Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/8290
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMustafa, Ahmed Abdelrahim Elhag
dc.contributor.authorSupervisor - Ahmed Abd Alla Mohamed Imam
dc.date.accessioned2014-11-27T11:43:10Z
dc.date.available2014-11-27T11:43:10Z
dc.date.issued2009-11-01
dc.identifier.citationMustafa, Ahmed Abdelrahim Elhag .System Identification by Using Recurrent Neural Networks/Ahmed Abdelrahim Elhag Mustafa;Ahmed Abd Alla Mohamed Imam.-Kartoum:Sudan University of Science and Technology,College of Engineering,2009.-60P. : ill. ; 28Cm.-M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/8290
dc.descriptionThesisen_US
dc.description.abstractAs the need for feedback control is extended to systems of increasing complexity, which are often highly nonlinear, the need to drive a plant model that is adequate over all the operating conditions becomes more challenging task. Neural networks which has the ability to learn linear functions, has been used for linear system identification. A general identification procedure is developed with the attention drawn to the identification of recurrent neural network models for linear systems. In this project Recurrent Neural Networks (RNNs) are used to identify second order systems, “under damped, critical damped, over damped, and non-minimum phase systems”, and also for third order systems. Genetic Algorithms (GAs) has been used for the training of the RNN in all the cases. Computer simulations, based on the recurrent neural network models, are carried out to verify the performance of these systems. The simulation showed good results.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectElectrical Engineeringen_US
dc.subjectElectrical Engineering - Controlen_US
dc.subjectSystem Identificationen_US
dc.subjectRecurrent Neural Networksen_US
dc.titleSystem Identification by Using Recurrent Neural Networksen_US
dc.title.alternativeتعريف المنظومات باستخدام الشبكات العصبية المتكررةen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Engineering

Files in This Item:
File Description SizeFormat 
System Identification by Using ...pdftitle23.77 kBAdobe PDFView/Open
Abstract.pdfAbstract21.74 kBAdobe PDFView/Open
Abstract in arabic.pdfAbstract18.5 kBAdobe PDFView/Open
CHapter1.pdf
  Restricted Access
CHapter51.55 kBAdobe PDFView/Open Request a copy
CH2.pdf
  Restricted Access
CHapter89.06 kBAdobe PDFView/Open Request a copy
CH3.pdf
  Restricted Access
CHapter111.65 kBAdobe PDFView/Open Request a copy
CH4.pdf
  Restricted Access
CHapter69.83 kBAdobe PDFView/Open Request a copy
CH5.pdf
  Restricted Access
CHapter136.08 kBAdobe PDFView/Open Request a copy
CH6.pdf
  Restricted Access
CHapter29.45 kBAdobe PDFView/Open Request a copy
CHs.pdf
  Restricted Access
CHapter17.51 kBAdobe PDFView/Open Request a copy
Figures&tables.pdf
  Restricted Access
Appendix 29.61 kBAdobe PDFView/Open Request a copy
Table (5.1) Simulation Results Summary.pdf
  Restricted Access
Appendix 31.24 kBAdobe PDFView/Open Request a copy
table of contents.pdfAppendix 41.39 kBAdobe PDFView/Open
Abbreviations.pdf
  Restricted Access
Appendix 21.9 kBAdobe PDFView/Open Request a copy
Appendix A.1.pdfAppendix 29.44 kBAdobe PDFView/Open
Appendix A.2.pdfAppendix 16.37 kBAdobe PDFView/Open
Appendix B.pdfAppendix 34.03 kBAdobe PDFView/Open
REFERENCES.pdfREFERENCES47.88 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.