Please use this identifier to cite or link to this item: https://repository.sustech.edu/handle/123456789/10820
Title: Paraproducts and Continuity of Hankel Operators of Schatten- von Neumann p- Classes and Lorentz Ideals
Other Titles: الضرب الفوقي والاستمرارية لمؤثرات هانكل لعائلات شاتن- فون نيومان ومثاليات لورنتز
Authors: Elhassan, Asmaa Eltayeb Ali
Keywords: Mathematics
Beating epitaxial
Von Neumann
Ideals Lorentz
Issue Date: 1-Nov-2014
Publisher: Sudan University of Science and Technology
Citation: Elhassan ,Asmaa Eltayeb Ali .Paraproducts and Continuity of Hankel Operators of Schatten- von Neumann p- Classes and Lorentz Ideals /Asmaa Eltayeb Ali Elhassan ;Shawgy Hussein Abd Alla .-Khartoum: Sudan University of Science and Technology ,College of Science,2014 .-132 p:ill ;28 cm .-M.Sc.
Abstract: We give an interpolation-free proof of the known fact that a dyadic paraproduct is of Schatten–von Neumann class S_p; if and only if its symbol is in the dyadic Besov space. We use the same technique to prove a corresponding result for dyadic paraproducts with operator symbols. We investigate Hankel operators with anti-holomorphic symbols, on general Fock spaces. For polynomial symbols we will give necessary and sufficient conditions for continuity and compactness a complete characterization of the Schatten–von Neumann p-class membership. We show that the closure of holomorphic polynomials in Hilbert space is a reproducing Kernel Hilbert space of analytic functions and describe various spectral properties of the corresponding Hankel operators with anti- holomorphic symbols. We show the membership of Hankel operator in Lorentz ideals classes
Description: Thesis
URI: http://repository.sustech.edu/handle/123456789/10820
Appears in Collections:Masters Dissertations : Science

Files in This Item:
File Description SizeFormat 
Paraproducts and Continuity .pdftitle137.9 kBAdobe PDFView/Open
Abstract.pdfAbstract293.84 kBAdobe PDFView/Open
search.pdfsearch1.18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.