Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/12822
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEL-hag, Sami Ali Ahmed-
dc.contributor.authorSupervised, - Shawgy Hussein AbdAlla-
dc.date.accessioned2016-02-25T06:50:22Z-
dc.date.available2016-02-25T06:50:22Z-
dc.date.issued2015-12-10-
dc.identifier.citationEL-hag ,Sami Ali Ahmed .Sharp Bounds and Plate Decomposition for the Cone Multipliers in Euclidean Space /Sami Ali Ahmed EL-hag ;Shawgy Hussein AbdAlla .-Khartoum: Sudan University of Science and Technology, College of Science,2015 .-248p. :ill. ;28cm .-M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/12822-
dc.descriptionThesisen_US
dc.description.abstractWe give the restriction of the Fourier transform to a conical surface with the weak type estimates for cone multipliers on the Hardy space. We show sharp analysis and boundedness of Bergman projections on tube domains over light cones. We also show the bilinear approach to cone multipliers with some sharp bounds for the cone multiplier on negative order in The three related problems of Bergman spaces of certain tube domains over symmetric cones are considered. An improvements in Wolff's inequality and plate decompositions of cone multipliers are presented .en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMathematicsen_US
dc.subjectthe space Euclideanen_US
dc.subjectFrontier incisoren_US
dc.subjectCone beatersen_US
dc.titleSharp Bounds and Plate Decomposition for the Cone Multipliers in Euclidean Spaceen_US
dc.title.alternativeالحدوديات القاطعة وتفكيك التصفيح لمضاريب المخروط في الفضاء الإقليديen_US
dc.typeThesisen_US
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Sharp Bounds and Plate....pdf
  Restricted Access
Research2.83 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.