Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/12086
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElmaky, Nesreen SirElkhatim-
dc.date.accessioned2015-11-26T11:25:32Z-
dc.date.available2015-11-26T11:25:32Z-
dc.date.issued2008-08-10-
dc.identifier.citationElmaky,Nesreen SirElkhatim .Semilinear and Lp – Dirichlet Problem for Elliptic Operators with Functional Calculus of Dirac Operators /Nesreen SirElkhatim Elmaky ;Shawki Hussein Abdallah .-khartoum :Sudan University of Science and Technology ,College of Science,2008.-157p. :ill. ;28cm .-M.Sc.en_US
dc.identifier.urihttp://repository.sustech.edu/handle/123456789/12086-
dc.descriptionThesisen_US
dc.description.abstractWe show results about existence multiplicity and estimates of the semilinear elliptic problems with mixed Dirichlet – Neumann boundary conditions. We establish the solvability of the Dirichlet problem on Lipschitz domains with small Lipschitz constants for elliptic divergence and non-divergence type operators on Lebesgue spaces. We discuss Neumann, Dirichlet and regularity problems for the divergence from elliptic equations in the half – space of L2 for small complex perturbation of coefficient matrix. We establish quadratic estimates for the Dirac operator, which implies that the associated Hardy projection operators are bounded and depend continuously on the coefficient matrix.en_US
dc.description.sponsorshipSudan University of Science and Technologyen_US
dc.language.isoenen_US
dc.publisherSudan University of Science and Technologyen_US
dc.subjectMathematicsen_US
dc.subjecteffects Drakeen_US
dc.subjectSemi-linearen_US
dc.subjectquestion Drchillten_US
dc.titleSemilinear and Lp – Dirichlet Problem for Elliptic Operators with Functional Calculus of Dirac Operatorsen_US
dc.title.alternativeشبه الخطية ومسألة درشلت – Lp لأجل المؤثرات الناقصية مع الحسبان الدالي لمؤثرات دراكen_US
dc.typeThesisen_US
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Semilinear and Lp – Dirichlet ...pdf
  Restricted Access
Research138.02 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.