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Abstract

If Y is Gateaux smooth, strictly convex and admitting the Kadec- Klee
property, then we has the following sharp estimate | Tf(x) — x || < 2,
for all x € X. Let X, Z be two real Banach spaces and € > 0, we show that
if there is a mapping {: X— Z with f(0) = 0 satisfying

[N fx)—fO) I —llx—yll|<eforall x,y € X, then we can define
a linear surjective isometry U: X* — Z* / N for some closed subspace N
of Z* by an invariant mean of X. There is a linear surjective operator
T:Y - X of norm one such that|| Tf(x) —x II< 2¢, forallx € X
when the e-isometry f is surjective, it is equivalent to Omladi¢ - Semrl
Theorem: There is a surjective linear isometry U: X — Y so that
Il f(x) —Ux II< 2¢, forall x € X.
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Chapter 1
Non linear Non surjectivee—isometries of Banach Spaces

Let X, Y be two Banach spaces, e>0. And let f: X — Y be an
- isometry with f(0) = 0. We show first that for every x* € X*, there exists
@ € Y*with I @ I=Il x* I= r such that |(@, f(x)) — (x*, x)| <
der, for all x € X. We Show that if Y is reflexive and if E Cc Y is a-
complemented in Y, then there is a bounded linear operator T: Y — X with
I TII< asuchthat | Tf(x) —x < 4e, for all x € X.
Section(1.1) Applications And Stability Version of Reflexive

Banach Space
Let X, Y be two Banach Spaces and € > 0. A mapping f: X — Y is said to be
an e—isometry provided
[ fC)—fO) I —=llx—yll|<e,forallxy€X

If € = 0, then the mapping f is simply called an isometry; and it is said to be
A surjectivee—isometry if, in addition, f{(X) = Y. The study of e-isometry has
been divided into four cases:
(i) f is surjective and € = 0;
(ii) f is non-surjective and € = 0;
(iii) f is surjective and € # 0; and
(iv) f is non-surjective and ¢ # 0.
A celebrated result, known as the Mazur-Ulam Theorem is a perfect answer
to case (i).
Theorem (1.1.1)[1] (Mazer-Ulam). Suppose that {: X — Y is a surjective
iIsometry with f(0) = 0. Then f is linear.

The following mapping f: R — ¢2, defined for t € R by f(t) = (¢, sint)
shows that an into isometry { with f (0) = 0 is not necessarily linear. While a
remarkable result about non-surjective isometry (i.e.,Case(ii)) was given by

Figiel in 1967,which plays an important role in the study of isometric
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embedding and of Lipschitz-free Banach space. Godefro and Kalton show
some deep relationship between isometry and linear isometry.
Theorem(1.1.2)[1](Figiel). Suppose that {: X — Y is an isometry with

f(0) = 0. Then there exists a linear operator F: L(f) = spanf(x) — X with
| F llI=1suchthat Fof = I (the identity) on X. We call the operator F in the
Theorem above Figiel's operator. We refer the reader for more detailed
discussions of geometric embedding and related topics.

In1945, Hyers and Ulam proposed the following question: whether for
every surjective e—isometry f: X — Y with f(0) = O where exists a surjective
linear isometry U: X — Y and y > 0 such that

I f(x) —Ux II< ye, forall x € X. (1)
After many years efforts of a number of mathematicians, the following sharp
estimate was finally obtained by Omladi¢ and Semrl
Theorem(1.1.3)[1] (Omladi¢-Semrl).If {:X — Y is a surjective e—isometry
with f(0) = 0, then there is a surjective linear isometry U: X — Y such that

Il f(x) — Ux II< 2¢,forall x € X.

Therefore, answers to the first three cases are perfect. The study of non-
surjective e—isometry (i.e.,case(iv)) has also brought to mathematicians’
attention. First proposed the following problem in 1995, and then he showed

that the answer is affirmative if both X and Y are Lp spaces.
Semrl and Véisald further presented a sharp estimate of (2) With Y = 2 if
both Xand Y are LP—spaces for 1 < p < oo.

Problem(1.1.4)[1]. Whether there exists a constant y > 0 depending only on
X and Y with the following property: For each e—isometry f: X — Y with
f(0) = O there is abounded linear operator T: L(f) — X such that

I Tf(x) —x < ye, forall x €X. (2)
As we have known, the answer to Problem (1.1.4) is affirmative for

LP —spaces with 1< p <.



However, Qian presented the following simple counterexample.
Example(1.1.5)[1] (Qian). Given £ > 0, and let Y be a separable Banach
space admitting an uncomplemented closed subspace X. Assume that g is a
bijective mapping from X onto the closed unit ball B,, of Y with g(0) = 0.
We defineamap f: X > Y by f(x) =x+eg(x) /2 forall x € X. Thenfis
e—isometry with {(0) = 0 and L(f) = Y. But there are no such Tand Y
satisfying (2). Qian's counterexample, incorporating of an early result of
Lindenstrauss and Tzafriri (a Banach space satisfying that every closed
subspace is complemented is isomorphic to a Hilbert space) entails the

following result.

Theorem (1.1.6).[1] A Banach space Y satisfying that for every closed
subspace X cY and every e—isometry f:X — Y with {(0) = O there exist
bounded linear operator T:L(f) - X and Y > 0 such that (2) holds if and
only if Y is isomorphic to a Hilbert space.

This disappointment makes us to search for(i) some weaker stability
version satisfied by every e—isometry, and (ii) some appropriate
complementability assumption on some subspaces of Y associated with the
mapping such that the strong stability result (2) holds. For an e-isometry
f:X = Y with {(0) = 0, we introduce the following subspace E of Y
associated with the mapping f, which will play an important part in the
sequel. Let F = {y* € Y™*: y*is bounded on C(f) = co(f (X), —f (X))}

E c Y is defined as the annihilator of the subspace F c Y*,i.e.
E={yeY:(y",y)=0 forally* € F} (3)

From Qian's counterexample we can observe that for every Banach space
Y containing an uncomplemented closed subspace X, and for every € > 0,
there exist an e—isometry f from X to Y with {(0) = 0 and with E = X such
That (2) of Problem (1.1.4) fails for . In other words, the assumption that E
Is complemented in Y is essential for the study of the stability property (2) of
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an e—isometry . Before describing the main results of this chapter, we first
introduce same notations to be used in the sequel. The letter X will always be
a Banach space, and X* its dual. We denote by B, (resp.,S,) the closed unit
ball (resp., the unit sphere) of X. For a sub set A c X , A stands for the
closure of A, and co A (co A) for the (closed) convex hull of A. Letf: X - Y
be an e-isometry for some & > 0 with {(0) = 0; L(f) = the closure of the
linear span of {(x);

M, = {0 € Y*is bounded by Bye on C(f)for some By > 0};
M =the closure of M. We should mention here that the set M, = {@ €

Y*is bounded on C(f) ife = 0; = C(F)*, the annihilator of C(f), if e = 0.
This chapter is organized as follows. In the second section, after giving
an improvement of a one —dimensional lemma which is presented in
Qian, we show the following result, which can be understood as a weak
stability version; on the other hand, because it plays a central rule and is
used frequently in every section of this chapter ,we call it the Main
Lemma.
Lemma (1.1.7)[1] (Main lemma). Let X and Y be Banach spaces, and let

f: X = Y be an e-isometry for some € > 0 with {(0) = 0. Then for

every x* € X* ,thereexists @ € Y* with || @ [[=Il x* ||= r such that

| (@, T(X)) — (x*, x)| < 4er, for all xeX. 4)
We present three examples of simple applications of the Main Lemma:
the first one is , motivated by Dutrieux and Lancien's observation —an
equivalence Theorem of Figiel's Theorem, a generalization of the
equivalence theorem from isometry to e-isometry; and the second one
isthatif Y = 2., (I') for anon-empty setrl", then the answer to Problem
(1.1.4) is positive with Y = 4; and the third one is the for an e—isometry from
an n-dimensional space to a Banach space, the answer to Problem (1.1.4) is

always affirmative with Y = 4n.For each e—isometry f, making use of the
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Main Lemma, we define first a set- valued "linear" mapping V associated
with f, we discuss then the properties of the operators V and Q:X* - Y*/M
define by Qx* = Vx* + M. We show finally the following stability version in
reflexive spaces.

Theorem (1.1.8)[1]: Let X, Y be Banach spaces and Y be reflexive, and let

f:X — Y be an e-isometry with f{(0) = 0. If E is a—complemented in Y,

then there is a bounded linear operator T: Y — X with ||T||[< a such that

ITf(x) —x IS 4e, forall x € X.
It is shown by Semrl and Vai&la that for the e-isometry f: X — Y if Y is
uniformly convex then the following limit always exists and defines a linear
isometry T: X » Y, Tx = lim_(f(tx))/t, forall x € X.
Motivated by the result above, we discuss existence of such limits in general
reflexive Banach spaces. As a result, we show the following result.
Theorem (1.1.9)[1]. Suppose that X, Y are Banach spaces and that Y is
reflexive, and suppose that f: X — Y is an e—isometry for some & > 0 with
f(0) = 0. If, in addition, the subspace E c Y is strictly convex, then for all
x€eX

Tx=w — AETOO f(Ax)/2

Existand T: X — E is a linear isometry.

Theorem (1.1.10)[1]. Suppose that X is a Banach space and that Y is a
reflexive, Gateaux smooth and strictly convex Banach space admitting the
Kadec—Klee property (A Banach space is said to have the Kadec-Klee
property or (H-property) if weakly convergent sequence on the unit sphere is
convergent in norm. Recall that sequence {x,} < X is said to be e-separated
sequence for some € > 0 if sep(x,) =inf{ll x, —x, lin #m}>¢c. A
Banach space is said to have uniform Kadec-Klee property (UKK) if for

every € > 0 there exist § > 0 such that for every sequence (x;,) in S(x) with

sep(x,) > € and x, % x we have Il x I<1—8)[5]. Suppose thatf: X - Y
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Is an e—isometry with f(0) = 0, and that the subspace E c Y associated with
f is a—complemented in Y. Then there is a linear operator T: Y — X with

I TII< a suchthat || Tf(x) — x I< 2¢, x € X.The following Lemma is an
improvement of a result of Qian from 5¢ to 3e.

Lemma (1.1.11)[1]. Let Y be a Banach space, and let f: R — Y be an
e— isometry with f(0) = 0. Then there is a linear functional @ € Y* with
Il @ I= 1 such that
@, f(t)) —t| < 3¢ forallt€R. (5)
Proof: Givenn € N, let @,, € Y™ with|l @, lI= 1 such that

2n—¢e <Il f(n) = f(—n) 1= (D,, f(n) — f(—n)) < 2n + &
Then,

n+e=2(0, f(n)) =l f(n) — f(=n) I +(D,, f(—n)) =n — 2¢,
And

—n—& < (D, f(—n)) =(Dp, f))—Il f(n) — f(—n) IS —n + 2¢,
Note that for every t € [0, n],
(Br, f(0)) =Dy, f(N)) = (B, f(R) = f(t)) 2 (n—28) —(n—t+¢) =
t — 3¢ . We have
t—3e <(0,,f(t))<t+e foralltel[0n] (6)
On the other hand, for every t € [—n, 0],
t — & < (D, f(O)) = (D, f(=1)) + (D, F(t) — f(=7))

<(—n+2e)+(t+n+¢) =t+ 3¢

That is,
t—e < (@, f(t))<t+3¢ forallte€[—-n,O0]. (7)
Combining (6) with (7), we obtain
@,,, f(t)) —t]| <3s, foralln€Nandt € [-n,n]. (8)

Note that|l @,, [[= 1 for all n. Alaoglu's Theorem implies that there is a net

(9,) in (@,) w*—converging to a functional @ € By-. This and (8) entail that

—3e < (@, f(t))<t+3¢g, forallte R.Andclearly, | @ II= 1.



To show the Main Lemma of this chapter, we need some Gateaux
differentiability results about norm of Banach space. Recall that a Banach
space X is said to be Gateaux differentiability space (GDS) provided every
continuous convex function on X is densely Gateaux differentiable. This is
equivalent to that every equivalent norm on X is somewhere Gateaux
differentiable. A point x* inaw™* —closedconvex set C ¢ X* is said to be
a w™- exposed point of C provided there exists a point x € X such that
(x*,x) > (y*,x) for all y* € C with y* # x* . In this case, the point X is
called a w* —exposing functional of C and exposing C at x* . We denote
by w* —exp C the set of all w*— exposed points of C. For a convex function f
defined on a Banach space X, its sub differential mapping af: X — 2Xis
definedforx € X by df(x) ={x* € X*: f(y) — f(x) = (x*,y — x), for all
x € X }. Itiseasy to observe that if £ =|I. |l (the norm of X), then d |l x |l
(x # 0) isalways non-empty and x* € d Il x || if and only if (x*, x) =l x |l
with || x* lI= 1. The following result s are classical.

Proposition (1.1.12)[1]. Suppose that X is a Banach space and that C c X*
IS a non-empty w*-compact convex set (Z is dual Banach space the closed
unit ball of Z is weak star compact)[6] . Then x* € C is a w*—exposed point
of C, and is w*—exposed by x € X if and only if oc = sup ¢ is Gateaux
differentiable at x and with Gateaux derivative doc(x) = x*.

Theorem (1.1.13)[1]. A Banach space X is a Gateaux differentiability space
if and only if every non- empty w*—compact convex set of its dual (of cause,
including the closed unit ball of its dual) is the w*—closed convex hull of its
w*—exposed points.

Lemma (1.1.14)[1] (Main lemma). Let X, Y be Banach spaces, € >0, and
let f: X = Y be an e—isometry with f (0) = 0. Then for every x* € X* there

is a linear functional @ € Y* with || @ lI=Il x* ||I= r such that
(@, f(x)) — (x*,x)| < 4er, forall x € X. (9)
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Proof: The proof shall be divided into two parts. In the first part we show
that it is true if X is finite —dimensional. Then, making use of this result we
show in the second part that the Lemma holds for a general Banach space X.
Assume that dim X < oo. Note X is a GDS. Then the closed unit ball By~ of
X™* is the w*—closed convex hull of its w*—exposed points (Theorem
(1.1.13)). Without loss of generality we can assume thatr = 1. We show
first that (9) is valid for some @ € Sy- , if x* € Sy- IS a w*-exposed point
of By~ . By Proposition (1.1.12), there is a Gateaux differentiability point
Xo € Sy suchthat || xo [I= x* . Therefore, for every x € X,

Limy oo (Il txg + X | =) = liMy_s 100 "xﬁG)f"_"x"" = (x*x). (10)

t

Let g: R — Y be defined for t by g(t) = f(tx,). Then g is an e-isometry

with g(0) = 0. By Lemma (1.1.11), there is a linear functional @ € Sy- such
that

(@, f(txy)) — t]| < 3¢, forallt € R. (11)
It entails that

t —3e — (@, f(x)) < (D, f(tx0)) — (@, f(x)) <l f(txo) — f(x) II<
Il txp — X Il +&.
Therefore, for all t > 0O,
Il txo — x || —t + (0, f(x)) = —4e.
Let t— +oo in the inequality above. Then (10) yields
(x*,x) = (@, f(x)) < 4e. (12)
On the other word, we substitute —t for t in (11). Then
t —3e+(0, f(x)) < (0, f(=txo)) + (D, (X)) <Il f(—txo — f(X) I<
Il txp + X || +e.

Consequently,

Il txg + x | =t — (0, f(x)) = —4e.
Let t tend to +oo in the inequality above. Then (10) again implies that

(x*,x) = (0, f(x)) = —4e. (13)
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Inequality (9) follows immediately from (12) and (13).

Next, we show that for every x* € Sy~ there exist @ € Sy-satisfying (9).
Let x* € Sy+.Since co(w™ — exp By+) is dense in By~ (by Theorem (1.1.13)
and noting dim X< o), there is a sequence(x,,) € co(w* — expBx+)
converging to x* . Note that for every x;, there exist m w*—exposed points
(Xn, Xn,, -+ Xn ) @nd m non-negative numbers (4, , 4y, ..., 4,_ ) With

j=1An; =1 for some m € N such that x; = ¥, 4, xp. . Then by the
fact we have just proven that there exist m functional (¢, ¢n,, ..., $n_) C
Sy+ satisfying

(85, £GO) — (x5, x| < e (14)
Forallx e X,and1<j<m. Let ¢, =31 4,;@y,. Then I, I< 1,
and
(W, f (X)) — (x5, x)| < 4e, forallx € X. (15)
Since (i) is relatively w*—compact, there must be a subset of (i,,) w*—
converging to some @ € By- . This, (15) and (x,,) being convergent to x*
together imply the following inequality
(@, f(x)) — (x*,x)| < 4e, forall x € X.

Clearly, II @ I=Il x* lI= 1. Thus we have shown (9) for every finite-
dimensional space X. We will finally show that (9) holds for a general
Banach space X. Recall that Bishop—Phelps' Theorem states that norm—
attaining functionals are always dense in the dual X* of X. According to this
Theorem, it suffices to show that (9) is true for every norm-attaining
functional x* € X™* with || x* ||= 1. (Indeed, suppose that (9) holds for every
norm-attaining functional, i.e. for every norm-attaining functional x* € X*
with || x* lI= 1, there is @ € Y* with || @ lI=|l x* ll= 1 such that (9) holds.
Then for every (general) x* € X*with || x* ||= 1,by the Bishop—Phelps

Theorem there is a sequence (x,) < X* of norm-attaining functionals



withll x5 II= 1 such that x;, - x* . Foreachn € N, let @,, € Y* with

Il @, II= 1 be the functional corresponding to x,, such that [{(®@,,, f (x)) —

(xn,x)| <4e, forall x € X. Then w*-relative compactness of (@,,)

entails that there is a w*—cluster point @ € Y™ of (@,,) . It is easy to see that

(9) holds again for such the functionals x* and @ .Given such norm-attaining

functional x* € X*, let x, € Sy such that (x*,x,) =1, and let F be the

collection of all finite—dimensional subspace of X containing x, .Since every

F € F is a GDS by (9) we have just proven, there exists @ € Sy~ such that
(Dg, f(x)) — (x*,x)]| < 4e, forallx € F. (16)

Let @ = {0y € Y* satisfies (16) with || ¢ II< 1},and let

O ={dp: F € F}.
It is clear that for every F € F , ® , is a non-empty w*—compact convex set
of Y*.Since forall F,G € F, o N d,; > dy, (Where H = span {F, G},
they have the finite intersection property .Since every @ is w*-compact,
they have a non- empty intersection, and any element @ of this intersection is
clearly a solution of (9). The following result was first noticed by Dutrieux
and Lancien, and it is equivalent to Figiel's Theorem.
Theorem (1.1.15)[1]. Let {: X — Y be an isometry with {(0) = 0.Then for
all x1,%,....,x, € X, and forall A4, 4, ...., 1, € Rwith ¥7_, [4;] = 1, we

have

n n
I zaif(xi) 1= zzixi I
i=1 i=1

Motivated by the theorem above, as an application of Lemma (1.1.14), we
will show an analogous result of the theorem for e—isometry.

Theorem (1.1.16)[1]. Let X and Y be Banach spaces, and let {: X — Y be an
g—isometry with {(0) = 0. Then

10



n n
Il z/lif(xi) | +4¢ =|| z/lixi I. for all x;,x5,...,x, € X
i=1 i=1

And for all 14, 4,, ..., 4, € R satisfying Y.i-,|4;| = 1.
Proof: Given x4, x,,...,x, € X , let X,, = span(xy, x5, ..., x,) . By Lemma
(1.1.14) for every x* € X,, there is a linear functional @,- € Sy- such that
D+, f(x)) — (x*,x)| < 4de, forall xeX,.

It entails that | ¥ A; £ (x) 1| = Squ*esX;l((Dx*,Z?:sz(xz)) =
Squ*eSx;‘l((@x*’ i=1 Aif () — (", Bing Aixg) + (", Xing Aix)) 2
Supyres,, |67 Xiza Axid)l = XizalAil s, £ () — ", )] =
supx*esxgl(x*, tidix)| —de =1 Y Aixg | —de, for all A4, ..., Ay €
R satisfying Y.i—,|4;| = 1. Consequently,
I Xrey Aif () N +4e = 1 Tiey i .
The following Theorems are also simple applications of Lemma (1.1.14).
Theorem (1.1.17) [1]. For any setT’, let X = £*°(I') and Y be a Banach
space. If f: X — Y is and e—isometry for some ¢ > 0, then there exists an
operator S: Y — X with || S lI= 1 such that

I Sf(x) —x IS 4e, forallx € X (17)
Proof: Since Fréchet differentiability points are dense in £°(I"), By+
Is the w*—closed convex hull of its w* —strongly exposed points (in fact, the
set of all w*—strongly exposed points of By is just(ey),¢r all of the standard
unit vectors of £,(I) . Givenany y €T, let 8, € Sy- by defined for ye ¥ by
8,(x) = x(y), forallx = (x(y))yer €X.
Then by Lemma (1.1.14) there exists @, € Sy~ such that [(@,, f (x)) —
(6, x})| < 4e, forall x € X. Now, let S:Y — X be defined by
S(y) = ({(@,.y)ey )yer - Clearly, I S II= 1 and || Sf(x)—x lI=
supyer|[(@y, £ (x)) — (8, x)| < 4e.
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Theorem (1.1.18)[1]. Suppose that X.Y are Banach spaces with dim X = n,
and suppose that f: X — Y is an e-isometry with f (0) = 0. Then there is a
continuous linear operator S:Y — X with || S [I< n such that
I Sf(x) — x I< 4ne, forallx € X.

Proof: Since dim E = n, by Auerbach’s Theorem, there exist n
vector (x;)i=; € Sy and n vectors (x;)iL; © Sx- such that (x;,x;) = &;5 . By
Lemma (1.1.14), there exist n linear functional (@), c Sy~ such that for
all<i<n

(@i, f(x)) — (x{,x)| < 4e, forall x € X. (18)
We define S:Y - Xfory €Y by S, = ¥ (@;,y)x; . Then || S II< n and
(18) yields

Ix = SFOOI=I Y (a2 = (@ f GO |

<D lxix) = (@0 e < dne,
We shall deal with e—isometry tl);tween two Banach spaces, and show a
stability version of reflexive Banach spaces. To begin with, we recall some
notations. For a sub set ¢ X , we denote by G° = {x* € X*: (x*,x) < 1, for
all x € G, the polar of G, and 'G” of G is defined by
‘G ={x€X:(x*x) <1, forallx* €G}.G* stands for the annihilator of
G.i.e.Gt={x*€ X*:(x*,x) =0, forall x € G}.Analogously,
16+ ={x € X:(x*,x) = 0} for all x* € G+ .The following results are either
classical, or, easily to be verified.
Proposition (1.1.19)[1]. Suppose that G is a subset of a Banach space X.
Then
(i) G° is aw* —closed convex set and Gtis a w*—closed subspace in X*;
(i)°G° = co(G U {0}),and *+G* = spangG;
(iii) G° = GLif G is a subspace;
(iv) IF M c X* isa w*-closed subspace, then ( 1G)* = M.
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Recall that for an e—isometry {: X — Y with f(0) = 0and e = 0.C(f)
denotes the closed absolutely convex hull of {(X), E the annihilator of the
subspace F c Y* consisting of all functional bounded on C(f),and

M, ={¢p € Y* : Qisbounded by B.forsomef > 0 onC(f)}.
Note that the set M, = {@® € Y*: @ is bounded on C(f)} if ¢ > 0;=C(F)*
the annihilator of C(f), if e =0, Since C(f) is symmetric, M, is a linear
subspace of Y* with M, =U;_, nC(f)° . Therefore,
E=n{ker ¢:0 € M.} =1 M,.

Lemma (1.1.20)[1]. With the notions as the same as above, then the
following assertions are equivalent.
()C(f) € E + B for some bounded set B c Y

(i) M, is w*—closed;

(iii) M, is closed.

Proof: (i)=> (ii). Since B is bounded M, = E".Therefore, it is w*-closed.
(il)= (iii) is trivial.

(iif) = (ii). Since M, is closed in Y*, it is a Banach space. Since C(f)’

is w*—closed in Y*, it is necessarily closed. Note that M, = U%_, nC(f) .
Baire's Category Theorem implies that C(f) is a (norm) neighborhood of 0
in M,. This and w*-closedness of C(f) entail that M, is w*—closed.

(i) = (i). Since M, = M} is aw*—closed subspace, and since*M, = E
according to Proposition (1.1.19) (Y / E)* = Et = (*M.)! = M,. By the
Banach Steinhauss Theorem we see that C (f)/E is a bounded subset of the
quotient space Y/E, or equivalently, C(f) c E + B for some bounded
setB cCY.

For every e—isometry f, we will define a set -valued mapping ¢: X* — 2.
Inequality (9) of Lemma (1.1.14) says that for x* € X* , there exist @ € Y*
and B > 0 such that

K@, f(x)) — (x*,x)| < Bs, forallx€X. (19)

Let tx* ={@ € Y*satisfies(19)for some B > 0}. (20)

13



Lemma (1.1.21)[1]. With the mapping ¢ as the same as above, then (i) £ is
non-empty convex-valued and with

Ix*I=inf{l@l:0€tx}=min{ll @ II: @ € {x*}, forall x* € X* (21)
(ii) ¢ satisfies that for all x*, y* € X* and a € R,

L(ax*) = afx* and (X" +y*) = £x* + Ly*;

(iii) £0 = M.and ¢x* = @, + M, where @ = @,.- satisfies (9);
(iv) £ is properly injective, i.e. if x* # y*, then £x* n £y* = Q.
Proof: (i) Non-emptiness and convexity of £x*,and the inequality|l x* [|I>
inf {ll @ II: ® € £x*} follow from (9) of Lemma (1.1.14) .To show|| x* |I<
inf {ll@1I:0 € £x*}, let® € £x* .Then by definition of £ ,there exists

B > 0 such that
(@, f(x)) — (x*,x)] < Bs, forallx€X.

Given § > 0, we choose x, € Sy such that (x*,x,) >l x* | =& , and
substitute nx, for x in the inequality above . Then we obtain that for all

n €N,

f(nx,) Be

" Yy — (" x0)| < -

(D,

Note that n — £ <|| f(nx,) I< n + . By letting n — oo in the inequality
above, we observe that

I @ 11> lim, sup(®, (f(nxy,))/n) = (x*, xo) >l x* || =46.

Arbitrariness of § entails that [| @ Il = || x* |.

(ii) Homogeneity of £ and the one side inclusion £(x* + y*) D fx* + (y*
immediately follow from definition of ¢ .To show ¢(x* + y*) c x* + £y*,

let Y € L(x* + y*) and @ € £x* .Then there exist 8;, B, = 0 such that for

all x € X,
|, f(0)) — (x* + ¥, x)| < Breand (@, f(x)) — (x", )| < Be
Letu =4y — ¢ .Then
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K )Y = (7 ) = [, f(x)) — (x™ + ¥y, x)) — (D, f(x)) — (x7, x))]
< (B1 + B2)e,
And this saysthat u € fy*and Yy = ¢ + u € tx* + £y*.
(iii) If £ = 0, then €0 = f(x)t =C(f)t =M, =M. If >0, then
0 = {0 € Y*:|@|is bounded on f(x)}
= {0 € Y*: 0 is bounded above on C(f)} = M,.
Given x* € X*,and @ € £x*, by (ii) we have just proven,
Cx*=l(x*+0)=4¢x"+£0D> Q0 +£0=0+ M,.

Conversely, for any @,y € £(x*) , let 5;, 5, € R* such that for all x € X,

@, f ()} — (x", x)| < Bre,and [, f(x)) — (x", x)| < Bze.Then,

K@ — v, fOC) < (B, + Br)e, forall x € X,

And this is equivalent to @ — 1 € £0 . Thus, (iii) has been proven.

(iv) According to (ii), it suffices to show £x* N £0 = @ that for every
x* € X*\{0} . Givenx™ € X" withx* # 0, let® € £x* . Then there exists
f € R* such that

D, f(x)) — (x*,x)] < Bk, forall x € X.

If @ € £0, then there is B; > 0 such that [, f(x))| < B¢, forall x € X.
Thus |[{(x*, x)| < (B + B;,)e ,forall x € X .This is impossible, since x* # 0 .
Theorem (1.1.22)[1]. Let X, Y be Banach spaces, {: X — Y be an e-isometry
with f(0) = 0, and let £ be defined as in Lemma (1.1.21), and M = 0.
Then:

(i) Q = X* - Y*/M Defined by Qx* = ¢x* + M is a linear isometry.

(if) If M is w*—closed, then Q is the conjugate operator of a surjective
operator U from E onto X with || U [|= 1.

(iti) In particular, if £=0, then U is just Figiel's operator.
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Proof: (i) According to Lemma (1.1.21), it is clear that Q is single-valued
and linear. Note that and M = £0 = M,. For every x* € X* due to (21) of
Lemma (1.1.21),

I Qx* II=inf{l@—mIl:0 € {&x*,m € M}

=inflld—mll:detx* meM}=inf{lDI:0 € x*} =

I x* 1.
(if) Suppose that M is w*—closed in Y*. Then, by Proposition (1.1.19),
M = (*M)* = E+. Therefore, Y*/M =Y* / EL = E* . We claim first that Q
Isw* —to—w™ continuous (hence, it is a conjugate operator) (an operator
T.Y" - X*is weak™ — weak™ continuous if and only if it is of the form
T = S* for some bounded operator S: X — Y in particular T must be
bounded) [7]. By the Krein-Smulian Theorem, it suffices to show that it
Isw* —to—w™ continuous on Bx*, the unit ball of X* . Let(x;) < B,-be a
net is w*—converging to x* € X*. Then by Lemma (1.1.14) there is a net
(8,) c Y*with | @, I=Il xi II= 7, < 1such that

(@, f (X)) — (x5, x)| < der,forall x € X.

w* —Relative compactness of (@,) implies that there is a w*—cluster
point @ € Y* of (@,) such that [(@, f(x)) — (x*,x)| < derforsome 0 <
r < limg supr,. Clearly, @ € tx*. Since every w*- cluster point of(x,) is
in tx*, Qx, = €x, + M = @, + M, and which further entails that (Qx,)
Isw*—convergentto  + M = Qx*in Y* /M = E* .Hence,Q: By~ = E*
ISw* —to —w™ continuous. Let U: E — X be a linear operator such that
U* = Q .Clearly, U is a surjective mapping with || U ||= 1, since
Q =U".X" - E* isalinear isometry.

(iii) Ife=0,then M = M, = My = C(f)' isw*~closedand E = t1M =
L(f). According to (ii) we have just proven, there exists U: L(f) —» X such
that U* = Q. And in this case, it is easy to observe that

(Qx*, f(x)) =(x*,x), forall x € X and x* € X".
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Let F be Figiel's operator from L(f) to X suchthat F o f =1 on X. Then its
conjugate operator F*: X* —» L(f)* = Y*/L(f)* = Y*/Msatisfies

Il F* I=Il F ll= 1. Since F o f = Iy, by definition of conjugate operator we
have for all x € Xand x* € X*,

(F*x", f(x)) = (x", Ff(x)) = (x", Ixx) = (x", x) = (@x", f (x))
Therefore,U* = Q thatis, U = F.

Corollary (1.1.23)[1].With the notations as the same as in Theorem (1.1.22),
then Q is a conjugate operator if one of the following conditions holds.
()C(f) c E + B For some bounded setB c Y ;

(if) M.is closed,;

(iii) Y is reflexive.

Proof: According to Theorem (1.1.22), it suffices to show that M is

w*—closed. By Lemma (1.1.14), both (i) and (ii) imply that M.is w*—closed.
Therefore, M = M, is certainly w*-closed. Note that M is always weakly
closed. If Y is reflexive, then M is w*-closed.

Definition (1.1.24)[1]. Let X be a Banach space and 0 < a < +«. A closed
subspace M c X is said to be a—complemented provided there exists a closed
subspace N ¢ X with M n N = {0} and a projection P: X— M along N such
that X =M+ Nand | P IS .

Theorem (1.1.25)[1]. Suppose that X, Y are Banach spaces and Y is
reflexive, and suppose f: X— Y is an e-isometry with f (0) = 0. IfE is

a—complemented in 'Y, then there is a bounded linear operator T: Y— X
with || T |I< « such that

ITf(x) —x < 4e, forallx€X. (22)

Proof: Since Y is reflexive, by Theorem (1.1.22) and Corollary (1.1.23),
there is a surjective operator U: E — X with|| U ll= 1suchthat Q = U" .
Since E is a—complementedin Y, there is a closed (complemented) sub space
Fof Y with En F = {0} such that E + F =Y and the projection P.Y — E
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along F satisfies | P IS a . LetT =U oo P . Then|| T II< a. In the following

we will show that T satisfies (26). Note that Y*/M =Y*/E+t =E*=F*',
We have

(Qx™, Py) = (Qx",y), forallx* e X*and y €Y. (23)
Therefore,
[{Q@x", Pf(x)) — (x", )| = Qx™, f(x)) — {x", x)| < dell x™ |,
Forallx € X and x* € X*. (24)

By definition of conjugate operator, we Observe that for all x € X and
x* e X",
(Qx", Pf(x)) = (x", (U o P)f(x)) = (x", Tf(x)). (25)

(24) and (25) together entail that

[(x*, Tf(x) —x)| <4dellx*|l, forallx € X and x* € X*
Or, equivalently,

ITf(x)—x 1< 4e, forall x €X.
Section (1.2): e- isometries in Reflexive Spaces and Sharp
Estimates of a Certain Class of Reflexive Spaces:

In this section, we shall continue to deal with e-isometry in reflexive
Banach spaces. This is also preparation for showing a sharp estimate.
Definition (1.2.1)[1]. Suppose that X, Yare two Banach spaces, and that S is
a (set-valued) mapping from X to 2", S is said to be f—Lipschitz for
some 8 > 0 provided for all x;,x, € X,Sx; € Sx, + B |l x; — x5 || By .

It is clear that if S:X — 2Y is B-Lipschitz then T: X —» 2 defined for x € X
by Tx =co(Sx) is also g —Lipschitz.

Theorem (1.2.2)[1]. Suppose that X, Yare Banach spaces and that Y is
reflexive, and suppose that {: X — Y is an e-isometry for some & > 0 with
f(0) = 0. Let U be the pre-conjugate operator of Q defined as in Theorem
(1.1.22). If there is a closed subspace F c Y with E n F = {0} such that
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E + F =Y, then there is a non-empty weakly compact convex-valued 1-
Lipschitz mapping V: X—2E suchthat U o V = I, on X.
Proof: Let
A= {1 = (1,) € R*with 1, 7 «}.

We define then a set-valued mapping W from X to the 2¥ for x € X by

Wx ={u€Y:3aA EAnsuchthatu =w — lim, f(1,x) / 1,.}. (26)
We show first that W is everywhere non-empty valued with W (x) c E , and
with || u |[=Il x || forall u € Wx . Since f is an e-isometry,
lim,_, Il f(1x) / A l- 1. Boundedness of (f(1x)/1);s; and reflexivity of
Y entail that (f (1x) /1) s, is relatively weakly compact. Consequently,
Wx = @forallx e X.NoteE = 1M .Givenx € X andu € Wx , Let A €A
satisfy u = w — lim,, f(1,,x)/A,, . Without loss of generality, we can assume
x # 0. By definition of M, , for every ¢ € M, there is a § > 0 such that

(@, f ()] < Be, forallz € X. (27)
Substituting A,,x for z in (27), and dividing the both sides of the inequality

by 4,, , then we obtain

o, fF(nx) /20| < Be/A,, foralln€N. (28)
Letn — o . Then (@,u) = 0. Therefore, u € tM, =M = E .To show

lull=llxll,letx*€dll xIl. Thenx™ € Sy- and (x*, x) =Il x |l . According
to (9) of Lemma (1.1.14), there exists @, € Y* with || @, lI=Il x* = 1
such that

(D, f(2)) — (x* 2)| < 4e,  forallz € X. (29)
Substituting A,,x for z in the inequality above, and dividing the both sides of
the inequality by 4,, , then we get
(D, F(Anx) /2,) — (x*,x)| < der/A, forall neN. (30)
Let n — oo . Then (30), weakly lower semi-continuity of the norm of X

andu =w — lim,, f(4,,x) / 4,, together yield that
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Il x 1= lim, inf 1| f(A,x)/ 2, 120w 1= (P, u) = (x* x) =l x II. (31)
hence |l u |[=Il x Il. Note that (31) entails that for every x € X and for
every X* € Sy with (x*,x) =l x |l (i.,e.x* € d Il x Il ) there exists ® € Qx*
(acting as a subset of Y* ) with|| ¢ lI=Il x* [[= 1 such that
Wx c{u€E: (g u)=llul=lxI} (32)

We show next that W is positively homogenous. Letu € Wx and 1 € A

suchthatu = w — lim,, f(1,x) / A, . Forany a € R*, let A% = %/1. Then

U=w-— Iign fA,x)/A, =w— Iign f(2%(ax))/ 2,

= 2 (w — lim £ (A3(a))/22).

a

This says that aWx < W (ax) for a > 0 . Consequently,
Wx = W(% (ax)) o %W(ax) . Thus, W(ax) = aWx forall x € X
and a € R* .

In the following, we show that W is 1-Lipschitz. We want to prove that
given,y € X ,and u € Wx , there exists v € Wy such that
Il v—ull<ll y—xIl. Indeed, by definition of Wx there exists A €A such
that f(1,,x) / A, = u in the weak topology. Relatively weak Compactness
off(4,y) / Anentails that there is 1, = (4,,,) € A such
That (f(,,y) /A, ) weakly converges to some v € Wy. Weakly lower
semi-continuity of the norm|[. |l on Y entails

v —w i< liminf Il £(23,5)/An, = f Q%) / Ay |
< liminf (I Ay) = A x I +€) /A, =Ny —x |,

Therefore, W is 1-Lipschitz.

Next, we will show that UoW = Iy on X. Note that both E and F are

complemented subspaces of Y. The projection P:Y — E along F is bounded,

and U* = Q is actually X* - F+ . Givenx € X , and u € Wx,let A1 €A such
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that u = w — lim,, f(1,,x)/A,, .This and definition of conjugate operator
imply that

(Uu,x*) = (u,Qx") = |i1§n(f(/1nx//1n ,Qx*) = (x,x").
This says that Uu = x for all u € Wx, or equivalently, UoW = I. Therefore,
W is a (set-valued) positively homogenously 1- Lipschitz mapping and
satisfies UoW =1y .

Finally, let Vx = co(Wx) forall x € X . Then V is again a non-empty w-
compact convex-valued 1-Lipschitz and positively homogenous mapping.
Since UoWx = x for all x € X, linearity and w-continuity of U together
entail that UoVx = U(coWx) = x, thatis, UoV = I.

Theorem (1.2.3)[1]. Suppose that X, Y are Banach spaces and that Y is
reflexive, and suppose that f: X—Y is and ¢ -isometry for some ¢ > 0 with
f(0) = 0. Suppose that the subspaces E and F, the operators U,V, P and Q
associated with f and F, are as same as in Theorem (1.1.18). If, in addition,
the subspace E c Y is strictly convex, thenV = W:X — Eisa (single-
valued) linear isometry satisfying

Vx=w—lﬂrpoof(/1x)//1, forallx € X
Therefore, V* o Q = (U o V)* = Ix-, and X is reflexive and strictly convex.

Proof: Suppose that E is strictly convex. Then E*is smooth. According to

Theorem (1.1.13), each @ € E* with @ # 0 has a unigue support
functional u € Sg .This, incorporating (32) entails that Wx (hence,Vx) is a
singleton, which in turn implies that

Vx =Wx=w—=Ilimy,,, f(Ax)/A, forallx € X (33)
And V is single-valued 1-Lipschitz mapping. On the other hand,
given, x;,x, € X, let x* € X* with|| x* ||[= 1 such that

(x*,x1 = x2) =l x; — x5 |l

By a simple discussion similar to that from (29) to (31), there is @ € Sy-

corresponding to x *satisfying the following equalities
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(@, Vxy) = (x*,x1) and (@, Vx,) = (x*, x,). (34)
Therefore,
Il —2x, IZ2INVx; =V, 1IZ2(0,Vx; —Vxy) = (x",x; —x3) = Il
X1 — X |l (35)
We have proven that V is a positively homogenous isometry.
We show finally that V is linear. For any x € X, x # 0, let
X1 =x,%, = —x,and x* € Sy~ with (x*,x) =|l x ||, and let ® € E* with
Il @ llI= 1 be the functional corresponding to x* satisfying (34). Then
NV —V(=x) I=(@,Vx = V(—x)) =(x*,x—(—x)) =2l x Il.
This and strict convexity of E yield V(—x) = —Vx. Thus, V is a
homogenously symmetrical isometry. It remains to show additivity of V. For
any x,y € X, letx™ € Sy«satisfy (x*,x +y) =l x+y |l and,let ® € Sg-,
be a functional corresponding to x™ such that
(@, Vx) = (x*,x) and (@, Vy) = (x*, y).
Thenll x +y 1=l Vx = V(=y) I=Il Vx + Vy I= (@, Vx + Vy) =
(x*x+yy=llx+yI=IV(+y) I=(V(x+y))
Therefore,

@Vx+y)=IV+y) lI=IVx+Vyll=(0,Vx +Vy).
This says that both V(x + y) and Vx + Vy are support functionals (with

same norm) of B+ and supporting Bg- at @ . Smoothness of E* implies

that V(x +vy) =V(x) + V(y).

Theorem (1.2.4)[1]. Suppose that X is a Banach space and that Y is a

reflexive, Gateaux smooth and strictly convex Banach space admitting the

Kadec-Klee property. Suppose that f: X — Y is an e-isometry with

f(0) =0, and that the subspace E c Y associated with f is @ -complemented

in Y. Then there is a linear operator T:Y — X with || T I< a such that
ITf(x) —xII<2e, x€X. (36)
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Proof: Let the subspace F, and the operators P, Q, U,V associated with f and
E be as the same as in Theorem (1.2.3). According to Theorem (1.2.3), X is

the reflexive strictly convex and Gateaux smooth; and V: X — F satisfying

View — limye f(Ax)/A =w = limy o, f(nx)/n (37)

Is a linear isometry with U o V = [ on X. The Kadec- Klee property of Y
implies that

Vx =w—1lim,o f(Ax)/A =1lim, . f(nx)/n. (38)
Note that the closed subspace F of Y satisfiesENF = {0} and E+F =Y,

and the projection P:Y — E along F satisfies|| P ||[< a . Since Y (X) is
smooth, we getthatd Il w ll=d |l u |l is unique forall u # 0 in Y(X) .

LetT =Uo P .Then| T I< a we want to prove that T satisfies (36).
Given x € X, without loss of generality, we assume that x = Tf(x) . For
everyne N, letB=Ilx—Tf(x) Il, 3 =(x—Tf(x))/B, qn(x) =
flx+nz), rpx)=f(x+nz)/n and @, =d |l r,,(x) |
Note that forany y > 0and foranyu e Y withu #0,d lyu ll=d [l u Il
Let @, = d |l 1,(x) Il. Then
I £ (x + nz) 1= (By, f(x +1n2)) < (D, fFENHI fx +nz) — f(x) |

<{(Dn. f(x)) +n+e. (39)
By (38), r,(x) — Vz .Gateaux smoothness and reflexivity of Y together
entail that @,, - @ = d |l V(z) Il in the weak topology of Y. Consequently,
lim, (Il f(x +nz) I —n) < (0, f(X)) + & (40)
On the other hand, let x* = d |l z |l . Since

Il f(x+nz)l-n=llx+nzll —n—e¢

We have
lim, (Il f(x +nz) Il =n) = lim, (| x + nz || —n) — e =
. liz+=xli=lizl ,
lim, —2——-¢=(x"x) — ¢ (41)

n

(40) and (41) yield
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(x*,x) — (@, f(x)) < 2e. (42)
According to (9) of the Main Lemma, we have

KQx™, f(¥)) — (x*, )| <4dellx* |, forally € X.

We substitute nz fory, n=1,2,...... , Then

KQx", f(nz)) — (x",nz)| < 4e |l x* |

Consequently,
KQx", f(nz)/n) — (x",z)| < 4ell x" | /n.
Letting n — oo, incorporating Theorem (1.2.3), we obtain
(Qx*,Vz) — (V7Qx",z2) = (x",z) =l z I.
Il Qx* lI=Il x* lI=Il @ lI= 1 and smoothness of Y together imply
Qx* = @. Now, we turn to prove that
@oV=dllzl (43)
Infact, let z2* =@ o V.Then || z* I< 1 and
Iz 1=l Vz I=(0.Vz) = (3", 3).

Therefore, z* €d llz I=d Il z I= x".
Notex*=Q@oV =dIlzll, T=UoPandU-o°V = Iy, we have

(x" Tf(x)) =(@,(VoUo°P)f(x)) =(Qx",(V oUo P)f(x))

={(x"\Uo(VolUoP)f(x))=(x",(U°P)f(x))
=(Qx", Pf(x)) = (@, Pf(x)) = (@, f (x)).
Sincel = (x*, 3) = %(x*, x — Tf(x)),
B=(x*(x—Tf(x))) = (x* x) — (x*, Tf(x)) = (x*,x) — (B, f(x)) < 2.
Corollary (1.2.5)[1]: Suppose that X,Y are Banach spaces and that Y is
reflexive, Gateaux smooth and locally uniformly convex. Suppose that
f:X = Y is an ¢ -isometry with f(0) = 0, and that the subspace E c Y is
a —complemented in Y. Then there is a linear operator T: Y — X with
I T I< a such that
ITf(x) —xI<2¢ x€X
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Proof. According to Theorem (1.2.14), it suffices to note that locally
uniform convexity implies both the strict convexity and the KKP.
Corollary (1.2.6)[1] (Semrl and V&iala). Letl <p < o if X and Y are
LP-spaces, and if f: X — Y is an ¢ -isometry with {(0) = 0, then there is a
linear operator T : Y — X with || T ||[= 1 such that

ITf(x) —xlI<2e x€X
Proof: Assume that both X and Y are LP—spaces with 1 < p < oo . Then they
are both (super) reflexive, uniformly convex and uniformly smooth. Suppose
that e > 0, and that f: X — Y is an e-isometry with f(0) = 0. Then by
Theorem (1.2.3), there exists a linear isometry V: X — Y. By Theorem
(1.2.4), it suffices to note that for any fixed 1 < p < oo, if one LP—spaces X
is linearly isometric to sub space of another LP—space Y, then X is

1-complemented in Y.
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Chapter 2

Stability characterization

We show that the subspace N plays a crucial role. For example, (i)
U* N+ - X**is w* — to — w* continuous surjective isometry; and, in
particular, if Y = spanf (X) is surjective, then the mapping f is stable, if and
only if Nt is complemented in Y; (ii) if Y is reflexive and N+ is
complemented in Y, then for any projection P:Y — N+ , the operator
T = U*P satisfy || Tf(x) — x II< 4e, for all x € X; and (iii) if, in addition,
Y is Gateaux smooth and locally uniformly convex, then T = U*P satisfies
the sharp estimate || Tf(x) — x II< 2¢, for all x € X. We present similar
results for such mappings on general Banach spaces.

Section (2.1) e-isometry and linear isometry with Stability
Characterization of e-isometry or Reflexive Spaces
A mapping f from a Banach space X to another Banach space Y is said to

be perturbed metric —preserved provided there exists € > 0 such that

[ f)—fO) Il =llx—=yll|<g forallxy € X (1)
The mapping f is also called an e- isometry. There are many different names
for this notion such as approximate isometry, non-linear perturbation of
isometry and nearisometry The mapping f is said to be standard if f (0) = O.
A standard e-isometry f: X — Y is said to be («, y) —stable for some a > 0
and y = 2, if there exists T € B(L(f),X) with | T lI< a such that

I Tf(x) —x < ye forall x € X, (2)

Where L (f) denotes the closure of span f(X) in Y. We call a 0-isometry an
iIsometry, and if no confusion arises, we simply call ( «, y) — stable "stable".
In this chapter, we consider the two questions:
(1) Is there a stability characterization for a general e-isometry f: X — Y?
(I1) Is there an isometric copy of X in Y if an e-isometry f: X — Y exists?
g-isometry, isometry and linear isometry. The study of properties of
iIsometries between Banach spaces and their generalizations has continued for

80 years. The first celebrated result is due to Mazur and Ulam: Every
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surjective isometry between two Banach spaces is necessarily affine. But the
simple example: f : R — ¢2 defined for t by f(t) = (t,sint) shows that it
IS not true if an isometry is not surjective. For non-surjective isometries,
Figiel showed the following remarkable result: Every standard isometry
admits a linear left- inverse of norm one. Godefroy and Kalton studied the
relationship between isometries and linear isometries , and showed the
following deep Theorem, which resolves a long-standing problem whether
the existence of an isometry implies the existence of a linear isometry : If X
Is separable and there is an isometry f: X — Y, then Y contains a linear
iIsometric copy of X; and for every nonseparable weakly compactly generated
space X there exist a Banach space Y and an isometry f : X — Y so that X is
not linearly isomorphic to any subspace of Y.
e-isometry and stability. In 1945, Hyers and Ulam proposed the following
question: whether for every surjective e-isometry f: X —» Y with f(0) =0
there exist a surjective linear isometry U: X — Y and y > 0 such that

Il f(x)—UxII<ye, forallxe€X. (3)
After many years of efforts of a number of mathematicians, the sharp
estimate y = 2 was finally obtained by Omladi¢ and Semrl.

The study of non surjective e- isometry has also brought to mathematicians
attention since 90s of the last century. First proposed the following Problem
in 1995.

Problem (2.1.1)[2]. Given two Banach spaces X and Y, whether there exists
a constant y > 0 Such that for every standard e-isometry f: X — Y there is
a > 0so that f is (a, y)-stable?

Then he showed that the answer is affirmative if both X and Y
are L, spaces (1 < p < o). Further presented a sharp estimate of (2) with
y = 2 if both X and Y areL? spaces for 1 < p < o . However, Qian gave a

counterexample showing if the space Y admits an uncomplemented subspace
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X then for all € > 0 there is an unstable standard -isometry from X to Y.
Since a Banach space satisfying that every closed subspace is complemented
in it must be linearly isomorphic to a Hilbert space, this, incorporating of
Qian's counterexample, entails that if a Banach space Y satisfies that every
standard e-isometry f: X — Y is stable for every Banach space X, then Y is
linearly isomorphic to a Hilbert space . This disappointment makes us to
search for some weaker stability version and some appropriate
complementability assumption on some subspaces of Y associated with the
mapping. Recently, Cheng, Dong and Zhang gave the two questions above
some affirmative answers.

Now we know that there are many remarkable results about e-isometries
on Banach spaces in the past eight decades. However, there are still many
questions deserving consideration. For example, what classes of non-
separable Banach spaces can guarantee that every isometric mapping from a
Banach space to a space in this class always induces a linear isometry? Is
there a stability characterization for e- isometries? If there is an e-isometry f
from a Banach space X to another Banach space Y, is there an isometry (not
necessarily linear) g: X — Y? The propose of this chapter is to consider the
first two questions.

This chapter is organized as follows. In this section , making use of
Cheng, Dong and Zhang's Lemma and invariant means of ¢, (X) ,we show
that every e-isometry f : X — Y induces a closed subspace N of Y™ and a
linear surjective isometry U: X* - Y* / N hence, U* : N+ - X** the
conjugate operator of U is a w*to w* continuous linear surjective isometry.
In particular, if Y is reflexive, then N+ is just a linear isometric copy of X in
Y. And we show that if Y is reflexive, then a standard e-isometry f: X = Y is
(a,4) —stable if and only if the subspace N+ c Y is a-complemented in
L(f), the closure of span {(X) in Y. And if Nt is a-complemented in L([),
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then f is (a, 4) —stable with T = U*P for every projection P: L(f) - N+
with || P lI< a . If, in addition, Y is smooth and locally uniformly convex (or,
more general, strictly convex and admitting the Kadec-Klee property), then f
Is (a, 2) —stable. In another section we show that a standard
e-isometry f: X = Y is (a,y) —stable in the sense that there exists a bounded
linear operator T: L(f)*™ — X™ with || T |I< a such that

ITf(x)—x IS ye, forallx €X (4)
If and only if Ntis w* — a-complemented in L(f)** (whereL(f)** denotes
the second dual of the space L(f)); and an («a,y) —stable e-isometry is
always (a,4) —stable.

In this chapter, all notations are standard. The letter X will always be a real
Banach space andX*its dual. By and Sy denote the closed unit ball and the
unit sphere of X, respectively. For a subspace M c X, M+ presents the
annihilator of M, i.e. Mt = {x* € X*:(x*,x) =0 forallx € M}. If M c X*
then M , the pre-annihilator of M is defined as *M = {x € X: (x*,x) =
O forallx® € M} .Geven a bounded linear operator T: X - Y, T*.Y* - X*
stands for its conjugate operator. For a subset A ¢ X(X*), 4, (w* — 4) and
co(A) present the closure (the w*—closure), and the convex hull of A,
respectively. For simplicity, we also use A** to denote the w*—closure
of Ac Xin X",

Assume that X, Y are Banach spaces, and {: X — Y is ane-isometry. In this
section, we shall use an invariant mean of X to define a bounded surjective
operator R:Y* — X*. With the aim of the kernel N of R and the operator Q,
we further define a linear surjective isometry U : X* - Y*/N. To begin with,
we recall definition of invariant mean of a semi group and some related
result.

Definition (2.1.2)[2]. Let G be a semi group. A left-invariant meanon G is a

linear functional u on £,.(G) such that:
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(Hu(f) =1,

(i)u (f) > 0 for every f >0,

(iii) Vf € 1,(G), Vg € G, u(f,) = u(f), where f is the left-translation of

by g ;ie. f,(h) = f(gh),Vh € G.

(iv) A analogously, we can define right-invariant mean of G. an invariant

mean is a linear functional on ¢,,(G) which is both left- invariant and right-

invariant. Note that (i) and (ii) are equivalentto (i)and || u I= 1 .

Lemma (2.1.3)[2]. Every abelian semigroup G (in particular, every linear

space) has an Invariant mean.

Theorem (2.1.4)[2]. Suppose that X, Y are Banach spaces, and that f: X - Y

Is an e-isometry for some € > 0. Then there exist a closed subspace N c Y™,

two linear isometriesU : X* -» Y*/NandV : Y*/N — X* such that
VU=Iyand V=U"1

Proof. Without loss of generality, we can assume that f is standard;

otherwise, we substitute g = f — f(0) for f. let C(f) =co(f(X) U

—-f(X)) .

We first define a linear operator R : Y* - X*with || R I< 1 . Note X is
an Abelian group with respect to the vector addition of X. by Lemma (2.1.3),
there exists a translation invariant mean u on £,,(X) .Fix any x € X since f is
an e-isometry,

9x(2) = f(x+2) — f(2), forallz€X (5)
Define a bounded mapping g, : X — Y. Therefore, (@, g,.) € {,,(X) for every
@ € Y*. We also dente the invariant mean by u, or u,(.) , emphasizing that
the mean is taken with respect to the variable z.

Now we define the linear mapping R : Y* > RXfor ¢ € Y* by

(R®,x) = u,({@,gx)), forallx €X. (6)
We claim that:
() RO € X" for every@ € Y™,
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()N RDI<I DI for every D € Y™;
(iii) If @ € Y*is bounded on C(f),then @ € ker R.
Fixany @ € Y*and let u,v € X . Then
(RO, u +v) =MD, gusv)) = 1 (D, flu+v+2) — f(2))) =
(@ fu+v+2) —f(v+2)) + p, (B f(v+2)—f(2) =
B, (0, flu+2z) = f(2)) + (D, f (v +2) — f(2)) =

n(@, gu)) + u(@, g,)) = (RO, u) + (RO, v). (7)
Therefore, additivity of R¢p has been shown. It follows from additivity of,
(R, Au) = A(R¢, u) for all rational number A. (8)

Note || g lI= 1 and note that f is an e-isometry. Therefore, (5), (6) and (8)
imply forallu,v e Xandk € N,

1
[(R®,u) — (RO, v)| = T [(R®, ku) — (R®, kv)|

] <(®’f(ku +i) —f(Z))) _ HZ((Q’f(kv +i) —f(Z))>‘

. <(®,f(ku +2) ;f(kv +Z))>

AR ;f(kv 2 <t 0

| (ku+2z)— (kv +2z) |l +e
Il 2

lu—vl, as k — oo,

<Hplltol

€
=lolMllu—vl +E_>" @

Hence
[(R®,u) — (RO, v)| <N @ IMlu—vl forallu,veX. 9)
We have proven that R@ is 1-Lipschitz on X. this and (8) together entail

that RQ is linear and withll R [I<Il @ Il .Therefore, (i) and (ii) hold, and
R:Y* — X"is a linear operator with|| R I< 1.
To show (iii), let M, associated the e-isometry f be defined by
M, = {y € Y*is bounded on C(f)}, ife >0;=C(f)* ife=0, (10)
M = M, , the closure of M,. Given @ € M,, definition of M, implies that
(D, f) € £.(X).
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For every x € X it follows from the translation invariance of y,
(RO, x) = u, ({0, f(x + 2)) — f(2))) = n, (D, f (x + 2))) — u, (D, f(2)))
=0.
Consequently, (iii) holds.
The following two mappings £: X* = 2¥ andQ:X* - Y* / M are defined in

Cheng, Dong and Zhang:

L(x*) ={0 € Y*:(®, f) — x*is bounded on X}, ife>0; (11)
L(x*)={@ eY* (@, f) =x*}, ife =0, (12)

And
Q(x*) =t(x*)+M, forallx* €X" (13)

By Theorem (1.1.22), Q is a linear isometry.
Next, we show RQ = Iyx-.By the fact (iii) we have just proven, M, c kerR.

Continuity of R implies M c kerR.Thus, R is eventually a linear operator

from Y*/M to X*with || R |I< 1. Note for each @ € £(x*), we have
K@, f(2)) — (x*,z)] < Be, forsomep >0and forall z € X.
Since u is a positive functional on £, (X) with || u II= 1 = u(2) , for all
x € X,
(R®,x) = u, (9, f(x + z) — f(2)))
= 1 AWD, f(x + 2)) — (x", x + 2)) — ({0, f(2)) — (x", 2))
+(x", x)} < p(Be) + u(Be) + p,((x*, x)) = 2 + (x*, x)
Or, equivalently,
(RO — x*,x) < 2Be, forallx € X.
Therefore, R — x* =0 for all @ € £(x*) . Consequently,

RQ(x*) = Rt(x*) =x*, forallx* € X" (14)
Finally, let N = kerR (please keep this in mind! this subspace and its
annihilator Nt will play an important part for discussion of stability in this
section). We define the operators U: X* - Y*/N andV:Y* /N - X~*

As follows:

Ux* = Qx*+N, for all x* € X*, (15)
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And

V(@ +N)=R(®), forall@eY" (16)
Since N = kerR, clearly, V is well-defined with || V [[=Il R II< 1. Since
Q:X* - Y* /M isan isometry, and since M c kerR = N, U is also well-
defined and with || U [I=Il Q II< 1. Itis easy to observe that VU = RQ = Ix-.
On the other hand, RQ = Iy~ implies that R:Y* — X™ is surjective, which in
turn implies that V:Y*/kerR = Y*/N — X* is an isomorphism. This and

VU = I~ further entail U: X* = Y* / N is an isomorphism, while for

*

eachx™ € X
™ 1= (VD)X I=NVUX) NIV I Ux* 1< 1 x* |l

Implies || Ux™ lI=Il x* [l and | V@ I=Il @ || fore ach @ € Y*/N. Hence,
both U and V are surjective isometries and withV = U1 |
Remark (2.1.5)[2]. By (14) and the proof of Theorem (2.1.4), we have
VU = RQ = Iy~ we often blur the distinctionV: Y*/N - X* and V:Y* - X~
i.e. the operator V is acting either on the quotient space Y*/N, or, on Y™, if
no confusion arises. Therefore,
V@ =x* foreveryx®™ € X* and every ® € Qx™ + N.
Corollary (2.1.6)[2]. Suppose that X, Y are Banach spaces, and f: X — Y is
a standard e-isometry for some ¢ > 0. With the subspace N and the operators
U and V associated with f as in Theorem (2.1.4), we have:
() V" is aw™ — to — w*Continuous surjective isometry from

X*to N+ c C*(f) , where C**(f) denotes the w*-closure of C(f)

inY™.
(if) If, in addition, Y is reflexive, then V* is actually a surjective isometry
from X to the subspace Nt c C(f) c Y.
Proof: (i). Let the operator V and the subspace N associated with f be
defined as in Theorem (2.1.4). Then V:Y* / N — X™is a linear surjective

isometry. Therefore, V* : X** — N is a linear surjective w* — to — w*
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Continuous isometry. Next, we show N+ c C**(f) . Suppose, to the
contrary, that there is u € N+ \ C**(f). Note that both C**(f) and {u} are

non-empty w*—closed convex sets. Then by separation Theorem of convex
sets in locally convex spaces, there is @ € Y* such that

(@, u) > supyec(r)(@, v) . Hence,@ € M, < N and this is a contradiction!

*

(ii). Suppose, in addition, that Y is reflexive. Because V* is w* — to — w
continuous isometry from X** onto the subspace N+ of Y** = Y,we see that
X is also reflexive and V* is surjective from X to N* ¢ ¢*(f) = C(f) c Y.
Remark (2.1.7)[2]. For an e-isometry f from a reflexive Banach space X to
another Banach space Y, though Corollary (2.1.6) follows that X is isometric
to a reflexive subspace of Y**, we cannot claim that X is isomorphic to a
subspace of Y, even if X is a Hilbert space and f is simply an isometry. For
example, let H be a non-separable Hilbert space. Then by Godefroy-kalton's
Theorem, there exist a Banach space Y and an isometry {: H — Y, so that H
Is not even linear isomorphic to a subspace of Y.

Let X and Z be Banach spaces and f: X — Z be a standard e-isometry for
some € >0. Weuse Y = L(f) to denote the closure of span {(X) in Z
and C(f)(C**(f),resp.) again the absolute (w*—, resp.) closed convex
hull of f(X). Note that f is actually from X to Y. Let the subspace
M., M c Y*, the operators R: Y*(Y*/M) » X*and Q : X* - Y* /M and be
defined in the proof of Theorem (2.1.4). The subspace N= ker (R) c Y*,
the linear isometries

U:X*->Y*/N andV=U"1Y*/N - X*
Associated with f are also defined as in Theorem (2.1.4), and
U :Nt>X* and V*=U*) x> Nt
Are their conjugate operators. We further assume that Y is reflexive.

Recall that a standard e-isometry f: X — Z is (a,y) —stable if there exist a

positive number yand T € B(Y,X) with || T ||I< a such that
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I Tf(x) —x II< ye, forall x € X, an
Where Y = L(f).

Theorem (2.1.8)[2]. Let X, Z be Banach spaces and {: X — Z be a standard
g-isometry. Suppose that Y = L(f) is reflexive and f is (a,y) —stable . Then
(i) Nt c Y is a-complemented in Y;
(i) P =V*T:Y > N-tis aprojectionwith | P I< a;
(iii) T|y1:N* - X Isanisomorphism with || Ty II< « ; and
(iv) TV* = Iy, and V*T|yL = IyL
Proof: Since Y is reflexive, by Corollary (2.1.6), V* = (U*)~1 is a surjective
isometry from X to Nt < C(f) . (iv). clearly, it suffices to show TV* = I, .
Indeed TV* = I entails
[o =V IL,U =V(TVYU* = (VTYVU*) = (VT) ;0 = V' Ty,

Thatis, V*T|ys = ;1. Note V*(X) = N* c C(f) =co(f(X) U
—f(X)). Forevery x, € X , let (y,) © C(f) be a sequence such that

Yo = Zjes 4 f (%) = Vxg,as n > oo, (18)
For some finite sets /, € N, (x")je;, € X and (4}')j¢;, < R with

Yjej, I4'I = 1. For each x* € X*, by the Main Lemma there exists

@ eY*'with |l @ I=Il x* lI= r such that

(D, f(x)) — (x*,x)| < 4der, forall x € X. (19)
Let x,, = XJe; Afxj". Then, Remark (2.1.5), (18), (19) and X j¢; 14/'] =1

together entail (@, V*xy — y,,)| = (D, V*x0) — (D, v,)| = VB, x0) —
(D, 7)1 = x™ %0 — 20) = (D, 7)) — (x™, x| = ™, 20 — x50 —

@, y) — (x* x| =

[{x*, xg — x| —

1, 1 (@105 = 6 X 2 10 X0 =X — e I X" I

Note |l @ [I=Il x* || for all x* € X* . Consequently,
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[(x*, X0 = X))l S B,V Xg =y +4e I X" IS (Il Vixg =y |l

+4e) [ x* |- 4e |l x* |I. (20)
Suppose that T: Y — X satisfies || T ||I< a and
I Tf(x) —x I<ye, for allx € X, (21)

For some y > 0. Then for every x* € X*
vell x* 1= (x*, TF(x) — x) = (T*x* f(X)) — (x*,x)|, forall x € X (22)
This implies that the function |[{T*x", f) — x| defined on X is bounded by
vell x* II.By(11),0,- = T*x" € £x*. Letx™ € Sy be such that
(x*, TV*(xg) — x0) =N TV x5 — x4 Il
Then (19)-(22) together imply
Il TV*xg — xo 1= [{x™, TV xg — x0)| = [(x™, TV"x0) — {x”, o)
= [T*X*,V"%o) = (X", Xo)| = (D=, VX0) — (X", Xo)]
< @, V%o = Y| + [{@x, Yn) — (X7, Xn)| + (X", X0 — Xn)|
< 2@y, VX0 — Yn)l
£ [0 FOP)) = (X)) + 46 <20y, VX0 = Y

j€In
= S Pl TG = 1 e
J€Jn
< 2[(@x, V' Xo — Yn)| +ye+de - (4 + y)e.

Therefore,
I TV*(x0) — x0 IS (¥ + D)e.
Arbitrariness of x, € X entails TV™ = Iy, hence, (iv).

(iii). It immediately follows from TV* = Iy we have just proven,
since V* : X > N+ is a surjective isometry.
(ii). It follows from (V*T)(Y) = V*(X) = Nt c Y.
(). It follows from (ii).
Theorem (2.1.9)[2]. Let X, Z be Banach spaces and {: X — Z be standard
e-isometry. Suppose that Y = L(f) is reflexive. If N+ is a-complemented in

Y, then for every projection P : Y - Nt with || P I< a, T = U*P satisfies
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MITIS a;
(IDTV* = Iy, theidentityonX,
(i) | Tf(x) —x II< de, forallx € X.
Proof: Let W c Y be a closed subspace of Y with Nt n W = {0} and with
N+t + W =Y such that the projection P : Y — N+ along W satisfies
I PI<a;,andletT = U*P. Then | T I<Il U* |lll P I< a. Therefore, (i)
follows. (ii).since V* = (U*)"!: X -> N1, we have
TV*=(U*P)V* =U*(PV*)=UV* = I.
It remains to show that T satisfies (iii). Notethat U : X* — Y™ / N is defined
by Ux* = @,« + N,and Y*/N = [(N1)* @ WL]/N = W, where @,-(=
@) € Y*satisfies (19) for every x* € X*. Therefore,
(x*, Ty) = (Ux", Py) = (Ux",y) =(Dy+,y) forallx* € X",y €Y  (23)
Thus, for every fixed x € X, we choose x* € Y* with |l x* ll= 1 such that
[(x* Tf(x) —x) =1 TF(x) —x |l. (24)
It follows from definition of T, (23) and (24)
I TF(x) —x 1= [x" Tf(x) —x) = x™, Tf(x)) — (x™ %) =
[(x*, U*(Pf(x))) — (x*, x)| = KUx*, Pf(x)) — (x*, x)| = [{Ux*, f(x)) —
(X", x) = [{Dx, T(X)) — (X", X)| < 4e. (25)
Therefore, we have shown (iii), and which completes our proof.
Corollary (2.1.10)[2]. Let X, Y be Banach spaces and {: X — Y be a standard
- isometry with reflexive Y = L(f). Then
(i) fis (a,y)-stable if and only if the subspace N+ associated with f is
a-complemented in Y.
(ii) If the subspace N+ associated with f is a-complemented in Y, then f
is (a, 4)-stable.
Proof:. (i). Sufficiency follows from Theorem (2.1.8), while Theorem (2.1.9)
implies necessity. (ii). Suppose that the subspace N+ associated with f is

a-complemented in Y Theorem (2.1.9) implies that f is (a, 4)-stable.
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For a (continuous) convex function g defined on a Banach space X, its sub

differential mapping dg : X — 2% is defined for x € X by
dglx) ={x"eX": g(y) —glx) = (x"\y —x), forallx € X}.

The convex function g is Gateaux differentiable atx € X if and only if dg is

single-valued at x, and in this case, dg(x) = {dg(u)} .The following

property is a direct consequence of Proposition in Phelps'

Proposition (2.1.11)[2]. A Banach space X is Gateaux smooth if and only if

the sub differential mapping @ II. Il: X = 2% is single-valued and norm —to-

w™ continuous at each point x # O.

For a standard - isometry {: X — Y, letM, be defined by (10), and let
E={yeY:(0,y)=0 forall € M.}. (26)
We have the following Theorem

Theorem (2.1.12)[2]. Let X, Y be Banach spaces and f: X — Y be standard

¢ —isometry with reflexive Y = L(f). If, in addition, Y is Gateaux smooth,

strictly convex and possessing the Kadec-Klee property (in particular, locally

uniformly convex), then f is (a, 2)-stable if and only if the subspace N+ is

a-complemented in Y.

Proof: Sufficiency. Since Y is reflexive and strictly convex, by Theorem

(1.2.3) and the Kadec-Klee property of Y, the operator ¥ : X — Ydefined by

Yx =w—Ilimy, fAx)/A =lim, o f(nx)/n (27)

Is a linear isometry. (19) further implies ¥ (X) < E . According to Theorem

(2.1.4), X'is also reflexive, strictly convex and Gateaux smooth. Since the

closed subspaceN* is a-complemented, there is a closed subspace W of Y

satisfying Nt n W = {0} and N+ + W =Y such that the projection

P:Y - N+ along W satisfies || P I< « . Since Y(X) is reflexive and

Gateaux smooth, by Proposition (2.1.11), d || u |l exist for all u # 0 in Y (X)

and d |I. 1l is norm —to-weak continuous at each point
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u#0. LetU:Y* /N — X" be defined by (15) and let T = U*P . Then

Il T II< a. We want to prove that T satisfies

I Tf(x) —x < 2¢, forall x € X. (28)
Given x € X, without loss of generality, we assume that x = Tf(x) . Let
B=llx—Tf(x)Il, z=x—-Tf(x)/B, (29)
Andletx* =d Il z Il (€ Sy+).Then (x*,x — Tf(x)) =Il x — Tf(x) Il by (23)
B =(x"x—Tf(x)) = (X", x) — (Dy, f(X)) < 4, (30)
Where @,.- € Sy~ satisfies
(@, f(¥)) — (x*,y)| < 4e, forally € X. (31)
Substituting nz for y and dividing the both sides of (31) by n € N ,we obtain
D+, f(nz)/n) — (x", z)| < (4/n)e. (32)

Let n — oo .Then, by (27)
(D W2) = (X", 2)=dllz Il (2)=lzl=1

(Dys, Wz) = 1 =l ¢, Il Yz Il and smoothness of Y further entail ¢,.- = d ||
Y(2) Il .On the other hand, let
gn(x) = f(x + nz), r,(x)=f(x+nz)/n and @, =d Il r,(x) |l (33)
Note that for any y> 0 and foranyue Y withu = 0,d | yu I= 1l u Il. Then

I f(x +nz) 1= (B, f(x +nz)) < (B, FO))+I f(x +nz) — f(x) I
< (Dn, f(x)) +n+e. (34)
By (27) again, r,(x) — Wz .Gateaux smoothness, reflexivity of Y and
Proposition (2.1.11) together entail ¢,, = d | ¥(2) lI= ¢, in the weak
topology of Y. Consequently,

lim,, sup(ll f(x +nz) I| —n) < (B, (X)) + €. (35)
Notex™ =d |l z Il . Since
Il f(x+nz) |l —n 2l x +nz | —n — ¢,

We have
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lim,, inf(ll f(x+nz) Il —n) =lim,(lx+nzll —n) —& =

1
Iz+-xll=1zll

lim, —2———¢=(x",x) —¢. (36)

(29), (35) and (36) yield
Il x = Tf(x) 1= (x*, x) = (Dyr, f(x)) < 2¢.

Necessity. If there exist a linear operator T: Y — X with || T ||I< a and

y> 0 satisfying
I Tf(x) —x I< ye, forall x€X,

Then by Theorem (2.1.8), N+ is complementedand S = U*T : Y - Ntisa
projectionwith [ SIS UM T I=IT < a.

Section (2.2): Stability Properties in General Banach Spaces

Let Z be a Banach space. A w*—closed subspace E of the dual space Z*is
said to be w* — a-complemented, if there exists a w*—closed subspace F of
Z*with ENF = {0} and with E + F = Z*, such that the project ion
P :Z* — E along F satisfies | P |I< a.
Theorem (2.2.1)[2]. Let X, Z be Banach spaces, {: X — Z be a standard
e-isometry with Y = L(f) and let f be (a,y)-stable. Then
(i) Nt c C*(f) c Y™ isw* — a -complemented in Y**;
()V*T*:Y** - Nt is w* — to — w*Continuously surjective and with
I VT I< a;
(iii) T**|ys : Nt > X*™is anisomorphism; and
(iv) T™V* = Iyw, andV*T™" |y = 1 ,1.
Proof: Recall that V* = (U*) 1 is a w* — to — w* continuous surjective
isometry from X**to N+ < C**(f) (Corollary (2.1.6) (i))

(iv) Clearly, it suffices to show T**V* = Iy«. Indeed, T**V* = Ix- entails
Ipo = ViU = VIV = (VT)VU) = (VT = VT,
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That is,V*T**|yL = I,+. NoteV*(X**) = N+ c ¢*(f) = w* — co(f(X) U
—f(X)) . For every x, € X** , there exists net (y,) < co(f(X) U —f (X)) of
the form: for each «a, there exist three finite sets
Jar (A1) jej, © Rwith ¥je; [Af] =1, and (x*) ¢, © X such that
w = Xjej A f (") = Vxg, inthew” — topology of Y. (37)
For each x* € X™, there exists @ € Y*with || @ I=Il x* = r such that
(@, f(x)) — (x*,x)| < 4er, Forallx € X. (38)
Let x, = Xje;, A7 xj" Therefore, (37), (38) and ¢, |4'| = 1 together
entail
(¢, V"0 — adl = U, V7x0) — (D, ya)| = VD, x0) — (D, Yo
= [(X*, X0 = Xo) = ({&, ya) — (x", X))
= [(x*, 20 — x| — (b, ya) — (", %)

= 1" %0 = %) - |Zx](<<af(x )= (< x) |

> (x*,x9g — x| —4de 1l x™ .
Consequently,
[(x* xg —x ) < dell x| +|[{, Vg — y,)|, forall x* € X*. (39)
Since T € B(Y,X)with |I T |I< a satisfies

I Tf(x) —x IS ye, forallx € X, (40)
For every x* € X*,
KT*x", f(x)) — (x" )| = " Tf(x) =) < yve llx™ |l (41)

Given § > 0, letx™ € Sy+be such that (x*, T V*xy — x¢) 2l T**V*xy —
Xo | =8 . Then (37)- (41) together imply | T**V*xy — xo I| =0 <

[Cc™, TV g — xo)| < [(x*, TV %0 = Ty )| + ™, T yq — xa)| +
[(x*, xq = xo) = KT*x", V%o = Yol + KT7x%, yo) — (x", x0)| +
[(x*, xq = x0)] < KT"x", V%0 = Yo )| + Xy [N (T F(x71)) —
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(X*,X]q))| +[(x" xq — xo) < (T7°x", Vixg — ya)| +ve + [(x", x4 — x0)| <
(T*x*,V*x0 — ya )| + K@, V%o — ya)l + (4 +y)e > (4 +y)e.
Therefore, | T V*xy — xo IS (y + 4)e. Arbitrariness of x, € X*™* entails
I (TV* —L)x IS (y + 4)e, forallx € X**,

Which, in turn, impliesTV* = I4--. Hence, we have proven (iv).

(iii). It immediately follows from T**V* = I4-- we have just proven,
since V* : X** > Ntisaw* — to —w* continuous surjective isometry.

(ii). since(V*T**)(Y*) = V*(X**) = Nt c Y** , and since both
V*and T**are w* — to —w™ continuous and with
NV*T*U<IV* I T I=II T I< a, (ii) follows. (i). It directly follows
from (ii).
Theorem (2.2.2)[2]. Let X, Z be Banach spaces and {: X — Z be a standard
e-isometry. If Nt is w* — a—complemented in Y**, then there is a linear
operator T:Y** — X** such that
(i) Tisw* — to — w™ continuously surjective and with|| T [I< «. ;
(ii) T = U*P, for some w* — to — w*continuous projection P : Y** - N+;
(ili) TV* = Ix+, the identity on X** ; and
(VI Tf(x) — x I< 4e, forallx € X.
Proof: Let W be aw*-closed subspace of Y** and with Nt n W = {0} and
with N+ + W = Y** such that the projection P : Y** - Nt along W is
w* — to — w™ continuous and satisfies || P I< a ,and let T = U*P . Since
both U* and P are w* — to — w™ continuous, T isw* — to — w™ continuous
with I T I<Il U™ llll P IS a . Therefore, (i) and (ii) have been shown. (iii) is
trivial by definition of T and properties of U and V. It remains to show that
T satisfies (iv). Since N+ is w* — a—complemented in Y**there are two
closed sub spaces C,D c Y*with C @ D = C + D = Y*such that D+ = N+
and Ct =W.Thus D = +(D1) = t(Wt) = NandC = L(ct) =1w.
Note that U : X* - Y*/Nis defined by Ux* = @, + Nand Y*/N =
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[N @ ‘W]1/N = ‘W ,where ¢,-(= @) € Y* satisfies (38) for each x* € X*.
Therefore,

(x*,Ty) = (Ux", Py) = (Ux",y) = (@r-, y), x" €EX",y €Y™ (42)
Thus, given § > 0, for every x € X ,we choose x* € X*with || x* ||= 1 such
that

ITf(x) —x Il =6 < [{x" Tf(x) —x) = x", Tf(x)) — (x™ %) =

|(x* U*(Pf(x))) — (x*, x)| = (Ux"*, Pf(x)) — (x*,x)| =

[(Ux™, £ (x)) = (x", 0] = Dy, f (X)) — (x", x)| < 4e. (43)
Arbitrariness of § implies (iv), and which completes our proof.
Theorem (2.2.3)[2]. Let X and Z be Banach spaces and f : X— Z be a
standard e-isometry with L(f) =Y. Thenthereisaw* —to — w"*
continuous linear surjective operator T : Y** — X™* such that

I Tf(x) —x I< ye, for somey > 0and for all x € X, (44)

If and only if the subspace Ntis w*~complemented in Y**.
Proof: Sufficiency follows from Theorem (2.2.2) (iv).

Necessity. It follows from the proof of Theorem (2.2.1), for every x, €
X**, there exists a net (y,) < co(f (X) U —f (X)) of the form : for each «,
there exist finite sets
Jar (A1) jej, © Rwith ¥je; A7 =1, and (x*) ¢, © X, suth that

Va = 2jeJ, Aff(xj“) - V*x,,in the w* — topology of Y**. (45)
And such that
[(x*, %0 —x ) < dell x| +{@,V*xy — Yo )|, forallx* € X*.  (46)
Suppose that T : Y** — X** is a bounded w* — to — w*continuous linear
surjective operator satisfying
I Tf(x)—x II< ye, forall x € X, (47)
For some y > 0 then ker T is w*—closed in Y™ and T:Y**/ker T - X* isa

w™* — to — w*continuous isomorphism. Therefore, there is a bounded linear
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isomorphism S: X* — tkerT such that $* = T. For every x* € X*, by (47)

we observe
[{Sx™, f(x)) — {x™, 0} = [(x", S"f(x)) — (x™, x)| = {x™, Tf(x)) —
(X ) <UXMTFx) —x < ye ll x* . (48)

Hence, the function |[(Sx™, f(.)) — x*| is bounded by ye Il x* I on X. By
(47) and (48), Sx™ € {x". Letx, = ¥ je;, Aj' X" . Given § > 0, let x™ € Sx-be
such that

(x*, TV*xq — x¢) 2l TV x5 — x¢ Il =6.
Then by (45)-(48)

I TV xg —xp l =6 < [{(x*, TV*xq — x)|
< [(x*, TV %9 — Ty ) + [(x™, Tyg — x )| + {x™, x4 — x0)
= |(Sx*’ V*xO - ya)l + |(Sx*,ya) - (X*ixa)l + |(X*’X(1 - XO)l

= [{0,V"xo — Ya)l
+ z A5 (€ Sx*, TH(X)) = (x*, ) | + [, % — x0)]
J€la

< [{Sx™, V*xg — Yo )| + ve + [(X*, Xy — Xo)|
< (Sx™, V7 xg — Yo )l + KD, V*xg — Yo )l + (4 +y)e
- (4 +7y)e.

Arbitrariness of § and x, implies

I (T V' — Iy)x IS (y + 4)e, forall x € X**,
Therefore, TV* = Iy~ .Consequently, V*T |y = IyL.Thus,

p=V*T:Y* - Nt isaw* — to — w* continuous projection. Suppose that
X, Z are Banach spaces and {: X — Z is a standard e-isometry for some £ >0
with L(f) =Y. Let the subspace M c Y*and the operator Q : X* - Y* /M
be defined by (10) and (13), respectively. Then, analogous to Theorem
(1.1.25), we have also the following Theorem.

Theorem (2.2.4)[2]. Let X, Z be Banach spaces and {: X — Z be a standard
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e-isometry. If Mt is w* — a-complemented in Y**, then there is a linear
operator T:Y** — X** such that

(i) Tisw* — to — w*continuously surjective and with | T [I< «;

(ii)T = Q*P, for some w* — to — w* continuous projection P: Y** - M*;
(iii)) | Tf(x) — x II< d¢, for all x € X.

Proof: Let W be a w*—closed subspace of Y** with N+ n W = {0} and

with N+ + W = Y** such that the projection P: Y** - N+ along W

(isw* — to — w™ continuous and) satisfies || a I< «; ,and let T = Q*P. Since
both Q*and P are w* — to — w™ continuous, T isw* — to —w™ continuous
with | T II<Il @Q* Illl P I< a . Therefore, (i) and (ii) have been shown. It
remains to show that T satisfies (iii). Let C,D < Y™ be two closed subspaces
wWithC @D =C+ D =Y*suchthat D* = Mt and Ct =W. Then D =
(b)) =+tMmMt) =M and € = 1(Ct) = ‘W. Note that

Q =X"->Y"/Misdefined by Qx* = @,- + M, and

Y*/M =[M @ *W]l/M = W, where @..(= @) € Y* satisfies (38) for each
x* € X*. Therefore,

(x*,Ty) = (Qx", Py) =(Qx",y) = (Dy+,y), x" €EX",y €Y (49)
Given § > 0, for everyx € X we choosex™ € X*with || x* |[= 1such that
ITfC) —x 1l =6 < [{x", Tf(x) —x)| = Kx™, Tf (%)) — (x", x)| =

[(x*, Q" (Pf(x))) — (x*,x)| = KQx*, Pf(x)) — (x*, x)| =
{Qx™, f(x)) — (x™ x)| = Dy, f(x)) — (x", x)| < 4e. (50)
Then || Tf(x) — x I< 4e + & forall 5§ > 0. So that (iii) holds.

Please note the following example which says that E and F are not linearly
iIsometric in general.

Example (2.2.5)[2]. Let X = R,Y = ¢Z and f:X - Y be defined by
f@) = In(A+1t)), ift=0;, =(t0),ift<O.
Clearly, f is a standard isometry with E = C(f) = Y,sothat Nt c Y is

isometric to X = R.
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Chapter 3
Stability of e-isometries of Banach Spaces

Let X, Y be two Banach spaces, and {: X — Y be standard e-isometry for
some € > 0. We show the following sharp weak stability inequality of f:
for every x* € X™ there exists @ € Y* with || @ I|=Il x* I= r such that
[(x*, x) — (@D, f(x))| < 2erfor all x € X. It is not only a sharp quantitative
extension of Figiel's Theorem but it also unifies, generalizes and improves a
series of known results about stability of e-isometries. For example, if the
mapping f satisfies C(f) = co[f (X) U —f(X)] =Y, thenit is equivalent to
the sharp stability Theorem.

Section (3.1): Sharp Inequality of Weak Stability of

g-isometries
Assume that X, Y are Banach spaces. A mapping f: X — Y is said to be
ane-isometry for some & > 0 provided
[HfG)—FfODD I =llx—yll|<e forallx,y€X. (1)
The mapping f is called an isometry if e = 0. f is standard if {(0) = 0. In this

case we use Y; to denote the subspace spanf (X) of Y.

The study of properties of isometries and e-isometries between Banach
spaces has continued for over eighty years since the Mazur-Ulam celebrated
Theorem: every surjective isometry between two Banach spaces is
necessarily affine. For general isometries, Figiel showed the remarkable
result in 1968: Every standard isometry from a Banach space to another
Banach space admits a linear left-inverse of norm one. Godefroy and Kalton
resolved a long standing problem about the relation between the existence of
iIsometries and linear isometries.

Hyers and Ulam first studied e-isometries and proposed a problem, which
can be reformulated as follows: Given two Banach spaces X, Y, whether

iIsometry f: X — Y there is a linear surjective isometry U € B(X,Y) so that
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f— U is uniformly bounded by ye on X. After 50 years efforts of a number of
mathematicians, a positive answer with the estimate y = 2 was finally
achieved by omladi¢ and Semrl. They gave an example of a standard
surjective e- isometry f: R — R showing that y =2 is optimal. Thus,
Omladi¢-Semrl's Theorem can be regarded as a sharp quantitative extension
of the Mazur —Ulam Theorem.

The study of properties of non-surjective e-isometries has been active
since 90's of the last century. The question, if every standard e-isometry
f: X — Y admits a linear quasi-left inverse, that is, if there exists
T € B(Y;, X)so that Tf — Id is uniformaly bounded on X seems to be very
natural. However, Qian showed that for all € > 0 every separable Banach
space Y admitting an uncomplemented subspace X has an unstable standard
e-isometry from X to Y. Therefore, an affirmative answer for the question
would imply that Y is, up to an isomorphism, a Hilbert space. This
disappointment makes us to search for some weaker stability version and
some appropriate complementability assumption on some subspaces of Y
associated with the mapping. Recently, Cheng, Dong and Zhang gave a weak
stability Theorem (Lemma (1.1.14)), which can be regarded as a quantitative
extension of Figiel's Theorem: Suppose that f: X — Y is a standard e-
iIsometry. Then for every x* € X*there exists @ € Y*with | @ II=Il x* I=r
so that

[(x*, x) — (@, f(x))| < 4er forall x € X. 2
It has played an important role in the study of stability properties of

e-isometries. Making use of it, Cheng and Zhou further presented a stability
characterization of e-isometries.

Since Figiel's Theorem says that every standard isometry is stable, without
loss of generality, we can always assume an e-isometry is standard and with

€ > 0. This chapter is organized as follows. In this Section, we first show a
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sharp version of Cheng-Dong-Zhang's weak stability Theorem (Theorem
(3.1.3)), i.e. constant 4" in (2) is replaced by "2". Motivated by Omladic-
Semrl, we show the constant "2" in the estimate above is optimal (Theorem
(3.1.4)). And we showed that if the e-isometry f satisfies that f{(X) contains
a sublinear growth net of Y, then Theorem (3.1.3) is equivalent to the
following generalized Omladi¢-Semrl's Theorem: There is a surjective
linear isometry U: X — Y so that

Il f(x) —Ux IS 2¢ forallx € X. €))
We show the constant "2" in the estimate above is optimal in the classical

sense; and if C(f) = co[f (X) U —f(X)] =Y, then it is equivalent to the
following sharp stability Theorem: there is a linear surjective operator
T : Y — X of norm one such that
I Tf(x) —x II< 2¢eforall x € X. (4)

The letter X will be a real Banach space and X™ its dual. By and Sy, resp.,
denote the closed unit ball and the unit sphere of X, resp. B(X,Y) stands for
the space of all bounded operators from X to Y, and @ ||. Il: X — 2% for the
sub differential mapping of the norm |I. || . For a subspace M c X, M+
presents the annihilator of M, i.e.M+ = {x* € X*: (x* x) = 0 for all x € M}.
If M c X* then *M the pre-annihilator of M is defined as
*M={x €X :{x*,x)=0forallx* € M}.Given ahbounded linear
operator T: X - Y, T*:Y* — X*stands for its conjugate operator. For a subset
Ac X(X*), A, (w*— A) and co(A) presents the closure (the w* —closure),
and the convex hull of A, respectively. For simplicity, we also use A™ to
denote the w* —closure of A c X in X™.

We will show the sharp weak stability version of Cheng-Dong-Zhang's
Lemma. Before doing this, we first establish the following Lemma about

e-isometries.
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Recall that for a non-empty set Q, a family U of subsets of Q is said to be
a free ultrafilter provided (i) @ ¢ U, and N {U € u} = @; (ii)U,V € U =
UnNnV e (iid)U eUandU cVc Q=V € U;and(iv)A c Q =
eitherA € U,or,Q\A € U. letU beafree ultrafilter,and K be a
Hausdorff space. A mapping g:Q — K is said to be U -convergentto k € K
provided for any neighborhood W of k, we have g~1(W) € U . In this case,
we write lim,, g = k . Please note that if K is compact then every mapping
g:Q — K is U -convergent.
Lemma (3.1.1)[3]. Suppose that {: X — Y is an e-isometry, and U is a free

ultrafilter on N Then
f(nx)

)
n

O(x) =w* —limy, Vx € X, (5)

Defines an isometry ®: X —» Y™,
Proof: Clearly,® is well —defined since for every x € X, the bounded

f(nx), . . . ek .
sequence (T) Is relatively w*—compact in Y**. Givenx,y € X, w™ —lower

semi-continuity of the dual norm |I. [l of Y™** implies

f(nx)  f(ny)

n n

| ®(x) — O(y) I=ll w* — li{Ln(

f (nx)

n

) |l

< IiLan Il —fmy)nl=lx—-yl.

On the other hand, according to the weak stability Theorem (Lemma
(1.1.14)), forany x* € d l x — y Il there is @ € Y*with | @ I=Il x* =1
such that

(@, f(2)) — (x*,z)| < 4¢,Vz € X.
We substitute nx for z in the inequality above, and divide its both sides by n.
then

(@, f(nx)/n) — (x*, x)| < 4&/n.
Therefore, w*-continuity of@ on Y**entails
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(x",x) = lim ((D,@) = (0, P(x)).

Analogously, we obtain

(x*,y) = litrln (Q,@) = (0, 2(y)).
Thus,
| ®(x) — ®(y) 1= (D, P(X) — D(Y)) =X x=y)=lx—vyI.
So that

| o(x) — o) I=llx—yll, Vxy€eX
Note that if f: X — Y is an e-isometry, then g = —f(—-) is also an

e-isometry. We can obtain another isometry ¥: X — Y** defined by
f(=nx)

)
n

Y(x) =w*—Ilim, — forallx € X.

Lemma (3.1.2)[3]. Let X, Y be Banach spaces, {: X — Y be a standard

e-isometry, and let ®: X — Y™ be defined by (5). If the norm || || of X is

Gateaux differentiable at z € Xand with d || z |I= x™, then there exists
¢ €0 || ®(2) N Y*such that
[{(x*, x) — (@, f(x))| < 2¢, forall x € X.
Proof: Let x* € X*and z € X satisfy d |l z ||= x",i.e.
lim, (Il x +tz Il =t) =lim_ g+ llz+tx | =l z I/t =
(x*, x), forall x € X.
Then || x* I= 1. Wecanassume || z |[= 1.Given X € X , let
u,(x) = f(x + nz) ,and let @,, € Y* with || @,, [I= 1 such that
(D, Uy (x)) =Il u, (x) Il . Then

(6)

(7)

(8)

Il u, (%) 1= Dy, f(x +n2)) = (D, f(x)) + (D, f(x +nz) = f(x)) <

(D, fOONHI f(x +n2) = f(x) IS By, f(x)) +n + &,

Thus, for any w*—cluster point @of (@,,) we have || @ I< 1 and
lim,, inf(ll w,,(x) I =n) < (@, f(x)) + «¢.

On the other hand, by definition of e-isometry we have
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|i15n inf (Il u,(x) I —n)

> liminf(l x+nz |l —=n) — ¢
n

= lim inf (2~ n_nl_xl" 20 e
Therefore,
lim,, inf(ll u,(x) I —=n) = (X*,x) — €. (11)
This combined with (10) entails
(x",x) = (@, f(x)) < 2e. (12)

Next, we show that the functional @ in the inequality above is independent of
x. infact forany t > 0,
t + e 2|l f(tz) 1= (D, f(t2))
=(Dn, f(x + n2)) — Dy, f(x +n2z) — f(t2)) 2| f(x +nz)
I =Il fCx+nz) = f(tz) 1= (I x +nz | —e)—ll x + (n —t)z
| —e >t —2(l x I| +¢).
Therefore,
t+e=(0 f(tz)) =t —2(l x || +¢), forall t = 0.
Divide the inequality above by t > 0. Then lim,_, (@, f (tz)/t) = 1. Thus for
any w*-cluster point z** € Y**of (f(nz) /n)pen(say, ®(z)), we obtain
(0,z") =1.Note || z* |I< landll @ lI<1.Wehave@ €9 |l z* |l and
z€d |l @Il .Inparticular,
PeEIN D) Iland D(z) €d |l @ |. (13)
Since z**is independent of x, @ is necessarily independent of x. Thus, we
have shown
(x*,x) — (@, f(x)) < 2¢, forallx € X. (14)
Note that, in the proof of the inequality (14), for the Gateaux differentiability
point z € X , and for any fixed x € X, the functional @ can be chosen to be
any w*-cluster point of (@,,) satisfying

(Dn, fx +n2)) =l f(x+nz) I, foralln€N.
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Since @ is independent of x, by putting x = 0, @ can be any w*—cluster

point of (@,,) satisfying

(D, f(nz)) =Il f(nz) Il, foralln € N, (15)
In the following we show
(x*,x) — (@, f(x)) = —2¢, forallx € X. (16)

Given x € X, let Y,, € Y*with || Y, l= 1 such that
(Y, f(x +nz) = f(x)) =l f(x +nz) — f(x) Il.
Then
I un (%) 1= (W, un (x)) = (Y, f (x + nz) = F(x)) + (Y, f(x)) =
I f(x +nz) — fQ) | +Wn, f(x)) = (Il nz || —€) + (P, £ (x))
=n—¢+ (1, f(x))
Since
lu,(X) I-n<Ulx+nzll+e) —n=>Ux+nzll—llnzl)+e

lz+n x|l =zl
*
= — - (x*,x) + ¢,
n

For any w*—cluster point yYof (y,,) we have
(x*,x) = (¥, f(x)) = —2e.
Note
t+e =l f(tz) 1= (Py, f(t2))
= (Y, f(x + nz) = f(x)) — (Yn, f(x + nz) — f(t2))
+ (W, f(x)) 21 f(x +nz) — £ () | =l f(x + nz) — f(¢2)
=1l fC)
2(inzll—g)—(Ulx+Mm—-0)zll—e)—(Uxll+e) =t -2
Il x I —3e.
Therefore,
t+e=>(, f(tz))=t—2 x| =3¢, for all t = 0. Divide the inequality
above by t > 0. Then lim,_,.(y, f (tz)/t) = 1. Thus for any w*—cluster point
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z* € Y™ of (f (nz) /n),en, We Obtain again (y,z**) = 1 Note |l z** II<
land Y IS L. We havey €0 |l z** || andz™ € d || Y |I. In particular,
YeEIND(E)Iland D(2) €0 Il v . (17)
Since z** is independent of x, ¥ is necessarily independent of x.
Consequently,
(x*,x) — (Y, f(x)) = —2¢, forall x € X. (18)
Note that, in the proof of the inequality (18), for the Gateaux
differentiability point z € X , and for any fixed x € X , the functional ¥ can
be chosen to be any w*—cluster point of (y,,) satisfying Il ¥,, I= 1 and

(D, flx +nz) — f(x)) =Il f(x +nz)—f(x) I, foralln € N,
Since v is independent of x, by putting x = 0, ¥ can be any w*—cluster
point of (y,,) satisfying

(Y, f(n2)) =Il f(nz) Il, for alln € N. (19)
(15) and (19) together imply that we can take ¢ = v in the Inequalities
(14) and (16). Hence, our proof is complete.

A Banach space X is said to be a Gateaux differentiability space
provided every continuous convex function defined on a nonempty open
convex set D c X is densely Gateaux differentiable in D. Please note that
every separable Banach space is a Gateaux differentiability space. A nice
characterization for a Banach space X to be a Gateaux differentiability
space is that every nonempty w*-compact convex set C c X* is the
w™* — closed convex hull of it is w*-exposed points. (Notes that x* € X*

Is aw *-exposed point of dual unit ball By-if and only if x* =d || x || for
some Gateaux differentiability point x € Sy.) In particular, a Gateaux
differentiability space X satisfies that the closed unit ball By-of X* is the
w™ — closed convex hull of all Gateaux derivatives {d|lz|l: z is a Gateaux
differentiability point on the norm || [[}. The following Theorem is main

result of this chapter.
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Theorem (3.1.3)[3]. Let X, Y be Banach space, and f: X — Y be a standard
e-isometry. Then for each x* € X ™ there exists @eY*with. [ @ II= I x* I=r
such that
[(x*, x) — (@, f(x)) < 2re, for all x € X. (20)

Proof: Our proof is divided into three steps.

Step 1. we first show that its true if X is a Gateaux differentiability space.
Given a Gateaux differentiability pointz € S,,, let x* =dll z Il.
Then by Lemma (3.1.2) there exists @ € @ || ®(z) |l such that (20) holds with
r = 1. Since X is a Gateaux differentiability space, for any

x* € S, there exist a directed set I, and a net (x;),e; € By~ of the form:

xX) = z quz*q, foreacha € I,

W*
Such that x; — x* ;where], c N is afinite set, A¥ = 0(j € J,) satisfy
Yjes A =1, and (z*f),-e]a are w” -exposed points of By:. Let z{* € Sybe
Gateaux differentiability point so that d || zj“ = z]“ Then there exists

§¥ €011 d(z7) IIn Y*such that

[(z*]', x) — (E]q,f(x))| < 2¢ forallx €X. (21)
Let ¢ = Xjej, A &5 - Then we obtain
[(x%, x) — (D, f(X)] < 2¢, forallx € X. (22)
Consequently, for any w*—cluster point ¢of (@,) we have
|(x*,x)—(® ,f(x))| < 2¢ forallx € X. (23)

Note || x* llI=1and || @ II< 1. Itis not difficult to observe|l @ |[= 1. In
fact, since (x*,z) =|l z |l= 1, by substituting nz for x in the inequality
above, and dividing it's both sides by n, we obtain

|1 — (@, f(nz) /n)| < 2¢/n.
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This says || @ 1= lim,, [{®@, f (nz) / n)] = 1. Positive homogeneity of (23)
implies (20). Thus, we have shown the Theorem in assuming that X is a
Gateaux differentiability space.

Step Il. In the case that X is a general Banach space, we will show that
(20) is true for every norm-attaining functional x* € X* . Positive
homogeneity of (20) allows us, without loss of generality, to assume
Il x* I=1.Letx, € Sy be such that{x", xy) = 1.

Let F = {F < X is a finite dimensional subspace containing x, }. Then
every element F € F is a Gateaux differentiability space and x* (restricted to
F) is again a norm-attaining functional with Il x*|z I=Il x* lI= (x*, x¢) = 1.
Given F € F , by the fact we have just proven in Step 1, there exists @ € Sy~
such that

|(x*,x)—(® ,f(x))| < 2¢, forallx €F. (24)

Fixany F € F and let
@, ={0 € By satisfying (24)}.
Then it is easy to observe that @ is a non empty w*—compact convex set.

Indeed, nonemptiness of @ has been proven by step I, since F is a Gateaux
differentiability space; convexity and w*—compactness of ® are trivial by its
definition. Note ®r N @ D Dgpunrucyfor all F, G € F. We obtain that
Nper ©p # @. Clearly, any¢ €ngcr @ is a solution of (20) with
Il @ I=Il x* I= 1. In fact, given ¢ ENpcr ©r, We have || @ I< 1 and
|(x*,x)—(® ,f(x))| < 2s¢, forallx € X.

On the other hand, we replace x by nx, in the inequality above, divide the
two sides by n and notice (x* ,x,) = 1. Then we obtain || @ |[= 1. Therefore,
Il ol=1

Step I11. Finally, we show that the inequality (20) holds for every
functional x* € X*. We can assume again || x* [|[= 1 . By the Bishop-Phelps

Theorem, there is a sequence (x,,) © Sx- of norm-attaining functionals such
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that x,, = x™ . By the fact we have just proven in Step Il, for each n € N,

there exists @,, € Sy~ so that

[(x,, x) — (D, fX)| < 2¢, forall x € X. (25)
Since x,, —» x*, for any w*—cluster point @of (@,,) , we have
|(x*,x)—(® ,f(x))| < 2¢, forall x € X. (26)

Clearly, || @ II< 1. Conversely, let (z,,) c Sy satisfy
1=|l x* llI=lim,(x*, z,,) By substituting nz,, of x in (26) we obtain
[(x*,zp) — (@  f(nz,) /n)| < 2¢/n, foralln € N,

Thus,
I @I= IiTEn((D,f(nzn) /n)y =1

Consequently,| @ lI= 1.
The following result, says that the constant y = 2 is optimal.
Theorem (3.1.4)[3]. Let X, Y be Banach spaces. If there is a standard
g-isometry g: X — Y for some ¢ > 0, there for every § > 0 there is a standard
(e + &) —isometry {: X — Y such that the following assertion holds: there
exist x* € Sy~ and @ € Sy~ so that

|(x*,x)—(® ,f(x))| <2e+ 6, forall x € X. (27)
And

SuprX|(x* ,x) — (0 ,f(x))| >2¢ - 4. (28)
Proof. Note that for every n € N. g,,: X — Ydefined by g,,(x) = g(nx) /n
Is a standard € / n —isometry. Given0 < § < ¢, letm € N such that h = g,,

Is a standard & / 2 —isometry. By Theorem (3.1.3), for every x* € Sy~ there

exists @ € Sy~ so that
|(x*,x)—(® ,h(x))| <4, forallx €X. (29)
We fix any point x, € eSy. Letxy € 0 |l xo Il . By Theorem (3.1.3) again,
there is @, € Sy~ so that

|(x8,x)—(®0 ,h(x))| <4, forallx € X. (30)
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Since (xg,xp) = €, + 68 = (g, h(xy)) =e—6.Wedefinef: X - Y for

x € X by
(~3th(x,),  if x = txg,t €] 0,5];

Flx) = { (= Dhxy), if x = txp e (2,1 (31)
5] otherwise.

Then, it is easy to observe that f is a standard (¢ + §) —isometry, and the

functional x; and @, satisfy

|(x8,x)—(®0 ,f(x))| <2e+6, forall x € X. (32)
Let z = (1/2)x, in (32). Then
[(x3,2) = (@ f(2))] > 265 (33)

Remark (3.1.5)[3]. Figiel's Theorem states that every standard isometry
from a Banach space X to another Banach space Y has a linear left-inverse F
of norm one. If £ = 0, then Theorem (3.1.3) deduces for all x* € X*, there
exists @ € Y*with || @ I=1l x™ Il such that

(x*,x) =(@ ,f(x)), forallxe€X. (34)
The following result says that Theorem (3.1.3) can be regarded as a sharp
quantitative extension of Figiel's Theorem.
Theorem (3.1.6)[3]. Suppose that X, Y are two Banach spaces, and f: X - Y
is a standard isometry. Let Yy = spanf (X), and the correspondence
K : X* - Y; be defined by (34), i.e. Kx* = @, where x™ and @ satisfy (34).
Then Kisaw™ — to — w™* continuous linear isometry, which is just the
conjugate operator of Figiel's operator F associated with f.

Proof: We first claim that the correspondence K : X* — Y; is one-to-one.

Given x* € X* , assume @, € Y™ such that

(@, f(x)) =(x"x) = ,f(x)), forallx€X. (35)
Then

(p—Y,f(x))=0, forallx€X,
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Or, equivalently,¢ = onY, . Itis clear the correspondence K defined by

(34) is homogeneous and additive, i.e. K is linear. Consequently, K is a linear
Isometry since it is norm-preserving. To show w* — to — w™ continuity of K,
let F : Y; — X be Figiel's operator associated with the isometry f, i.e. the left-

inverse of f with || F [[= 1. Then for every x* € X*,

(x*, x) — (x* ,F(f(x))) =(F*(x*),f(x)), forallx€X. (36)
This and (34) together imply
(K(x*), f(x)) =(F*(x*), f(x)), forallx € X,x* € X" (37)

Thus, K = F* , which entails that K is w* — to — w™* continuous.
Section (3.2) Sharp Stability Results of a Certain Class of &-

iIsometries:

In this section, we shall see that Theorem (3.1.3) is useful in the study of
stability of e-isometries. It is not only an extension of Figiel's Theorem, but
also a generalized version of the Omladi¢-Semrl Theorem.

A subset N in a metric space(Q, o) is said to be a sublinear growth net in

metrico provided for any fixed o, € Q,

. o(w,N) _
||I'T1Q(w,w0)_>oo Q(w—,wo) = 0. (38)

For example, let m: R — Z be defined by m(x) = [x] + (signx)[x]p ,
where [-] denotes the floor function and [-]p denotes the cardinality of the
prime number set P = P(x) = {p € N isaprimenumberwith p <

|x|}. Then N = {m(x): x € R} is a sublinear growth net of R . In fact, since

lim,_1,[x], /Inx = 1, for any fixed x, € R,

o(x,N) - [x], +1
lx — xo] = |x — xo
Theorem (3.2.1)[3]. Let X, Y be Banach spaces, and f: X — Y be a standard

- 0,as |x — xg| = .

g-isometry for some € > 0. Suppose that f(X) contains a sublinear growth net

of Y. Then there is a linear surjective isometry U: X — Y such that
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Il f(x) —Ux II< 2¢, forall x € X. (39)
Proof: Note that if f (X) contains a sublinear growth net of Y, thenY, =7V .

We first show that this is true if e= 0, i.e. when f is an isometry.

According to Theorem (3.1.6), the operator K : X* — Y defined by
Kx* = @, wherex*and @ satisfy (34), is just the conjugate of Figiel's
operator, hence, aw* — to — w* continuous linear isometry. We claim K is
surjective. Otherwis, Z = K(X™) is a w*-closed proper subspace of Y = Y.
In fact, since K : X* — Z is a linear surjective isometry, KBy~ = B,.w*-
compactness of By-and w*-continuity of K deduce that B,isw*-compact in
Y*. Consequently, Z =U,cy nBzisw*-closed inY™*. By separation Theorem,
there exist i € Sy«\K(X*)andy € Sysuch that

(W, y)=llyll=1,and {(¢p,y) =0, forall p € K(X*). (40)
Lety,, =ny for all n € N . Since {(X) contains a sublinear growth net of Y,

for the sequence(y,)eny € Y, there is a sequence(x,),en € X SO that

lyn—f(xp)ll

lim, -

= 0. (41)
Choose any x,, € 0 Il x, Il, and let @®,, = Kx,, . Then
0 = [{xn, xn) — (D, [ Oe) = Ko, x0) — (B, £ (30 — yud| 21 1 —
I fCen) =y 1=1 £ ) 1 =1 f o) =y 121y 11 =2

5 I fCn) — II)_)OO

n

I fCxn) =y 1= n<1 —

This is a contradiction.

We have shownthat K : X* - Y*is a w* — to — w™ continuous linear
surjective isometry. Therefore, its pre-conjugate operator F: Y — X is also a
linear surjective isometry satisfying F o f = Id. We are done by letting
U=Fr1

Next, suppose £> 0. Let £ : X* — 2¥" be defined for x* € X* by

xX*={@ eY*: |x* — @ o f| is bounded on X}, (42)
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M=0={¢ €Y*:|0o flishoundedonX}, (43)
AndletQ : X* - Y* /M be defined by
Qx* = ix* + M. (44)
Then, due to Theorem (1.1.22), Q is a linear isometry. Since {(X) admits a
sublinear growth net of Y, co (f(X)) is dense in Y. Consequently, M = {0}.

Note that if ¢, € €x* for some x* € X* , then® —y € {0 c M.
Thus,Q: X* — Y™, is actually a single-valued linear isometry. This and
Theorem (3.1.3) together entail
[(x*,x) —(Qx™, fGN] <21 x* Il & forall x € X,x* € X*, (45)
And which further implies that Q: X* - Y*,is a w* — to — w™ continuous
linear isometry. Hence, it is a conjugate operator of normone. LetT:Y — X
be a linear operator so that T* = Q . This and (44) entail
[(x*, x) = (x* TFOCN <2l x*ll & forallx € X,x* € X", (46)
Or, equivalently,
I Tf(x) —x II<2¢ forallx€X. (47)
Clearly, T is surjective. In order to show that T is a linear isometry, it suffices
to prove that Q is surjective. Suppose, to the contrary, That Q(X*) is a

proper subspace of Y.* w*—closedness of Q (X*) implies that there exist
Y € Sy-\(Q(X™)) andy € Sy such that

(W, y)=lly lI=1,and {¢p,y) =0, for all ¢ € Q(X™). (48)
Let again y,, = ny for all n € N . Since {(X) contains a sublinear growth
net of Y, for the sequence(y,,)en € Y, there is again a sequence (x,)neny €

Iyn—f (xp)l

X so that lim,, = 0. Choose any x,, €0 Il x,, Il , and let @,, = Qx,.

Then

2¢ 2 [(xn, xn) = (@, f O] = Kxn, 20} = (@, £ Crn) = yud| 20 2 I =
I FCen) =y 12 (I F () Il =)= £ () = Yo 121y 1 =2

I FCe) =y —€=n<1—2 I/ xn) =y, ">—Hoo.

n
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This contradiction says that Q is surjective. Therefore, we have proven that
T:Y — X is a surjective linear isometry. We finish the proof by letting
U =T~ . The following theorem tells us that the estimate in Theorem
(3.2.1) is sharp.
Theorem (3.2.2)[3]. Given a pair of Banach spaces , Y , if there is a standard
g-isometry g : X — Y satisfying that g(X) contains a sublinear growth net of
Y, then there exists a standard e-isometry f : X — Y with {(X) containing a
sublinear growth net of Y such that for every linear surjective isometry
U.X — Y we have

supyex Il f(x) — Ux 1= 2. (49)
Proof: Since there is a standard e-isometry g: X — Y with g(X) containing a
sublinear growth net of Y, by Theorem (3.2.1), there exist a linear isometry
Uy: X - Y . We fix any point x, € €Sy , and defined f: X = Y for x € X by

(—StUO(xO), ifx =txyt € [O,%] ;
Fx) = { (t — DUo(xo), ifx =tx,t € (3,1 (50)
k Uy (x), otherwise.
Then, it is not difficult to see that f is a standard e-isometry with f(X)
containing a sublinear growth net of Y, which satisfies that for every linear
surjective isometry U: X - Y,
supyex | f(x) = Ux 1= supyex | f(x) — Upx 1=
SUPxeRrx, I f(x) — Upx lI= 2e.

Theorem (3.2.3)[3]. Let X, Y be Banach spaces, and f: X — Y be a standard
g-isometry. If C(f) = E(f(X) ] —f(X)) =Y, then there is a linear
operator T : Y —» X with || T |[= 1 such that

ITf(x) —x II<2e, forallx €X. (51)
Proof: Let the mapping £: X* — 2 and the subspace M c Y* be defined as
(42) and (43). Then C(f) = Y implies M = {0}. Indeed, given @ € €0, |pof]|
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Is bounded by some £ > 0 on X. Then is equivalent to that |¢| is bounded by
ponC(f) =Y. consequently, ¢ = 0. Therefore, Q=0: X* > Y"isa

w™ to w*continuous linear isometry, where Q is defined by (44). This,
incorporating Theorem (3.1.3), further entails

[(x*, x) = Qx*, fGN <2 x* Il & forall x € X,x* € X*, (52)
Let T: Y — X be the pre-conjugate operator of Q. Then we obtain|| T ||= 1

and
(x*, Tf(x)) —(Qx*, f(x)), forallx € X,x* € X", (53)
Therefore,
[(x*, x) = (x* TFOGN <20 x* ll € forallx € X,x* € X7, (54)

The inequality above is apparently equivalent to (51).

Remark (3.2.4)[3]. The assumption that C (f) =Y cannot guarantee the
operator T is invertible in Theorem (3.2.3), even if f is an isometry. For
example, let f: X = R - (2 =Y be defined by

f(x) = (x,In(A +x)), ifx =0;=(x,0),ifx <0.Then f is a standard
isometry with C (f) = £2, so that there is no linear surjective isometry
U.X -Y.
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Chapter 4

Almost Surjective &- isometries Of Banach Spaces
We show that for every pair of Banach spaces X and Y and for every
g-isometry f: X = Y with sup,es, limpy o inf dist(ty, f(X)) / [t| <1 /2
there exists an affine surjective isometry VV: Y — X such that
Il f(x) —Vx IS 2¢ forall x € X.

Section (4.1): Almost Surjective e- isometries Of Banach Spaces
The classical Theorem of Mazur and Ulam as serts that a surjective

iIsometry between real normed spaces is affine. Note that it is not valid for
complex normed spaces (just consider complex conjugation on C). The
hypothesis that an isometry is surjective is essential in general, but can be
dropped if the target space is strictly convex. As real-world observations
have always some minimal error, one may not be able to deduce from
measurements whether a given mapping is really isometric or surjective.
Thus it is natural to ask if a mapping, which only nearly preserves distances
and only almost covers the target space, can be well approximated by a
surjective (affine) isometry. In this chapter we deal with e-isometries of one
Banach space X into another Y which almost cover (in some sense) the target
space. Throughout the chapter X and Y denote real Banach spaces.
Definition (4.1)[4]. Lete>0. Amap f: X — Y iscalled an e-isometry if
[ fO) —fE)I-lly—xl]<e
Forall x,y € X.

There is an extensive literature on such mappings starting with the
influential of Hyers and Ulam. They proved that every surjective e-isometry
between real Hilbert spaces can be uniformly approximated to within 10¢ by
an affine surjective isometry. Later this result has been extended to all pairs
of real Banach spaces, and the constant 10 has been reduced to 2 which is

sharp. Dilworth showed that the subjectivity condition can be dropped if
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both above Banach spaces are of the same finite dimension. However,
the example of the mapx ~ (x,v/2e Tx 1) from I} to I3** (which is &-
isometric, but far from any affine map and thus from any isometry)
shows that the surjectivity assumption is indispensable in this Theorem
even for Euclidean spaces. Semrl and Visald showed that every e-isometry
f: X = Y can be uniformly approximated to within 2¢ by an affine surjective
iIsometry provided
supyey{dist(y, f(X))} < .
We show that this result remains true when the above almost surjectivity

condition is further relaxed and replaced by

. ) 1
SUDyes, |l||r—>noo inf dlst(ty,f(X))/ltl < >

Namely, we give the following Theorem. Given a nonempty QcY and

YESy, we denote
o(y,Q) = lim infd(ty,Q)/Itl,  7(Q) = supyes,e(w. Q).

Givenamap f: X - Y, we abbreviate o(y, f (X)) and =(f (X)) by o(y,f)
and =(f). We also abbreviate co(f (X) U —f(X) )by C(f).

Viisild has posed the following problem: Whether an e-isometry
f+ X — Y with 7(f) = 0 can be approximated by a surjective isometry?
Theorem (4.4)(iii) answers this question in affirmative even for 7(f) < 1/2.
Note that in the case when Y is uniformly convex, the weaker condition
7(f) < 1 implies the existence of such an approximating isometry. It is
shown in this chapter. We do not know whether the condition o(y, f) < 1/2
for every y € Sy is enough to guarantee the existence of an approximating
iIsometry. However, if such an approximating isometry exists, it is necessarily
linear and surjective.
Proposition (4.2)[4]. Let f: X — Y be ane-isometry with {(0) = 0 and
o(y,f) <1/2forevery € S, . LetU : X — Y be an isometry such that
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U@)=0and |l U(x) — f(x) II=o(ll x II) as Il x lI= oo uniformly. Then U
Is a surjective linear isometry and

I f(x) — Ux II< 2¢, x€EX
Proof: Let y € Sy. By our assumptions, there are sequences {t,,} < R and
{x,} € X such that |t,,| » ccand Il y — U(x,) / t,, II< 1/2 for all n.
Therefore by the Theorem of Figiel, Semrl and Viiséla, U is surjective and
linear.

In what follows, we shall use some results and notation from chapterl.
For an e-isometry f : X — Y with {(0) = 0, we denote by M, the subspace
of Y™ consisting of all functional bounded on C(f) and by E the annihilator of
M,. Let a = 0. A closed subspace M € X is said to be a-complemented
provided there exist a closed subspace N € X with M n N = {0} and a
projection P: X - M alongNsuchthat X =M +Nand |l P |I< a.

It follows from Remark (1.1.27) and a quick inspection of the proof of
Theorem (1.1.26).

Theorem (4.3)[4]: Letf: X — Y be ane-isometry with {(0) = 0. Let E be
a-complemented in Y and P be a projection P: X — M along N such that
X=M+Nand |l P < a.Letco(f(X) U—f(X)) c E + B for some
bounded set B c Y. Then there is a surjective norm-one linear operator
U:.E — X such that
Il UPf(x) — x II< 4e, x€EX

Theorem (4.4)[4]. Let{: X — Y be an e-isometry with { (0) = 0.
(OIf 7(C(f)) < 1, then there is a surjective norm-one linear operator
U:Y — X such that

Il Uf(x) —x II< 4de, x € X. (D
(i) If o(y, f) < 1/2for every y € Sy, then U is surjective. We denote its
inverse by

V=U1X>Y.
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(iiDIf t(f) < 1/2,then V is a surjective linear isometry satisfying
I f(x) —Vx II< 2¢, xX€EX
Proof : (i) We prove that M, = {0}. Then E =Y, and (1) follows by
Theorem (4.3) with P = [ (the identity).
Choose 7(C(f)) < q' < q"" < 1. Suppose that there is a norm-one
@ € M,. Thenthere is y € Sy such that (¢, y) > q . By the definition of
M., there is r > 0 such that |[{@, u)| < rfor all u € C(f).Since t©(C(f)) <
q', there are sequences {t,,} € R and {u,,} < C(f) such that
|t,| > c0and |y —u, /t, I<q  foralln. Sincell ¢ lI= 1, it follows that
q' > Ko,y —un/to)l =2 Ko, ) — Ko, un/t)l > ¢ —1/ltal,
Which implies q" > q''-a contradiction.
(i) Let y € Sy. We show that
Il Uy lI=1-20(y,f), 2
which implies injectivity of U.
leto(y,f) <q' < % Then there are sequences {t,,} cRand {x,,} ¢ X

such that |t,| » 0 and || y — f(x,)/t, I< q'for all n. Hence

I f(xn) 1> (1 = g"Ityl and then |l x, 121 f(x,) | —e > (1 — gty —

€. 0On the other hand, by (1) and || U [I< 1,

q'lta] =1 t,Uy —Uf () 121 x| =t 1 Uy | =11 Uf () — 2 1211 X
I —|t,| I Uy Il —4e,

Which implies Il x,, I< (¢'+Il Uy ID)|t,,| + 4¢e.thus, (1 — q')|t,| — e <

(q'+Il Uy ID|t,,| + 4eforalln. Thus || Uy I= 1 — 2q'. As q' was arbitrary

in interval (o(y, f),%), (2) holds.

(i11) In this case, U is bijective and || Uy 1= 1 — 2z(f). Hence its
inverse V is bijective and bounded with | V I< 1 / (1 — 27(f)) . By (1),
for every t>0

Il tVx — f(tx) ISNV NIl tx — Uf (tx) I< 4e /(A — 21(f)), x € X.
Hence
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t Il Ve Il f(tx) | +4e /A —=2t(F)) <tlx |l + (1 + )e,x €X,

4
1-27(f)
which implies || V I< 1. Thisalong with || U |[< 1 gives that both U and
V are isometries. The result follows now by Proposition (4.2).

Note that conditions in Theorem (4.4) are rather sharp. The
sharpness of the condition in (i) follows from the next two facts:

a. For any mapping f: X - Y with f (0) = 0, we have 7(C(f)) < 1.
b. There exists an e-isometry with {(0) = 0 such that for any bounded
linear operator T : Y - X

supyex Il Tf(x) —x lI= o

The sharpness of the conditions in (ii) and (iii) is shown in the
following simple example.

Example (4.5)[4]. Let X = Rand Y = 1 .define f:R - 12 by the
formula f(x) = (x,|x]). Then f is a nonlinear isometry and yet, if
y # 0 €1 then 1| ,ty — f (36, I ty I) <l ty | /2 for some
0,60, € {—1,1}and forall t € R.

Concerning Theorem (4.3), Cheng and Zhou have posed the following
problem: Given ¢ > 0, whether f(X) is always contained in E + B (for
some bounded subset B c Y) for every e-isometry?

The following Lemma gives a negative answer to this question.
Lemma (4.6)[4]. For every 1< p<oo and ¢ > 0, there exists a continuous
g-isometry f: R — [, such that sup,erdist (f(x),E) = oo.

Proof: Let {e;};2gand {e;};=, be the canonical bases of [, and L, ,(;,,_1),

respectively. Define real functions by

_ )P pelx] P
gi(x) = min L

Note that |g;(x) — g;(V)|P < pe|lx|®@-D/p_|y|(e-1)/p |P
l i = - ,

21
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Definef:R = L, by f(x) = xe, + X2, gi(x)e;. Then
lx —yIP <l f(x) — f(¥) IP

= lx —ylP
+ 190 = g PP

< lx = y|? + pelx —y[P7' < (Jx — y| + £)*.
Thus, f is an e-isometry. For every i > 0 and real x, |(e;, f(x))| = g;(x) <

i. Hence e; € M, . It follows that E=spane,. But for every x, n

1
n /w-1)
with,|x| = <np2 /(P€)> ’ :

n 1
dist(f(x),E) > zlgi(x)l = z L= @

=1

Thus, f is a desired mapping.
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List of Symbols

Symbol page
15 . Hilbert space 1
LP . Lebesgue space 2
co . closed convex hull 4
sep : separated S
inf : infimum 5
UKK : Uniform Kadec-Klee S
GDS : Gateaux Differentiability Space 7
Sup : Supremum 7
dim : dimension 9
Ker : Kernal 13
Min : Minimal 14
@ : Direct Sum 37
Dist : Distance 63
L, : Hilbert Space 67
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