SUST Repository

Stability and Perturbed Metric-Preserved Mappings with Universal Theorem

Show simple item record

dc.contributor.author Ahmed, Tayseer Ishag Faddul
dc.contributor.author Supervised, - Shawgy Hussein Abdalla
dc.date.accessioned 2016-02-14T11:30:04Z
dc.date.available 2016-02-14T11:30:04Z
dc.date.issued 2015-12-10
dc.identifier.citation Ahmed,Tayseer Ishag Faddul.Stability and Perturbed Metric-Preserved Mappings with Universal Theorem /Tayseer Ishag Faddul Ahmed ;Shawgy Hussein Abdalla .-Khartoum: Sudan University of Science and Technology, College of Science,2015 .-76p. :ill. ;28cm .-M.Sc. en_US
dc.identifier.uri http://repository.sustech.edu/handle/123456789/12732
dc.description Thesis en_US
dc.description.abstract If Y is Gateaux smooth, strictly convex and admitting the Kadec- Klee property, then we has the following sharp estimate ∥Tf(x)-x∥ ≤2ε, for all x∈X. Let X, Z be two real Banach spaces and ε ≥ 0, we show that if there is a mapping ƒ: X→ Z with ƒ(0)=0 satisfying |∥f(x)-f(y)∥-∥x-y∥|≤ε for all x,y∈X, then we can define a linear surjective isometry U:X^*→Z^*∕N for some closed subspace N of Z^* by an invariant mean of X. There is a linear surjective operator T: Y→ X of norm one such that ∥Tf(x)-x∥≤2ε,for all x∈X ; when the 𝜀-isometry ƒ is surjective, it is equivalent to Omladič - Šemrl Theorem: There is a surjective linear isometry U:X→Y so that ∥f(x)-Ux∥≤2ε,for all x∈X. en_US
dc.description.sponsorship Sudan University of Science and Technology en_US
dc.language.iso en en_US
dc.publisher Sudan University of Science and Technology en_US
dc.subject Mathematics en_US
dc.subject Concussion MAPPINGS clipboard en_US
dc.subject Global proven en_US
dc.title Stability and Perturbed Metric-Preserved Mappings with Universal Theorem en_US
dc.title.alternative إستقرار و إرتجاج الرواسم الحافظة- المترية مع المبرهنة العالمية en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share

Search SUST


Browse

My Account