Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/4248
Title: The wave equation on metric graphs global well- posedenss with scattering for nonlinear wave equation
Other Titles: ‫معادلة الموجة‫علي أتخاذ الوضع الخاص الشامل للبیانات المتریة طبقا" لتبعثر معادلة الموجة غیر الخطیة‬ ‬
Authors: Ali, Mohamed Alameen Mohamed
Keywords: Mathematics
Differential Equations
Korteweg-de Vries Equation
Issue Date: 1-Dec-2013
Publisher: Sudan University of Science and Technology
Citation: Ali,Mohamed Alameen Mohamed .The wave equation on metric graphs global well- posedenss with scattering for nonlinear wave equation/Mohamed Alameen Mohamed Ali;Shawgy Hussein Abdalla.-Khartoum:Sudan University of Science and Technology,College of Science,2013.-149p. : ill. ; 28cm.-Ms.c.
Abstract: We consider the generalized Korteweg-de Vries equation with a new linear estimate. We provide a close of self-adjoint Laplace operators on emteric graphs that the solutions of the associated wave equation satisfy the finite propagation speed property. We study standing waves for nonlinear Schrödinger equations with gauge field. We consider the defocusing cubic nonlinear wave equation in the energy –supercritical regine, in dimension greater or equal to six with no vertical assumptions in the initial data.
Description: Thesis
URI: http://hdl.handle.net/123456789/4248
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
The wave equation on metric ... .pdftitle137.74 kBAdobe PDFView/Open
Abstract .pdfAbstract 200.38 kBAdobe PDFView/Open
Research.pdf
  Restricted Access
Research1.15 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.