

ACKNOWLEDGEMENT

I would like to express my appreciation and thanks to my supervisor, Dr. James Janthana Bango, for his patient supervision and encouragement to the successful completion of this work.

I would also like to thank all my friends and colleagues in Dams Implementation Unit, Sudan University of Science and Technology and Ministry of Physical Planning, Khartoum state.

Engineer Hamed Gasim Elseed head office of surveying division Steering Committee for the Studies &the Consulting Services of the New Projects Dam Implementation Unit and Faisal Mustafa Taha geodetic surveyor (GNPOC) are gratefully acknowledged for their unlimited help.

I would also like to thank the cooperation of many people who contributed in various ways in bringing this thesis to this final stage. Among those, to whom I am grateful, are engineer Enait alla Osman Department of Surveying, Sudan University of Science and Technology, Wail Ali Dam Implementation Unit, GIS centre, Mohammed Mosa Salih Ministry of Physical Planning Khartoum state and IGN staff Paris .

Last, but not least, I thank my parents and my brother for their endless support and encouragement. I could not have done it without them.

Abstract

The possibility of changes in correlation across a surface suggest that for the most accurate interpolation of data at unsampled locations it may be desirable to perform a priori analysis of data set to determine the nature of correlation between the given sample points.

Two models are used for a priori analysis of data set namely the variogram model and covariance functions. Therefore, the main objective of this research is to compare the efficiency of the two models in data analysis and data interpolation.

Samples of ninety measured points were selected for this test. Using geostatistical analyst of kriging it was found that the variogram model gives better results compared to the covariance functions.

تجريدة

إن إمكانية التغيير في الارتباط للبيانات على أي سطح تتطلب إجراء تحليل مسبق لمجموعة البيانات المتوفرة لتقدير طبيعة ذلك الارتباط ومن ثم استخراج علاقة ذات دقة أكبر لتحديد بيانات العينات غير المعلومة.

هناك نوعين من النماذج تم استخدامها في هذه الدراسة لتحديد هذا الارتباط وهي نموذج التباين ونموذج التغير وقد تم استخدام هذين النماذجين بغرض مقارنة الكفاءة في تحليل واستكمال البيانات.

تم في هذه الدراسة جمع 90 عينة من القيم المعلومة وتحليلها بالنموذجين باستخدام برنامج نظم المعلومات الجغرافية المتخصص (ArcGIS Geostatistical Analyst) وقد تبين من نتائج البحث أن نموذج التباين يعطي قياماً أفضل مقارنة مع نموذج التغير.

LIST OF CONTENTS

CONTENT	PAGE
Acknowledgement	I
Abstract	II
Abstract in Arabic	III
List of Contents	IV
List of Tables	VII
List of Figures	VIII
CHAPTER (1) INTRODUCTION	
1.1 General Overview	1
1.2 Thesis Objectives	2
1.3 Thesis Outline	2
CHAPTER (2) DATA ACQUISITION, SAMPLING AND DTM STRCTURE	
2.1 DTM Data Acquisition	4
2.1.1 Ground Survey Techniques	4
2.1.2 Photogrammetric Techniques	5
2.1.3 LIDAR Techniques	6
2.1.3.1 Operating Principles	8
2.1.3.2 Comparison between LIDAR and Photogrammetry	9
2.1.4 Cartographic Digitising Techniques	10
2.2 Sampling	11
2.2.1 Systematic Sampling	11
2.2.2 Progressive Sampling	12
2.2.3 Random Sampling	13
2.2.4 Composite Sampling	13
2.2.5 Sampling Along Contour lines	13
2.2.6 Choice of a Sampling Pattern	13
2.3 DTM Data Structures	15
2.3.1 Grid-based Structure	15
2.3.2 Triangular Irregular Network (TIN) Structure	16

CHAPTER (3) The VARIOGRAM AND COVARIANCE FUNCTIONS METHODS IN DATA ANALYSIS

3.1 General Introduction	17
3.2. The Variogram	17
3.2.1 Regionalized Variable Theory	19
3.2.2 Construction of Semivariogram Model	20
3.2.3 Features of Semivariogram Model	22
3.2.4 Forms of Semi-Variogram Models	22
3.2.5 Analysis of Variogram Model	25
3.3 Covariance Function (Covariogram)	26
3.3.1 Construction of the Covariogram Model	27
3.3.2 Features of Covariogram Model	28
3.3.3 Forms of Covariogram Models	28
3.3.4 Analysis of Covariance Function	29
3.4 Relationship between Covariance Function and Semivariogram	29

CHAPTER (4) INTERPOLATION TECHNIQUES

4.1 Introduction	32
4.2 Interpolation Techniques	32
4.2.1 Mathematical Methods	32
4.2.1.1 Global Functions	33
4.2.1.2 Local Mathematical Functions	34
4.2.2 Deterministic Methods	35
4.3 Methods of Interpolation	38
4.3.1 Inverse Distance to a Power Weight	38
4.3.2 Spline	39
4.3.3 Kriging	40
4.3.3.1 Ordinary Kriging	42
4.3.3.2 Simple Kriging	43

CHAPTER (5) TEST STATISTICS

5.1 Test Statistics	44
5.2 The Prediction Error	44
5.3 Mean Prediction Error	45
5.4 The Standard Deviation of Observations or Standard Error	45

5.5 Root Mean Square Error (RMSE)	46
5.6 Mean Standardized Prediction Errors	46
5.7 Root-mean Square Standardized Error	47
5.8 Summary of Test Statistics	47
CHAPTER (6) TESTS AND RESULTS	
6.1 Case Study	48
6.2 Preparation in Excel Format	51
6.3 Import Data in ArcGIS9.2	52
6.4 Explore Data	53
6.5 Geostatistical Analyst using Geostatistical Wizard	55
6.6 Results	62
6.7 Figures (6.1) and (6.2) show the contour map of the test area	64
6.8 Comparison between the variogram and covariogram model result using Cross-validation	65
CHAPTER (7) ANALYSIS OF RESULTS	
7.1 Effect of the lag size on the range	66
7.2 Effect of the range on the prediction	66
7.3 Contour maps produced from the data using the two models are almost similar at the edges	67
CHAPTER (8) CONCLUSION AND RECOMMENDATIONS	
8.1 Conclusion and Recommendations	68
8.2 Conclusions	68
8.3 Recommandations	69
REFERENCES	70
APPENDIX (A)	73
APPENDIX (B)	75
APPENDIX (C)	77

LIST OF TABLES

Table	Page
Table (6.0) Data Preparation in excel Format	51
Table (6.1 a) Effect of lag size on the correlation rage using variogram model	62
Table (6.1 b) Effect of lag size on the correlation rage using variogram model	62
Table (6.2 a) Effect of the correlation rage on prediction data using Variogram model	62
Table(6.2 b) Effect of the correlation rage on prediction data using variogram model no. of lags 10	62
Table (6.3 a) Effect of lag size on the correlation rage using covariogram model	63
Table (6.3 b) Effect of lag size on the correlation rage using covariogram model	63
Table (6.4 a) Effect of the correlation rage on prediction data using covariogram model	63
Table (6.4 b) Effect of the correlation rage on prediction data using covariogram model no. of lags10	63

LIST OF FIGURES

Figure	Page
Fig (2.1) LIDAR systems	7
Fig (2. 2) Regular geometric patterns	11
Fig (2.3) Grid structure for Progressive Sampling	12
Fig (2.3) Triangular Irregular Network (TIN) Structure	16
Fig (3.1) shows a typical representation of Semi variogram functions	18
Fig (3.2) The relationship between the three components	19
Fig (3.3) Lags	21
Fig (3.4) Features of Variogram model	22
Fig (3.5) Forms of semi-variogram models	24
Fig (3.6) Form of Covariogram	27
Fig (3.7) Features of Covariogram	28
Fig (3.8) Relationship between the covariance $C(h)$ and the semi-variance (h)	31
Fig (4.1) Nearest Neighbour Criterion	37
Fig (4.2) Directionally controlled searches	37
Fig (6.1): Methodology diagram	50
Fig (6.3) Insertion of dbf file into GIS	52
Fig (6.4) The case study area sample grid points	52
Fig (6.5) Histogram of study samples	53
Fig (6.6) Semivariogram/Covariance Cloud	54
Fig (6.7) Semivariogram/Covariance Cloud selecting some pair points	55
Fig (6.8) Choosing input data and the kriging method	56
Fig (6.9) Geostatistical method selection	56
Fig (6.10) Semivariogram/Covariance modeling	57
Fig (6.11) Directional semivariograms	58
Fig (6.12) Searching neighborhood	59
Fig (6.13) Cross-validation	61
Fig (6.14) Contour map from variogram modeling using ArcGIS 9.2 package	64
Fig (6.15) Contour map from variogram modeling using ArcGIS 9.2 package	64
Fig (6.16) Comparison between the variogram and covariogram model result using Cross-validation	65