Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/18584
Title: Constructing Finite Frames with Fractional Elliptic Bounded Value Problem and Singular Value Inequalities
Other Titles: بناء الإطارات المنتهية طبقا لمسائل القيمة المحدودة الناقصية الكسرية ومتباينات القيمة الشاذة
Authors: Zarroug, Mai Sulieman Mohamed
Supervisor, ,- Shawgy Hussein Abd Alla
Keywords: Mathematics
Singular Value Inequalities
Bounded Value Problem
Constructing Finite Frames
Issue Date: 10-Jan-2017
Publisher: Sudan University of Science and Technology
Citation: Zarroug, Mai Sulieman Mohamed . Constructing Finite Frames with Fractional Elliptic Bounded Value Problem and Singular Value Inequalities / Mai Sulieman Mohamed Zarroug ; Shawgy Hussein Abd Alla .- Khartoum: Sudan University of Science and Technology, college of Science, 2017.- 248p. :ill;28cm .- PhD.
Abstract: The existence and non-existence results for semilinear cooperative elliptic Systems for a class of fractional elliptic boundary value problems and constructor finite frames with a given frame operator are given .We construct the fractional Laplacian phase transitions, boundary reactions and the Brezis-Nirenberg type problem involving the square root of the laplacian. We show the singular values of a product of operators, of difference of positive semidefinite matrices, inequalities of matrices and for commutator operators .We obtain the deficits and excesses of finite normalized tight frames , optimal frames and constructing finite frames of a given spectrum and set of lengths. Inequalities for sums and direct sums of Hilbert space operators and matrix arithmetic–geometric mean are presented.For a class of fractional elliptic boundary value problems.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/18584
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Constructing Finite Frames ....pdfTitle140.59 kBAdobe PDFView/Open
Research.pdf
  Restricted Access
Research2.44 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.