Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/4159
Title: Samuel Multiplicity in Accordance with Structure and index of Fredholm Operators
Other Titles: تضاعفات صامويل طبقاً لبناء مؤثرات فردهولم ودليله
Authors: Tom, Mohammed Ahamed Osman
Keywords: Mathematics
Samuel Multiplicity
Fredholm Operators
Issue Date: 1-Aug-2013
Publisher: Sudan University of Science and Technology
Citation: Tom,Mohammed Ahamed Osman . Samuel Multiplicity in Accordance with Structure and index of Fredholm Operators/Mohammed Ahamed Osman Tom;Shawgy Hussein Abdalla.-Khartoum:Sudan University of Science and Technology,Science ,2013.-252p. : ill. ; 28cm.-Ph.D.
Abstract: We study the curvature invariant of a Hilbert module over the complex plain and for modules over free semigroup Algebras . The Berger-show theorem in the Hardy module over the Bidisk and Hilbert modules are considered . We determine the Samuel multiplicity and give the structure of semi-Fredholm operators . We also establish the Hilbeert-Samuel multiplicity of Fredholm tuples and Samuel multiplicity for several commuting operators . We show the Hilbert polynomials ,Arveson's curvature invariant and Additive invariants on the Hardy space over the polydisk . We discuss the Dirac of a commuting d-tuples and give the structure of Inner multipliers on spaces with complex Nevanlinna-Pick kernels . We find estimates for HilbertianKoszul homology . We obtain the stability of index for semi-Fredholm Chains and consider the Fredholm index of pair of commuting operators .
Description: Thesis
URI: http://hdl.handle.net/123456789/4159
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Samuel Multiplicity in Accordance ...pdf
  Restricted Access
title25.21 kBAdobe PDFView/Open Request a copy
Abstract.pdf
  Restricted Access
Abstract67.76 kBAdobe PDFView/Open Request a copy
Research .pdf
  Restricted Access
Research 2.05 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.