Please use this identifier to cite or link to this item:
https://repository.sustech.edu/handle/123456789/18666| Title: | دراسـة مقارنة لتقـدير القيـم المفقودة في تصميــم المــربع اللاتينـي باستخـدام طريقـتي يتـس وهاري |
| Other Titles: | Study the Estimation the Missing Values in Latin Square Design by Using Yatess & Harry Method |
| Authors: | عثمـان, مشــاعر خضـر محمــد مشرف, - خـالد رحمـة الله خضــر |
| Keywords: | المــربع اللاتينـي طريقـتي يتـس وهاري الإحصاء التطبيقي |
| Issue Date: | 10-Jan-2017 |
| Publisher: | جامعة السودان للعلوم والتكنولوجيا |
| Citation: | عثمـان, مشــاعر خضـر محمــد . دراسـة مقارنة لتقـدير القيـم المفقودة في تصميــم المــربع اللاتينـي باستخـدام طريقـتي يتـس وهاري / مشــاعر خضـر محمــد عثمـان ؛ خـالد رحمـة الله خضــر .- الخرطوم :جامعة السودان للعلوم والتكنولوجيا ، كلية العلوم ، 2017.- 51ص : ايض؛28سم .- ماجستير |
| Abstract: | Four methods for tackling missing values in Latin square design have been presented: Yates, Harry, Rubin, and the method of Haseman and Gaylar. To make preference among these methods some statistical measurements have been used, which are: lowest value of the mean square error (MSe), highest value of the mean square treatments (MSt) and the value of significant differences between treatments (F cal.). The easiest path of statistical analysis has been taken into account. It has been found that the most preferable method is Yates' method which has the most complicated application whenever the number of missing values are increased, followed by Harry method which has a moderate application difficulty, then Haseman and Gaylar method, and finally Rubin method. The last two methods have the easiest applications. |
| Description: | ماجستير |
| URI: | http://repository.sustech.edu/handle/123456789/18666 |
| Appears in Collections: | Masters Dissertations : Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| دراسـة مقارنة لتقـدير ....pdf | بحث | 8.6 MB | Adobe PDF | View/Open |
| Abstract.pdf | مستخلص | 6.95 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.