dc.contributor.author |
Ahmed, Tayseer Ishag Faddul |
|
dc.contributor.author |
Supervised, - Shawgy Hussein Abdalla |
|
dc.date.accessioned |
2016-02-14T11:30:04Z |
|
dc.date.available |
2016-02-14T11:30:04Z |
|
dc.date.issued |
2015-12-10 |
|
dc.identifier.citation |
Ahmed,Tayseer Ishag Faddul.Stability and Perturbed Metric-Preserved Mappings with Universal Theorem /Tayseer Ishag Faddul Ahmed ;Shawgy Hussein Abdalla .-Khartoum: Sudan University of Science and Technology, College of Science,2015 .-76p. :ill. ;28cm .-M.Sc. |
en_US |
dc.identifier.uri |
http://repository.sustech.edu/handle/123456789/12732 |
|
dc.description |
Thesis |
en_US |
dc.description.abstract |
If Y is Gateaux smooth, strictly convex and admitting the Kadec- Klee property, then we has the following sharp estimate ∥Tf(x)-x∥ ≤2ε, for all x∈X. Let X, Z be two real Banach spaces and ε ≥ 0, we show that
if there is a mapping ƒ: X→ Z with ƒ(0)=0 satisfying
|∥f(x)-f(y)∥-∥x-y∥|≤ε for all x,y∈X, then we can define a linear surjective isometry U:X^*→Z^*∕N for some closed subspace N of Z^* by an invariant mean of X. There is a linear surjective operator
T: Y→ X of norm one such that ∥Tf(x)-x∥≤2ε,for all x∈X ; when the 𝜀-isometry ƒ is surjective, it is equivalent to Omladič - Šemrl Theorem: There is a surjective linear isometry U:X→Y so that
∥f(x)-Ux∥≤2ε,for all x∈X. |
en_US |
dc.description.sponsorship |
Sudan University of Science and Technology |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Sudan University of Science and Technology |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
Concussion MAPPINGS clipboard |
en_US |
dc.subject |
Global proven |
en_US |
dc.title |
Stability and Perturbed Metric-Preserved Mappings with Universal Theorem |
en_US |
dc.title.alternative |
إستقرار و إرتجاج الرواسم الحافظة- المترية مع المبرهنة العالمية |
en_US |
dc.type |
Thesis |
en_US |