Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/2138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTaha, Hala Hussein Mohammed-
dc.date.accessioned2013-11-10T09:37:53Z-
dc.date.available2013-11-10T09:37:53Z-
dc.date.issued2011-11-01-
dc.identifier.citationTaha,Hala Hussein Mohammed.estimates of Cauchy transform with function Ornstien –Uhlenbeck operator/Hala Hussein Mohammed Taha;Shawgy Hussein Abdalla.-Khartoum:Sudan University Of Science And Technology,College of Science,2011.-315p. : ill. ; 28cm.-PhD.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/2138-
dc.descriptionThesisen_US
dc.description.abstractWe study the Lebesgue space affine isoperimetric inequalities which deal with the inequalities for centroid and projection bodies . we prove the volume inequalities for subspaces of the Lebesgue space and duality of the Lebesgue space affine isoperimetric inequalities. We establish the functional calculus for Ornstein – Uhlenbeck operator and the Fourier integral operators on noncompact symmetric spaces of real rank equal one. The affine and sharp Sobolev inequality and isoperimetric inequalities split twice are considered . We show the weighted norm inequalities and the harmonic analysis of elliptic operators. We investigate the good and Calderion –Zygmund methods .We give some properties of the Cauchy transform on a bounded domain and show the best possible estimates of the second term in the spectral asymptotic of Cauchy transform . We discum the holomorphy of the spectral multipliers and bounded mean oscillation with atomic Hardy space of the Ornstein – Uhlenbeck operatoren_US
dc.description.sponsorshipSudan University Of Science And Technologyen_US
dc.language.isoenen_US
dc.subjectTransformationen_US
dc.titleestimates of Cauchy transform with function Ornstien –Uhlenbeck operatoren_US
dc.typeThesisen_US
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
estimates of Cauchy transform ...pdf
  Restricted Access
title112.95 kBAdobe PDFView/Open Request a copy
Contents.pdf
  Restricted Access
Contents42.18 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.