Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/4105
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOmerein, Farha Mohammed-
dc.date.accessioned2014-03-27T07:11:06Z-
dc.date.available2014-03-27T07:11:06Z-
dc.date.issued2013-05-01-
dc.identifier.citationOmerein ,Farha Mohammed . Some Applications of Whitney Embedding Theorem and Hamiltonian Systems /Farha Mohammed Omerein ;Emad Eldein Abdullah Abd El rahim .-Khartoum:Sudan University of Science and Technology,College of Science,2013.-123p. : ill. ; 28cm.-Ms.c.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/4105-
dc.descriptionThesisen_US
dc.description.abstractIn this research we discuss the Whitney embedding theorem via investigating that any given abstract manifold can be realized as a sub manifold of Euclidean space with twice the dimension . Also we study the vector fields a flows in term of Frobcnius theorem with some applications and examples . finally we study some Applications of Symplectic Poisson manifolds and Hamiltonian system with some examples.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMathematicsen_US
dc.subjectHamiltonian Systemsen_US
dc.titleSome Applications of Whitney Embedding Theorem and Hamiltonian Systemsen_US
dc.title.alternativeبعض التطبيقات لمبرهنة غمر وتني وأنظمة هاملتونen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Some Applications of Whitney ... .pdftitle23.93 kBAdobe PDFView/Open
contents.pdf
  Restricted Access
contents26.61 kBAdobe PDFView/Open Request a copy
Abstract.pdfAbstract60.36 kBAdobe PDFView/Open
Chapter 1 & 2 &3.pdf
  Restricted Access
Chapter 474.95 kBAdobe PDFView/Open Request a copy
Chapter 4.pdf
  Restricted Access
Chapter 106.46 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.