Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/9514
Full metadata record
DC FieldValueLanguage
dc.contributor.authorABD ELRAHIM, RABAB IBRAHIM
dc.contributor.authorSupervisor - Yahia E.A. Mohammedzein
dc.date.accessioned2015-01-05T11:23:50Z
dc.date.available2015-01-05T11:23:50Z
dc.date.issued2003-08-01
dc.identifier.citationABD ELRAHIM, RABAB IBRAHIM .Prediction of Swelling Soil Pressure USING ARTIFICIAL NEURAL NETWORKS/ RABAB IBRAHIM ABD ELRAHIM ;Yahia E.A. Mohammedzein.-Khartoum:Sudan University of Science and Technology,College of Engineering,2003.-82P. ill. ; 28Cm.M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/9514
dc.descriptionThesisen_US
dc.description.abstractThe Artificial Neural Networks is a new computing system, which proved in the last years a high ability in treating the ambiguous and strange phenomenan,which may be hardly solved by other methods. A model made by using Artificial Neural Networks was used to predict swelling soil pressure by defining its main properties. Then a parametric study was done to know the effects of parameters on swelling pressure. Moreover the predicted values were compared with the experimental ones. It is found that Artificial Neural Networks is a powerful tool in solving problems containing multiple variables, and has a good ability in performing parametric analysis.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectCivil Engineeringen_US
dc.subjectStructural Engineeringen_US
dc.subjectSwelling Soilen_US
dc.subjectARTIFICIAL NEURAL NETWORKSen_US
dc.titlePrediction of Swelling Soil Pressure USING ARTIFICIAL NEURAL NETWORKSen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Engineering

Files in This Item:
File Description SizeFormat 
Prediction of Swelling Soil .pdftitl116.68 kBAdobe PDFView/Open
ABSTRACT .pdfABSTRACT 72.9 kBAdobe PDFView/Open
Chapter 1.pdf
  Restricted Access
Chapter 38.28 kBAdobe PDFView/Open Request a copy
Chapter 2.pdf
  Restricted Access
Chapter 613.43 kBAdobe PDFView/Open Request a copy
Chapter 3.pdf
  Restricted Access
Chapter 210.73 kBAdobe PDFView/Open Request a copy
Chapter 4.pdf
  Restricted Access
Chapter 216.06 kBAdobe PDFView/Open Request a copy
Chapter 5.pdf
  Restricted Access
Chapter 32.13 kBAdobe PDFView/Open Request a copy
Chapter 6.pdf
  Restricted Access
Chapter 30.29 kBAdobe PDFView/Open Request a copy
Chapter five .pdf
  Restricted Access
Chapter 50.14 kBAdobe PDFView/Open Request a copy
Chapter five 2.pdf
  Restricted Access
Chapter 71.5 kBAdobe PDFView/Open Request a copy
Fig 2-4.pdf
  Restricted Access
appendix30.93 kBAdobe PDFView/Open Request a copy
Fig (2.1) .pdf
  Restricted Access
appendix30.68 kBAdobe PDFView/Open Request a copy
rr.pdf
  Restricted Access
appendix402.81 kBAdobe PDFView/Open Request a copy
REFERENCES.pdfREFERENCES37.97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.