Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/11756
Title: Constructing Finite Frames of a given Spectrum and Quasianalytic Spectral Sets of Cyclic Contractions
Other Titles: تشييد الاطارات المنتهية للطيف المعطى والفئات الطيفية شبه التحليلية للانكماشات الدوارة
Authors: Mohammed, Hamid Ismail Adam
Keywords: Mathematics
The construction of the tire
Spectrum given
Functional categories
Issue Date: 10-Aug-2015
Publisher: Sudan University of Science and Technology
Citation: Mohammed ,Hamid Ismail Adam.Constructing Finite Frames of a given Spectrum and Quasianalytic Spectral Sets of Cyclic Contractions /Hamid Ismail Adam Mohammed ;Shawgy Hussein AbdAlla .-khartoum :Sudan University of Science and Technology ,College of Science, 2015 .-197p. :ill. ;28cm .-PhD.
Abstract: We show the equivalence relations, distances between Hilbert frames, ellipsoidal tight frames completions with prescribed norms and projection decompositions of operators. We characterize the generalization of Gram–Schmidt orthogonalization generating all Parseval frames and verify the Schur-Horn theorem for operators and frames. We study the spectra of contractions belonging to spectral classes and the hyperinvariant subspace problem for asymptotically nonvanishing contractions, with invariant subspaces for power-bounded operator of class C_1. We discuss the equal-norm Parseval frames and constructing finite frames of a given spectrum and set of lengths. We show the shift-type invariant subspaces of contractions quasianalytic contractions, function algebras and the compression of quasianalytic spectral sets of cyclic contractions.
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/11756
Appears in Collections:PhD theses : Science

Files in This Item:
File Description SizeFormat 
Constructing Finite Frames ...pdfTitle208.34 kBAdobe PDFView/Open
Abstract.pdfAbstract293.45 kBAdobe PDFView/Open
Research.pdfResearch1.87 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.