Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/12534
Title: Lagrangian Navier-Stokes Diffusions and Trudinger-Moser Inequalities on non compact Riemannian manifolds
Other Titles: انتشارات لاجرانجيان نافا ستوكس ومتباينات ترودنجر موسر على متعددات طيات - - ريمانيان غير المتراصة
Authors: Mohamed, Fatima Ahmed Abbas
Supervised, Shawgy Hussein Abdalla
Keywords: Mathematics
Moser inequalities Trodnger
Polyhedra folds Riemannian
Ajeranjian to Navi Stokes
Issue Date: 10-Aug-2015
Publisher: Sudan University of Science and Technology
Citation: Mohamed ,Fatima Ahmed Abbas.Lagrangian Navier-Stokes Diffusions and Trudinger-Moser Inequalities on non compact Riemannian manifolds /Fatima Ahmed Abbas Mohamed ;Shawgy Hussein Abdalla .-Khartoum: Sudan University of Science and Technology, College of Science,285p. :ill. ;28cm .-PhD.
Abstract: We give the eigenvalue estimate , a variational analysis , multiple solutions with stability and instability of Einstien-scalar field Lichnerowicz equations on compact Riemannian manifolds. We construct a minimization problem arising from prescribing scalar curvature functions , a variational principle for the Navier-Stokes equation, the estimate of the first eigenvalue of the Laplacian on a compact Riemannian manifolds and of a closed manifold with positive Ricci curvature. We characterize the Navier-Stokes flow, equations and diffusions on Riemannian manifolds and on the group of homomorphisim of the torus. We also characterize the Lagrangian Navier-Stokes diffusions on manifolds. We discuss the sharp form of the trace Moser-Trudinger inequality on compact and complete Riemannian surface with boundary and complete non-compact Riemannian manifolds.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/12534
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Lagrangian Navier-Stokes... .pdf
  Restricted Access
Research3.6 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.