ〉 |〈ݔ = |(〈߰, 〈(ݔ)݂ − ∗ݔ〉 + ,∗ݕ (〈ݔ − (〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |(〈ݔ

≤ ଵߚ) +  ,ߝ(ଶߚ

And this says that ߤ ∈ ℓݕ∗and  ߰ = ߶ + ߤ ∈ ℓݔ∗ + ℓݕ∗ . 

(iii) If 0 = ߝ, then  ℓ0 = ୄ(ݔ)݂ = ୄ(݂)ܥ = ଴ܯ = <   If .ܯ 0 , then 

ℓ0 = {∅ ∈ ܻ∗: {(ݔ)݂ ݊݋ ݀݁݀݊ݑ݋ܾ ݏ݅|∅|

= {∅ ∈ ܻ∗: {(݂)ܥ ݊݋ ݁ݒ݋ܾܽ ݀݁݀݊ݑ݋ܾ ݏ݅ ∅ = ఌܯ . 

Given  ݔ∗ ∈ ܺ∗ , and ∅ ∈ ℓݔ∗ , by (ii) we have just proven, 

ℓݔ∗ = ℓ(ݔ∗ + 0) = ℓݔ∗ + ℓ0 ⊃ ∅  + ℓ0 = ∅ + ఌܯ . 

Conversely, for any ∅, ߰ ∈ ℓ(ݔ∗) , let ߚଵ, ଶߚ ∈ ℝା such that for all ݔ ∈ ܺ, 

|〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ,ߝଵߚ ܽ݊݀   |〈߰, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ .ߝଶߚ ܶℎ݁݊, 

|〈∅ − ߰, |〈(ݔ)݂ ≤ ଵߚ) + ݔ ݈݈ܽ ݎ݋݂   ,ߝ(ଶߚ ∈ ܺ, 

And this is equivalent to ∅ − ߰ ∈ ℓ0 . Thus, (iii) has been proven. 

    (iv) According to (ii), it suffices to show ℓݔ∗ ∩ ℓ0 = ∅ that for every 

∗ݔ  ∈ ܺ∗\{0} . Givenݔ∗ ∈ ܺ∗ with ݔ∗ ≠ 0, let ∅ ∈ ℓݔ∗ . Then there exists 

ߚ ∈ ℝା such that 

|〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂        ,ߝߚ  ∈ ܺ. 

If ∅ ∈ ℓ0, then there is ߚଵ > 0  such that |〈∅, |〈(ݔ)݂ ≤ ݔ for all , ߝଵߚ ∈ ܺ.  

Thus |〈ݔ∗, |〈ݔ ≤ ߚ) + ݔ for all, ߝ(ଵߚ ∈ ܺ .This is impossible, since ݔ∗ ≠ 0 . 

Theorem (1.1.22)[1]. Let ܺ, ܻ be Banach spaces, ƒ: ܺ → ܻ be an ߝ–isometry 

with ƒ(0) = 0, and let ℓ  be defined as in Lemma (1.1.21), and ܯ =  ℓ̅0. 

Then: 

(i) ܳ = ܺ∗ → ∗ݔܳ Defined by ܯ/∗ܻ = ℓݔ∗ +  .is a linear isometry ܯ

(ii)  If M is ݓ∗–closed, then Q is the conjugate operator of a surjective 

operator U from E onto X with ∥ ܷ ∥= 1 . 

(iii)  In particular, if   0 = ߝ, then U is just Figiel's operator. 
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Proof:  (i) According to Lemma (1.1.21), it is clear that Q is single-valued 

and linear. Note that and ܯ =  ℓ̅0 = ఌܯ .തതതത For every ݔ∗ ∈ ܺ∗,due to (21) of 

Lemma (1.1.21), 

∥ ∗ݔܳ ∥= inf  {∥ ∅ − ݉ ∥: ∅ ∈ ℓݔ∗, ݉ ∈ {ܯ

= inf{∥ ∅ − ݉ ∥: ∅ ∈ ℓݔ∗, ݉ ∈ {ఌܯ = inf  {∥ ∅ ∥: ∅ ∈ ℓݔ∗} =

∥ x∗ ∥. 

(ii)  Suppose that M is ݓ∗–closed in ܻ∗. Then, by Proposition (1.1.19), 

ܯ = ( ୄ ܯ )ୄ = ∗ܻ ,Therefore .ୄܧ ⁄ܯ = ܻ∗ ∕ ୄܧ =  We claim first that Q . ∗ܧ

is ݓ∗ −  continuous (hence, it is a conjugate operator) (an operator  ∗ݓ−݋ݐ

ܶ: ܻ∗ → ܺ∗is ݇ܽ݁ݓ∗ −  continuous if and only if it is of the form ∗݇ܽ݁ݓ

ܶ = ܵ∗ for some bounded operator ܵ: ܺ → ܻ in particular T must be 

bounded) [7]. By the Krein-Smulian Theorem, it suffices to show that it 

is ݓ∗ − ఈݔ)the unit ball of ܺ∗ . Let ,∗ݔcontinuous on B  ∗ݓ−݋ݐ
∗ ) ⊂  ௫∗be aܤ

net is ݓ∗–converging to x∗ ∈ X∗. Then by Lemma (1.1.14) there is a net 

(∅ఈ) ⊂ ܻ∗ with ∥ ∅ఈ ∥=∥ ఈݔ
∗ ∥≡ ఈݎ ≤ 1 such that 

|〈∅ఈ , 〈(ݔ)݂ − ఈݔ〉
∗ , |〈ݔ ≤ ݔ ݈݈ܽݎ݋ఈ݂ݎߝ4 ∈ ܺ. 

∗ݓ −Relative compactness of (∅ఈ)  implies that there is a ݓ∗–cluster 

point ∅ ∈ ܻ∗ of (∅ఈ) such that |〈∅ , 〈(ݔ)݂ −  ݔ〉
∗, |〈ݔ ≤ 0  ݁݉݋ݏݎ݋݂ݎߝ4 ≤

ݎ ≤ lim஑ supr஑.     Clearly, ∅ ∈ ℓݔ∗. Since every ݓ∗– cluster point of(ݔఈ
∗ )  is 

in ℓݔ∗, ఈݔܳ
∗ = ℓݔఈ

∗ + ܯ = ∅ఈ + ఈݔܳ) and which further entails that ,ܯ
∗ )  

is ݓ∗–convergent to ∅ + ܯ =  ݔܳ
∗݅݊  ܻ∗ ∕ ܯ = :ܳ,Hence. ∗ܧ ∗௑ܤ →  ∗ܧ

is ݓ∗ − ݋ݐ − ܧ :ܷ continuous. Let ∗ݓ → ܺ be a linear operator such that 

ܷ∗ = ܳ .Clearly, U is a surjective mapping with ∥ ܷ ∥= 1 , since 

 ܳ = ܷ∗: ܺ∗ →  .is a linear isometry  ∗ܧ

    (iii)  If 0 =ߝ, then ܯ = ఌܯ = ଴ܯ = ܧ closed and–∗ݓ is  ୄ(݂)ܥ = ୄ ܯ =

(ƒ)ܮ :ܷ According to (ii) we have just proven, there exists .(݂)ܮ → ܺ such 

that ܷ∗ = ܳ. And in this case, it is easy to observe that 

,∗ݔܳ〉 〈(ݔ)݂ = ,∗ݔ〉 ,〈ݔ ݔ ݈݈ܽ ݎ݋݂ ∈ ∗ݔ ݀݊ܽ ܺ ∈ ܺ∗. 
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Let F be Figiel's operator from ܮ(ƒ) to ܺ such that ܨ ∘ ݂ =  on X. Then its  ܫ

conjugate operator ܨ∗: ܺ∗ → ∗(݂)ܮ = ܻ∗ ⁄ୄ(݂)ܮ = ܻ∗ ⁄ܯ satisfies 

  ∥ ∗ܨ ∥=∥ ܨ ∥= 1 . Since ܨ ∘ ݂ =  ௑ , by definition of conjugate operator weܫ

have for all ݔ ∈ ∗ݔ ݀݊ܽܺ ∈ ܺ∗, 

,∗ݔ∗ܨ〉 〈(ݔ)݂ = ,∗ݔ〉 〈(ݔ)݂ܨ = ,∗ݔ〉 〈ݔ௑ܫ = ,∗ݔ〉 〈ݔ = ,∗ݔܳ〉  〈(ݔ)݂

Therefore,ܷ∗ = ܳ that is, ܷ =  .ܨ

Corollary (1.1.23)[1].With the notations as the same as in Theorem (1.1.22), 

then Q is a conjugate operator if one of the following conditions holds. 

(i)ܥ(݂) ⊂ ܧ + ܤ For some bounded set ܤ ⊂ ܻ ; 

(ii) ܯఌis closed; 

(iii) Y is reflexive. 

Proof: According to Theorem (1.1.22), it suffices to show that M is 

 .closed–∗ݓ ఌisܯ closed. By Lemma (1.1.14), both (i) and (ii) imply that–∗ݓ 

Therefore, ܯ =  closed. Note that M is always weakly-∗ݓ ఌതതതത is certainlyܯ

closed. If Y is reflexive, then M is ݓ∗-closed. 

 Definition (1.1.24)[1]. Let X be a Banach space and 0 ≤ ߙ < +∞. A closed 

subspace ܯ ⊂ ܺ is said to be ߙ–complemented provided there exists a closed 

subspace ܰ ⊂ ܺ  with ܯ ∩ ܰ = {0} and a projection P: X→ M along N such 

that ܺ = ܯ + ܰ and ∥ ܲ ∥≤  . ߙ

Theorem (1.1.25)[1]. Suppose that X, Y are Banach spaces and Y is 

reflexive, and suppose ƒ: X→ Y is an ߝ-isometry with ƒ (0) = 0. If E is  

 complemented   in Y, then there is a bounded linear operator T: Y→ X–ߙ 

with ∥ ܶ ∥≤  such that ߙ

              ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂     ,ߝ4 ∈ ܺ.                                           (22) 

Proof: Since Y is reflexive, by Theorem (1.1.22) and Corollary (1.1.23), 

there is a surjective operator ܷ: ܧ → ܺ with∥ ܷ ∥= 1 such that Q = ܷ∗ . 

Since E is ߙ–complementedin Y, there is a closed (complemented) sub space 

F of Y with ܧ ∩ ܨ = {0} such that ܧ + ܨ = ܻ and the projection ܲ: ܻ →  ܧ
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along F satisfies ∥ ܲ ∥≤ ܶ Let . ߙ = ܷ ∘ ܲ . Then ∥ ܶ ∥≤  In the following .ߙ

we will show that T satisfies (26). Note that ܻ∗ ⁄ܯ = ܻ∗ ⁄ୄܧ = ∗ܧ =    .ୄܨ

We have 

,∗ݔܳ〉            〈ݕܲ = ,∗ݔܳ〉 ∗ݔ ݈݈ܽ ݎ݋݂         ,〈ݕ ∈ ݕ ݀݊ܽ ∗ܺ ∈ ܻ.                  (23) 

Therefore, 

,∗ݔܳ〉|      〈(ݔ)݂ܲ − ,∗ݔ〉 |〈ݔ = ,∗ݔܳ〉| 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ߝ4 ∥ ∗ݔ ∥,     

For all ݔ ∈ ∗ݔ ݀݊ܽ ܺ ∈ ܺ∗.                                                                          (24) 

By definition of conjugate operator, we Observe that for all ݔ ∈ ܺ and 

∗ݔ ∈ ܺ∗ , 

,∗ݔܳ〉           〈(ݔ)݂ܲ = ,∗ݔ〉 (ܷ ∘ 〈(ݔ)݂(ܲ = ,∗ݔ〉  (25)                            .〈(ݔ)݂ܶ

(24) and (25) together entail that 

,∗ݔ〉|        (ݔ)݂ܶ − |〈ݔ ≤ ߝ4 ∥ ∗ݔ ∥ ݔ ݈݈ܽ ݎ݋݂   , ∈ ∗ݔ ݀݊ܽ ܺ ∈ ܺ∗ 

Or, equivalently, 

∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ  ݈݈ܽ ݎ݋݂   ,ߝ4 ∈ ܺ. 

Section (1.2): ߝ- isometries in Reflexive Spaces and Sharp 

Estimates of a Certain Class of Reflexive Spaces: 
    In this section, we shall continue to deal with ߝ-isometry in reflexive 

Banach spaces. This is also preparation for showing a sharp estimate. 

Definition (1.2.1)[1]. Suppose that X, Yare two Banach spaces, and that S is 

a (set-valued) mapping from X to 2௒ . S is said to be ߚ–Lipschitz  for 

some ߚ > 0 provided for all ݔଵ, ଶݔ ∈ ܺ, ଵݔܵ ⊂ ଶݔܵ + ߚ ∥ ଵݔ − ଶݔ ∥  . ௒ܤ

It is clear that if ܵ: X → 2௒ is ߚ–Lipschitz then ܶ: ܺ → 2௒  defined for ݔ ∈ ܺ 

by ܶݔ =  .Lipschitz– ߚ is also  (ݔܵ)തതത݋ܿ

Theorem (1.2.2)[1]. Suppose that X, Yare Banach spaces and that Y is 

reflexive, and suppose that ƒ: ܺ → ܻ is an ߝ-isometry for some 0 ≤ ߝ with  

ƒ(0) = 0. Let U be the pre-conjugate operator   of Q defined as in Theorem 

(1.1.22). If there is a closed subspace ܨ ⊂ ܻ  with ܧ ∩ ܨ = {0} such that 
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ܧ + ܨ = ܻ, then there is a non-empty weakly compact convex-valued         1-

Lipschitz mapping V: X→2ா  such that ܷ ∘ ܸ =  .௑ on Xܫ

Proof: Let 

∧= ߣ} = (௡ߣ) ⊂ ℝାݐ݅ݓℎ ߣ௡ ↗ ∞}. 

We define then a set-valued mapping W from X to ݐℎ݁ 2௒   for ݔ ∈ ܺ by 

ݔܹ     = ݑ} ∈ ߣ∃ :ܻ ∈∧ ݑ ݐℎܽݐ ℎܿݑݏ = ݓ − lim௡ (ݔ௡ߣ)݂ ∕  ௡}.              (26)ߣ

We show first that W is everywhere non-empty valued with ܹ(ݔ) ⊂  and , ܧ

with ∥ ݑ ∥=∥ ݔ ∥  for all ݑ ∈  ,isometry-ߝ Since ƒ is an . ݔܹ

 limఒ→∞ ∥ (ݔߣ)݂ ∕ ߣ ∥→ 1 . Boundedness of (݂(ݔߣ) ⁄ߣ )ఒஹଵ and reflexivity of 

Y entail that (݂(ݔߣ) ⁄ߣ )ఒஹଵ is relatively weakly compact. Consequently, 

ݔܹ  ≠ ∅ for all ݔ ∈ ܺ . Note ܧ = ୄܯ  . Given ݔ ∈ ܺ and ݑ ∈ Let λ , ݔܹ ∈∧ 

satisfy ݑ = ݓ − lim௡ (ݔ௡ߣ)݂ ⁄௡ߣ . Without loss of generality, we can assume 

ݔ  ≠ 0 . By definition of ܯఌ , for every ߶ ∈ ߚ ܽ ݏ݅ ݁ݎℎ݁ݐ  ఌܯ > 0 such that 

             |〈∅, ݂(z)〉| ≤ z ݈݈ܽ ݎ݋݂          ,ߝߚ ∈ ܺ.                                             (27) 
Substituting ߣ௡ݔ for z in (27), and dividing the both sides of the inequality 

by ߣ௡ , then we obtain 

             ห〈߶, (ݔ௡ߣ)݂ ⁄ߣ  ௡〉ห ≤ ߝߚ ⁄௡ߣ ݊ ݈݈ܽ ݎ݋݂      , ∈ ℕ.                            (28) 
Let ݊ → ∞ . Then 〈∅, 〈ݑ = 0 . Therefore, ݑ ∈  ఌܯ

ୄ =   ܯ
ୄ =  To show. ܧ

∥ ݑ ∥=∥ ݔ ∥, let ݔ∗ ∈ ∂ ∥ ݔ ∥ . Then ݔ∗ ∈ ܵ௑∗ and 〈ݔ∗, 〈ݔ =∥ ݔ ∥ . According 

to (9) of Lemma (1.1.14), there exists ∅௫∗ ∈ ܻ∗ with  ∥ ∅௫∗ ∥=∥ ∗ݔ ∥= 1 

such that 

            |〈∅௫∗ , ݂(ऊ)〉 − ,∗ݔ〉 ऊ〉| ≤ ऊ ݈݈ܽݎ݋݂        ,ߝ4 ∈ ܺ.                             (29) 

Substituting ߣ௡ݔ  for ऊ in the inequality above, and dividing the both sides of 

the inequality by ߣ௡ , then we get                                                   

ห〈∅௫∗ , (ݔ௡ߣ)݂ ⁄ߣ  ௡〉 − ,∗ݔ〉 ห〈ݔ ≤ ݎߝ4  ⁄,௡ߣ   for all   n ∈ ℕ.                         (30) 

Let ݊ → ∞ . Then (30), weakly lower semi-continuity of the norm of X 

and ݑ = ݓ − lim௡ (ݔ௡ߣ)݂ ∕  ௡ together yield thatߣ
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   ∥ ݔ ∥= lim௡ ݂݅݊ ∥ (ݔ௡ߣ)݂ ⁄௡ߣ ∥≥∥ ݑ ∥≥ 〈߶௫∗ , 〈ݑ = ,∗ݔ〉 〈ݔ =∥ ݔ ∥.     (31)  

 ℎ݁݊ܿ݁ ∥ ݑ ∥=∥ ݔ ∥. Note that (31) entails that for every ݔ ∈ ܺ and for 

every x∗ ∈ ܵ௑∗   with 〈ݔ∗, 〈ݔ =∥ ݔ ∥ (i.e.ݔ∗ ∈ ∂ ∥ ݔ ∥  ) there exists ∅ ∈   ∗ݔܳ

(acting as a subset of ܻ∗ ) with∥ ߶ ∥=∥ ∗ݔ ∥= 1  such that 

ݔܹ               ⊂ ݑ} ∈ ܧ ∶ 〈∅, 〈ݑ =∥ ݑ ∥=∥ ݔ ∥}.                                          (32) 

    We show next that W is positively homogenous. Let ݑ ∈ ߣ and  ݔܹ ∈ Λ   

such that ݑ = ݓ − lim௡ (ݔ௡ߣ)݂ ∕ ܽ ௡ . For anyߣ ∈ ℝା, let ߣ௔ = ଵ
௔

 Then .ߣ

ݑ = ݓ − lim
௡

(ݔ௡ߣ)݂ ⁄௡ߣ = ݓ − lim
௡

݂൫ߣ௡
௔(ܽݔ)൯ ⁄௡ߣ

=
1
ܽ

ݓ) − lim
௡

݂൫ߣ௡
௔(ܽݔ)൯ ௡ߣ

௔⁄ ). 

This says that ܹܽݔ ⊂ ܽ for (ݔܽ)ܹ > 0 . Consequently, 

= ݔܹ  ܹ(ଵ
௔

((ݔܽ) ⊃ ଵ
௔

(ݔܽ)ܹ ,Thus . (ݔܽ)ܹ = ݔ for all ݔܹܽ ∈ ܺ 

and ܽ ∈ ℝା . 

    In the following, we show that W is 1-Lipschitz. We want to prove that 

given, ݕ ∈ ܺ , and ݑ ∈ ݒ there exists , ݔܹ ∈  such that ݕܹ

 ∥ ݒ − ݑ ∥≤∥ ݕ − ݔ ∥.  Indeed, by definition of ܹݔ there exists ߣ ∈∧ such 

that ݂(ߣ௡ݔ) ∕ ௡ߣ →  in the weak topology. Relatively weak Compactness ݑ

of݂(ߣ௡ݕ) ∕ ௦ߣ ௡entails that there isߣ ≡ (௡ೖߣ) ∈ Λ such 

That  (݂൫ߣ௡ೖݕ൯ ⁄ߣ ௡ೖ
) weakly converges to some ݒ ∈  Weakly lower .ݕܹ

semi-continuity of the norm∥. ∥ on Y entails 

∥ ݒ − ݑ ∥≤ lim
௞

inf ∥ ݂൫ߣ௡ೖݕ൯ ௡ೖൗߣ − (ݔ௡ೖߣ)݂ ∕ ௡ೖߣ ∥

≤ lim
௞

inf  ൫∥ ൯ݕ௡ೖߣ − ݔ௡ೖߣ ∥ (ߝ+ ௡ೖൗߣ =∥ ݕ − ݔ ∥. 

Therefore, W is 1-Lipschitz. 

     Next, we will show that ܷܹߧ =  ௑ on X.  Note that both E and F areܫ

complemented subspaces of Y. The projection ܲ: ܻ →  ,along F is bounded ܧ

and ܷ∗ = ܳ is actually ܺ∗ → ∋ Given x . ୄܨ ܺ , and ݑ ∈ ߣ  let,ݔܹ ∈∧ such 
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that ݑ = ݓ − lim௡ (ݔ௡ߣ)݂ ⁄௡ߣ  .This and definition of conjugate operator 

imply that 

,ݑܷ〉 〈∗ݔ = ,ݑ〉 〈∗ݔܳ = lim
௡

ݔ௡ߣ)݂〉 ⁄௡ߣ , 〈∗ݔܳ = ,ݔ〉  .〈∗ݔ

This says that ܷݑ = ݑ for all ݔ ∈ ,or equivalently ,ݔܹ ܹߧܷ =  ,Therefore . ܫ

W is a (set-valued) positively homogenously 1- Lipschitz mapping and 

satisfies                             ܷܹߧ =  . ௑ܫ

     Finally, let ܸݔ = ݔ for all (ݔܹ)തതത݋ܿ ∈ ܺ . Then V is again a non-empty w-

compact convex-valued 1-Lipschitz and positively homogenous mapping. 

Since ܷݔܹߧ = ݔ for all  ݔ ∈ ܺ, linearity and w-continuity of U together 

entail that ܷݔܸߧ = (ݔതതതܹ݋ܿ)ܷ = ,that is ,ݔ ܸߧܷ =  .௑ܫ

Theorem (1.2.3)[1]. Suppose that X, Y are Banach spaces and that Y is 

reflexive, and suppose that ƒ: X→Y is and ߝ -isometry for some 0 ≤ ߝ with 

ƒ(0) = 0. Suppose that the subspaces E and F, the operators ܷ, ܸ, ܲ ܽ݊݀ ܳ 

associated with ƒ and F, are as same as in Theorem (1.1.18). If, in addition, 

the subspace ܧ ⊂ ܻ is strictly convex, then ܸ =  ܹ: ܺ → -is a (single ܧ 

valued) linear isometry satisfying 

ݔܸ = ݓ − lim
ఒ→ାஶ

(ݔߣ)݂ ⁄ߣ , ݔ ݈݈ܽ ݎ݋݂       ∈ ܺ 

Therefore, ܸ∗ ∘ ܳ = (ܷ ∘ ܸ)∗ =  .௑∗ , and X is reflexive and strictly convexܫ

Proof: Suppose that E is strictly convex. Then ܧ∗is smooth. According to 

Theorem (1.1.13), each ∅ ∈ ∅ with ∗ܧ ≠ 0 has a unique support 

functional ݑ ∈ ܵா .This, incorporating (32) entails that ܹݔ  (ℎ݁݊ܿ݁,  is a (ݔܸ

singleton, which in turn implies that 

ݔܸ          = ݔܹ = ݓ − limఒ→ା∞ (ݔߣ)݂ ⁄ߣ , ݔ݈݈ܽݎ݋݂ ∈ ܺ                            (33) 

And V is single-valued 1-Lipschitz mapping. On the other hand, 

given, ݔଵ, ଶݔ ∈ ܺ, let ݔ∗ ∈ ܺ∗  with∥ ∗ݔ ∥= 1 such that 

,∗ݔ〉 ଵݔ − 〈ଶݔ =∥ ଵݔ − ଶݔ ∥ 

By a simple discussion similar to that from (29) to (31), there is ∅ ∈ ܵ௒∗  

corresponding to ݔ∗satisfying the following equalities 
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                 〈∅, 〈ଵݔܸ = ,∗ݔ〉 ,∅〉 ݀݊ܽ 〈ଵݔ 〈ଶݔܸ = ,∗ݔ〉  ଶ〉.                             (34)ݔ

Therefore, 

  ∥ ଵݔ − ଶݔ ∥≥∥ ଵݔܸ − ଶݔܸ ∥≥ 〈∅, ଵݔܸ − 〈ଶݔܸ = ,∗ݔ〉 ଵݔ − 〈ଶݔ =                  ∥

ଵݔ − ଶݔ ∥                                                                                   (35)                                                                              

We have proven that V is a positively homogenous isometry. 

    We show finally that V is linear. For any ݔ ∈ ܺ, ݔ ≠ 0, let 

ଵݔ  = ,ݔ ଶݔ = ∗ݔ and ,ݔ− ∈ ܵ௑∗ with 〈ݔ∗, 〈ݔ =∥ ݔ ∥, and let ∅ ∈  with ∗ܧ

∥ ∅ ∥= 1 be the functional corresponding to ݔ∗ satisfying (34). Then 

∥ ݔܸ − (ݔ−)ܸ ∥= 〈∅, ݔܸ − 〈(ݔ−)ܸ = ,∗ݔ〉 ݔ − 〈(ݔ−) = 2 ∥ ݔ ∥. 

This and strict convexity of E yield ܸ(−ݔ) =  Thus, V is a .ݔܸ−

homogenously symmetrical isometry. It remains to show additivity of V. For 

any ݔ, ݕ ∈ ܺ, ∗ݔݐ݈݁ ∈ ܵ௑∗ݔ〉 ݕ݂ݏ݅ݐܽݏ∗, ݔ + 〈ݕ =∥ ݔ + ݕ ∥ ܽ݊݀, ∅ ݐ݈݁ ∈ ܵா∗ , 

be a functional corresponding to ݔ∗ such that 

〈∅, 〈ݔܸ = ,∗ݔ〉 ,∅〉 ݀݊ܽ 〈ݔ 〈ݕܸ = ,∗ݔ〉  .〈ݕ

Then ∥ ݔ + ݕ ∥=∥ ݔܸ − (ݕ−)ܸ ∥=∥ ݔܸ + ݕܸ ∥≥ 〈∅, ݔܸ + 〈ݕܸ =

,∗ݔ〉 ݔ + 〈ݕ =∥ ݔ + ݕ ∥=∥ ݔ)ܸ + (ݕ ∥= 〈∅, ݔ)ܸ +  〈(ݕ

Therefore, 
〈∅, ݔ)ܸ + 〈(ݕ =∥ ݔ)ܸ + (ݕ ∥=∥ ݔܸ + ݕܸ ∥= 〈∅, ݔܸ +  .〈ݕܸ

This says that both ܸ(ݔ + ݔܸ and  (ݕ +  are support functionals (with  ݕܸ

same norm) of ܤா∗ and supporting  ܤா∗  implies ∗ܧ Smoothness of . ∅ ݐܽ 

that  ܸ(ݔ + (ݕ = (ݔ)ܸ +  .(ݕ)ܸ

Theorem (1.2.4)[1]. Suppose that X is a Banach space and that Y is a 

reflexive, Gateaux smooth and strictly convex Banach space admitting the 

Kadec-Klee property. Suppose that ݂: ܺ → ܻ is an ߝ-isometry with  

 ݂(0) = 0, and that the subspace ܧ ⊂ ܻ associated with ƒ is ߙ -complemented 

in Y. Then there is a linear operator ܶ: ܻ → ܺ  with ∥ ܶ ∥≤  such that ߙ

                  ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ     ,ߝ2 ∈ ܺ.                                                    (36) 
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Proof: Let the subspace F, and the operators ܲ, ܳ, ܷ, ܸ associated with ƒ and 

E be as the same as in Theorem (1.2.3). According to Theorem (1.2.3), X is 

the reflexive strictly convex and Gateaux smooth; and ܸ: ܺ →  satisfying ܧ 

            ௑ܸୀ ݓ − limఒ→ஶ

  
(ݔߣ)݂ ⁄ߣ = ݓ − lim௡→ஶ (ݔ݊)݂ ݊⁄

 
                      (37) 

Is a linear isometry with ܷ ∘ ܸ =  on X. The Kadec- Klee property of Y ܫ

implies that 

ݔܸ             = ݓ − limఒ→ஶ (ݔߣ)݂ ⁄ߣ = lim௡→ஶ (ݔ݊)݂ ݊⁄ .                         (38) 
Note that the closed subspace F of Y satisfies E ∩ ܨ = ܧ ݀݊ܽ {0} + ܨ = ܻ , 

and the projection ܲ: ܻ → ∥along F satisfies ܧ ܲ ∥≤  Since ܻ(ܺ) is . ߙ

smooth, we get that ∂ ∥ ݑ ∥= ݀ ∥ ݑ ∥ is unique for all ݑ ≠ 0 ݅݊ ܻ(ܺ)  . 

    Let ܶ ≡ ܷ ∘ ܲ . Then∥ ܶ ∥≤  .we want to prove that T satisfies (36) ߙ

Given ݔ ∈ ܺ, without loss of generality, we assume that ݔ ≠  For . (ݔ)݂ܶ

every n ∈ ℕ , let β =∥ ݔ − (ݔ)݂ܶ ∥, ऊ = ݔ) − ((ݔ)݂ܶ ⁄ߚ , (ݔ)௡ݍ =

ݔ)݂ + ݊ऊ),   ݎ௡(ݔ) = ݔ)݂ + ݊ऊ) ݊⁄   ܽ݊݀ ∅௡ = ݀ ∥ (ݔ)௡ݎ ∥ 

Note that for any ߛ > 0 and for any ݑ ∈ ܻ with ݑ ≠ 0, ݀ ∥ ݑߛ ∥= ݀ ∥ ݑ ∥

௡∅ ݐ݁ܮ = ݀ ∥ (ݔ)௡ݎ ∥.  Then 

∥ ݔ)݂ + ݊ऊ) ∥= 〈∅௡, ݔ)݂ + ݊ऊ)〉 ≤ 〈∅௡ , ∥+〈(ݔ)݂ ݔ)݂ + ݊ऊ) − (ݔ)݂ ∥

          ≤ 〈∅௡ , 〈(ݔ)݂ + ݊ +  (39)                                                                         .ߝ

By (38), ݎ௡(ݔ) → ܸऊ .Gateaux smoothness and reflexivity of Y together 

entail that ∅௡ → ∅ ≡ ݀ ∥ ܸ(ऊ) ∥ in the weak topology of Y. Consequently, 

              lim௡(∥ ݔ)݂ + ݊ऊ) ∥ −݊) ≤ 〈∅, f(x)〉 + ε.                                     (40) 

On the other hand, let ݔ∗ = ݀ ∥ ऊ ∥ . Since 

∥ ݔ)݂ + ݊ऊ) ∥ −݊ ≥ ∥ ݔ + ݊ऊ ∥ −݊ −  ,ߝ

We have 

      lim௡(∥ ݔ)݂ + ݊ऊ) ∥ −݊) ≥ lim௡(∥ ݔ + ݊ऊ ∥ −݊) − ߝ =

                 lim௡
 ∥ऊାభ

೙௫∥ି∥ऊ∥
భ
೙

 – ߝ = ,∗ݔ〉 〈ݔ −  (41)                                                ߝ

(40) and (41) yield 
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,∗ݔ〉                  〈ݔ −  〈∅, 〈(ݔ)݂ ≤  (42)                                                           .ߝ2

According to (9) of the Main Lemma, we have 

,∗ݔܳ〉| 〈(ݕ)݂ − ,∗ݔ〉  |〈ݕ ≤ ߝ4 ∥ ∗ݔ ∥ ݕ ݈݈ܽ ݎ݋݂   , ∈ ܺ. 

We substitute ݊ऊ  for y, n=1,2,……, Then 

,∗ݔܳ〉| ݂(݊ऊ)〉 − ,∗ݔ〉  ݊ऊ〉| ≤ ߝ4 ∥ ∗ݔ ∥ 

Consequently, 

,∗ݔܳ〉| ݂(݊ऊ) ݊⁄ 〉 − ,∗ݔ〉  ऊ〉| ≤ ߝ4 ∥ ∗ݔ ∥  ݊⁄ . 

Letting ݊ → ∞, incorporating Theorem (1.2.3), we obtain 

,∗ݔܳ〉 ܸऊ〉 − ,∗ݔܳ∗ܸ〉  ऊ〉 = ,∗ݔ〉 ऊ〉 =∥ ऊ ∥. 

∥ ∗ݔܳ ∥=∥ ∗ݔ ∥=∥ ∅ ∥= 1 and smoothness of Y together imply 

∗ݔܳ  = ∅. Now, we turn to prove that 

                    ∅ ∘ ܸ = ݀ ∥ ऊ ∥.                                                                       (43) 

In fact, let  ऊ∗ = ∅ ∘ ܸ.Then ∥ ऊ∗ ∥≤ 1 and 

∥ ऊ ∥=∥ ܸऊ ∥= 〈∅. ܸऊ〉 = 〈ऊ∗, ऊ〉. 

Therefore, ऊ∗ ∈ ߲ ∥ ऊ ∥= ݀ ∥ ऊ ∥=  .∗ݔ

Note ݔ∗ = ∅ ∘ ܸ = ݀ ∥ ऊ ∥, ܶ = ܷ ∘ ܲ ܽ݊݀ ܷ ∘ ܸ =  ௑, we haveܫ

,∗ݔ〉 〈(ݔ)݂ܶ = 〈∅, (ܸ ∘ ܷ ∘ 〈(ݔ)݂(ܲ = ,∗ݔܳ〉 (ܸ ∘ ܷ ∘ 〈(ݔ)݂(ܲ

= ,∗ݔ〉 ܷ ∘ (ܸ ∘ ܷ ∘ 〈(ݔ)݂(ܲ = ,∗ݔ〉 (ܷ ∘ 〈(ݔ)݂(ܲ

= ,∗ݔܳ〉 〈(ݔ)݂ܲ = 〈∅, 〈(ݔ)݂ܲ = 〈∅,  .〈(ݔ)݂

Since1 = ,∗ݔ〉 ऊ〉 = ଵ
ఉ

,∗ݔ〉 ݔ −  ,〈(ݔ)݂ܶ

ߚ = ,∗ݔ〉 ൫ݔ − 〈൯(ݔ)݂ܶ = ,∗ݔ〉 〈ݔ − ,∗ݔ〉 〈(ݔ)݂ܶ = ,∗ݔ〉 〈ݔ − 〈∅, 〈(ݔ)݂ ≤  .ߝ2
Corollary (1.2.5)[1]: Suppose that ܺ, ܻ are Banach spaces and that Y is 

reflexive, Gateaux smooth and locally uniformly convex. Suppose that  

ƒ: ܺ → ܻ is an ߝ -isometry with ƒ(0) = 0, and that the subspace ܧ ⊂ ܻ is 

:ܶ complemented in Y. Then there is a linear operator– ߙ  ܻ → ܺ with 

∥ ܶ ∥≤  such that ߙ

∥ (ݔ)݂ܶ − ݔ ∥≤ 2ε,   ݔ ∈ ܺ 
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Proof: According to Theorem (1.2.14), it suffices to note that locally 

uniform convexity implies both the strict convexity and the KKP. 

Corollary (1.2.6)[1] (Semrl and Väiälä). Let 1 < ݌ < ∞ if ܺ ܽ݊݀ ܻ are 

:௣-spaces, and if ƒܮ  ܺ →  ܻ is an ߝ -isometry with ƒ(0) = 0, then there is a 

linear operator ܶ ∶ ܻ →  ܺ with ∥ ܶ ∥= 1  such that 

∥ (ݔ)݂ܶ − ݔ ∥≤ 2ε  ݔ ∈ ܺ 

Proof: Assume that both X and Y are ܮ௣–spaces with 1 < ݌ < ∞ . Then they 

are both (super) reflexive, uniformly convex and uniformly smooth. Suppose 

that 0 ≤ ߝ, and that ƒ: ܺ →  ܻ is an ߝ-isometry with ƒ(0) = 0. Then by 

Theorem (1.2.3), there exists a linear isometry  ܸ: ܺ → ܻ. By Theorem 

(1.2.4), it suffices to note that for any fixed 1 < ݌ < ∞ , if one ܮ௣–spaces X 

is linearly isometric to sub space of another ܮ௣–space Y, then X is  

1-complemented in Y. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



26 
 

Chapter 2 
Stability characterization 

    We show that the subspace N plays a crucial role. For example, (i) 
ܷ∗: ܰୄ → ∗ݓ ݏ݅ ∗∗ܺ − ݋ݐ −  continuous surjective isometry; and, in ∗ݓ
particular, if ܻ ≡  തതതതതതത݂(ܺ) is surjective, then the mapping ƒ is stable, if and݊ܽ݌ݏ
only if ܰୄ is complemented in Y; (ii) if Y is reflexive and ܰୄ is 
complemented in Y, then for any projection ܲ: ܻ → ܰୄ , the operator 
ܶ = ܷ∗ܲ satisfy ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ; and (iii) if, in addition, 
Y is Gateaux smooth and locally uniformly convex, then ܶ = ܷ∗ܲ satisfies 
the sharp estimate ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. We present similar 
results for such mappings on general Banach spaces. 

Section (2.1) ߝ-isometry and linear isometry with Stability 

Characterization of ߝ-isometry or Reflexive Spaces 
    A mapping ƒ from a Banach space X to another Banach space Y is said to 

be perturbed metric –preserved provided  there exists 0 ≤ ߝ such that 

        | ∥ (ݔ)݂ − (ݕ)݂ ∥ −∥ ݔ − ݕ ∥ | ≤ ε, for all x, y ∈ X.                       (1) 
The mapping ƒ is also called an ߝ- isometry. There are many different names 

for this notion such as  approximate isometry, non-linear perturbation of 

isometry and nearisometry The mapping ƒ is said to be  standard if ƒ (0) = 0. 

A standard ߝ-isometry ƒ: ܺ →  ܻ is said to be (ߙ, ߙ stable for some– (ߛ ≥ 0 

and  ߛ ≥ 2 , if there exists ܶ ∈ ,(݂)ܮ)ܤ ܺ) with ∥ ܶ ∥≤  such that  ߙ

              ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂ ߝߛ ∈ ܺ,                                                 (2) 

Where ܮ (ƒ) denotes the closure of span ƒ(ܺ) in Y. We call a 0-isometry an 

isometry, and if no confusion arises, we simply call ( ߙ, (ߛ − stable "stable". 

In this chapter, we consider the two questions: 

(I) Is there a stability characterization for a general ߝ-isometry ƒ: ܺ → ܻ? 

(II) Is there an isometric copy of X in Y if an ߝ-isometry ƒ: ܺ → ܻ exists? 

 isometry, isometry and linear isometry. The study of properties of-ߝ

isometries between Banach spaces and their generalizations has continued for 

80 years. The first celebrated result is due to Mazur and Ulam: Every 
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surjective isometry between two Banach spaces is necessarily affine. But the 

simple example: ݂ ∶ ℝ → ℓ∞
ଶ  defined for t by  ݂(ݐ) = ,ݐ)  shows that it  (ݐ݊݅ݏ

is not true if an isometry is not surjective. For non-surjective isometries,  

Figiel showed the following remarkable result: Every standard isometry 

admits a linear left- inverse of norm one. Godefroy and Kalton studied the  

relationship between isometries  and linear isometries , and showed the 

following deep Theorem, which resolves a long-standing problem whether 

the existence  of an isometry implies the existence of a linear isometry : If X 

is separable and there is an isometry ƒ: ܺ → ܻ, then Y contains a linear 

isometric copy of X; and for every nonseparable weakly compactly generated  

space X there exist a Banach space Y and an isometry ƒ ∶ ܺ → ܻ so that X is 

not linearly isomorphic to any subspace of Y. 

 isometry and stability. In 1945, Hyers and Ulam proposed the following-ߝ 

question: whether for every surjective ߝ-isometry ƒ: ܺ → ℎ  ƒ(0)ݐ݅ݓ ܻ = 0 

there exist a surjective linear isometry ܷ: ܺ →  ܻ and  ߛ > 0  such that 

                     ∥ (ݔ)݂ − ݔܷ ∥≤ ݔ ݈݈ܽ ݎ݋݂     ,ߝߛ ∈ ܺ.                                      (3) 

After many years of efforts of a number of mathematicians, the sharp 

estimate ߛ = 2 was finally obtained by Omladič and Šemrl. 

    The study of non surjective ߝ- isometry has also brought to mathematicians 

attention since 90s of the last century. First proposed the following Problem 

in 1995. 

Problem (2.1.1)[2]. Given two Banach spaces X and Y, whether there exists 

a constant ߛ > 0 Such that for every standard ߝ-isometry ƒ: ܺ →  ܻ there is  

 ?stable-(γ ,ߙ) so that ƒ is 0 < ߙ

     Then he showed that the answer is affirmative if both X and Y 

are ܮ௣ 1) ݏ݁ܿܽ݌ݏ < ݌ < ∞). Further presented a sharp estimate of (2) with 

ߛ = 2 if both X and Y areܮ௣ 1 ݎ݋݂ ݏ݁ܿܽ݌ݏ < ݌ < ∞ . However, Qian gave a 

counterexample showing if the space Y admits an uncomplemented subspace 
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X then for all 0 < ߝ there is an unstable standard ߝ-isometry from X to Y. 

Since a Banach space satisfying that every closed  subspace is complemented  

in it must be linearly isomorphic to a Hilbert space, this, incorporating of 

Qian's counterexample, entails that if  a Banach space Y satisfies that every 

standard  ߝ-isometry  ƒ ∶ ܺ → ܻ is stable for every  Banach space X, then Y is 

linearly isomorphic to a Hilbert space . This disappointment makes us to 

search for some weaker stability version and some appropriate 

complementability assumption on some subspaces of Y associated with the 

mapping. Recently, Cheng, Dong and Zhang gave the two questions above 

some affirmative answers. 

    Now we know that there are many remarkable results about ߝ-isometries 

on Banach spaces in the past eight decades. However, there are still many 

questions deserving consideration. For example, what classes of non-

separable Banach spaces can guarantee that every isometric mapping from a 

Banach space to a space in this class always induces a linear isometry? Is 

there a stability characterization for ߝ- isometries? If there is an ߝ-isometry ƒ 

from a Banach space X to another Banach space Y, is there an isometry (not 

necessarily linear) ݃: ܺ →  ܻ? The propose of this chapter is to consider the 

first two questions. 

    This chapter is organized as follows. In this section , making use  of 

Cheng, Dong and Zhang's Lemma and invariant means of  ℓ∞(ܺ) ,we show 

that every ߝ-isometry ƒ ∶ ܺ → ܻ induces a closed subspace N of  ܻ∗ and a 

linear surjective isometry ܷ: ܺ∗ → ܻ∗ ∕ ܰ hence, ܷ∗ ∶ ܰୄ → ܺ∗∗,the 

conjugate operator of U is a ݓ ݋ݐ∗ݓ∗ continuous linear surjective  isometry. 

In particular, if Y is reflexive, then ܰୄ is just a linear isometric copy of X in 

Y. And we show that if Y is reflexive, then a standard ߝ-isometry ƒ: ܺ → ܻ is 

,ߙ) 4) −stable if and only if the subspace ܰୄ ⊂ ܻ is ߙ-complemented in 

 ,(ƒ)ܮ complemented in-ߙ the closure of span ƒ(ܺ) in Y. And if ܰୄ  is ,(ƒ)ܮ
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then ƒ is (ߙ, 4) −stable with ܶ = ܷ∗ܲ  for every projection ܲ: (݂)ܮ → ܰୄ 

with ∥ ܲ ∥≤  ,If, in addition, Y is smooth and locally uniformly convex (or . ߙ

more general, strictly convex and admitting the Kadec-Klee property), then ƒ 

is (ߙ, 2) −stable. In another section we show that a standard  

:isometry ƒ-ߝ ܺ → ,ߙ) ݏ݅ ܻ (ߛ −stable in the sense that there exists a bounded 

linear operator ܶ: ∗∗(݂)ܮ → ܺ∗∗ with ∥ ܶ ∥≤  such that ߙ

                 ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝߛ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ                                             (4) 

If and only if  ܰୄ݅ݓ ݏ∗ −  denotes ∗∗(݂)ܮwhere) ∗∗(݂)ܮ complemented in-ߙ

the second dual of the space ܮ(ƒ)); and an (ߙ, (ߛ −stable ߝ-isometry is 

always (ߙ, 4) −stable.   

    In this chapter, all notations are standard. The letter ܺ will always be a real 

Banach space andܺ∗its dual. ܤ௑ ܽ݊݀ ܵ௑ denote the closed unit ball and the 

unit sphere of X, respectively. For a subspace ܯ ⊂ ܺ,  presents the  ୄܯ

annihilator of M, i.e.ୄܯ = ∗ݔ} ∈ ܺ∗: ,∗ݔ〉 〈ݔ = ݔ ݈݈ܽ ݎ݋݂ 0 ∈ ܯ If .{ܯ ⊂ ܺ∗ 

then ୄܯ  , the pre-annihilator of M is defined as ୄܯ = ݔ} ∈ ܺ: ,∗ݔ〉 〈ݔ =

∗ݔ݈݈ܽݎ݋݂  0 ∈ :ܶ Geven a bounded linear operator. {ܯ ܺ → ܻ, ܶ∗: ܻ∗ → ܺ∗ 

stands for its conjugate operator. For a subset ܣ ⊂ ܺ(ܺ∗), ,ܣ̅ ∗ݓ) −  തതത and(ܣ

 ,and the convex hull of A ,(closure–∗ݓ the) present the closure (ܣ)݋ܿ

respectively. For simplicity, we also use ܣ∗∗  to denote the ݓ∗–closure 

of ܣ ⊂ ܺ ݅݊ ܺ∗∗. 

    Assume that ܺ, ܻ are Banach spaces, and ƒ: ܺ → ܻ is anߝ-isometry. In this 

section, we shall use an invariant mean of X to define a bounded surjective 

operator ܴ: ܻ∗ → ܺ∗. With the aim of the kernel N of R and the operator Q, 

we further define a linear surjective isometry ܷ ∶ ܺ∗ → ܻ∗ ܰ⁄ . To begin with, 

we recall definition of invariant mean of a semi group and some related 

result. 

Definition (2.1.2)[2]. Let G be a semi group. A left-invariant mean on G is a 

linear functional ߤ on ℓ∞(ܩ) such that: 
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(i)ߤ(݂) = 1, 

(ii)ߤ (ƒ) ≥ 0 for every ƒ ≥ 0, 

(iii) ∀݂ ∈ ,(ܩ)∞݈ ∀݃ ∈ ,ܩ ൫ߤ ௚݂൯ =  where ௚݂ is the left-translation of ƒ ,(݂)ߤ

by ݃ ; i.e. ௚݂(ℎ) = ݂(݃ℎ), ∀ℎ ∈  .ܩ

(iv) A analogously, we can define right-invariant mean of G. an invariant 

mean is a linear functional on ℓ∞(ܩ) which is both left- invariant and right- 

invariant.  Note that (i) and (ii) are equivalent to (i) and ∥ ߤ ∥= 1 . 

Lemma (2.1.3)[2]. Every abelian semigroup G (in particular, every linear 

space) has an Invariant mean. 

Theorem (2.1.4)[2]. Suppose that ܺ, ܻ are Banach spaces, and that  ƒ: ܺ →  ܻ 

is an ߝ-isometry for some 0 ≤ ߝ. Then there exist a closed subspace ܰ ⊂ ܻ∗ , 

two linear isometries ܷ ∶ ܺ∗ → ܻ∗ ܰ⁄  and ܸ ∶ ܻ∗ ܰ → ܺ∗⁄   such that 

ܸܷ = ∗௑ܫ  ܽ݊݀  ܸ = ܷିଵ 

Proof:  Without loss of generality, we can assume that ƒ is standard; 

otherwise, we substitute g ≡ ݂ − (݂)ܥ ݐ݈݁  .݂ ݎ݋݂ (0)݂ = (ܺ)݂)തതത݋ܿ ∪

−݂(ܺ)) . 

    We first define a linear operator ܴ ∶  ܻ∗ → ℎݐ݅ݓ∗ܺ ∥ ܴ ∥≤ 1  . Note X is 

an Abelian group with respect to the vector addition of X. by Lemma (2.1.3), 

there exists a translation invariant mean ߤ on ℓ∞(ܺ) .Fix any ݔ ∈ ܺ since ƒ is 

an ߝ-isometry, 

             ݃௫(ݖ) = ݔ)݂ + (ݖ − ݖ ݈݈ܽ ݎ݋݂     ,(ݖ)݂ ∈ ܺ                                     (5) 

Define a bounded mapping ݃௫ ∶ ܺ → ܻ. Therefore, 〈∅, ݃௫〉 ∈ ℓ∞(ܺ) for every 

∅ ∈ ܻ∗. We also dente the invariant mean by ߤ௭ ߤ ݎ݋௭(. ) , emphasizing that 

the mean is taken with respect to the variable z. 

    Now we define the linear mapping  ܴ ∶  ܻ∗ → ℝ௑݂ݎ݋ ∅ ∈ ܻ∗ by 

                  〈ܴ∅, 〈ݔ = ,∅〉)௭ߤ ݃௫〉),   ݂ݔ ݈݈ܽ ݎ݋ ∈ ܺ.                                       (6) 

We claim that: 

(i) ܴ∅ ∈ ∅ ݕݎ݁ݒ݁  ݎ݋݂ ∗ܺ ∈ ܻ∗; 
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(ii) ∥ ܴ∅ ∥≤∥ ∅ ∥ ∅ ݕݎ݁ݒ݁ ݎ݋݂ ∈ ܻ∗; 

(iii)  If ∅ ∈ ,(݂)ܥ ݊݋ ݀݁݀݊ݑ݋ܾ ݏ݅∗ܻ ∅ ℎ݁݊ݐ ∈ ker ܴ.
 
  

Fix any ∅ ∈ ܻ∗ and let ݑ, ݒ ∈ ܺ . Then 

     〈ܴ∅, ݑ + 〈ݒ = ,∅〉)ܯ ݃௨ା௩〉) = ,∅〉)௭ߤ ݑ)݂ + ݒ + (ݖ − (〈(ݖ)݂  =

        μ୸(〈∅, f(u + v + z) − f(v + z)〉) + ,∅〉)௭ߤ   ݒ)݂ + (ݖ − (〈(ݖ)݂ =

           μ୸(〈∅, ݑ)݂ + (ݖ − (〈(ݖ)݂ + ,∅〉)௭ߤ ݒ)݂ + (ݖ − (〈(ݖ)݂ =

,∅〉)ߤ                ݃௨〉) + ,∅〉)ߤ ݃௩〉) = 〈ܴ∅, 〈ݑ + 〈ܴ∅,  (7)                                 .〈ݒ

Therefore, additivity of ܴ߶   has been shown. It follows from additivity of, 

              〈ܴ߶, 〈ݑߣ = ,߶ܴ〉ߣ  (8)                               .ߣ for all rational number 〈ݑ
Note ∥ μ ∥= 1  and note that ƒ is an ߝ-isometry. Therefore, (5), (6) and (8) 

imply for all ݑ, ݒ ∈ ܺ and ݇ ∈  ℕ , 

|〈ܴ∅, 〈ݑ − 〈ܴ∅, |〈ݒ =
1
݇

|〈ܴ∅, 〈ݑ݇ − 〈ܴ∅,  |〈ݒ݇

= ቤߤ௭ ቆ〈∅,
ݑ݇)݂ + (ݖ − (ݖ)݂

݇
〉) − ,∅〉)௭ߤ

ݒ݇)݂ + (ݖ − (ݖ)݂
݇

〉ቇቤ

= ቤμ୸ ቆ〈∅,
ݑ݇)݂ + (ݖ − ݒ݇)݂ + (ݖ

݇
〉ቇቤ ≤∥ μ ∥∥ ∅ ∥

∥
ݑ݇)݂ + (ݖ − ݒ݇)݂ + (ݖ

݇
∥≤∥ μ ∥∥ ∅

∥
∥ ݑ݇) + (ݖ − ݒ݇) + (ݖ ∥ ߝ+

݇
=∥ ∅ ∥∥ ݑ − ݒ ∥ +

ε
݇

→∥ ∅ ∥

∥ ݑ − ݒ ∥, ݇ ݏܽ → ∞. 
Hence 
            |〈ܴ∅, 〈ݑ − 〈ܴ∅, |〈ݒ  ≤∥ ∅ ∥∥ ݑ − ݒ ∥ ,ݑ ݈݈ܽ ݎ݋݂ ݒ ∈ ܺ.                   (9) 
We have proven that ܴ∅  is 1-Lipschitz on X. this and (8) together entail 

that ܴ∅ is linear and with∥ ܴ∅ ∥≤∥ ∅ ∥  .Therefore, (i) and (ii) hold, and   

ܴ: ܻ∗ → ܺ∗is a linear operator with∥ ܴ ∥≤ 1 . 

    To show (iii), let ܯఌ  associated the ߝ-isometry ƒ be defined by 

ఌܯ     = {߰ ∈ ߝ݂݅   ,{(݂)ܥ ݊݋ ݀݁݀݊ݑ݋ܾ ݏ݅∗ܻ > 0; = ,ୄ(݂)ܥ ߝ݂݅ = 0,      (10) 

ܯ = ఌܯ ఌതതതത , the closure ofܯ . Given ∅ ∈ ఌܯ , definition of ܯఌ implies that        

           〈∅, ݂〉 ∈ ℓ∞(ܺ). 
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For every ݔ ∈ ܺ it follows from the translation invariance of ߤ, 

〈ܴ∅, 〈ݔ = ,∅〉)௭ߤ ݔ)݂ + ((ݖ − (〈(ݖ)݂ = ,∅〉)௭ߤ ݔ)݂ + (〈(ݖ − ,∅〉)௭ߤ (〈(ݖ)݂
= 0. 

Consequently, (iii) holds. 
The following two mappings ℓ: ܺ∗ → 2௒∗ܽ݊݀ܳ: ܺ∗ → ܻ∗ ∕  are defined in  ܯ

Cheng, Dong and Zhang: 

        ℓ(ݔ∗) = {∅ ∈ ܻ∗: 〈∅, ݂〉 − ߝ݂݅   ,{ܺ ݊݋ ݀݁݀݊ݑ݋ܾ ݏ݅∗ݔ > 0;               (11) 

          ℓ(ݔ∗) = {∅ ∈ ܻ∗: 〈∅, ݂〉 = ߝ݂݅   ,{∗ݔ = 0,                                         (12) 

And 

(∗ݔ)ܳ                  = ℓ(ݔ∗) + ∗ݔ ݈݈ܽ ݎ݋݂    ,ܯ ∈ ܺ∗.                                    (13) 

By Theorem (1.1.22), Q is a linear isometry. 

    Next, we show ܴܳ = ఌܯ ,௑∗.By the fact (iii) we have just provenܫ ⊂  .ܴݎ݁݇

Continuity of R implies ܯ ⊂  Thus, R is eventually a linear operator.ܴݎ݁݇

from ܻ∗ ⁄ܯ ∥ with∗ܺ ݋ݐ ܴ ∥≤ 1 . Note for each ∅ ∈ ℓ(ݔ∗), we have    

|〈∅, 〈(ݖ)݂ − ,∗ݔ〉 |〈ݖ ≤ ߚ ݁݉݋ݏ ݎ݋݂     ,ߝߚ > ݖ ݈݈ܽ ݎ݋݂ ݀݊ܽ 0 ∈ ܺ. 

Since ߤ is a positive functional on ℓ∞(ܺ) ݐ݅ݓℎ ∥ ߤ ∥= 1 =  for all , (1)ߤ

ݔ ∈ ܺ, 

〈ܴ∅, 〈ݔ = ,∅〉)௭ߤ ݔ)݂ + (ݖ − (〈(ݖ)݂

= ,∅〉)}௭ߤ ݔ)݂ + 〈(ݖ − ,∗ݔ〉 ݔ + (〈ݖ − (〈∅, 〈(ݖ)݂ − ,∗ݔ〉 (〈ݖ

+ ,∗ݔ〉 {〈ݔ ≤ μ(ߝߚ) + (ߝߚ)ߤ + ,∗ݔ〉)௭ߤ (〈ݔ = ߝߚ2 + ,∗ݔ〉  〈ݔ

Or, equivalently, 

〈ܴ∅ − ,∗ݔ 〈ݔ ≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝߚ2 ∈ ܺ. 

Therefore, ܴ∅ − ∗ݔ = ∅ ݈݈ܽ ݎ݋݂  0 ∈ ℓ(ݔ∗) . Consequently, 

(∗ݔ)ܴܳ              = ܴℓ(ݔ∗) = x∗,      ݂ݔ ݈݈ܽ ݎ݋∗ ∈ ܺ∗.                                 (14) 

Finally, let ܰ =  please keep this in mind! this subspace and its)  ܴݎ݁݇

annihilator ܰୄ will play an important part for discussion of stability in this 

section). We define the operators ܷ: ܺ∗ → ܻ∗ ܰ⁄   ܽ݊݀ ܸ: ܻ∗ ∕ ܰ → ܺ∗ 

As follows: 
∗ݔܷ                       = ∗ݔ N, for all+∗ݔܳ ∈ X∗,                                             (15) 
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And 

                     ܸ(∅ + ܰ) = ∅ ݈݈ܽ ݎ݋݂    ,(∅)ܴ ∈ ܻ∗.                                     (16) 
Since ܰ = ∥ clearly, V is well-defined with ,ܴݎ݁݇ ܸ ∥=∥ ܴ ∥≤ 1. Since 

ܳ: ܺ∗ → ܻ∗ ∕ ܯ is an isometry, and since ܯ ⊂ ܴݎ݁݇ = ܰ, U is also well-

defined and with ∥ ܷ ∥=∥ ܳ ∥≤ 1. It is easy to observe that  ܸܷ = ܴܳ = ∗௑ܫ . 

On the other hand, ܴܳ = :ܴ ௑∗ implies thatܫ ܻ∗ → ܺ∗  is surjective, which in 

turn implies that ܸ: ܻ∗ ⁄ܴݎ݁݇ = ܻ∗ ܰ →⁄ ܺ∗ is an isomorphism. This and 

ܸܷ = :ܷ ௑∗ further entailܫ ܺ∗ → ܻ∗ ∕ ܰ is an isomorphism, while for 

each ݔ∗ ∈ ܺ
∗

 

∥ ∗ݔ ∥=∥ ∗ݔ(ܷܸ) ∥=∥ (∗ݔܷ)ܸ ∥≤∥ ܸ ∥∥ ∗ݔܷ ∥ ≤ ∥ ∗ݔ ∥ 

Implies ∥ ∗ݔܷ ∥=∥ ∗ݔ ∥ ܽ݊݀ ∥ ܸ∅ ∥=∥ ∅ ∥ ∅ ℎܿܽ ݁ݎ݋݂ ∈ ܻ∗ ܰ⁄ . Hence, 

both U and V are surjective isometries and with ܸ = ܷିଵ . 

Remark (2.1.5)[2]. By (14) and the proof of Theorem (2.1.4), we have 

 ܸܷ = ܴܳ = ∗ܻ :ܸ ௑∗ we often blur the distinctionܫ ܰ →⁄ ܺ∗  and ܸ: ܻ∗ → ܺ∗  

i.e. the operator V is acting either on the quotient space ܻ∗ ܰ⁄ , or, on ܻ∗, if 

no confusion arises. Therefore,   

 ܸ∅ = ∗ݔ ݕݎ݁ݒ݁ ݎ݋݂  ∗ݔ ∈ ∅ ݕݎ݁ݒ݁ ݀݊ܽ  ∗ܺ ∈ ∗ݔܳ + ܰ. 

Corollary (2.1.6)[2]. Suppose that X, Y are Banach spaces, and ƒ: ܺ →  ܻ is 

a standard ߝ-isometry for some 0 ≤ ߝ. With the subspace N and the operators 

U and V associated with ƒ as in Theorem (2.1.4), we have: 

(i) ܸ∗ ݅ݓܽ ݏ∗ − ݋ݐ −  Continuous surjective isometry from∗ݓ

ୄܰ ݋ݐ∗∗ܺ  ⊂  (ƒ)ܥ closure of-∗ݓ denotes the (݂)∗∗ܥ where , (݂)∗∗ܥ

in ܻ∗∗. 

(ii)  If, in addition, Y is reflexive, then ܸ∗ is actually a surjective isometry 

from X to the subspace ܰୄ ⊂ (݂)ܥ ⊂ ܻ. 

Proof: (i). Let the operator V and the subspace N associated with ƒ be 

defined as in Theorem (2.1.4). Then ܸ: ܻ∗ ∕ ܰ → ܺ∗is a linear surjective 

isometry. Therefore, ܸ∗ ∶ ܺ∗∗ → ܰୄ is a linear surjective ݓ∗ − ݋ݐ −   ∗ݓ



34 
 

Continuous isometry. Next, we show ܰୄ ⊂  Suppose, to the . (݂)∗∗ܥ

contrary, that there is ݑ ∈ ܰୄ ∖  and {u} are (݂)∗∗ܥ Note that both .(݂)∗∗ܥ

non-empty ݓ∗–closed convex sets. Then by separation Theorem of convex 

sets in locally convex spaces, there is ∅ ∈ ܻ∗  such that 

〈∅, 〈ݑ > ,∅〉௩∈஼∗∗(௙)݌ݑݏ ∅,Hence . 〈ݒ ∈ ఌܯ  ⊂ ܰ and this is a contradiction! 

    (ii). Suppose, in addition, that Y is reflexive. Because ܸ∗ ݅ݓ ݏ∗ − ݋ݐ −  ∗ݓ

continuous isometry from ܺ∗∗ onto the subspace ܰୄ ݂݋ ܻ∗∗ = ܻ,we see that 

X is also reflexive and ܸ∗ is surjective from X to ܰୄ ⊂ (݂)∗∗ܥ = (݂)ܥ ⊂ ܻ. 

Remark (2.1.7)[2]. For an ߝ-isometry ƒ from a reflexive Banach space X to 

another Banach space Y, though Corollary (2.1.6) follows that X is isometric 

to a reflexive subspace of  ܻ∗∗, we cannot claim that X is isomorphic to a 

subspace of Y, even if X is a Hilbert space and ƒ is simply an isometry. For 

example, let H be a non-separable Hilbert space. Then by Godefroy-kalton's 

Theorem, there exist a Banach space Y and an isometry ƒ: ܪ → ܻ, so that H 

is not even linear isomorphic to a subspace of Y. 

    Let X and Z be Banach spaces and ƒ: ܺ →  ܼ be a standard ߝ-isometry for 

some 0 ≤ ߝ. We use ܻ ≡  ܼ ݊݅ (ܺ)to denote the closure of span ƒ  (݂)ܮ

and ܥ)(݂)ܥ∗∗(݂), .݌ݏ݁ݎ )  again the absolute (ݓ∗−, .݌ݏ݁ݎ ) closed convex 

hull of  ƒ(ܺ). Note that ƒ is actually from X to Y. Let the subspace 

ఌܯ , ܯ ⊂ ܻ∗, the operators ܴ: ܻ∗(ܻ∗ ⁄ܯ ) → ܺ∗ ܽ݊݀ ܳ ∶  ܺ∗ → ܻ∗ ∕  and be ܯ

defined in the proof of Theorem (2.1.4). The subspace N= ker (ܴ) ⊂ ܻ∗ , 

the linear isometries 

ܷ: ܺ∗ → ܻ∗ ܰ⁄  ܽ݊݀ ܸ = ܷିଵ: ܻ∗ ܰ⁄ → ܺ∗ 

Associated with ƒ are also defined as in Theorem (2.1.4), and 

ܷ∗ ∶ ܰୄ → ܺ∗∗  ܽ݊݀  ܸ∗ = (ܷ∗)ିଵ: ܺ∗∗ → ܰୄ 

Are their conjugate operators. We further assume that Y is reflexive. 

    Recall that a standard ߝ-isometry ƒ: ܺ → ,ߙ) ݏ݅ ܼ  (ߛ −stable if there exist a 

positive number ߛ and ܶ ∈ ,ܻ)ܤ  ܺ) with ∥ ܶ ∥≤  such that ߙ
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             ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝߛ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ,                                                    (17) 
Where ܻ ≡  .(݂)ܮ

Theorem (2.1.8)[2]. Let X, Z be Banach spaces and ƒ: ܺ →  ܼ be a standard 

ܻ isometry. Suppose that-ߝ = ,ߙ) is reflexive and ƒ is (ƒ)ܮ (ߛ −stable . Then 

(i)  ܰୄ ⊂ ܻ is ߙ-complemented in Y; 

(ii)   ܲ ≡ ܸ∗ܶ: ܻ → ܰୄis a projection with ∥ ܲ ∥≤  ;ߙ

(iii)     ܶ|ே఼: ܰୄ → ܺ Is an isomorphism with ∥ ܶே఼ ∥≤  and ; ߙ

(iv)  ܸܶ∗ = ,௑ܫ ܽ݊݀ ܸ∗ܶ|ே఼ =  ே఼ܫ

Proof: Since Y is reflexive, by Corollary (2.1.6), ܸ∗ = (ܷ∗)ିଵ is a surjective 

isometry from X to ܰୄ ∗ܸܶ clearly, it suffices to show .(iv)  . (݂)ܥ ⊃ =  . ௑ܫ

Indeed ܸܶ∗ =  ௑ entailsܫ

௓఼ܫ = ∗௑ܷܫ∗ܸ = ܸ∗(ܸܶ∗)ܷ∗ = (ܸ∗ܶ)(ܸ∗ܷ∗) = ௓఼ܫ(ܶ∗ܸ) = ܸ∗ܶ௓఼ , 

That is, ܸ∗ܶ|ே఼ = ௓఼ܫ . (ܺ)∗ܸ ݁ݐ݋ܰ = ܰୄ ⊂ (݂)ܥ = (ܺ)തതത൫݂݋ܿ ∪

−݂(ܺ)൯. For every ݔ଴ ∈ ܺ , let (ݕ௡) ⊂  be a sequence such that (݂)ܥ

௡ݕ                =  ∑ ௝ߣ
௡݂(ݔ௝

௡)௝∈௃೙ → ,଴ݔܸ ݊ ݏܽ → ∞,                                      (18) 

For some finite sets ܬ௡ ⊂ ℕ, ௝ݔ)
௡)௝∈௃೙ ⊂ ௝ߣ) ݀݊ܽ ܺ

௡)௝∈௃೙ ⊂ ℝ with 

∑ ௝ߣ|
௡|௝∈௝೙ = 1. For each ݔ∗ ∈ ܺ∗, by the Main Lemma there exists 

 ∅ ∈ ℎݐ݅ݓ∗ܻ ∥ ∅ ∥=∥ ∗ݔ ∥≡  such that ݎ

                |〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ ,ݎߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                               (19) 

Let ݔ௡ = ∑ ௝ߣ
௡ݔ௝

௡௡
௝∈௃೙

. Then, Remark (2.1.5), (18), (19) and ∑ ௝ߣ|
௡|௝∈௃೙ = 1  

together entail       |〈∅, ଴ݔ∗ܸ − |〈௡ݕ = |〈∅, 〈଴ݔ∗ܸ − 〈∅, |〈௡ݕ = |〈ܸ∅, 〈଴ݔ −

〈∅, |〈௡ݕ = ,∗ݔ〉| ଴ݔ − 〈௡ݔ − (〈∅, 〈௡ݕ − ,∗ݔ〉 |(〈௡ݔ ≥ ,∗ݔ〉| ଴ݔ − |〈௡ݔ −

|〈∅, 〈௡ݕ − ,∗ݔ〉 |〈௡ݔ =

,∗ݔ〉| ଴ݔ − |〈௡ݔ −

| ∑ λ୨
୬൫〈∅, f൫x୨

୬൯〉 − 〈x∗, x୨
୬〉൯| ≥ |〈x∗, x଴ − x୬〉| − 4ε ∥ x∗ ∥.

 ௝∈௃೙  

Note ∥ ∅ ∥=∥ ∗ݔ ∥ for all ݔ∗ ∈ ܺ∗ . Consequently, 
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,∗ݔ〉|          x଴ − x୬〉| ≤ |〈∅, V∗x଴ − y୬〉| + 4ε ∥ x∗ ∥≤ (∥ ଴ݔ∗ܸ − ௡ݕ ∥

(ߝ4+            ∥ ∗ݔ ∥→ ߝ4 ∥ ∗ݔ ∥.                                                                   (20) 

Suppose that ܶ: ܻ →  ܺ satisfies ∥ ܶ ∥≤  and ߙ

                ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ  ݎ݋݂   ,ߝߛ ∈ ܺ,                                               (21) 

For some 0 < ߛ. Then for every ݔ∗ ∈ ܺ∗ 

ߝߛ ∥ ∗ݔ ∥≥ 〈x∗, Tf(x) − x〉 = |〈T∗x∗, f(x)〉 − 〈x∗, x〉|, ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ          (22) 

This implies that the function |〈ܶ∗ݔ∗, ݂〉 −  defined on X is bounded by  |∗ݔ

ߝߛ ∥ ∗ݔ ∥. ,(11)ݕܤ ∅௫∗ ≡ ∗ݔ∗ܶ ∈ ℓݔݐ݁ܮ  .∗ݔ∗ ∈ ܵ௑∗ be such that 

,∗ݔ〉 (଴ݔ)∗ܸܶ − 〈଴ݔ =∥ ଴ݔ∗ܸܶ − ଴ݔ ∥. 

Then (19)-(22) together imply 

∥ ଴ݔ∗ܸܶ − ଴ݔ ∥= ,∗ݔ〉| ଴ݔ∗ܸܶ − |〈଴ݔ = ,∗ݔ〉| 〈଴ݔ∗ܸܶ − ,∗ݔ〉 |〈଴ݔ

= |〈ܶ∗x∗, V∗x଴〉 − 〈x∗, x଴〉| = |〈∅୶∗ , V∗x଴〉 − 〈x∗, x଴〉|

≤ |〈∅୶∗ , V∗x଴ − y୬〉| + |〈∅୶∗ , y୬〉 − 〈x∗, x୬〉| + |〈x∗, x଴ − x୬〉|

≤ 2|〈∅୶∗ , V∗x଴ − y୬〉|

+ ෍หλ୨൫〈∅୶∗ , f൫x୨
୬൯〉 − 〈x∗, x୨

୬〉൯ห + 4ε ≤
୨∈୎౤

2|〈∅୶∗ , V∗x଴ − y୬〉|

+ ෍ หλ୨ห
௝∈௃೙

∥ ݂ܶ൫ݔ௝
௡൯ − ௝ݔ

௡ ∥ ߝ4+

≤ 2|〈∅୶∗ , V∗x଴ − y୬〉| + γε + 4ε → (4 +  .ߝ(ߛ

Therefore, 
∥ (଴ݔ)∗ܸܶ − ଴ݔ ∥≤ ߛ) +  .ߝ(4

Arbitrariness of ݔ଴ ∈ ∗ܸܶ   ݏ݈݅ܽݐ݊݁ ܺ =  .௑, hence, (iv)ܫ

     (iii). It immediately follows from ܸܶ∗ =  ,௑ we have just provenܫ

since ܸ∗ ∶ ܺ → ܰୄ  is a surjective isometry. 

(ii). It follows from (ܸ∗ܶ)(ܻ) = ܸ∗(ܺ) = ܰୄ ⊂ ܻ. 

(i). It follows from (ii). 

Theorem (2.1.9)[2]. Let X, Z be Banach spaces and ƒ: ܺ → ܼ be standard  

ܻ isometry. Suppose that-ߝ =  complemented in-ߙ is reflexive. If ܰୄ is (ƒ)ܮ

Y, then for every projection ܲ ∶ ܻ → ܰୄ with ∥ ܲ ∥≤ , ߙ ܶ = ܷ∗ܲ satisfies 
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(i)∥ ܶ ∥≤  ;ߙ

(ii)ܸܶ∗ = ,௑ܫ  ;ܺ݊݋ݕݐ݅ݐℎ݁݅݀݁݊ݐ

(iii) ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝ4 ∈ ܺ. 

Proof: Let ܹ ⊂ ܻ   be a closed subspace of Y with ܰୄ ∩ ܹ = {0}  and with 

ܰୄ + ܹ = ܻ such that the projection ܲ ∶ ܻ → ܰୄ along W satisfies 

 ∥ ܲ ∥≤ ܶ and let , ;ߙ = ܷ∗ܲ.  ܶℎ݁݊ ∥ ܶ ∥≤∥ ܷ∗ ∥∥ ܲ ∥≤  Therefore, (i) .ߙ

follows.  (ii). since ܸ∗ = (ܷ∗)ିଵ ∶ ܺ → ܰୄ , we have 

ܸܶ∗ = (ܷ∗ܲ)ܸ∗ = ܷ∗(ܸܲ∗) = ܷ∗ܸ∗ =  .௑ܫ

It remains to show that T satisfies (iii). Note that ܷ ∶ ܺ∗ → ܻ∗ ∕ ܰ is defined 

by ܷݔ∗ = ∅௫∗ + ܰ, ܽ݊݀ ܻ∗ ܰ⁄ = [(ܰୄ)ୄ ⊕ ܹୄ] ܰ⁄ = ܹୄ, ≡)∗௫∅ ݁ݎℎ݁ݓ

∅) ∈ ܻ∗satisfies (19) for every ݔ∗ ∈ ܺ∗. Therefore, 

,∗ݔ〉   〈ݕܶ = ,∗ݔܷ〉 〈ݕܲ = ,∗ݔܷ〉 〈ݕ = 〈∅௫∗ , ,〈ݕ ∗ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ∗, ݕ ∈ ܻ       (23) 

   Thus, for every fixed ݔ ∈ ܺ, we choose ݔ∗ ∈ ∥ ℎݐ݅ݓ  ∗ܻ ∗ݔ ∥= 1 such that 

,∗ݔ〉|                           (ݔ)݂ܶ − |〈ݔ =∥ (ݔ)݂ܶ − ݔ ∥.                                   (24) 

It follows from definition of T, (23) and (24) 

         ∥ (ݔ)݂ܶ − ݔ ∥= ,∗ݔ〉| (ݔ)݂ܶ − |〈ݔ = ,∗ݔ〉| 〈(ݔ)݂ܶ − ,∗ݔ〉 |〈ݔ =

   ห〈ݔ∗, ܷ∗൫݂ܲ(ݔ)൯〉 − ,∗ݔ〉 ห〈ݔ = ,∗ݔܷ〉| 〈(ݔ)݂ܲ − ,∗ݔ〉 |〈ݔ = |〈Ux∗, f(x)〉 −

〈x∗, x〉| = |〈∅୶∗ , f(x)〉 − 〈x∗, x〉| ≤ 4ε.                                                         (25) 

Therefore, we have shown (iii), and which completes our proof. 

Corollary (2.1.10)[2]. Let X, Y be Banach spaces and ƒ: ܺ → ܻ be a standard 

ܻ isometry with reflexive -ߝ =  Then .(ƒ)ܮ

(i) ƒ is (ߛ,ߙ)-stable if and only if the subspace ܰୄ  associated with ƒ is  

 .complemented in Y-ߙ

     (ii)  If the subspace ܰୄ associated with ƒ is ߙ-complemented in Y, then ƒ 

is (4 ,ߙ)-stable. 

Proof:  (i). Sufficiency follows from Theorem (2.1.8), while Theorem (2.1.9) 

implies necessity. (ii). Suppose that the subspace ܰୄ associated with ƒ is  

 .stable-(4 ,ߙ) complemented in Y Theorem (2.1.9) implies that ƒ is-ߙ
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For a (continuous) convex function g defined on a Banach space X, its sub 

differential mapping ߲݃ ∶ ܺ → 2௑∗ is defined for ݔ ∈ ܺ by 

(ݔ)߲݃ = ∗ݔ} ∈ ܺ∗ ∶ (ݕ)݃ − (ݔ)݃ ≥ ,∗ݔ〉 ݕ − ,〈ݔ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ}. 

The convex function g is Gateaux differentiable atݔ ∈ ܺ  if and only if ߲݃ is 

single-valued at x, and in this case, ߲݃(ݔ) =  The following. {(ݑ)݃݀}

property is a direct consequence of Proposition in Phelps' 

Proposition (2.1.11)[2]. A Banach space X is Gateaux smooth if and only if 

the sub differential mapping ߲ ∥. ∥∶ ܺ → 2௑∗ is single-valued and norm –to-

ݔ continuous at each point ∗ݓ ≠ 0. 

    For a standard ߝ- isometry ƒ: ܺ → ܻ, letܯఌ  be defined by (10), and let          

ܧ            = ݕ} ∈ ܻ ∶ 〈∅, 〈ݕ = ∅ ݈݈ܽ ݎ݋݂  0 ∈  ఌ}.                                      (26)ܯ 

     We have the following Theorem  

Theorem (2.1.12)[2]. Let X, Y be Banach spaces and ƒ: ܺ →  ܻ be standard  

ܻ isometry with reflexive– ߝ =  ,If, in addition, Y is Gateaux smooth .(ƒ)ܮ

strictly convex and possessing the Kadec-Klee property (in particular, locally 

uniformly convex), then ƒ is (2 ,ߙ)-stable if and only if the subspace ܰୄ  is  

 .complemented in Y-ߙ

Proof: Sufficiency. Since Y is reflexive and strictly convex, by Theorem 

(1.2.3) and the Kadec-Klee property of Y, the operator Ψ ∶ ܺ → ܻdefined by 

               Ψݔ = ݓ − limఒ→ஶ (ݔߣ)݂ ⁄ߣ = lim௡→ஶ (ݔ݊)݂ ݊⁄                        (27) 

Is a linear isometry. (19) further implies Ψ (ܺ) ⊂  According to Theorem . ܧ

(2.1.4), X is also reflexive, strictly convex and Gateaux smooth. Since the 

closed subspaceܰୄ is ߙ-complemented, there is a closed subspace W of Y 

satisfying ܰୄ ∩ ܹ = {0} ܽ݊݀ ܰୄ + ܹ = ܻ such that the projection 

ܲ: ܻ → ܰୄ along W satisfies ∥ ܲ ∥≤  Since  ܻ(ܺ) is reflexive and . ߙ

Gateaux smooth, by Proposition (2.1.11), ݀ ∥ ݑ ∥ exist for all ݑ ≠ 0 in ܻ(ܺ) 

and ݀ ∥. ∥ is norm –to-weak continuous at each point 
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ݑ  ≠ ܷ ݐ݁ܮ  .0 ∶ ܻ∗ ∕ ܰ → ܺ∗  be defined by (15) and let ܶ = ܷ∗ܲ . Then 

∥ ܶ ∥≤  We want to prove that T satisfies .ߙ

                       ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                    (28) 

Given ݔ ∈ ܺ, without loss of generality, we assume that ݔ ≠  Let . (ݔ)݂ܶ

ߚ                =∥ ݔ − (ݔ)݂ܶ ∥ ,     ऊ = ݔ − (ݔ)݂ܶ ⁄ߚ ,                                     (29)                           

And let ݔ∗ = ݀ ∥ ऊ ∥ (∈ ܵ௑∗). ܶℎ݁݊ 〈ݔ∗, ݔ − 〈(ݔ)݂ܶ =∥ ݔ − (ݔ)݂ܶ ∥ by (23) 

ߚ             = ,∗ݔ〉 ݔ − 〈(ݔ)݂ܶ = 〈x∗, x〉 − 〈∅୶∗ , f(x)〉 ≤ 4ε,                          (30) 

Where ∅௫∗ ∈ ܵ௒∗ satisfies 

             |〈∅௫∗ , 〈(ݕ)݂ − ,∗ݔ〉 |〈ݕ ≤ ݕ ݈݈ܽ ݎ݋݂   ,ߝ4 ∈ ܺ.                                (31) 

Substituting ݊ऊ for y and dividing the both sides of (31) by ݊ ∈ ℕ ,we obtain       

|〈∅௫∗ , ݂(݊ऊ) ݊⁄ 〉 − ,∗ݔ〉 ऊ〉| ≤ (4 ݊⁄  (32)                                                        .ߝ(

Let ݊ → ∞ .Then, by (27) 

〈∅௫∗ , Ψऊ〉 = 〈x∗, ऊ〉 = d ∥ ऊ ∥ (ऊ) =∥ ऊ ∥= 1. 

〈∅௫∗ , ψऊ〉 = 1 =∥ ߶௫∗ ∥∥ ߰ऊ ∥ and smoothness of Y further entail ߶௫∗ = ݀ ∥

߰(ऊ) ∥ .On the other hand, let 

(ݔ)௡ݍ  = ݔ)݂ + ݊ऊ),   ݎ௡(ݔ) = ݔ)݂ + ݊ऊ) ݊⁄  ܽ݊݀ ∅௡ = ݀ ∥ (ݔ)௡ݎ ∥       (33) 

Note that for any 0 <ߛ and for any u ∈ Y with ݑ ≠ 0 , ݀ ∥ ݑߛ ∥= ∥ ݑ ∥. Then 

       ∥ ݔ)݂ + ݊ऊ) ∥= 〈∅௡, ݔ)݂ + ݊ऊ)〉  ≤ 〈∅୬, f(x)〉+∥ ݔ)݂ + ݊ऊ) − (ݔ)݂  ∥

≤ 〈∅௡ , 〈(ݔ)݂ + ݊ +  (34)                                                                                  .ߝ

By (27) again, ݎ௡(ݔ) → Ψऊ .Gateaux smoothness, reflexivity of Y and 

Proposition (2.1.11) together entail ߶௡ → ݀ ∥ Ψ(ऊ) ∥= ߶௫∗ in the weak 

topology of Y. Consequently, 

             lim௡ sup(∥ ݔ)݂ + ݊ऊ) ∥ −݊) ≤ 〈∅௫∗ , 〈(ݔ)݂ +  (35)                          .ߝ

Noteݔ∗ = ݀ ∥ ऊ ∥ . Since 

∥ ݔ)݂ + ݊ऊ) ∥ −݊ ≥∥ ݔ + ݊ऊ ∥ −݊ −  ,ߝ

We have 
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lim௡ inf(∥ ݔ)݂ + ݊ऊ) ∥ −݊) ≥ lim௡(∥ ݔ + ݊ऊ ∥ −݊) − ߝ  =

                       lim௡
∥ऊାభ

౤୶∥ି∥ऊ∥ 
భ
౤

− ߝ = ,∗ݔ〉 〈ݔ −  (36)                                         .ߝ

(29), (35) and (36) yield 

∥ ݔ − (ݔ)݂ܶ ∥= ,∗ݔ〉 〈ݔ −  〈∅௫∗ , 〈(ݔ)݂ ≤  .ߝ2

    Necessity. If there exist a linear operator ܶ: ܻ → ܺ with  ∥ ܶ ∥≤   and ߙ

 satisfying 0 <ߛ

∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝߛ ∈ ܺ, 

Then by Theorem (2.1.8), ܰୄ is complemented and  ܵ = ܷ∗ܶ ∶ ܻ → ܰୄ is a 

projection with ∥ ܵ ∥≤∥ ܷ∗ ∥∥ ܶ ∥=∥ ܶ ∥≤  .ߙ

Section (2.2):  Stability Properties in General Banach Spaces  
    Let Z be a Banach space. A ݓ∗–closed subspace E of the dual space ܼ∗is 

said to be ݓ∗ −  closed subspace F of–∗ݓ complemented, if there exists a-ߙ

ܧ  ℎݐ݅ݓ ∗ܼ ∩ ܨ = ܧ ℎݐ݅ݓ ݀݊ܽ {0} + ܨ = ܼ∗, such that the project ion 

ܲ ∶ ܼ∗ → ∥ along F satisfies ܧ ܲ ∥≤  .ߙ

Theorem (2.2.1)[2]. Let X, Z be Banach spaces, ƒ: ܺ → ܼ be a standard  

ܻ isometry with-ߝ ≡  stable. Then-(γ,ߙ) and let ƒ be  (݂)ܮ

(i) ܰୄ ⊂ (݂)∗∗ܥ ⊂ ∗ݓ ݏ݅ ∗∗ܻ −  ;∗∗ܻ complemented in- ߙ

(ii)ܸ∗ܶ∗∗: ܻ∗∗ → ∗ݓ ݏ݅ ୄܰ − ݋ݐ −   Continuously surjective and with∗ݓ

∥ ܸ∗ܶ∗∗ ∥≤  ;ߙ

(iii) ܶ∗∗|ே఼ ∶ ܰୄ → ;݉ݏℎ݅݌ݎ݋݉݋ݏ݅݊ܽ ݏ݅∗∗ܺ ܽ݊݀ 

(iv)  ܶ∗∗ܸ∗ = ∗∗௑ܫ , ܸܽ݊݀∗ܶ∗∗|ே఼ = ௭఼ܫ . 

Proof: Recall that  ܸ∗ = (ܷ∗)ିଵ ݅ݓ ܽ ݏ∗ − ݋ݐ −  continuous surjective ∗ݓ

isometry from ܺ∗∗݋ݐ ܰୄ ⊂  (Corollary (2.1.6) (i)) (݂)∗∗ܥ

    (iv) Clearly, it suffices to show ܶ∗∗ܸ∗ = ∗∗௑ܫ . ,݀݁݁݀݊ܫ ܶ∗∗ܸ∗ =  ௑∗∗  entailsܫ

௓఼ܫ = ∗ܷ∗∗௑ܫ∗ܸ = ܸ∗(ܶ∗∗ܸ∗)ܷ∗ = (ܸ∗ܶ∗∗)(ܸ∗ܷ∗) = (ܸ∗T∗∗)ܫ௓఼ = ܸ∗
௓఼ܶ
∗∗ , 
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That is,ܸ∗ܶ∗∗|ே఼ = ௓఼ܫ . (∗∗ܺ)∗ܸ݁ݐ݋ܰ = ܰୄ ⊂ (݂)∗∗ܥ = ∗ݓ − (ܺ)݂)തതത݋ܿ ∪

−݂(ܺ)) . For every ݔ଴ ∈ ܺ∗∗ , there exists net (ݕఈ) ⊂ (ܺ)݂)݋ܿ ∪ −݂(ܺ)) of 

the form: for each ߙ, there exist three finite sets    

,ఈܬ   ௝ߣ)
ఈ)௝∈௃ഀ ⊂ ℝ ݐ݅ݓℎ ∑ ௝ߣ|

ఈ|௝∈௃ഀ = 1, ௝ݔ ) ݀݊ܽ
ఈ)௝∈௃ഀ ⊂ ܺ such that 

ఈݕ        
 = ∑ ௝ߣ

ఈ݂(ݔ௝
ఈ)௝∈௃ഀ → ,଴ݔ∗ܸ ∗ݓ ℎ݁ݐ ݊݅ −  (37)         .∗∗ܻ ݂݋ ݕ݃݋݈݋݌݋ݐ

For each ݔ∗ ∈ ܺ∗, there exists ∅ ∈ ℎݐ݅ݓ∗ܻ ∥ ∅ ∥=∥ ∗ݔ ∥≡  such that ݎ

         |〈∅, 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤ 4εݎ,   For all x ∈ ܺ.                                       (38) 

Let ݔఈ = ∑ ௝ߣ
ఈݔ௝

ఈ .௡
௝∈௃ഀ

 Therefore, (37), (38) and ∑ ௝ߣ|
ఈ|௝∈௃ഀ = 1  together 

entail 

|〈߶, ଴ݔ∗ܸ − |〈ఈݕ = |〈߶, 〈଴ݔ∗ܸ − 〈߶, |〈ఈݕ = |〈ܸ߶, 〈଴ݔ − 〈∅, yα〉|

= |〈x∗, x଴ − xα〉 − (〈߶, 〈ఈݕ − ,∗ݔ〉 |(〈ఈݔ

≥ ,∗ݔ〉| ଴ݔ − |〈ఈݔ − |〈߶, 〈ఈݕ − ,∗ݔ〉 |〈ఈݔ

= ,∗ݔ〉| ଴ݔ − |〈ఈݔ − | ෍ λ୨൫〈∅, f൫x୨
α൯〉 − 〈x∗, x୨

α〉൯
௡

୨ୀଵ

 |

≥ ,∗ݔ〉| ଴ݔ − |〈ఈݔ − 4ε ∥ ∗ݔ ∥. 

Consequently, 

,∗ݔ〉|     ଴ݔ − |〈ఈݔ ≤ 4ε ∥ ∗ݔ ∥ +|〈߶, ଴ݔ∗ܸ − ∗ݔ ݈݈ܽݎ݋݂   ,|〈ఈݕ ∈ ܺ∗.         (39) 

Since ܶ ∈ ,ܻ)ܤ ∥ ℎݐ݅ݓ(ܺ ܶ ∥≤  satisfies ߙ

                     ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝߛ ∈ ܺ,                                      (40) 

For every ݔ∗ ∈ ܺ∗, 

,∗ݔ∗ܶ〉|            〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ = ,∗ݔ〉| (ݔ)݂ܶ − |〈ݔ ≤ ߝߛ ∥ ∗ݔ ∥.              (41) 

Given ߜ > 0, ∗ݔݐ݈݁ ∈ ܵ௑∗ܾ݁ ܿݑݏℎ ݐℎܽݔ〉 ݐ∗, ଴ݔ∗ܸ∗∗ܶ − 〈଴ݔ ≥∥ ଴ݔ∗ܸ∗∗ܶ −

଴ݔ ∥ ∥ Then (37)- (41) together imply . ߜ− ଴ݔ∗ܸ∗∗ܶ − ଴ݔ ∥ −δ ≤

,∗ݔ〉| ଴ݔ∗ܸ∗∗ܶ − |〈଴ݔ ≤ ,∗ݔ〉| ଴ݔ∗ܸ∗∗ܶ − |〈ఈݕ∗∗ܶ + ,∗ݔ〉| ఈݕ∗∗ܶ − |〈ఈݔ +

,∗ݔ〉| ఈݔ − |〈଴ݔ = ,∗ݔ∗ܶ〉| ଴ݔ∗ܸ − |〈ఈݕ + ,∗ݔ∗ܶ〉| 〈ఈݕ − ,∗ݔ〉 |〈ఈݔ +

,∗ݔ〉| ఈݔ − |〈଴ݔ ≤ ,∗ݔ∗ܶ〉| ଴ݔ∗ܸ − |〈ఈݕ + ∑ หλ୨
α൫〈T∗x∗, f൫x୨

α൯〉 −௝∈௃ഀ
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〈x∗, x୨
α〉൯ห + ,∗ݔ〉| ఈݔ − |〈଴ݔ ≤ ,∗ݔ∗ܶ〉| ଴ݔ∗ܸ − |〈ఈݕ + γε + ,∗ݔ〉| ఈݔ − |〈଴ݔ ≤

,∗ݔ∗ܶ〉| ଴ݔ∗ܸ − |〈ఈݕ + |〈∅, ଴ݔ∗ܸ − |〈ఈݕ + (4 + ߝ(ߛ → (4 +  .ߝ(ߛ

Therefore, ∥ ܶ ଴ݔ∗ܸ  − ଴ݔ ∥≤ ߛ) + ଴ݔ Arbitrariness of .ߝ(4 ∈ ܺ∗∗  entails 

∥ (ܶ  ܸ∗ − ݔ(∗∗௑ܫ ∥≤ ߛ) + ,ߝ(4 ݔ݈݈ܽݎ݋݂ ∈ ܺ∗∗, 

Which, in turn, impliesܸܶ∗ = ∗∗௑ܫ . Hence, we have proven (iv). 

    (iii). It immediately follows from ܶ∗∗ܸ∗ =  ,௑∗∗ we have just provenܫ

since ܸ∗ ∶ ܺ∗∗ → ∗ݓܽݏ݅ୄܰ − ݋ݐ −  .continuous surjective isometry  ∗ݓ

    (ii). since(ܸ∗ܶ∗∗)(ܻ∗∗) = ܸ∗(ܺ∗∗) = ܰୄ ⊂ ܻ∗∗  , and since both 

∗ݓ ݁ݎܽ∗∗ܶ ݀݊ܽ∗ܸ − ݋ݐ −  continuous and with  ∗ݓ

∥ ܸ∗ܶ∗∗ ∥≤∥ ܸ∗ ∥∥ ܶ∗∗ ∥=∥ ܶ ∥≤  follows.  (i). It directly follows (ii) , ߙ

from (ii). 

Theorem (2.2.2)[2]. Let X, Z be Banach spaces and ƒ: ܺ → ܼ be a standard 

∗ݓ isometry. If  ܰୄ is-ߝ −  complemented in ܻ∗∗, then there is a linear–ߙ

operator ܶ: ܻ∗∗ → ܺ∗∗ such that 

(i)  T is ݓ∗ − ݋ݐ − ∥continuously surjective and with ∗ݓ ܶ ∥≤  ; .ߙ

(ii) ܶ = ܷ∗ܲ, for some ݓ∗ − ݋ݐ − ܲ continuous projection∗ݓ ∶ ܻ∗∗ → ܰୄ; 

(iii)  ܸܶ∗ =  ௑∗∗, the identity on ܺ∗∗ ; andܫ 

(iv)∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ݈݈ܽݎ݋݂   ,ߝ4 ∈ ܺ. 

Proof:  Let W be aݓ∗-closed subspace of ܻ∗∗ and with ܰୄ ∩ ܹ = {0} and 

with ܰୄ + ܹ = ܻ∗∗ such that the projection ܲ ∶ ܻ∗∗ → ܰୄ along W is 

∗ݓ − ݋ݐ − ∥ continuous and satisfies ∗ݓ ܲ ∥≤ = and let T , ߙ ܷ∗ܲ . Since 

both ܷ∗ and P are ݓ∗ − ݋ݐ − ∗ݓ continuous, T is ∗ݓ − ݋ݐ −  continuous ∗ݓ

with ∥ ܶ ∥≤∥ ܷ∗ ∥∥ ܲ ∥≤  Therefore, (i) and (ii) have been shown. (iii) is . ߙ

trivial  by definition of T and properties of U and V. It remains to show that 

T satisfies (iv). Since ܰୄ is ݓ∗ −  complemented in ܻ∗∗there are two–ߙ

closed sub spaces ܥ, ܦ ⊂ ܥ ℎݐ݅ݓ∗ܻ ⊕ ܦ = ܥ + ܦ = ܻ∗such that ୄܦ = ܰୄ 

and ୄܥ = ܹ. Thus ܦ = ୄܦ) 
 

ୄ ) =  (ܰୄ
 

ୄ )  = ܥ݀݊ܽܰ = ୄܥ) 
 

ୄ )  = ܹ ୄ . 

Note that ܷ ∶  ܺ∗ → ܻ∗ ܰ⁄ ∗ݔܷ ݕܾ ݂݀݁݊݅݁݀ ݏ݅ = ∅௫∗ + ܰܽ݊݀ ܻ∗ ܰ⁄ =
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[ܰ ⊕ ܹ ୄ ] ܰ⁄ = ܹ ୄ , ≡)∗௫∅  ݁ݎℎ݁ݓ ∅) ∈ ܻ∗ satisfies (38) for each ݔ∗ ∈ ܺ∗. 

Therefore, 

,∗ݔ〉      〈ݕܶ = ,∗ݔܷ〉 〈ݕܲ = ,∗ݔܷ〉 〈ݕ = 〈∅௫∗ , ,〈ݕ ∗ݔ ∈ ܺ∗, ݕ ∈ ܻ∗∗              (42) 

Thus, given ߜ > 0, for every ݔ ∈ ܺ ,we choose ݔ∗ ∈ ℎݐ݅ݓ∗ܺ ∥ ∗ݔ ∥= 1 such 

that 

    ∥ (ݔ)݂ܶ − ݔ ∥ ߜ− ≤ ,∗ݔ〉| (ݔ)݂ܶ − |〈ݔ = ,∗ݔ〉| 〈(ݔ)݂ܶ − ,∗ݔ〉 |〈ݔ =

                  ห〈ݔ∗, ܷ∗൫݂ܲ(ݔ)൯〉 − ,∗ݔ〉 ห〈ݔ = ,∗ݔܷ〉| 〈(ݔ)݂ܲ − ,∗ݔ〉 |〈ݔ =

,∗ݔܷ〉|                   〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ = |〈∅௫∗ , 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤  (43)             .ߝ4

Arbitrariness of ߜ  implies (iv), and which completes our proof. 

Theorem (2.2.3)[2]. Let X and Z be Banach spaces and ƒ : X→ Z be a 

standard ߝ-isometry with  L(ƒ) = Y. Then there is a ݓ∗ − ݋ݐ −   ∗ݓ

continuous linear surjective operator ܶ ∶ ܻ∗∗ → ܺ∗∗ such that 

         ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝߛ ߛ ݁݉݋ݏ ݎ݋݂ > ݔ ݈݈ܽ ݎ݋݂ ݀݊ܽ 0 ∈ ܺ,               (44) 

If and only if the subspace ܰୄ݅ݓ ݏ∗–complemented in ܻ∗∗. 

Proof: Sufficiency follows from Theorem (2.2.2) (iv). 

    Necessity. It follows from the proof of Theorem (2.2.1), for every ݔ଴ ∈

ܺ∗∗, there exists a net (ݕఈ) ⊂ (ܺ)݂)݋ܿ ∪ −݂(ܺ))  of the form : for each ߙ, 

there  exist finite sets 

,ఈܬ ௝ߣ)
ఈ)௝∈௃ഀ ⊂ ℝ ݐ݅ݓℎ ∑ ௝ߣ|

ఈ|௝∈௃ഀ = 1, ௝ݔ ) ݀݊ܽ
ఈ)௝∈௃ഀ ⊂ ܺ , suth that 

ఈݕ        
 = ∑ ௝ߣ

ఈ݂൫ݔ௝
ఈ൯ → ,଴ݔ∗ܸ ∗ݓ ℎ݁ݐ ݊݅ − ௝∈௃ഀ.∗∗ܻ ݂݋ ݕ݃݋݈݋݌݋ݐ           (45) 

And such that 

,∗ݔ〉|        ଴ݔ − |〈ఈݔ ≤ ߝ4 ∥ ∗ݔ ∥ +|〈∅, ଴ݔ∗ܸ − ,|〈ఈݕ ∗ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ∗.      (46) 

Suppose that ܶ ∶ ܻ∗∗ → ܺ∗∗ is a bounded ݓ∗ − ݋ݐ −  continuous linear∗ݓ

surjective operator satisfying 

                 ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝߛ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ,                                            (47) 

For some ߛ > 0 then ker T is ݓ∗–closed in ܻ∗∗  and ܶ: ܻ∗∗ ker  ܶ⁄ → ܺ∗∗ is a 

∗ݓ − ݋ݐ −  continuous isomorphism. Therefore, there is a bounded linear∗ݓ
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isomorphism ܵ: ܺ∗ → ୄܶݎ݁݇  such that ܵ∗ = ܶ. For every ݔ∗ ∈ ܺ∗, by (47) 

we observe 

,∗ݔܵ〉|      〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ = ,∗ݔ〉| 〈(ݔ)݂∗ܵ − ,∗ݔ〉 |〈ݔ = ,∗ݔ〉| 〈(ݔ)݂ܶ −

,∗ݔ〉         |〈ݔ ≤∥ x∗ ∥∥ (ݔ)݂ܶ − ݔ ∥≤ ߝߛ ∥ ∗ݔ ∥.                                          (48) 

Hence, the function |〈ܵݔ∗, ݂(. )〉 − ߝߛ is bounded by |∗ݔ ∥ ∗ݔ ∥  on X. By 

(47) and (48), ܵݔ∗ ∈ ℓݔ∗. ఈݔݐ݁ܮ = ∑ ௝ߣ
ఈݔ௝

ఈ
௝∈௃ഀ . ߜ ݊݁ݒ݅ܩ > 0 , ∗ݔ ݐ݈݁ ∈ ܵ௑∗be 

such that 

,∗ݔ〉 ଴ݔ∗ܸܶ − 〈଴ݔ ≥∥ ଴ݔ∗ܸܶ − ଴ݔ ∥  .ߜ−
Then by (45)-(48) 

∥ ଴ݔ∗ܸܶ − ଴ݔ ∥ ߜ− ≤ ,∗ݔ〉| ଴ݔ∗ܸܶ − |〈଴ݔ

≤ ,∗ݔ〉| ଴ݔ∗ܸܶ − |〈ఈݕܶ + ,∗ݔ〉| ఈݕܶ − |〈ఈݔ + ,∗ݔ〉| ఈݔ − |〈଴ݔ

= ,∗ݔܵ〉| ଴ݔ∗ܸ − |〈ఈݕ + ,∗ݔܵ〉| 〈ఈݕ − 〈x∗, xα〉| + |〈x∗, xα − x଴〉|

= |〈∅, ଴ݔ∗ܸ − |〈ఈݕ

+ ෍ หλ୨
α൫〈 Sx∗, Tf൫x୨

α൯〉 − 〈x∗, x୨
α〉൯ห +

௝∈௃ഀ

,∗ݔ〉| ఈݔ − |〈଴ݔ

≤ ,∗ݔܵ〉| ଴ݔ∗ܸ − |〈ఈݕ + γε + |〈x∗, xα − x଴〉|

≤ ,∗ݔܵ〉| ଴ݔ∗ܸ − |〈ఈݕ + |〈∅, ଴ݔ∗ܸ − |〈ఈݕ + (4 + ߝ(ߛ

→ (4 +  .ߝ(ߛ

Arbitrariness of ߜ and ݔ଴ implies 

∥ (ܶ ܸ∗  − ݔ(∗∗௑ܫ  ∥≤ ߛ) + ,ߝ(4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ∗∗. 
Therefore, ܸܶ∗ = ௑∗∗ .Consequently, ܸ∗ܶ|ே఼ܫ = ே఼ܫ .Thus, 

݌  = ܸ∗ܶ: ܻ∗∗ → ܰୄ  is a ݓ∗ − ݋ݐ −  continuous projection. Suppose that ∗ݓ

ܺ, ܼ are Banach spaces and ƒ: ܺ → ܼ is a standard ߝ-isometry for some 0 ≤ ߝ 

with ܮ(ƒ) = ܻ. Let the subspace ܯ ⊂ ܻ∗and the operator ܳ ∶ ܺ∗ → ܻ∗ ∕  ܯ

be defined by (10) and (13), respectively. Then, analogous to Theorem 

(1.1.25), we have also the following Theorem.                                                                

Theorem (2.2.4)[2]. Let X, Z be Banach spaces and ƒ: ܺ → ܼ be a standard 
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∗ݓ ݏ݅ ୄܯ  isometry. If-ߝ −  complemented in ܻ∗∗, then there is a linear-ߙ

operator ܶ: ܻ∗∗ → ܺ∗∗ such that 

(i)  T is ݓ∗ − ݋ݐ − ∥ continuously surjective and with∗ݓ ܶ ∥≤  ;ߙ

(ii)ܶ = ܳ∗ܲ, for some ݓ∗ − ݋ݐ − :ܲ continuous projection ∗ݓ ܻ∗∗ →  ;ୄܯ

(iii) ∥ (ݔ)݂ܶ − ݔ ∥≤ ,ߝ4 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. 

Proof: Let W be a ݓ∗–closed subspace of ܻ∗∗ with ܰୄ ∩ ܹ = {0} and 

with  ܰୄ + ܹ = ܻ∗∗ such that the projection ܲ: ܻ∗∗ → ܰୄ along W  

(is ݓ∗ − ݋ݐ − ∥ continuous and) satisfies ∗ݓ ߙ ∥≤ ܶ and let, ;ߙ = ܳ∗ܲ. Since 

both ܳ∗ܽ݊݀ ܲ ܽݓ ݁ݎ∗ − ݋ݐ − ∗ݓ continuous, T is ∗ݓ − ݋ݐ −  continuous  ∗ݓ

with ∥ ܶ ∥≤∥ ܳ∗ ∥∥ ܲ ∥≤  Therefore, (i) and (ii) have been shown. It . ߙ

remains to show that T satisfies (iii). Let ܥ, ܦ ⊂ ܻ∗ be two closed subspaces 

with ܥ ⊕ ܦ = ܥ + ܦ = ܻ∗ such that ୄܦ = ୄܥ and ୄܯ = ܹ.  Then ܦ =

 (ୄܦ)
ୄ =  (ୄܯ)

ୄ = ܥ and ܯ =  (ୄܥ)
ୄ = ܹ ୄ . Note that 

 ܳ = ܺ∗ → ܻ∗ ∕ ∗ݔܳ is defined by ܯ = ∅௫∗ +  and ,ܯ

 ܻ∗ ⁄ܯ = ܯ] ⊕ ܹ ୄ ] ⁄ܯ = ܹ ୄ , where ∅௫∗(≡ ∅) ∈ ܻ∗ satisfies (38) for each 

∗ݔ ∈ ܺ∗. Therefore, 

,∗ݔ〉       〈ݕܶ = ,∗ݔܳ〉 〈ݕܲ = ,∗ݔܳ〉 〈ݕ = 〈∅௫∗ , ∗ݔ   ,〈ݕ ∈ ܺ∗, ݕ ∈ ܻ∗∗.          (49) 

Given 0 < ߜ, for everyݔ ∈ ܺ we chooseݔ∗ ∈ ℎݐ݅ݓ∗ܺ ∥ ∗ݔ ∥= 1such that 

∥ (ݔ)݂ܶ − ݔ ∥ ߜ− ≤ ,∗ݔ〉| (ݔ)݂ܶ − |〈ݔ = ,∗ݔ〉| 〈(ݔ)݂ܶ − ,∗ݔ〉 |〈ݔ =

                 ห〈ݔ∗, ܳ∗൫݂ܲ(ݔ)൯〉 − ,∗ݔ〉 ห〈ݔ = ,∗ݔܳ〉| 〈(ݔ)݂ܲ − ,∗ݔ〉 |〈ݔ =

,∗ݔܳ〉|                  〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ = |〈∅௫∗ , 〈(ݔ)݂ − ,∗ݔ〉 |〈ݔ ≤  (50)              .ߝ4

Then ∥ (ݔ)݂ܶ − ݔ ∥≤ ߝ4 + ߜ ݈݈ܽݎ݋݂ ߜ > 0 . So that (iii) holds. 

     Please note the following example which says that E and F are not linearly 

isometric in general. 

Example (2.2.5)[2]. Let ܺ = ℝ, ܻ = ℓஶ
ଶ  ܽ݊݀  ݂: ܺ → ܻ be defined by 

(ݐ)݂ = ,ݐ) ln(1 + ݐ ݂݅    ,((ݐ ≥ 0;     = ,ݐ) 0), ݐ ݂݅ < 0. 

Clearly, ƒ is a standard isometry with ܧ = (݂)ܥ = ܻ, so that ܰୄ ⊂ ܻ  is 

isometric to ܺ = ℝ. 
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Chapter 3 
Stability of ߝ-isometries of Banach Spaces 

     Let X, Y be two Banach spaces, and ƒ: ܺ → ܻ be standard ߝ-isometry for 

some 0 ≤ ߝ. We show the following sharp weak stability inequality of ƒ: 

for every ݔ∗ ∈ ܺ∗ there exists ∅ ∈ ∥ ℎݐ݅ݓ ∗ܻ ∅ ∥=∥ ∗ݔ ∥≡  such that ݎ

,∗ݔ〉| 〈ݔ − 〈∅, |〈(ݔ)݂ ≤ ݔ ݈݈ܽ ݎ݋݂ݎߝ2 ∈ ܺ. It is not only a sharp quantitative 

extension of Figiel's Theorem but it also unifies, generalizes and improves a 

series of known results about stability of ߝ-isometries. For example, if the 

mapping ƒ satisfies ܥ(݂) ≡ (ܺ)݂]തതത݋ܿ ∪ −݂(ܺ)] = ܻ, thenit is equivalent to 

the sharp stability Theorem. 

Section (3.1): Sharp Inequality of Weak Stability of  

 isometries-ߝ
    Assume that ܺ, ܻ are Banach spaces. A mapping ƒ: ܺ → ܻ is said to be 

anߝ-isometry for some 0 ≤ ߝ provided 

         | ∥ (ݔ)݂ − (ݕ)݂ ∥ −∥ ݔ − ݕ ∥ | ≤ ,ߝ ,ݔ ݈݈ܽ ݎ݋݂ ݕ ∈ ܺ.                      (1) 

The mapping ƒ is called an isometry if 0 = ߝ. ƒ is standard if ƒ(0) = 0. In this 

case we use ௙ܻ to denote the subspace ݊ܽ݌ݏതതതതതതത݂(ܺ) of Y. 

    The study of properties of isometries and ߝ-isometries between Banach 

spaces has continued for over eighty years since the Mazur-Ulam celebrated 

Theorem: every surjective isometry between two Banach spaces is 

necessarily affine. For general isometries, Figiel showed the remarkable 

result in 1968: Every standard isometry from a Banach space to another 

Banach space admits a linear left-inverse of norm one. Godefroy and Kalton 

resolved a long standing problem about the relation between the existence of 

isometries and linear isometries. 

    Hyers and Ulam first studied ߝ-isometries and proposed a problem, which 

can be reformulated as follows: Given two Banach spaces ܺ, ܻ, whether 

isometry ƒ: ܺ → ܻ there is a linear surjective isometry ܷ ∈ ,ܺ)ܤ  ܻ) so that 
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ƒ –  ܷ is uniformly bounded by ߝߛ on X. After 50 years efforts of a number of 

mathematicians, a positive answer with the estimate   γ = 2 was finally 

achieved by omladič and Šemrl. They gave an example of a standard 

surjective ߝ- isometry ݂: ℝ →  ℝ showing that   γ = 2 is optimal. Thus, 

Omladič-Šemrl's Theorem can be regarded as a sharp quantitative extension 

of the Mazur –Ulam Theorem. 

    The study of properties of non-surjective ߝ-isometries has been active 

since 90's of the last century. The question, if every standard ߝ-isometry 

ƒ: ܺ → ܻ admits a linear quasi-left inverse, that is, if there exists 

 ܶ ∈ ൫ܤ ௙ܻ , ܺ൯ݐ ݋ݏℎܽݐ ݂ܶ −  is uniformaly bounded on X seems to be very ݀ܫ

natural. However, Qian showed that for all ߝ > 0 every separable Banach 

space Y admitting an uncomplemented subspace X has an unstable standard 

 isometry from X to Y. Therefore, an affirmative answer for the question-ߝ

would imply that Y is, up to an isomorphism, a Hilbert space. This 

disappointment makes us to search for some weaker stability version and 

some appropriate complementability assumption on some subspaces of Y 

associated with the mapping. Recently, Cheng, Dong and Zhang gave a weak 

stability Theorem (Lemma (1.1.14)), which can be regarded as a quantitative 

extension of Figiel's Theorem: Suppose that ƒ: ܺ → -ߝ a standard ݏ݅ ܻ

isometry. Then for every ݔ∗ ∈ ∅ ݏݐݏ݅ݔ݁ ݁ݎℎ݁ݐ∗ܺ ∈ ℎݐ݅ݓ∗ܻ ∥ ∅ ∥=∥ ∗ݔ ∥≡  ݎ

so that 

,∗ݔ〉|              〈ݔ − 〈∅, |〈(ݔ)݂ ≤ ݔ ݈݈ܽ ݎ݋݂ ݎߝ4 ∈ ܺ.                                          (2) 
It has played an important role in the study of stability properties of  

 isometries. Making use of it, Cheng and Zhou further presented a stability-ߝ

characterization of ߝ-isometries. 

    Since Figiel's Theorem says that every standard isometry is stable, without 

loss of generality, we can always assume an ߝ-isometry is standard and with 

 This chapter is organized as follows.  In this Section, we first show a .0 < ߝ
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sharp version of Cheng-Dong-Zhang's weak stability Theorem (Theorem 

(3.1.3)), i.e. constant "4" in (2) is replaced by "2". Motivated by Omladič-

Šemrl, we show the constant "2" in the estimate above is optimal (Theorem 

(3.1.4)). And we showed  that if the ߝ-isometry ƒ  satisfies that ƒ(ܺ) contains 

a sublinear  growth net of Y, then Theorem (3.1.3) is equivalent to the 

following  generalized Omladič-Šemrl's Theorem: There is a surjective 

linear isometry ܷ: ܺ → ܻ so that 

               ∥ (ݔ)݂ − ݔܷ ∥≤ ݔ ݈݈ܽ ݎ݋݂  ߝ2 ∈ ܺ.                                                     (3) 
We show the constant "2" in the estimate above is optimal in the classical 

sense; and if C(݂) ≡ (ܺ)݂]തതത݋ܿ ∪ −݂(ܺ)] = ܻ, then it is equivalent to the 

following sharp stability Theorem: there is a linear surjective operator  

ܶ ∶ ܻ → ܺ of norm one such that 

                    ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽݎ݋݂ߝ2 ∈ ܺ.                                             (4) 

    The letter X will be a real Banach space and ܺ∗ its dual. ܤ௑ and ܵ௑,  ,.݌ݏ݁ݎ

denote the closed unit ball and the unit sphere of X, ݌ݏ݁ݎ. ,ܺ)ܤ ܻ) stands for 

the space of all bounded operators from X to Y, and ∂ ∥. ∥: ܺ → 2௑∗for the 

sub differential mapping of the norm ∥. ∥ . For a subspace ܯ ⊂ ܺ,  ୄܯ

presents the annihilator of M, i.e.ୄܯ = ∗ݔ} ∈ ,∗ݔ〉 :∗ܺ 〈ݔ = 0 for all ݔ ∈  .{ܯ

If  ܯ ⊂ ୄܯ ℎ݁݊ݐ ∗ܺ  the pre-annihilator of M is defined as  

ୄܯ = ൛ݔ ∈ ܺ : ,∗ݔ〉 〈ݔ = ∗ݔ ݈݈ܽ ݎ݋݂ 0 ∈  ൟ . Given a bounded linearܯ

operator ܶ: ܺ → ܻ, ܶ∗: ܻ∗ → ܺ∗stands for its conjugate operator. For a subset 

ܣ ⊂ ܺ(ܺ∗), ,ܣ̅ ∗ݓ) −  ,(closure– ∗ݓ the) presents the closure (ܣ)݋ܿ and (ܣ̅

and the convex hull of A, respectively. For simplicity, we also use ܣ∗∗  to 

denote the ݓ∗ –closure of ܣ ⊂ ܺ ݅݊ ܺ∗∗. 

    We will show the sharp weak stability version of Cheng-Dong-Zhang's 

Lemma. Before doing this, we first establish the following Lemma about  

 .isometries-ߝ
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    Recall that for a non-empty set  Ω , a family ࣯ of subsets of Ω is said to be 

a free ultrafilter provided (i) Ø ∉ ࣯, and ∩ {ܷ ∈ {ݑ = Ø; (݅݅)ܷ, ܸ ∈ ࣯ ⟹

ܷ ∩ ܸ ∈ ࣯; (݅݅݅)ܷ ∈ ࣯ܷܽ݊݀ ⊂ ܸ ⊂ Ω ⟹ ܸ ∈ ࣯; ܣ(ݒ݅)݀݊ܽ ⊂ Ω ⟹

ܣݎℎ݁ݐ݅݁ ∈ ࣯, ,ݎ݋ Ω\ܣ ∈ ࣯.  and K be a ,ݎ݁ݐ݈݂݅ܽݎݐ݈ݑ ݁݁ݎ݂ܾܽ݁ ࣯ݐ݈݁

Hausdorff space. A mapping  ݃: Ω → ݇ is said to be ࣯ -convergent to  ܭ ∈  ܭ

provided for any neighborhood W of k, we have ݃ିଵ(ܹ) ∈ ࣯ . In this case, 

we write lim௨ ݃ = ݇ . Please note that if K is compact then every mapping 

 ݃: Ω →  .is ࣯ -convergent ܭ

Lemma (3.1.1)[3]. Suppose that ƒ: ܺ → ܻ is an ߝ-isometry, and ࣯ is a free 

ultrafilter on ℕ Then 

                Φ(ݔ) = ∗ݓ − lim௨
௙(௡௫)

௡
, ݔ∀ ∈ ܺ,                                                 (5) 

Defines an isometry Φ: ܺ → ܻ∗∗ . 

Proof: Clearly,Φ is well –defined since for every ݔ ∈ ܺ, the bounded 

sequence (
௙(௡௫)

௡
) is relatively ݓ∗–compact in ܻ∗∗. Givenݔ, ݕ ∈ ܺ,  lower– ∗ݓ

semi-continuity of the dual norm ∥. ∥  implies ∗∗ܻ ݂݋

∥ Φ(ݔ) − Φ(ݕ) ∥=∥ ∗ݓ − lim
௨

(
(ݔ݊)݂

݊
−

(ݕ݊)݂
݊

) ∥

≤ lim
௨

∥
(ݔ݊)݂

݊
− ݊/(ݕ݊)݂ ∥ =∥ ݔ − ݕ ∥. 

    On the other hand, according to the weak stability Theorem (Lemma 

(1.1.14)), for any ݔ∗ ∈ ߲ ∥ ݔ − ݕ ∥, ∅ ݏ݅ ݁ݎℎ݁ݐ ∈ ℎݐ݅ݓ∗ܻ ∥ ∅ ∥=∥ ∗ݔ ∥= 1 

such that 

|〈∅, 〈(ݖ)݂ − ,∗ݔ〉 |〈ݖ ≤ ,ߝ4 ݖ∀ ∈ ܺ. 

We substitute  ݊ݔ for z in the inequality above, and divide its both sides by ݊. 

then 
|〈∅, (ݔ݊)݂ ݊⁄ 〉 − ,∗ݔ〉 |〈ݔ ≤ ߝ4 ݊⁄ . 

Therefore, ݓ∗-continuity of∅  ݊݋ ܻ∗∗entails 



50 
 

,∗ݔ〉 〈ݔ = lim
௨

〈∅,
(ݔ݊)݂

݊
〉 = 〈∅, Φ(ݔ)〉. 

Analogously, we obtain 

,∗ݔ〉 〈ݕ = lim
௨

〈∅,
(ݕ݊)݂

݊
〉 = 〈∅, Φ(ݕ)〉. 

Thus, 

∥ Φ(ݔ) − Φ(ݕ) ∥≥ 〈∅, Φ(x) − Φ(y)〉 = 〈x∗, x − y〉 =∥ ݔ − ݕ ∥. 

So that 

∥ Φ(ݔ) − Φ(ݕ) ∥=∥ ݔ − ݕ ∥, ,ݔ∀ ݕ ∈ ܺ. 

    Note that if ƒ: ܺ → ܻ is an ߝ-isometry, then ݃ = −݂(− ⋅) is also an  

:isometry. We can obtain another isometry Ψ-ߝ ܺ → ܻ∗∗ defined by 

            Ψ(ݔ) = ∗ݓ − lim௨ − ௙(ି௡௫)
௡

, ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                   (6) 

Lemma (3.1.2)[3]. Let X, Y be Banach spaces, ƒ: ܺ → ܻ be a standard  

:isometry, and let Φ-ߝ ܺ → ܻ∗∗ be defined by (5). If the norm ∥. ∥ of X is 

Gateaux differentiable at ݖ ∈ ܺand with ݀ ∥ z ∥=  then there exists ,∗ݔ

߶ ∈ ߲ ∥ Φ(ݖ) ∥∩ ܻ∗such that 

,∗ݔ〉|               〈ݔ − 〈∅, |〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                     (7) 

Proof: Let ݔ∗ ∈ ݖ ݀݊ܽ∗ܺ ∈ ݀ ݕ݂ݏ݅ݐܽݏ ܺ ∥ ݖ ∥=  .i.e,∗ݔ

lim௧→∞(∥ ݔ + ݖݐ ∥ (ݐ− = lim௧→଴శ ∥ ݖ + ݔݐ ∥ −∥ ݖ ∥ ⁄ݐ =

,∗ݔ〉 ݔ ݈݈ܽ ݎ݋݂         ,〈ݔ ∈ ܺ.                                                                            (8) 

Then ∥ ∗ݔ ∥= 1 . We can assume ∥ ݖ ∥= 1.Given x ∈ ܺ , let 

(ݔ)௡ݑ  = ݔ)݂ + and let ∅௡ , (ݖ݊ ∈ ܻ∗ with  ∥ ∅௡ ∥= 1 such that 

〈∅௡ , 〈(ݔ)௡ݑ =∥ (ݔ)௡ݑ ∥ . Then 

     ∥ (ݔ)௡ݑ ∥= 〈∅௡ , ݔ)݂ + 〈(ݖ݊ = 〈∅௡ , 〈(ݔ)݂ + 〈∅௡, ݔ)݂ + (ݖ݊ − 〈(ݔ)݂     ≤

〈∅௡ , ∥+〈(ݔ)݂ ݔ)݂ + (ݖ݊ − (ݔ)݂ ∥≤ 〈∅௡ , 〈(ݔ)݂ + ݊ +   (9)                            .ߝ

 Thus, for any ݓ∗–cluster point ∅݂݋(∅௡) ݁ݓ ℎܽ݁ݒ ∥ ∅ ∥≤ 1 and 

                lim௡ inf(∥ (ݔ)௡ݑ ∥ −݊) ≤ 〈∅, 〈(ݔ)݂ +  (10)                                   .ߝ

On the other hand, by definition of ߝ-isometry we have 



51 
 

lim
௡

inf  (∥ (ݔ)௡ݑ ∥ −݊)

≥ lim
௡

inf(∥ x + nz ∥ −n) − ε

= lim inf
୬

 (∥ z + nିଵx ∥ −∥ z ∥)
nିଵ − ε = 〈x∗, x〉 − ε. 

Therefore, 

                lim௡ inf(∥ (ݔ)௡ݑ ∥ −݊) ≥ 〈x∗, x〉 −                       (11)                                        .ߝ

This combined with (10) entails 

,∗ݔ〉                     〈ݔ − 〈∅, 〈(ݔ)݂ ≤  (12)                                                         .ߝ2

Next, we show that the functional ∅ in the inequality above is independent of 

ݐ in fact for any .ݔ ≥ 0, 

ݐ     + ߝ ≥∥ (ݖݐ)݂ ∥≥ 〈∅௡ , 〈(ݖݐ)݂

= 〈∅௡ , ݔ)݂ + 〈(ݖ݊ − 〈∅௡ , ݔ)݂ + (ݖ݊ − 〈(ݖݐ)݂ ≥∥ ݔ)݂ + (ݖ݊

∥ −∥ ݔ)݂ + (ݖ݊ − (ݖݐ)݂ ∥≥ (∥ ݔ + ݖ݊ ∥ ∥−(ߝ− ݔ + (݊ − ݖ(ݐ

∥ ߝ− ≥ ݐ − 2(∥ ݔ ∥  .(ߝ+

Therefore, 

ݐ + ߝ ≥ 〈∅, 〈(ݖݐ)݂ ≥ ݐ − 2(∥ ݔ ∥ ,(ߝ+ ݐ ݈݈ܽ ݎ݋݂ ≥ 0. 

Divide the inequality above by t > 0. Then lim௧→∞〈∅, 〈ݐ/(ݖݐ)݂ = 1. Thus for 

any ݓ∗-cluster point ݖ∗∗ ∈ (ݖ݊)݂) ݂݋∗∗ܻ ݊⁄ )௡∈ℕ൫ݕܽݏ, Φ(ݖ)൯, we obtain 

〈∅, 〈∗∗ݖ = 1. Note ∥ ∗∗ݖ ∥≤ 1and∥  ∅ ∥≤ 1 . We have ∅ ∈ ߲ ∥ ∗∗ݖ ∥ and 

∗∗ݖ ∈ ߲ ∥ ∅ ∥ . In particular, 

                  ∅ ∈ ߲ ∥ Φ(ݖ) ∥ ܽ݊݀ Φ(z) ∈ ∂ ∥ ∅ ∥.                                        (13) 

Since ݖ∗∗is independent of x, ∅ is necessarily independent of x. Thus, we 

have shown 

,∗ݔ〉                〈ݔ − 〈∅, 〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                     (14) 

Note that, in the proof of the inequality (14), for the Gateaux differentiability 

point z ∈ ܺ , and for any fixed ݔ ∈ ܺ, the functional ∅ can be chosen to be 

any ݓ∗-cluster point of (∅௡) satisfying 

〈∅௡ , ݔ)݂ + 〈(ݖ݊ =∥ ݔ)݂ + (ݖ݊ ∥, ݊ ݈݈ܽ ݎ݋݂ ∈ ℕ. 



52 
 

Since  ∅ is independent of ݔ, by putting ݔ = 0, ∅ can be any ݓ∗–cluster 

point of (∅௡)  satisfying 

             〈∅௡, 〈(ݖ݊)݂ =∥ (ݖ݊)݂ ∥, ݊ ݈݈ܽ ݎ݋݂ ∈ ℕ.                                       (15) 

In the following we show 

,∗ݔ〉                〈ݔ − 〈∅, 〈(ݔ)݂ ≥ ,ߝ2− ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                  (16) 

Given ݔ ∈ ܺ, ௡߰ ݐ݈݁ ∈ ℎݐ݅ݓ∗ܻ ∥ ߰௡ ∥= 1 such that 

〈߰௡, ݔ)݂ + (ݖ݊ − 〈(ݔ)݂ =∥ ݔ)݂ + (ݖ݊ − (ݔ)݂ ∥. 

Then 

∥ (ݔ)௡ݑ ∥≥ 〈߰௡, 〈(ݔ)௡ݑ = 〈߰௡, ݔ)݂ + (ݖ݊ − 〈(ݔ)݂ + 〈߰௡, 〈(ݔ)݂ =

∥ ݔ)݂ + (ݖ݊ − (ݔ)݂ ∥ +〈߰௡, 〈(ݔ)݂ ≥ (∥ ݖ݊ ∥ (ߝ− + 〈߰௡, 〈(ݔ)݂

= ݊ − ߝ + 〈߰௡,  .〈(ݔ)݂

Since 

∥ (ݔ)௡ݑ ∥ −݊ ≤ (∥ ݔ + ݖ݊ ∥ (ߝ+ − ݊ = (∥ ݔ + ݖ݊ ∥ −∥ ݖ݊ ∥) + ߝ

=
∥ ݖ + ݊ିଵݔ ∥ −∥ ݖ ∥

݊ିଵ → ,∗ݔ〉 〈ݔ +  ,ߝ

For any ݓ∗–cluster point  ݂߰݋ (߰௡) we have 

,∗ݔ〉 〈ݔ − 〈߰, 〈(ݔ)݂ ≥  .ߝ2−

Note 

ݐ + ߝ ≥∥ (ݖݐ)݂ ∥≥ 〈߰௡, 〈(ݖݐ)݂

= 〈߰௡, ݔ)݂ + (ݖ݊ − 〈(ݔ)݂ − 〈߰௡, ݔ)݂ + (ݖ݊ − 〈(ݖݐ)݂

+ 〈߰௡, 〈(ݔ)݂ ≥∥ ݔ)݂ + (ݖ݊ − (ݔ)݂ ∥ −∥ ݔ)݂ + (ݖ݊ − (ݖݐ)݂

∥ −∥ (ݔ)݂ ∥

≥ (∥ ݖ݊ ∥ (ߝ− − (∥ ݔ + (݊ − ݖ(ݐ ∥ (ߝ− − (∥ ݔ ∥ (ߝ+ ≥ ݐ − 2

∥ ݔ ∥  .ߝ3−

Therefore, 

ݐ + ߝ ≥ 〈߰, 〈(ݖݐ)݂ ≥ ݐ − 2 ∥ ݔ ∥ ,ߝ3− ݐ ݈݈ܽ ݎ݋݂ ≥ 0. Divide the inequality 

above by t > 0. Then lim௧→∞〈߰, 〈ݐ/(ݖݐ)݂ = 1. Thus for any ݓ∗–cluster point 
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∗∗ݖ ∈ (ݖ݊)݂)݂݋∗∗ܻ ݊⁄ )௡∈ℕ, we obtain again  〈߰, 〈∗∗ݖ = ݁ݐ݋ܰ 1 ∥ ∗∗ݖ ∥≤

1 ܽ݊݀ ∥ ߰ ∥≤ 1. ܹ݁ ℎܽ݁ݒ ߰ ∈ ߲ ∥ ∗∗ݖ ∥ ∗∗ݖ݀݊ܽ ∈ ߲ ∥ ߰ ∥. In particular, 

                         ߰ ∈ ߲ ∥ Φ(ݖ) ∥ ܽ݊݀ Φ(z) ∈ ∂ ∥ ψ ∥.                                 (17) 

Since ݖ∗∗ is independent of x, ߰ is necessarily independent of x. 

Consequently, 

,∗ݔ〉                 〈ݔ − 〈߰, 〈(ݔ)݂ ≥ ,ߝ2− ݔ ݈݈ܽݎ݋݂ ∈ ܺ.                                 (18) 

     Note that, in the proof of the inequality (18), for the Gateaux 

differentiability point z ∈ ܺ , and for any fixed ݔ ∈ ܺ , the functional ߰ can 

be chosen to be any ݓ∗–cluster point of (߰௡) satisfying ∥ ߰௡ ∥= 1 and 

〈∅௡ , ݔ)݂ + (ݖ݊ − 〈(ݔ)݂ =∥ ݔ)݂ + (ݖ݊ − (ݔ)݂ ∥, ݊ ݈݈ܽ ݎ݋݂ ∈ ℕ. 

Since  ߰ is independent of x, by putting  ݔ = 0, ߰ can be any ݓ∗–cluster 

point of (߰௡)  satisfying 

                〈߰௡, 〈(ݖ݊)݂ =∥ (ݖ݊)݂ ∥, ݊ ݈݈ܽ ݎ݋݂ ∈ ℕ.                                (19) 

(15) and (19) together imply that we can take ߶ = ߰ in the Inequalities 

(14) and (16). Hence, our proof is complete. 

    A Banach space X is said to be a Gateaux differentiability space 

provided every continuous convex function defined on a nonempty open 

convex set D ⊂ X is densely Gateaux differentiable in D. Please note that 

every separable Banach space is a Gateaux differentiability space. A nice 

characterization for a Banach space X to be a Gateaux differentiability 

space is that every nonempty ݓ∗-compact convex set C ⊂ ܺ∗ is the 

∗ݓ − ∗ݔ exposed points. (Notes that-∗ݓ convex hull of it is ݀݁ݏ݋݈ܿ ∈ ܺ∗ 

is aݓ∗-exposed point of dual unit ball ܤ௑∗if and only if ݔ∗ = ݀ ∥ ݔ ∥ for 

some Gateaux differentiability point ݔ ∈ ܵ௑.) In particular, a Gateaux 

differentiability space X satisfies that the closed unit ball ܤ௑∗of  ܺ∗ is the 

∗ݓ −  convex hull of all Gateaux derivatives {d∥z∥: z is a Gateaux ݀݁ݏ݋݈ܿ

differentiability point on the norm ∥. ∥}. The following Theorem is main 

result of this chapter. 
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Theorem (3.1.3)[3]. Let X, Y be Banach space, and ݂: ܺ → ܻ be a standard 

∗ݔ isometry. Then for each-ߝ ∈ ܺ∗ there exists ∅∊ܻ∗with. ∥ ∅ ∥=   ∥ ∗ݔ ∥≡  ݎ

such that 

,∗ݔ〉|                 〈ݔ − 〈∅, 〈(ݔ)݂ ≤ ,ߝݎ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                  (20) 

Proof: Our proof is divided into three steps. 

    Step I. we first show that its true if X is a Gateaux differentiability space.  

Given a Gateaux differentiability point z ∈ ܵ௫, let ݔ∗ = d∥ ݖ ∥. 

Then by Lemma (3.1.2) there exists ∅ ∈ ߲ ∥ Φ(ݖ) ∥ such that (20) holds with 

ݎ = 1. Since X is a Gateaux differentiability space, for any 

∗ݔ ∈ ܵ௫∗ there exist a directed set I, and a net (ݔఈ
∗ )ఈ∈ூ ⊂  :௑∗ of the formܤ

ఈݔ
∗ = ෍ ௝ߣ

ఈݖ∗
௝
ఈ

௝∈௃ഀ

, ߙ ℎܿܽ݁ ݎ݋݂ ∈  ,ܫ

Such that ݔఈ
∗ ௪∗

ሱሮ ; ∗ݔ ఈܬ݁ݎℎ݁ݓ ⊂ ℕ ݅ݐ݁ݏ ݁ݐ݂݅݊݅ܽ ݏ, ௝ߣ
ఈ ≥ 0(݆ ∈  ఈ)  satisfyܬ

∑ ௝ߣ
ఈ

௝∈௃ഀ = 1; and (ݖ∗
௝
ఈ)௝∈௃ഀ are ݓ∗ -exposed points of ܤ௑∗. Let ݖ௝

ఈ ∈ ܵ௑be 

Gateaux differentiability point so that ݀ ∥ ௝ݖ
ఈ ∥= ∗ݖ

௝
ఈ. Then there exists 

௝ߦ
ఈ ∈ ∂ ∥ Φ(ݖ௝

ఈ) ∥∩ Y∗such that 

               ห〈ݖ∗
௝
ఈ, 〈ݔ − ௝ߦ〉

ఈ, ห〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                              (21) 

Let ߶ఈ = ∑ ௝ߣ
ఈ

௝∈௃ഀ ௝ߦ
ఈ . Then we obtain 

ఈݔ〉|                    
∗ , 〈ݔ − 〈∅ఈ , |〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                          (22) 

Consequently, for any ݓ∗–cluster point ߶݂݋ (∅ఈ) we have 

              ห〈ݔ∗ , 〈ݔ − 〈∅ , ห〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                               (23) 

    Note ∥ ∗ݔ ∥= 1 ܽ݊݀ ∥ ∅ ∥≤ 1 . It is not difficult to observe∥ ∅ ∥= 1. In 

fact, since 〈ݔ∗, 〈ݖ =∥ ݖ ∥= 1, by substituting  ݊ݖ for  ݔ in the inequality 

above, and dividing it's both sides by n, we obtain 

|1 − 〈∅, (ݖ݊)݂ ∕ ݊〉| ≤ ߝ2 ݊⁄ . 
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This says ∥ ∅ ∥≥ lim௡ |〈∅, (ݖ݊)݂ ∕ ݊〉| = 1. Positive homogeneity of (23) 

implies (20). Thus, we have shown the Theorem in assuming that X is a 

Gateaux differentiability space. 

    Step II. In the case that X is a general Banach space, we will show that 

(20) is true for every norm-attaining functional ݔ∗ ∈ ܺ∗ . Positive 

homogeneity of (20) allows us, without loss of generality, to assume 

∥ ∗ݔ ∥= 1 . Let ݔ଴ ∈ ܵ௑ ,∗ݔ〉ݐℎܽݐ ℎܿݑݏ ܾ݁  〈଴ݔ = 1. 

    Let ℱ = ܨ} ⊂ ܺ is a finite dimensional subspace containing ݔ଴ }. Then 

every element ܨ ∈ ℱ is a Gateaux differentiability space and ݔ∗ (restricted to 

F) is again a norm-attaining functional with ∥ ி|∗ݔ ∥=∥ ∗ݔ ∥= ,∗ݔ〉 〈଴ݔ = 1 . 

Given  ܨ ∈ ℱ , by the fact we have just proven in Step 1, there exists ∅ ∈ ܵ௒∗  

such that 

              ห〈ݔ∗ , 〈ݔ − 〈∅ , ห〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈  (24)                                  .ܨ

Fix any ܨ ∈ ℱ and let 
Φி = {∅ ∈ ∗௒ܤ  .{(24) ݃݊݅ݕ݂ݏ݅ݐܽݏ  

Then it is easy to observe that Φி  is a non empty ݓ∗–compact convex set. 

Indeed, nonemptiness of Φி  has been proven by step I, since F is a Gateaux 

differentiability space; convexity and ݓ∗–compactness of Φி  are trivial by its 

definition. Note Φி ∩ Φீ ⊃ Φ௦௣௔௡(ி∪ீ)݂ܨ ݈݈ܽ ݎ݋, ܩ ∈ ℱ. We obtain that 

∩ி∈ℱ Φி ≠ Ø. Clearly, any߶ ∈∩ி∈ℱ Φி   is a solution of (20) with  

∥ ∅ ∥=∥ ∗ݔ ∥= 1. In fact, given ߶ ∈∩ி∈ℱ Φி , we have ∥ ∅ ∥≤ 1 and 

ห〈ݔ∗ , 〈ݔ − 〈∅ , ห〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ. 

On the other hand, we replace x by ݊ݔ଴ in the inequality above, divide the 

two sides by n and notice 〈ݔ∗ , 〈଴ݔ = 1 . Then we obtain ∥ ∅ ∥≥ 1. Therefore, 

∥ ∅ ∥= 1. 

    Step III. Finally, we show that the inequality (20) holds for every 

functional ݔ∗ ∈ ܺ∗. We can assume again ∥ ∗ݔ ∥= 1 . By the Bishop-Phelps 

Theorem, there is a sequence (ݔ௡
∗ ) ⊂ ܵ௑∗ of norm-attaining functionals such 
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that ݔ௡
∗ → ݊ By the fact we have just proven in Step II, for each . ∗ݔ ∈ ℕ, 

there exists ∅௡ ∈ ܵ௒∗ so that 

௡ݔ〉|           
∗ , 〈ݔ − 〈∅௡ , |〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                    (25) 

Since  ݔ௡
∗ →  we have , (௡∅) ݂݋∅ cluster point–∗ݓ for any , ∗ݔ

                ห〈ݔ∗ , 〈ݔ − 〈∅ , ห〈(ݔ)݂ ≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                             (26) 

Clearly, ∥ ∅ ∥≤ 1. Conversely, let (ݖ௡) ⊂ ܵ௑ satisfy 

 1 =∥ ∗ݔ ∥= lim௡〈ݔ∗,  ௡ of x in (26) we obtainݖ݊ ௡〉 By substitutingݖ

ห〈ݔ∗ , 〈௡ݖ − 〈∅ , (௡ݖ݊)݂ ∕ ݊〉ห ≤ ߝ2 ݊⁄ , ݊ ݈݈ܽ ݎ݋݂ ∈ ℕ. 

Thus, 
∥  ∅ ∥≥ lim

௡
〈∅, (௡ݖ݊)݂ ∕ ݊〉 = 1. 

Consequently,∥ ∅ ∥= 1. 

The following result, says that the constant 2 = ߛ is optimal. 

Theorem (3.1.4)[3]. Let X, Y be Banach spaces. If there is a standard  

ܺ :݃ isometry-ߝ →  ܻ for some 0 < ߝ, there for every 0 < ߜ there is a standard 

ߝ) + (ߜ −isometry ƒ: ܺ → ܻ such that the following assertion holds: there 

exist ݔ∗ ∈ ܵ௑∗  ܽ݊݀ ∅ ∈ ܵ௒∗  so that 

             ห〈ݔ∗ , 〈ݔ − 〈∅ , ห〈(ݔ)݂ ≤ ߝ2 + ,ߜ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                         (27) 

And 

∗ݔ〉௫∈௑ห݌ݑݏ              , 〈ݔ − 〈∅ , ห〈(ݔ)݂ > ߝ2 −  (28)                                       .ߜ

Proof:  Note that for every ݊ ∈ ℕ. ݃௡: ܺ → ܻdefined by ݃௡(ݔ) = (ݔ݊)݃ ∕ ݊ 

is a standard ߝ ∕ ݊ –isometry. Given 0 < ߝ > ߜ, let ݉ ∈ ℕ  such that ℎ ≡ ݃௠ 

is a standard ߜ ∕ 2 –isometry. By Theorem (3.1.3), for every ݔ∗ ∈ ܵ௑∗ there 

exists ∅ ∈ ܵ௒∗ so that 

              ห〈ݔ∗ , 〈ݔ − 〈∅ , ℎ(ݔ)〉ห ≤ ,ߜ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                 (29) 

     We fix any point ݔ଴ ∈ ௑ܵߝ . ଴ݔݐ݁ܮ
∗ ∈ ߲ ∥ ଴ݔ ∥ . By Theorem (3.1.3) again, 

there is ∅଴ ∈ ܵ௒∗  so that 

        ห〈ݔ଴
∗, 〈ݔ − 〈∅଴ , ℎ(ݔ)〉ห ≤ ,ߜ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                      (30) 
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Since 〈ݔ଴
∗, 〈଴ݔ = ,ߝ ߝ + ߜ ≥ 〈∅଴, ℎ(ݔ଴)〉 ≥ ߝ − → ܺ :We define ƒ . ߜ ܻ for 

ݔ ∈ ܺ by 

(ݔ)݂ =

⎩
⎪
⎨

⎪
ݔ ݂݅        ,(଴ݔ)ℎݐ3−⎧ = ,଴ݔݐ ݐ ∈ ቂ 0, ଵ

ଶ
ቃ ;

ݐ) − 1)ℎ(ݔ଴),   ݂݅ ݔ = ,଴ݔݐ ݐ ∈ ቀଵ
ଶ

, 1ቃ
 

ℎ(ݔ),                ݐ݋ℎ݁݁ݏ݅ݓݎ.

                                             (31) 

Then, it is easy to observe that ƒ is a standard (ߝ + (ߜ −isometry, and the 

functional ݔ଴
∗ and ∅଴ satisfy 

          ห〈ݔ଴
∗, 〈ݔ − 〈∅଴ , ห〈(ݔ)݂ ≤ ߝ2 + ,ߜ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                           (32) 

Let  ݖ  ଴ in (32). Thenݔ(1/2) =

                ห〈ݔ଴
∗, 〈ݖ − 〈∅଴ , ห〈(ݖ)݂ > ߝ2 −  (33)                                              . ߜ

Remark (3.1.5)[3]. Figiel's Theorem states that every standard isometry 

from a Banach space X to another Banach space Y has a linear left-inverse F 

of norm one. If 0 = ߝ, then Theorem (3.1.3) deduces for all ݔ∗ ∈ ܺ∗, there 

exists ∅ ∈ ℎݐ݅ݓ∗ܻ ∥ ∅ ∥=∥ ∗ݔ ∥ such that 

∗ݔ〉               , 〈ݔ = 〈∅  , ݔ ݈݈ܽ ݎ݋݂    ,〈(ݔ)݂ ∈ ܺ.                                          (34) 

The following result says that Theorem (3.1.3) can be regarded as a sharp 

quantitative extension of Figiel's Theorem. 

Theorem (3.1.6)[3]. Suppose that X, Y are two Banach spaces, and ƒ: ܺ → ܻ 

is a standard isometry. Let ௙ܻ =  തതതതതതത݂(ܺ), and the correspondence݊ܽ݌ݏ

ܭ  ∶ ܺ∗ → ௙ܻ
∗ be defined by (34), i.e. ݔܭ∗ = ∅, where ݔ∗ and ∅ satisfy (34). 

Then K is aݓ∗ − ݋ݐ −  continuous linear isometry, which is just the ∗ݓ

conjugate operator of Figiel's operator F associated with ƒ. 

Proof: We first claim that the correspondence ܭ ∶ ܺ∗ → ௙ܻ
∗ is one-to-one. 

Given ݔ∗ ∈ ܺ∗ , assume ∅, ߰ ∈ ܻ∗ such that 

                 〈∅, 〈(ݔ)݂ =  ݔ〉
∗, 〈ݔ = 〈  ߰  , ݔ ݈݈ܽ ݎ݋݂    ,〈(ݔ)݂ ∈ ܺ.                    (35) 

Then 

〈߶ − ߰, 〈(ݔ)݂ = ݔ ݈݈ܽ ݎ݋݂      ,0 ∈ ܺ, 
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Or, equivalently,߶ = ߰ on ௙ܻ  . It is clear the correspondence K defined by 

(34) is homogeneous and additive, i.e. K is linear. Consequently, K is a linear 

isometry since it is norm-preserving. To show ݓ∗ − ݋ݐ −  ,continuity of K ∗ݓ

let ܨ ∶ ௙ܻ → ܺ be Figiel's operator associated with the isometry ƒ, i.e. the left-

inverse of ƒ with ∥ ܨ ∥= 1 . Then for every ݔ∗ ∈ ܺ∗, 

 ݔ〉     
∗, 〈ݔ − ∗ݔ〉

  , 〈൯(ݔ)൫݂ܨ = ,(∗ݔ)∗ܨ〉 ݔ ݈݈ܽ ݎ݋݂    ,〈(ݔ)݂ ∈ ܺ.                (36) 

This and (34) together imply 

,(∗ݔ)ܭ〉         〈(ݔ)݂ = ,(∗ݔ)∗ܨ〉 ݔ ݈݈ܽ ݎ݋݂   ,〈(ݔ)݂ ∈ ܺ, ∗ݔ ∈ ܺ∗.                 (37) 

Thus, ܭ = ∗ݓ which entails that K is , ∗ܨ − ݋ݐ −  .continuous ∗ݓ

Section (3.2) Sharp Stability Results of a Certain Class of ߝ-

isometries: 
    In this section, we shall see that Theorem (3.1.3) is useful in the study of 

stability of ߝ-isometries. It is not only an extension of Figiel's Theorem, but 

also a generalized version of the Omladič-Šemrl Theorem. 

    A subset N in a metric space(Ω, ߷) is said to be a sublinear growth net in 

metric߷ provided for any fixed ω଴ ∈ Ω, 

                     limద(ఠ,ఠబ)→ஶ
ద(ఠ,ே)

ద(ఠ,ఠబ) = 0.                                                       (38) 

For example, let ݉: ℝ → ℤ be defined by ݉(ݔ) = [ݔ] +  , ݌[ݔ](ݔ݊݃݅ݏ)

where  [⋅] denotes the floor function and [⋅]௣ denotes the cardinality of the 

prime number set ܲ ≡ (ݔ)ܲ = ݌} ∈ ℕ ݅ݐ݅ݓݎܾ݁݉ݑ݊݁݉݅ݎ݌ܽݏℎ ݌ ≤

.{|ݔ| ܶℎ݁݊ ܰ ≡ :(ݔ)݉} ݔ ∈ ℝ} is a sublinear growth net of ℝ . In fact, since 

lim௫→ା∞[ݔ]௣ / ln ݔ = 1, for any fixed ݔ଴  ∈ ℝ, 

,ݔ)߷ ܰ)
ݔ| − |଴ݔ ≤

௣[ݔ] + 1
ݔ| − |଴ݔ → 0, ݔ| ݏܽ − |଴ݔ → ∞. 

Theorem (3.2.1)[3]. Let X, Y be Banach spaces, and ƒ: ܺ → ܻ be a standard 

 Suppose that ƒ(ܺ) contains a sublinear growth net .0 ≤ ߝ isometry for some-ߝ

of Y. Then there is a linear surjective isometry ܷ: ܺ → ܻ such that 
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               ∥ (ݔ)݂ − ݔܷ ∥≤ ,ߝ2 ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ.                                            (39) 

Proof: Note that if ƒ (X) contains a sublinear growth net of Y, then ௙ܻ = ܻ . 

    We first show that this is true if 0 =ߝ, i.e. when ƒ is an isometry. 

According to Theorem (3.1.6), the operator ܭ ∶ ܺ∗ → ௙ܻ
∗ defined by 

∗ݔܭ  = ∅, whereݔ∗ܽ݊݀ ∅ satisfy (34), is just the conjugate of Figiel's 

operator, hence, a ݓ∗ − ݋ݐ −  continuous linear isometry. We claim K is ∗ݓ

surjective. Otherwis, ܼ ≡ closed proper subspace of ௙ܻ-∗ݓ ܽ ݏ݅ (∗ܺ)ܭ
∗ = ܻ∗. 

In fact, since ܭ ∶ ܺ∗ → ܼ is a linear surjective isometry, ܤܭ௑∗ = ௭ܤ . -∗ݓ

compactness of ܤ௑∗ܽ݊݀ ݓ∗-continuity of K deduce that ܤ௭݅ݓݏ∗-compact in 

ܻ∗. Consequently, ܼ =∪௡∈ℕ  ,closed inܻ∗. By separation Theorem-∗ݓݏ௓݅ܤ݊

there exist ߰ ∈ ܵ௒∗\ݕ݀݊ܽ(∗ܺ)ܭ ∈ ܵ௒such that 

          〈߰, 〈ݕ =∥ ݕ ∥= 1, ܽ݊݀ 〈߶, 〈ݕ = 0, ߶ ݈݈ܽ ݎ݋݂ ∈  (40)                  .(∗ܺ)ܭ

Letݕ௡ = ݊ ݈݈ܽ ݎ݋݂ ݕ݊ ∈ ℕ . Since ƒ(ܺ) contains a sublinear growth net of Y, 

for the sequence(ݕ௡)௡∈ℕ ⊂ ܻ, there is a sequence(ݔ௡)௡∈ℕ ⊂ ܺ so that 

                      lim୬
∥୷౤ି୤(୶౤)∥

୬
= 0.                                                                (41) 

Choose any ݔ௡
∗ ∈ ∂ ∥ ௡ݔ ∥, ௡∅ ݐ݈݁ ݀݊ܽ = ௡ݔܭ

∗  . Then 

0 = ௡ݔ〉|
∗ , 〈௡ݔ − 〈∅௡, |〈(௡ݔ)݂ = ௡ݔ〉|

∗ , 〈௡ݔ − 〈∅௡ , (௡ݔ)݂ − |〈௡ݕ ≥∥ ௡ݔ ∥ −

∥ (௡ݔ)݂ − ௡ݕ ∥=∥ (௡ݔ)݂ ∥ −∥ (௡ݔ)݂ − ௡ݕ ∥≥∥ ௡ݕ ∥ −2

∥ (௡ݔ)݂ − ௡ݕ ∥= ݊ ቆ1 − 2 
∥ (௡ݔ)݂ − ௡ݕ ∥

݊
ቇ → ∞. 

This is a contradiction. 

    We have shown that ܭ ∶ ܺ∗ → ∗ݓ ܽ ݏ݅∗ܻ − ݋ݐ −  continuous linear ∗ݓ

surjective isometry. Therefore, its pre-conjugate operator ܨ: ܻ → ܺ is also a 

linear surjective isometry satisfying ܨ ∘ ݂ =  We are done by letting .݀ܫ

ܷ =  .ଵିܨ

    Next, suppose 0 <ߝ. Let ℓ ∶ ܺ∗ → 2௒∗  be defined for ݔ∗ ∈ ܺ∗ by 

            ℓx∗ = {∅ ∈ ܻ∗: ∗ݔ| − ∅ ∘ ݂| is bounded on ܺ};                              (42) 
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ܯ              = ℓ0തതത = {∅ ∈ Y∗ ∶ |∅ ∘ ݂|ଓܺ݊݋݀݁݀݊ݑ݋ܾݏ}തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത,                               (43) 

And let ܳ ∶ ܺ∗ → ܻ∗ ∕  be defined by  ܯ

∗ݔܳ                     = ℓx∗ + M.                                                                               (44) 
Then, due to Theorem (1.1.22), Q is a linear isometry. Since ƒ(ܺ) admits a 

sublinear growth net of Y, ܿ݋ (ƒ(ܺ)) is dense in Y. Consequently, M = {0}. 

Note that if ߶, ߰ ∈ ℓx∗ for some ݔ∗ ∈ ܺ∗, ∅ℎ݁݊ݐ − ߰ ∈ ℓ0 ⊂  .ܯ

Thus,ܳ: ܺ∗ → ܻ∗, is actually a single-valued linear isometry. This and 

Theorem (3.1.3) together entail 

,∗ݔ〉|       〈ݔ − ,∗ݔܳ〉 |〈(ݔ)݂ ≤ 2 ∥ ∗ݔ ∥ ,ߝ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ, ∗ݔ ∈ ܺ∗,              (45)       

And which further implies that ܳ: ܺ∗ → ܻ∗, ∗ݓ ܽ ݏ݅ − ݋ݐ −  continuous ∗ݓ

linear isometry. Hence, it is a conjugate operator of norm one. Let ܶ: ܻ → ܺ 

be a linear operator so that ܶ∗ = ܳ . This and (44) entail 

,∗ݔ〉|           〈ݔ − ,∗ݔ〉 |〈(ݔ)݂ܶ ≤ 2 ∥ ∗ݔ ∥ ,ߝ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ, ∗ݔ ∈ ܺ∗,          (46) 

Or, equivalently, 

              ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝ2 ∈ ܺ.                                             (47) 

Clearly, T is surjective. In order to show that T is a linear isometry, it suffices 

to prove that Q is surjective. Suppose, to the contrary, That ܳ(ܺ∗)  is a 

proper subspace of ܻ.∗ ݓ∗–closedness of ܳ(ܺ∗) implies that there exist 

߰ ∈ ܵ௒∗ ݕ݀݊ܽ ((∗ܺ)ܳ)\ ∈ ܵ௒ such that 

               〈߰, 〈ݕ =∥ ݕ ∥= 1, ܽ݊݀ 〈߶, 〈ݕ = 0, ߶ ݈݈ܽ ݎ݋݂ ∈ ܳ(ܺ∗).                 (48) 
Let again ݕ௡ = ݊ ݈݈ܽ ݎ݋݂ ݕ݊ ∈ ℕ . Since ƒ(ܺ) contains a sublinear growth 

net of Y, for the sequence(ݕ௡)௡∈ℕ ⊂ ܻ, there is again a sequence (ݔ௡)௡∈ℕ ⊂

ܺ so that lim௡
∥௬೙ି௙(௫೙)∥

௡
= 0. Choose any ݔ௡

∗ ∈ ∂ ∥ ௡ݔ ∥ , and let ∅௡ = ௡ݔܳ
∗ . 

Then 

ߝ2 ≥ ௡ݔ〉|
∗ , 〈௡ݔ − 〈∅௡, |〈(௡ݔ)݂ = ௡ݔ〉|

∗ , 〈௡ݔ − 〈∅௡ , (௡ݔ)݂ − |〈௡ݕ ≥∥ ௡ݔ ∥ −
∥ (௡ݔ)݂ − ௡ݕ ∥≥ (∥ (௡ݔ)݂ ∥ ∥−(ߝ− (௡ݔ)݂ − ௡ݕ ∥≥∥ ௡ݕ ∥ −2

∥ (௡ݔ)݂ − ௡ݕ ∥ ߝ− = ݊ ቆ1 − 2 
∥ (௡ݔ)݂ − ௡ݕ ∥

݊
ቇ − ߝ → ∞. 



61 
 

This contradiction says that Q is surjective. Therefore, we have proven that 

ܶ: ܻ → ܺ is a surjective linear isometry. We finish the proof by letting 

ܷ = ܶିଵ . The following theorem tells us that the estimate in Theorem 

(3.2.1) is sharp. 

Theorem (3.2.2)[3]. Given a pair of Banach spaces , ܻ , if there is a standard 

݃ isometry-ߝ ∶ ܺ → ܻ satisfying that ݃(ܺ) contains a sublinear growth net of 

Y, then there exists a standard ߝ-isometry ƒ ∶ ܺ → ܻ with ƒ(ܺ) containing a 

sublinear growth net of Y such that for every linear surjective isometry 

ܷ: ܺ → ܻ we have 

௫∈௑݌ݑݏ                   ∥ (ݔ)݂ − ݔܷ ∥≥  (49)                                                     .ߝ2

Proof: Since there is a standard ߝ-isometry ݃: ܺ → ܻ with ݃(ܺ) containing a 

sublinear growth net of Y, by Theorem (3.2.1), there exist a linear isometry 

଴ܷ: ܺ → ܻ . We fix any point ݔ଴ ∈ ܺ :௑ , and defined ƒܵߝ → ܻ for ݔ ∈ ܺ by 

(ݔ)݂ =

⎩
⎪
⎨

⎪
ݐ3−⎧ ଴ܷ(ݔ଴),        ݂݅ݔ = ,଴ݔݐ ݐ ∈ ቂ 0, ଵ

ଶ
ቃ ;

ݐ) − 1) ଴ܷ(ݔ଴),   ݂݅ݔ = ,଴ݔݐ ݐ ∈ ቀଵ
ଶ

, 1ቃ
 

଴ܷ(ݔ),                ݐ݋ℎ݁݁ݏ݅ݓݎ.

                                            (50) 

Then, it is not difficult to see that ƒ is a standard ߝ-isometry with ƒ(ܺ) 

containing a sublinear growth net of Y, which satisfies that for every linear 

surjective isometry ܷ: ܺ → ܻ, 

௫∈௑݌ݑݏ                        ∥ (ݔ)݂ − ݔܷ ∥≥ ௫∈௑݌ݑݏ ∥ (ݔ)݂ − ଴ܷݔ ∥≥

௫∈ℝ௫బ݌ݑݏ         ∥ (ݔ)݂ − ଴ܷݔ ∥=  .ߝ2

Theorem (3.2.3)[3]. Let ܺ, ܻ be Banach spaces, and ƒ: ܺ → ܻ be a standard 

(݂)ܥ isometry. If-ߝ ≡ (ܺ)തതത൫݂݋ܿ ∪ −݂(ܺ)൯ = ܻ, then there is a linear 

operator  ܶ ∶ ܻ → ܺ with ∥ ܶ ∥= 1  such that 

                 ∥ (ݔ)݂ܶ − ݔ ∥≤ ݔ ݈݈ܽ ݎ݋݂   ,ߝ2 ∈ ܺ.                                          (51) 

Proof: Let the mapping ℓ: ܺ∗ → 2௒∗and the subspace ܯ ⊂ ܻ∗ be defined as 

(42) and (43). Then ܥ(ƒ) = ܻ implies ܯ = {0}. Indeed, given ∅ ∈ ℓ0,   |݂ߧ߶|
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is bounded by some 0 < ߚ on X. Then is equivalent to that |߶| is bounded by 

(ƒ)ܥ on ߚ = ܻ. consequently, ߶ = 0 . Therefore, Q= ℓ ∶  ܺ∗ → ܻ∗ is a 

 ,continuous linear isometry, where Q is defined by (44). This∗ݓ ݋ݐ ∗ݓ

incorporating Theorem (3.1.3), further entails 

,∗ݔ〉|       〈ݔ − ,∗ݔܳ〉 |〈(ݔ)݂ ≤ 2 ∥ ∗ݔ ∥ ,ߝ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ, ∗ݔ ∈ ܺ∗,              (52) 
Let ܶ: ܻ → ܺ be the pre-conjugate operator of Q. Then we obtain∥ ܶ ∥= 1 

and 

,∗ݔ〉              〈(ݔ)݂ܶ − ,∗ݔܳ〉 ݔ ݈݈ܽ ݎ݋݂   ,〈(ݔ)݂ ∈ ܺ, ∗ݔ ∈ ܺ∗.                     (53) 

Therefore, 

,∗ݔ〉|         〈ݔ − ,∗ݔ〉 |〈(ݔ)݂ܶ ≤ 2 ∥ ∗ݔ ∥ ,ߝ ݔ ݈݈ܽ ݎ݋݂ ∈ ܺ, ∗ݔ ∈ ܺ∗,            (54) 

The inequality above is apparently equivalent to (51). 

Remark (3.2.4)[3]. The assumption that ܥ (ƒ) = ܻ cannot guarantee the 

operator T is invertible in Theorem (3.2.3), even if ƒ is an isometry. For 

example, let  ݂ ∶ ܺ = ℝ → ℓ∞
ଶ = ܻ be defined by 

(ݔ)݂ = ,ݔ) ln(1 + ,((ݔ ݔ݂݅ ≥ 0; = ,ݔ) 0), ݔ݂݅ < 0.Then ƒ is a standard 

isometry with C (ƒ) = ℓ∞
ଶ , so that there is no linear surjective isometry  

ܷ: ܺ → ܻ. 
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Chapter 4 

Almost Surjective ߝ- isometries Of Banach Spaces 

We show that for every pair of Banach spaces ܺ and ܻ and for every  

ܺ :isometry ƒ-ߝ → ܻ with  ݌ݑݏ௬∈ௌೊ ݈݅݉|௧|→ஶ inf ,ݕݐ)ݐݏ݅݀  ݂(ܺ)) ∕ |ݐ| < 1 ∕ 2 

there exists an affine surjective isometry ܸ: ܻ → ܺ such that 

 ∥ (ݔ)݂ − ݔܸ ∥≤ ݔ ݈݈ܽ ݎ݋݂ ߝ2 ∈ ܺ. 

Section (4.1): Almost Surjective ߝ- isometries Of Banach Spaces 
     The classical Theorem of Mazur and Ulam as serts that a surjective 

isometry between real normed spaces is affine. Note that it is not valid for 

complex normed spaces (just consider complex conjugation on C). The 

hypothesis that an isometry is surjective is essential in general, but can be 

dropped if the target space is strictly convex. As real-world observations 

have always some minimal error, one may not be able to deduce from 

measurements whether a given mapping is really isometric or surjective. 

Thus it is natural to ask if a mapping, which only nearly preserves distances 

and only almost covers the target space, can be well approximated by a 

surjective (affine) isometry. In this chapter we deal with ߝ-isometries of one 

Banach space ܺ into another ܻ which almost cover (in some sense) the target 

space.  Throughout the chapter ܺ and ܻ denote real Banach spaces. 

Definition (4.1)[4].  Let 0 ≤ ߝ. A map ƒ: ܺ → ܻ is called an ߝ-isometry if 

| ∥ (ݕ)݂ − (ݔ)݂ ∥ −∥ ݕ − ݔ ∥ | ≤  ߝ

For all ݔ, ݕ ∈ ܺ. 

    There is an extensive literature on such mappings starting with the 

influential of Hyers and Ulam. They proved that every surjective ߝ-isometry 

between real Hilbert spaces can be uniformly approximated to within 10ߝ by 

an affine surjective isometry. Later this result has been extended to all pairs 

of real Banach spaces, and the constant 10 has been reduced to 2 which is 

sharp. Dilworth showed that the subjectivity condition can be dropped if 
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both above Banach spaces are of the same finite dimension. However, 

the example of the mapݔ ↦ ൫ݔ, ߝ2√ ∥ ݔ ∥൯ ݂݉݋ݎ ݈ଶ
௡ ݋ݐ ݈ଶ

௡ାଵ  (which is ߝ-

isometric, but far from any affine map and thus from any isometry) 

shows that the surjectivity assumption is indispensable in this Theorem 

even for Euclidean spaces. Šemrl and Väisälä showed that every ߝ-isometry 

ƒ: ܺ → ܻ can be uniformly approximated to within 2ߝ by an affine surjective 

isometry provided 

,ݕ൫ݐݏ௬∈௒൛݀݅݌ݑݏ ݂(ܺ)൯ൟ < ∞. 

    We show that this result remains true when the above almost surjectivity 

condition is further relaxed and replaced by 

௬∈ௌೊ݌ݑݏ lim
|௧|→∞

inf ,ݕݐ൫ݐݏ݅݀ ݂(ܺ)൯ ⁄|ݐ| <
1
2

. 

    Namely, we give the following Theorem. Given a nonempty Q⊂Y and 

y∈ܵ௒, we denote 

,ݕ)߷ ܳ) = lim
|௧|→∞

inf ,ݕݐ)݀ ܳ) ⁄|ݐ| , ߬(ܳ) = ,ݑ)߷௬∈ௌೊ݌ݑݏ ܳ). 

Given a map ƒ: ܺ → ܻ, we abbreviate ߷൫ݕ, ݂(ܺ)൯ and ߬(݂(ܺ))  by ߷(ݕ, ݂) 

and ߬(݂). We also abbreviate ܿ݋൫݂(ܺ) ∪ −݂(ܺ)൯ܾܥ ݕ(݂). 

    Vӓisӓlӓ has posed the following problem: Whether an ߝ-isometry  

ƒ ∶ ܺ → ܻ with ߬(ƒ) = 0 can be approximated by  a surjective isometry? 

Theorem (4.4)(iii) answers this question in affirmative even for ߬(ƒ) <  1/2. 

Note that in the case when Y is uniformly convex, the weaker condition 

߬(ƒ) < 1 implies the existence of such an approximating isometry. It is 

shown in this chapter. We do not know whether the condition ߷(ݕ, ݂) < 1/2 

for every ݕ ∈ ܵ௒ is enough to guarantee the existence of an approximating 

isometry. However, if such an approximating isometry exists, it is necessarily 

linear and surjective. 

Proposition (4.2)[4]. Let ƒ: ܺ → ܻ be anߝ-isometry with ƒ(0) = 0 and 

,ݕ)߷ ݂) < 1/2 for every ∈ ܵ௒ . Let ܷ ∶ ܺ → ܻ be an isometry such that  
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ܷ(0) = 0 and ∥ (ݔ)ܷ − (ݔ)݂ ∥= ∥)݋ ݔ ݏܽ (∥ ∥ ݔ ∥→ ∞ uniformly. Then U 

is a surjective linear isometry and  

∥ (ݔ)݂ − ݔܷ ∥≤ ,ߝ2 ݔ ∈ ܺ 

Proof: Let ݕ ∈ ܵ௒. By our assumptions, there are sequences {ݐ௡} ⊂ ܴ and 

{௡ݔ} ⊂ ܺ such that |ݐ௡| → ∞ܽ݊݀ ∥ ݕ − (௡ݔ)ܷ ∕ ௡ݐ ∥< 1/2 for all n. 

Therefore by the Theorem of  Figiel, Šemrl and Vӓisӓlӓ, U is surjective and 

linear.  

    In what follows, we shall use some results and notation from chapter1. 

For an ߝ-isometry ƒ ∶ ܺ → ܻ with ƒ(0) = 0, we denote by ܯఌ  the subspace 

of ܻ∗ consisting of all functional bounded on ܥ(ƒ) and by E the annihilator of 

ఌܯ . Let ߙ ≥ 0. A closed subspace ܯ ⊆ ܺ is said to be α-complemented 

provided there exist a closed subspace ܰ ⊆ ܯ ℎݐ݅ݓ ܺ ∩ ܰ = {0} and a 

projection ܲ: ܺ → ܺ along N such that ܯ  = ܯ + ܰ and ∥ ܲ ∥≤  .ߙ

    It follows from Remark (1.1.27) and a quick inspection of the proof of 

Theorem (1.1.26). 

Theorem (4.3)[4]:  Let ƒ: ܺ → ܻ be anߝ-isometry with ƒ(0) = 0. Let ܧ be  

α-complemented in ܻ and P be a projection ܲ: ܺ →   along ܰ such that ܯ

ܺ = ܯ + ܰ and ∥ ܲ ∥≤ (ܺ)൫݂݋ܿ Let .ߙ ∪ −݂(ܺ)൯ ⊂ ܧ +  for some ܤ

bounded set ܤ ⊂ ܻ. Then there is a surjective norm-one linear operator 

→ ܧ :ܷ ܺ such that  

∥ (ݔ)݂ܷܲ − ݔ ∥≤ ,ߝ4 ݔ ∈ ܺ 

Theorem (4.4)[4]. Let ƒ: ܺ → ܻ be an ߝ-isometry with ƒ (0) = 0. 

(i)If  ߬(ܥ(݂)) < 1, then there is a surjective norm-one linear operator  

ܷ: ܻ → ܺ such that 

             ∥ (ݔ)݂ܷ − ݔ ∥≤ ,ߝ4 ݔ ∈ ܺ.                                                                    (1) 

(ii) If ߷(ݕ, ݂) < 1/2 for every ݕ ∈ ܵ௒ , then U is surjective. We denote its 

inverse by 

ܸ ≔ ܷିଵ: ܺ → ܻ. 
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(iii)If ߬(݂) < 1/2, then V is a surjective linear isometry satisfying 

∥ (ݔ)݂ − ݔܸ ∥≤ ,ߝ2 ݔ ∈ ܺ 

Proof : (i) We prove that ܯఌ = {0}. Then ܧ = ܻ, and (1) follows by 

Theorem (4.3) with ܲ =  .(the identity) ܫ

    Choose ߬(ܥ(݂)) < ᇱݍ < ᇱᇱݍ < 1. Suppose that there is a norm-one 

 ߮ ∈ ఌܯ . Then there is ݕ ∈ ܵ௒ such that 〈߮, 〈ݕ >  By the definition of ."ݍ

ఌܯ , there is ݎ > 0 such that |〈߮, |〈ݑ < ݑ ݈݈ܽ ݎ݋݂ݎ ∈ .(݂)ܥ ((݂)ܥ)߬ ݁ܿ݊݅ܵ <

{௡ݐ} ᇱ, there are sequencesݍ ⊂ ܴ and {ݑ௡}  ⊂  such that (ƒ)ܥ

|௡ݐ|  → ∞ ܽ݊݀ ∥ ݕ − ௡ݑ ∕ ௡ݐ ∥< ∥ ᇱ for all n. Sinceݍ ߮ ∥= 1, it follows that 

ᇱݍ > |〈߮, ݕ − ௡ݑ ⁄௡ݐ 〉| ≥ |〈߮, |〈ݕ − |〈߮, ௡ݑ ⁄௡ݐ 〉| > ᇱᇱݍ − ݎ ⁄|௡ݐ| , 

Which implies ݍᇱ ≥  .ᇱᇱ–a contradictionݍ

     (ii) Let ݕ ∈ ܵ௒. We show that 

                              ∥ ݕܷ ∥≥ 1 − ,ݕ)߷ 2 ݂),                                                              (2) 

which implies injectivity of U. 

    let ߷(ݕ, ݂) < ᇱݍ < ଵ
ଶ
. Then there are sequences {ݐ௡} ⊂R and {ݔ௡} ⊂ ܺ 

such that  |ݐ௡| → ∞ ܽ݊݀ ∥ ݕ − (௡ݔ)݂ ⁄௡ݐ ∥<  ᇱfor all n. Henceݍ

∥ (௡ݔ)݂ ∥> (1 − ∥ ℎ݁݊ݐ ݀݊ܽ |௡ݐ|(ᇱݍ ௡ݔ ∥≥∥ (௡ݔ)݂ ∥ ߝ− > (1 − |௡ݐ|(ᇱݍ −

∥ On the other hand, by (1) and .ߝ ܷ ∥≤ 1, 

|௡ݐ|ᇱݍ >∥ ݕ௡ܷݐ − (௡ݔ)݂ܷ ∥≥∥ ௡ݔ ∥ |௡ݐ|− ∥ ݕܷ ∥ −∥ (௡ݔ)݂ܷ − ௡ݔ ∥≥∥ ௡ݔ

∥ |௡ݐ|− ∥ ݕܷ ∥  ,ߝ4−

Which implies ∥ ௡ݔ ∥< ∥+ᇱݍ) ݕܷ |௡ݐ|(∥ + .ߝ4 ,ݏݑℎݐ (1 − |௡ݐ|(ᇱݍ − ߝ <

∥+ᇱݍ) ݕܷ |௡ݐ|(∥ + ∥ for all n. Thus ߝ4 ݕܷ ∥≥ 1 − .ᇱݍ2  ᇱ was arbitraryݍ ݏܣ

in interval (߷(ݕ, ݂), ଵ
ଶ
), (2) holds. 

     (iii) In this case, U is bijective and ∥ ݕܷ ∥≥ 1 − 2߬(݂). Hence its 

inverse V is bijective and bounded with ∥ ܸ ∥≤ 1 ∕ (1 − 2߬(݂)) . By (1), 

for every t>0 

∥ ݔܸݐ − (ݔݐ)݂ ∥≤∥ ܸ ∥∥ ݔݐ − (ݔݐ)݂ܷ ∥≤ ߝ4  (1 − 2߬(݂))⁄ ݔ   , ∈ ܺ. 

Hence 
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ݐ ∥ ݔܸ ∥≤∥ (ݔݐ)݂ ∥ ߝ4+  (1 − 2߬(݂))⁄ ≤ ݐ ∥ ݔ ∥ + ቀ1 + ସ
ଵିଶఛ(௙)ቁ ,ߝ ݔ ∈ ܺ, 

which implies ∥ ܸ ∥≤ 1 . This along with ∥ ܷ ∥≤ 1 gives that both U and 

V are isometries. The result follows now by Proposition (4.2). 

     Note that conditions in Theorem (4.4) are rather sharp. The 

sharpness of the condition in (i) follows from the next two facts: 

a. For any mapping ƒ: ܺ → ܻ with ƒ (0) = 0, we have ߬(ܥ(ƒ))  ≤  1. 

b. There exists an ߝ-isometry with ƒ(0) = 0 such that for any bounded 

linear operator ܶ ∶ ܻ → ܺ 

௫∈௑݌ݑݏ ∥ (ݔ)݂ܶ − ݔ ∥= ∞ 

    The sharpness of the conditions in (ii) and (iii) is shown in the 

following simple example. 

Example (4.5)[4]. Let ܺ = ܴ ܽ݊݀ ܻ = ݈ஶ
ଶ . ݂݀݁݅݊݁ ݂: ܴ → ݈ஶ

ଶ  by the 

formula ݂(ݔ) = ,ݔ)  Then ƒ is a nonlinear isometry and yet, if .(|ݔ|

ݕ ≠ 0 ∈ ݈ஶ
ଶ ∥ ℎ݁݊ݐ  ݕݐଵߠ − ݂ ቀଵ

ଶ
ଶߠ ∥ ݕݐ ∥ቁ ∥≤∥ ݕݐ ∥  2⁄  for some 

,ଵߠ ଶߠ ∈ {−1,1} and for all ݐ ∈ ܴ. 

     Concerning Theorem (4.3), Cheng and Zhou have posed the following 

problem: Given 0 < ߝ, whether ƒ(ܺ) is always contained in ܧ +  for) ܤ

some bounded subset ܤ ⊂ ܻ) for every ߝ-isometry?  

     The following Lemma gives a negative answer to this question. 

Lemma (4.6)[4]. For every 1< p<∞ and 0 < ߝ, there exists a continuous 

:݂ isometry-ߝ ܴ → ݈௣  such that ݌ݑݏ௫∈ோ݀݅(ݔ)݂) ݐݏ, (ܧ = ∞. 

Proof : Let {݁࢏}࢏ୀ૙
ஶ ܽ݊݀ {݁௜

ᇱ}௜ୀ଴
ஶ  be the canonical bases of ݈௣  and ݈௣∕(௣ିଵ), 

respectively. Define real functions by 

௜݃(ݔ) = min
 

ቐ ඨݔ|ߝ݌|(௣ିଵ)

2௜

೛

, ݅ቑ . 

Note that  | ௜݃(ݔ) − ௜݃(ݕ)|௣ ≤  ௣ఌห|௫|(೛షభ) ೛⁄ ି|௬|(೛షభ) ೛⁄ ห
೛

 
 

ଶ೔   . 
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Define݂: ܴ → ݈௣  by  ݂(ݔ) = ଴݁ݔ + ∑ ௜݃(ݔ)݁௜
ஶ
௜ୀଵ . Then  

ݔ| − ௣|ݕ ≤∥ (ݔ)݂ − (ݕ)݂ ∥௣

= ݔ| − ௣|ݕ

+ ෍| ௜݃(ݔ) − ௜݃(ݕ)|௣
ஶ

௜ୀଵ

≤ ݔ| − ௣|ݕ + (௣ିଵ)|ݔ|หߝ݌ ௣⁄ − (௣ିଵ)|ݕ| ௣⁄ ห
௣

≤ ݔ| − ௣|ݕ + ݔ|ߝ݌ − ௣ିଵ|ݕ < ݔ|) − |ݕ +  .௣(ߝ

Thus, ƒ is an ߝ-isometry. For every ݅ > 0 and real ݔ, |〈݁௜
ᇱ, |〈(ݔ)݂ = ௜݃(ݔ) ≤

݅. ௜݁ ݁ܿ݊݁ܪ
ᇱ ∈ ఌܯ  . It follows that E=span݁଴. But for every ݔ, ݊ 

with,|ݔ| ≥ ቆ݊௣2௡
ൗ(ߝ݌) ቇ

ଵ
(௣ିଵ)ൗ

, 

,(ݔ)݂)ݐݏ݅݀ (ܧ > ෍| ௜݃(ݔ)|
௡

௜ୀଵ

= ෍ ݅
௡

௜ୀଵ

=
݊(݊ + 1)

2
 

Thus, ƒ is a desired mapping. 
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List of Symbols 

  

Symbol page 
݈௣

ଶ :   Hilbert space 
 
 ܮ

௣ :    Lebesgue space 
 
 തതത :   closed convex hull݋ܿ 
 
sep :   separated 
 
inf  :  infimum 
 
UKK : Uniform Kadec-Klee 
 
GDS : Gateaux Differentiability Space 
 
Sup :  Supremum 
 
dim :  dimension 
 
Ker  :  Kernal 
 
Min : Minimal 
 
 ⊕ : Direct Sum  
 
Dist : Distance 
 
݈௣

   :  Hilbert Space 

  1 
 
  2 
 
  4 
 
  5 
 
  5 
 
  5 
 
  7 
 
  7 
 
  9 
 
  13 
 
  14 
 
   37 
 
   63 
 
   67 
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