Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/6837
Title: التعرف على اﻷرقام الهنديه المخطوطه بإستخدام اّله المتجهات الداعمه
Authors: صالح, أشواق محمد
Keywords: اّله المتجهات الداعمه
اﻷرقام الهنديه
Issue Date: May-2009
Publisher: جامعه السودان للعلوم والتكنولوجيا
Citation: صالح،أشواق محمد.التعرف على اﻷرقام الهنديه المخطوطه بإستخدام اّله المتجهات الداعمه/أشواق محمد صالح ؛ محمد الحافظ مصطفى.-الخرطوم:جامعة السودان للعلوم والتكنولوجيا،علوم الحاسوب،2009.-68ص:ايض؛28سم.ماجستير.
Abstract: Recent results in pattern recognition have shown that Support Vector Machine (SVM) classifiers often have superior recognition rate in comparison to other classification methods. Despite of this fact, the literature doesn't show intensive experiments for these classifiers on Arabic charcter recognition. This thesis, reports the experiments of one variant of SVM -namely One Against All- on a new Arabic (Indian) numeral data set (SUST ALT digits). SUST ALT digits data set is a new Arabic (Indian) numeral data set which contains 37,000 Almost digit images established by Arabic Recognition Group in Sudan University of Science and Technology. The Recognition error rate in these experiments is 7%. This error is not uniformaly distributed among the digits. For instance Quarter of this error occurred with two digits only (0&2). Therefore, more enhancements and post processing to remedy this localized error is expected to boost the classifier recognition rate.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/6837
Appears in Collections:Masters Dissertations : Computer Science and Information Technology

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.