Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/4003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbd Elgadir, Eman Mohammed-
dc.date.accessioned2014-03-19T11:01:34Z-
dc.date.available2014-03-19T11:01:34Z-
dc.date.issued2003-01-01-
dc.identifier.citationAbd Elgadir,Eman Mohammed. Nets in Euclidean Space and Differentiability of Lipschitz Functions on Metric Measure Spaces/Eman Mohammed Abd Elgadir;Shawgy Hussein Abd Alla.-Khartoum:Sudan University of Science and Technology,College of Science,2003.-55p. : ill. ; 28cm.-Ms.c.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/4003-
dc.descriptionThesisen_US
dc.description.abstractWe show a discussion of the following questions: for a given real –valued function (i) ( f ∈ ∞ Rn L ) there can not be bi-Lipschitz homeomorphism determinant, det Dφ f = φR : n →n R such that the Jacobian , (ii) a Lipschitz or quasiconformal vector field with div (iii) for a given separated net except for n= 1 y⊂ n R a bi-Lipschitz map u =f φy : , →n Z or if the Lipschitz condition is relaxed to a Hölder condition. We show also an extent to certain metric measure spaces, a generalization of the theorem of Rademacher which asserts that : a real-valued Lipschitz function on Rn is differentiable almost everywhere with respect to Lebesgue measure and the blow ups of a real-valued Lipschitz function converge to a unique linear function.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMathematicsen_US
dc.subjectFunctionsen_US
dc.titleNets in Euclidean Space and Differentiability of Lipschitz Functions on Metric Measure Spacesen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Nets in Euclidean Space ... .pdftitle24.7 kBAdobe PDFView/Open
Abstract.pdfAbstract65.65 kBAdobe PDFView/Open
Chapter 1.pdf
  Restricted Access
Chapter 126.52 kBAdobe PDFView/Open Request a copy
Chapter 2.pdf
  Restricted Access
Chapter 302.12 kBAdobe PDFView/Open Request a copy
Chapter 4.pdf
  Restricted Access
Chapter 232.3 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.