Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/1630
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHamada, Maher Yousef Khaleel-
dc.date.accessioned2013-09-19T09:29:52Z-
dc.date.available2013-09-19T09:29:52Z-
dc.date.issued2012-09-01-
dc.identifier.citationHamada,Maher Yousef Khaleel.Finite Difference Approximation of Fractional order Partial Differential Equations/Maher Yousef Khaleel Hamada;Shawgy Hussein Abdalla.-Khartoum:Sudan University of Science and Technology,College of Science,2012.-65p. : ill. ; 28cm.-PhD.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/1630-
dc.descriptionThesisen_US
dc.description.abstractIn this thesis, we define and investigate the fractional integral. We show fractional derivatives and their relation with fractional partial differential equation. We also present Laplace-Transformation, Mittag-Leffler function and Hilfer derivative operator and show their uses to fractional partial differential equation. We give a numerical solution of one dimensional, and two dimensional fractional order partial differential equations using finite difference methods. We discuss the stability, consistency, convergence and error analysis of the methods used. We give and solve some numerical examples and compare the results obtained with the analytical solutions.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGYen_US
dc.subjectDifferential Eguetionsen_US
dc.titleFinite Difference Approximation of Fractional order Partial Differential Equationsen_US
dc.title.alternativeتقریب الفروق المنتھیة للمعادلات التفاضلیة الجزئیة ذات الرتبة الكسریةen_US
dc.typeThesisen_US
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Finite Difference Approximation ...pdf
  Restricted Access
saerch814.23 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.