Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/9293
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohammed, Nhlah Babikir
dc.contributor.authorKhalf Allah, Nura Yassin
dc.contributor.authorSupervisor - Balgiss Abd-Alaziz
dc.date.accessioned2014-12-28T07:40:17Z
dc.date.available2014-12-28T07:40:17Z
dc.date.issued2007-06-10
dc.identifier.citationRuduan,Israa Awad.Extension Field & Galois Group/Israa Awad Ruduan,Nhlah Babikir Mohammed,Nura Yassin Khalf Allah;Balgiss Abd-Alaziz.-khartoum:Sudan University of Science and Technology,College Of Science,2014.-96p. :ill;28cm.-Basheors,search .en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/9293
dc.descriptionBasheors,searchen_US
dc.description.abstractWe study the ring, field and we prove some theorems of homomorphism of a field and isomorphism between two rings. Define the field of fraction, the characteristic of fields. Field extension. Also we study the transcendental and algebraic element. And we give some application geometry. Finally we study the finite fields, Galois group and Galois extension.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMathematics Scienceen_US
dc.subjectExtension Fielden_US
dc.subjectGalois Groupen_US
dc.titleExtension Field & Galois Groupen_US
dc.typeThesisen_US
Appears in Collections:Bachelor of Science

Files in This Item:
File Description SizeFormat 
Extension Field & Galois Group.pdf title 65.92 kBAdobe PDFView/Open
الاية والبسملة.pdfالاية والبسملة51.43 kBAdobe PDFView/Open
abasetrac.pdfabasetrac359.93 kBAdobe PDFView/Open
recersh.pdfRecersh.1.47 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.