Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/2528
Title: Segal –Bargmann Transform for The Lévy Functionals space and Sobolev Spaces
Authors: Abdel-Rahim, Muhannad Mahgoub
Keywords: Physics
X-Ray Fluorescence
Issue Date: 1-Mar-2010
Publisher: Sudan University of Science and Technology
Citation: Abdel-Rahim,Muhannad Mahgoub .Segal –Bargmann Transform for The Lévy Functionals space and Sobolev Spaces/Muhannad Mahgoub Abdel-Rahim; Shawgy Hussein Abd Alla.-Khartoum:Sudan University of Science and Technology,College of Science,2010.-42p.: ill. ; 28cm.-PhD.
Abstract: We study the basics of holomorphic function spaces , and their holomorphically equivalent Segal-Bargmann spaces . We also consider the canonical commutation relations to derive the Segal – Bargmann transform and invstigate the representations of Lie group and Lie algebra . We give analytic functions on the Hilbert space and estimates of bounds of the Segal – Bargmann transform on the Lebesgue space functions . We investigate the Segal-Bargmann transform and functional calculus on matrix spaces and the Theory of Semi-circular and circular systems . We study the Segal-Bargmann transform on a symmetric space of the compact type and for Lévy functional . We also show the pointwise bound for holomorphic functions which are square-integrable with respect to the density fuctions and hence the generalized Segal-Bargmann transform on holomorphic Sobolev spaces .
Description: Thesis
URI: http://hdl.handle.net/123456789/2528
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Segal –Bargmann Transform...pdf
  Restricted Access
title49.29 kBAdobe PDFView/Open Request a copy
Abstract.pdf
  Restricted Access
Abstract127.93 kBAdobe PDFView/Open Request a copy
Research.pdf
  Restricted Access
Research1.01 MBAdobe PDFView/Open Request a copy
Chapter .pdf
  Restricted Access
Chapter 218.16 kBAdobe PDFView/Open Request a copy
search.pdf
  Restricted Access
search3.06 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.