

Sudan University of science and technology College of engineering Biomedical engineering department

Speckle Noise Reduction on Medical Ultrasound Imaging

تقليل ضوضاء الرقطة في صور الموجات فوق الصوتية

A project submitted for fulfillment of requirement for the B.Sc. (honor) degree in biomedical engineering.

Represented by:

Azza Kamal-Eldeen

Fatima Kamal Mahjoob

Huniada Abd-Elraouf

Supervisor:

Dr. Banazier Ahmed Abrahim

Aug. (2014)

Table of contents

ii	Contant	Pg.No
	الأية	i
ė.	Dedication	ii
	Acknowledgment	iii
	Table of contents	iv
	List of table	vi
	List of figure	vii
	Abbreviation	ix
	Abstract	X
	المستخلص	xi
	Chapter one: Introduction	
1.1	General Review	1
1.2	Problem of the statement	1
1.3	Objective	1
1.4	Specific objectives	2
1.5	Methodology	2
1.6	Thesis layout	2
	Chapter two: Theoretical Background Ultrasound System	
2.1	Waves	3
2.2	What is Sound	3
2.3	Interactions of Ultrasound with Tissue	3
2.3.1	Reflection	4
2.3.2	Scattering	5
2.3.3	Refraction	5
2.3.4	Transmission	6
2.3.5	Attenuation	6
2.4	Amplification and Gain	7
2.5	Ultrasound Wavelength and Frequency	7
2.6	Ultrasound Modes	8
2.7	Basic Principles of B-Mode US	9
2.8	Generation of Ultrasound Pulses	10
2.9	Importance of ultrasound Imaging	11
2.10	Ultrasound Imaging System	12
	Chapter three: Speckle Noise	1
3.1	introduction	14
3.2	Speckle Noise in Ultrasound Imaging	14
3.3	Need for despeckling	15
3.4	Speckle reduction methods	16

3.4.1	Compounding Methods	16
3.4.2	Post Acquisition Methods	16
3.4.2.1	Single scale spatial filtering Methods	17
3.4.2.2	Multi scale Methods	17
3.4.2.2.1	Wavelet based speckle reduction methods	17
3.4.2.2.2	Pyramid based speckle reduction methods	18
3.5	Speckle Noise Modeling	18
3.6	Despeckle filter	20
3.6.1	Nonlinear filtering	21
3.6.1.1	Median filtering	21
3.6.1.2	Hybrid Median Filter	22
3.6.1.3	Geometric filtering	22
3.6.1.4	Linear Scaling Filter	23
3.6.2	Diffusion filtering	23
3.6.2.1	Anisotropic diffusion Filtering	23
3.6.2.2	Speckle-reducing Anisotropic Diffusion Filtering	24
3.6.3	Wavelet filtering	25
3.6.4	Total varision (tv)	25
3.7	Limitations of despeckle filtering techniques	26
3.8	image quality evaluation metric	27
3.9	Literature Review	30
	Chapter four: Materials and Method Description	
4.1	Median Filter	32
4.2	Wavelet transformer	33
4.3	type of wavelets used	36
4.4	The new technique	36
4.5	Haar median technique algorithm	38
	Chapter five: Result and Discussion	
5.1	Experimental results	39
5.2	Haar median technique	66
	Chapter six: conclusion and futurework	
6.1	Conclusion	68
6.2	Recommendation	69
	References	69

List of table

No of table	Title
Table 5.1	Image quality evaluation metrics computed for the liver (σ n=0.05); at statistical measurements of RMSE,SSIM,PSNR and SNR; for different filter types to liver image
Table 5.2	Image quality evaluation metrics computed for the liver (σ n=0.5); at statistical measurements of RMSE,SSIM, PSNR and SNR; for different filter types to liver image
Table 5.3	Image quality evaluation metrics computed for the GYN- abnormal-hematometra (σn=0.05); at statistical measurements of RMSE,SSIM,PSNR and SNR; for different filter types to GYN-abnormal-hematometra image
Table 5.4	Image quality evaluation metrics computed for the GYN- abnormal-hematometra (σ n=0.5); at statistical measurements of RMSE,SSIM,PSNR and SNR; for different filter types to GYN-abnormal-hematometra image
Table 5.5	quality evaluation metrics computed for the unborn image (σ n=0.05); at statistical measurements of RMSE,SSIM,PSNR and SNR; for different filter types to image
Table 5.6	Image quality evaluation metrics computed for the unborn (σ n =0.5) at statistical measurements of RMSE,SSIM,PSNR and SNR; for different filter types

List of figure

No. of	Title	
figure		
Figure 2.1	Interactions of Ultrasound with Tissue	
Figure 2.2	Interactions of Ultrasound with Tissue(reflection)	
Figure 2.3	Interactions of Ultrasound with Tissue(Scattering).	
Figure 2.4	Interactions of Ultrasound with Tissue(Transmission)	
Figure 2.5	Interactions of Ultrasound with Tissue(Attenuation)	
Figure 2.6	Ultrasound transducer	
Figure 2.7	Block diagram of Ultrasound Imaging System	
Figure 3.1	Speckle noies is seen as a granular structure	
Figure 3.2	modeling speckle, standard test image and image with fine detail	
Figure 3.3	modeling speckle, sonogram filters	
Figure 3.4	Filtering process	
Figure.3.5	Diagram of neighborhood pixels used in the hybrid median filter.	
Figure 4.1	Method of Median Filter	
Figure 4.2	Wavelet Transform on a signal	
Figure 4.3	Multilevel Decomposition	
Figure 4.4	Two-Level Image decomposition by using DWT	
Figure 4.5	Haar Wavelet Function Waveform	
Figure 4	Wavelet decomposition of the liver image noise σn=0.5 and 0.05, respectively	
Figure 4.7	Wavelet decomposition of the GYN-abnormal hematometra image noise σn=0.5 and	
	0.05,respectively	
Figure 4	Wavelet decomposition of the unborn image noise σn=0.5 and 0.05,respectively	
Figure 4.9	block diagram of proposed method algorithm	
Figure.5.1	Results of liver image despeckled by various filter on multiplication noise (σn=0.05)	
Figure5.2	Performance analysis graph to image quality evaluation metric for liver image(noise σn =0.05)	
Figure 5.3	Results of liver image despeckled by various filter on multiplication noise (σn=0.5)	
Figure 5.4	Performance analysis graph to image quality evaluation metric for liver Image (noise σn =0. 5)	
Figure 5.5	Results of GYN-ubnormal hematometra despeckled by various filter on multiplication	

	noise (σn=0.05)
Figure.5.6	Performance analysis graph to image quality evaluation metric for GYN- abnormal-hematometra image. (noise $\sigma n=0.05$)
Figure5.7	Results of GYN-abnormal hematomerta despeckled by various filter on multiplication noise(σn =0.5)
Figure5.8	Performance analysis graph to image quality evaluation metric for GYN- abnormal-hematometra image. (noise σn =0.5)
Figuer5.9	Results of unborn image despeckled by various filter on multiplication noise (σn=0.05)
Figure 5.10	Performance analysis graph to image quality evaluation metric for unborn image (noise σn =0.05)
Figure 5.11	Results of unborn image despeckled by various filter on multiplication noise(σn=0.5)
Figure 5.12	Performance analysis graph to image quality evaluation metric For unborn image (noise σn =0.5).
Figure 5.13	(a), (b) images filtered by median filter and haar median technique, respectively from speckled GYN_ hematometa image with variance(σn=0.5)
Figure 5.14	(a), (b) images filtered by median filter and haar median technique, respectively from speckled unborn image with variance(σn=0.05)

Abbreviations

US	UltraSound
TGC	Time Gain Compensation
US B-mode	Ultrasound Brightness mode
US A-mode	Ultrasound Amplitude mode
US M-mode	Ultrasound Motion mode
ICA	Internal Carotid Artery
SAR	Synthetic Aperture Radar
FFS	Fully Formed Speckle pattern
NRLR	Non Randomly distributed with Long-Range order
NRSR	Non Randomly distributed with Short-Range order
PDF	Probability Density Function
gf4d	Geometric Filter
ca	Linear scaling gray level filter
lecasort	Linear scaling and sorting filter
PDE	Partial Differential Equation
ad	Anisotropic Diffusion Filtering
srad	Reducing Anisotropic Diffusion
DSF	Descete Fourier Transformer
TV	Total Variation Filters
ROF	Rudin-Osher-Fatemi
RMSE	Root Mean Square Error
SNR	Signal to Noise Ratio
PSNR	Peak Signal to Noise Ratio
SSIM	Structural Similarity Index
DWT	Discreet Wavelet Transform
IDWT	Inverse Discreet Wavelet Transform
Hrm	Haar median technique

Abstract

Today, ultrasound (US) is one of the most widely used imaging technologies in medicine. It is portable, free of radiation risk, and relatively inexpensive when compared with other imaging modalities.

The ultrasound (US) B-Scan images are obtained with a simple linear or sector scan US probe, which show a granular appearance called speckle. This noise lead to degrades the target detectability and recognition and reduces the contrast, resolutions which affect the human ability to identify normal and pathological tissue.

The objective of this project is to give an overview about types of speckle reduction techniques in ultrasound imaging. And To carry out a comparative evaluation of despeckle filtering based on image quality evaluation metrics.

Anew speckle suppression methods and coherence enhancement of medical ultrasound images were proposed, combines median filter and wavelet shrinkage. It has been found that quality evaluation metrics the proposed method performs better than all other methods while still retaining the structural details and experimental results show that this method retains the edges and textures very well while removing noise.

المستخلص

اليوم، الموجات فوق الصوتيه (US) هي واحده من تقنيات التصوير الاكثر استخداما على نطاق واسع في الطب.وهي اجهزه محموله ،وخاليه من الخطر الاشعاعي ،وغير مكلفه نسبيا مقارنة مع طرانق التصوير الاخرى.

الموجات فوق الصوتيه يتم الحصول على الصوره السطوع B-Scan images بالماسح الضوئي مع خطى بسيط ،والتي تظهر مظهر حبيبات تسمى الرقطه وهذه الضوضاء تقود الى تقليل التباين والدقه التي تؤثر على قدره الانسان على تحديد الانسجه الطبيعيه من المرضيه.

ان الهدف من هذا المشروع هو اعطاء لمحه عامه عن انواع النقنيات التي تساعد على ازالة الرقطه في صور الموجات فوق الصوتيه. ولاجراء تققيم التقنيات على اساس مقاييس تقييم جوده الصوره.

واقتراح اساليب جديدة لازالة الرقطة وتعزيز تماسك صور الموجات فوق الصوتية الطبية، وذلك بالجمع بين المرشح المتوسط ومويجات انكماش. وقد وجد ان مقابيس تقييم الجودة تنفذ الطريقة المقترحة افضل من كل الوسائل الاخرى في حين لا يزال الابقاء على التفاصيل الهيكلية والنتائج التجريبية تبين ان هذا الاسلوب يحتفظ بالحواف و القوام جيدا اثناء ازالة الضوضاء.

Chapter One Introduction

1.1 General review

The medical imaging devices namely X-ray, Computed Tomography/Magnetic Resonance Imaging and ultrasound are producing abundant images which are used by medical practitioners in the process of diagnosis.

The main problem faced by them is the noise introduced due to the consequence of the coherent nature of the wave transmitted. Noise is defined as unwanted signals. There are different filters to remove single type of noise such as salt and pepper, speckle noise, Gaussian noise etc. These noises corrupt the image and often lead to incorrect diagnosis. For example, the x-ray images are often corrupted by Poisson noise, while the ultrasound images are affected by Speckle noise. Speckle is a complex phenomenon, which degrades image quality with a backscattered

wave appearance which originates from many microscopic diffused reflections that passing through internal organs and makes it more difficult for the observer to discriminate fine detail of the images in diagnostic examinations. Thus, denoising or reducing these speckle noise from a noisy image has become the predominant step in medical image processing.[6]

1.2 Problem of the statement

The usefulness of ultrasound imaging is degraded by the presence of signal dependant noise known as speckle. This noise is difficult and different from other types of noise because related to the signal and should be processed and removing without affecting important image features.

1.3 Objective

Give an overview about speckle noise, how to generate, has properties, and what the effectiveness of it on the ultrasound image.

1.4 Specific objectives

- 1. Learning about types of speckle reduction techniques in ultrasound imaging.
- 2. To carry out a comparative evaluation of despeckle filtering based on image quality evaluation metrics.
- 3. Propose new method as a despeckle filter based on hybrid techniques.

1.5 Methodology

Images from the IBE Tech (Giza, Egypt) database of ultrasound images including liver, unborn, and GYN-abnormal-hematometra image. In the quantitative study, add speckle noise with different variance on ultrasound images and using a most importantly techniques to removing that noise.

The new technique of despeckling which based on method that applied the median filter in wavelet transformation of ultrasound image, was applied on noisy images, and then the quality evaluation metrics was found from all methods to compare the performance of those filters.

1.6 Thesis layout

The layout of this project consist of six chapters there are :chapter one include introduction and general review, while chapter two involve theoretical background ultrasound system, speckle noise and despeckle filter in chapter three, in chapter four the materials and method description, however in chapter five the results and discussion were viewed, finally chapter six is conclusion and future work.