Please use this identifier to cite or link to this item:
https://repository.sustech.edu/handle/123456789/4780
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hagar, Mohamed Osman Hamad | |
dc.contributor.author | Supervisor,- AwadallaTayfor Ali | |
dc.date.accessioned | 2014-05-05T10:00:09Z | |
dc.date.available | 2014-05-05T10:00:09Z | |
dc.date.issued | 2012-09-01 | |
dc.identifier.citation | Hagar,Mohamed Osman Hamad .Artificial Neural Network Compensation Technique for A PD Controlled Inverted Pendulum/Mohamed Osman Hamad Hagar;AwadallahTayfor Ali.-Khartoum:Sudan University of Science and Technology,College of Engineering,2012.-44p. : ill. ; 28cm.-M.Sc. | en_US |
dc.identifier.uri | http://repository.sustech.edu/handle/123456789/4780 | |
dc.description | Thesis | en_US |
dc.description.abstract | This study presents the design of the decoupled neural network reference compensation technique (DNNRCT). The technique is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the X axis and Y axis of the PD controlled inverted pendulum. The DRCT method is used to compensate for uncertainties at the trajectory level and used to control both the angle of a pendulum and the position of a cart simultaneously. | en_US |
dc.description.sponsorship | Sudan University of Science and Technology | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sudan University of Science and Technology | en_US |
dc.subject | Electrical Engineering | en_US |
dc.subject | Microprocessor and Control | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | A PD Controlled Inverted Pendulum | en_US |
dc.title | Artificial Neural Network Compensation Technique for A PD Controlled Inverted Pendulum | en_US |
dc.title.alternative | تقنية تعويض الشبكات العصبية الاصطناعية فى المتحكم التناسبي التفاضلى للبندول المعكوس | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Masters Dissertations : Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Artificial Neural Network .pdf | title | 304.44 kB | Adobe PDF | View/Open |
Abstract .pdf | Abstract | 737.59 kB | Adobe PDF | View/Open |
CHAPTER ONE.pdf Restricted Access | CHAPTER | 98.9 kB | Adobe PDF | View/Open Request a copy |
CHPTER TWO.pdf Restricted Access | CHAPTER | 773.53 kB | Adobe PDF | View/Open Request a copy |
CHPTER THEREE.pdf Restricted Access | CHAPTER | 525.06 kB | Adobe PDF | View/Open Request a copy |
CHPTER FOUR.pdf Restricted Access | CHAPTER | 352.95 kB | Adobe PDF | View/Open Request a copy |
CHAPTER FIVE.pdf Restricted Access | CHAPTER | 160.03 kB | Adobe PDF | View/Open Request a copy |
REFERENCES.pdf | REFERENCES | 433.58 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.