

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

إِنَّ فِي خَلْقِ السَّمَاوَاتِ وَالْأَرْضِ وَالْخَلَافِ الْلَّيْلِ وَالنَّهَارِ وَالْفُلْكِ الَّتِي تَجْرِي فِي الْبَحْرِ
بِمَا يَنْفَعُ النَّاسَ وَمَا أَنْزَلَ اللَّهُ مِنَ السَّمَاءِ مِنْ مَاءٍ فَأَحْيَا بِهِ الْأَرْضَ بَعْدَ مَوْتَهَا وَبَثَ فِيهَا
مِنْ كُلِّ دَآبَةٍ وَتَصْرِيفِ الرِّيَاحِ وَالسَّحَابِ الْمُسَخِّرِ بَيْنَ السَّمَاءِ وَالْأَرْضِ لَا يَأْتِي لِقَوْمٍ يَعْقِلُونَ

صدق الله العظيم

سورة البقرة الآية (164)

DEDICATION

To each of taught me, and took my hand, and Lighted me through science and knowledge.

To both encouraged me in my journey to excellence and success.

To each of the supported me and stood by me.

To each of said to me: No, it was the cause of motivational.

To all of the success was his way, and the goal of excellence, and excellence him.

Thanks to all of you and appreciation and respect.

ACKNOWLEDGMENT

This thesis is a culmination of the contributions of many individuals who supported me, directly or indirectly, in the past few years. Firstly, I would like to a very special thank my supervisor;

Assoc. Prof. Dr. Rashid A. Saeed

For the ongoing support and encouragement: particularly in times when I took an unexpected detour from my research.

I also thank my wonderful family for their unwavering faith in me during times when the finish-line was not in sight.

Thank to my friends - thank you for motivation and memories. You made the journey a much easier one.

Finally, thank for Family of Electronic Engineering School at the Sudan University of Science and Technology. Without his selflessness, insight, teaching abilities and contagious enthusiasm for the subject, this Master's thesis simply would not have materialized

October 2014

ABSTRACT

The demand for mobile communication systems with high data rates has dramatically increased in recent years. Space-Time Block Coding (STBC) is a MIMO transmit strategy which exploits transmit diversity and high reliability. In this thesis presented Orthogonal Space-Time Block Code system (OSTBC) which achieves high through-put and good performance. The main goal of this work is to provide a unified theory of OSTBCs for two and four transmit antennas and one (or more) receives antennas. OSTBCs, provide an elegant encoding and linear decoding technique while offering full diversity benefits in multiple-input multiple-output (MIMO) environments. Our design aims to improve Bit Error Rate (BER) performance, by iteratively choosing code design parameters that minimize the union upper bound on the BER. This design technique is implemented with two cases of 1 or 2 transmit antennas and 1, 2 or 4 receive antennas. Finally, conclude that the use of the proposed method (1x4) reduces the value of BER and the complexity of the system compared with other methods at different values for each of the packet numbers (500, 1000, 2000) packets and frame length (50, 100, 500) symbols so that a simple change in the value of the (E_b/N_o) of about 1dB (value oscillating between 10 and 11 dB) at 10^{-4} BER point. The results of the simulation are compatible with what is expected from the use of the OSTBC technique. The simulations show that the Orthogonal STBC design can efficiently reduce the BER and at the same time Reduce signal-to- noise ratio (SNR).

المستخلص

ازداد الطلب على أنظمة الاتصالات المتنقلة مع ارتفاع معدلات البيانات بشكل كبير في السنوات الأخيرة. كتل شفرة الزمكان هو استراتيجية الإرسال في أنظمة تعدد المدخلات وتعدد المخرجات الذي يستغل تنوع الإرسال والموثوقية العالية. هذه الأطروحة تقدم نظام كتل شفرة الزمكان المتعامد الذي يحقق إنتاجية عالية وأداء جيد. الهدف الرئيسي من هذا العمل هو تقديم نظرية موحدة لكتل شفرة الزمكان المتعامد بإستخدام هوائي إرسال وإستخدام واحد (أو أكثر) من هوائي في الإستقبال. نظام كتل شفرة الزمكان المتعامد يوفر ترميز أنيق وتقنية فك ترميز خطية في حين يقدم فوائد التنوع الكاملة في بيئة تعدد المدخلات وتعدد المخرجات. ويهدف هذا التصميم لتحسين معدل خطأ البيانات، عن طريق اختيار معاملات تصميم كود المعلومات التي تقلل من معدل خطأ البيانات. ويتم تنفيذ هذه التقنية مع حالتين هوائي أو هوائيين للإرسال و هوائي أو هوائيين أو أربعة هوائيات للإستقبال . أخيرا، نخلص إلى أن استخدام الطريقة المقترحة (1x4) يقلل من قيمة معدل خطأ البيانات وتعقيد النظام بالمقارنة مع الطرق الأخرى عند قيم مختلفة لكل من عدد حزم البيانات (500، 1000، 2000) حزمة وطول الإطار (50، 100، 500) رمز بحيث أن قيمة نسبة الإشارة إلى الضجيج تتراوح حول 1 ديسيل (تتذبذب بين 10 و 11 ديسيل) عندما تكون قيمة معدل خطأ البيانات تساوي 10^{-4} . وقد كانت نتائج المحاكاة متوافقة مع ما هو متوقع من استخدام تقنية كتل شفرة الزمكان المتعامد. تظهر المحاكاة أن تصميم كتل شفرة الزمكان المتعامد يمكن أن يقلل بكفاءة معدل خطأ البيانات، وفي الوقت نفسه تقليل نسبة الإشارة إلى الضجيج.

Contents

الآية	i
Dedication	ii
Acknowledgement	iii
Abstract	iv
المستخلص	v
Contents	vi
List of Figures	ix
List of Tables	xii
List of Abbreviations	xiii

Chapter one: Introduction

1.1	Overview	1
1.2	Problem statement	2
1.3	Aim and Objectives of the Thesis.....	2
1.4	Methodology	3
1.5	Research Outline	4

Chapter two: Multiple Antenna Systems and Space-Time Coding (STC)

2.1	Background	5
2.2	Wireless Communication Channel	6
2.2.1	Additive white Gaussian noise	7
2.2.2	The propagation effects	8
2.2.2.1	Large-scale fading effects	9
2.2.2.2	Small-scale propagation effects	9
2.3	Multiple-Antenna Wireless Communication Systems	10
2.3.1	Array gain	10

2.3.2	Interference reduction	10
2.3.3	Diversity gain	10
2.3.3.1	Transmit Diversity	10
2.3.3.2	Receive Diversity	11
2.3.4	Multi - Antenna Transmission Methods	12
2.4	Space-Time Coding (STC).....	13
2.4.1	Space Diversity/MIMO system.....	14
2.4.2	Time Diversity.....	16
2.4.3	Frequency Diversity.....	16
2.5	Space Time Block Coding.....	17
2.5.1	STBC transmitter.....	19
2.5.2	STBC receiver.....	21
2.6	Block Code.....	22
2.6.1	Error Detection.....	27
2.6.2	The Minimum Distance of a Block Code.....	28
2.7	Related works.....	29
2.8	Chapter Summary	38

Chapter Three: Design of Orthogonal STBC

3.1	Overview	40
3.2	Design of Orthogonal Space Time Block Code.....	40
3.2.1	Two transmit antenna and one receive antenna system (2x1)..	46
3.2.2	Two transmit antennas and two receive antennas (2x2).....	48
3.3	Proposed Method.....	51

3.4	Simulation Model and Design.....	61
3.5	Simulation parameters.....	63
3.4	Chapter Summary.....	63

Chapter Four: Results and Discussions

4.1	Introduction.....	64
4.2	Results and Discussions.....	64
4.3	Chapter Summary.....	68

Chapter Five: Conclusion and Recommendations

5.1	Conclusion	70
5.2	Recommendations	71
References	72
Appendix.	75

List of Figures

Figure (2.1)	Wireless communication applications.....	5
Figure (2.2)	The AWGN channel effect	7
Figure (2.3)	The propagation effects through wireless channel.....	8
Figure (2.4)	Signal propagation over a wireless channel.....	9
Figure (2.5)	Antenna configuration in wireless systems	12
Figure (2.6)	The Space diversity scheme	15
Figure (2.7)	The Time diversity scheme	16
Figure (2.8)	The Frequency diversity scheme	17
Figure (2.9)	The STBC encoder	19
Figure (2.10)	The STBC receiver	21
Figure (2.11)	The block code encoder	23
Figure (2.12)	Systematic format of a code word	25
Figure (2.13)	encoding circuit for (n, k) code	26
Figure (2.14)	block diagram of a maximum ratio combining diversity.....	30
Figure (2.15)	Performance analysis of SISO, SIMO, MISO.....	31
Figure (2.16)	The BER performance of the BPSK Alamouti Scheme, $nt = 2, nr = 1,2$	33
Figure (2.17)	The BER performance of the QPSK Alamouti Scheme, $nt = 2, nr = 1,2$	34

Figure (2.18)	The SER performance of the 4 QAM Alamouti Scheme, nt = 2, nr = 1	34
Figure (2.19)	The SER performance of the 16 QAM Alamouti Scheme, nt = 2, nr = 1	35
Figure (2.20)	FER performance vs. frequency selectivity.....	37
Figure (3.1)	2X2 OSTBC system	42
Figure (3.2)	The channel effects at the 2 transmit antenna and one receive antenna	46
Figure (3.3)	Signal at the receiver	47
Figure (3.4)	The channel effects at the (2x2) system	48
Figure (3.5)	(2x2) system receiver	50
Figure (3.6)	Four transmit antennas and Four receive antennas (4x4) system	51
Figure (3.7)	one transmit antenna and four receive antennas (1x4) system.....	53
Figure (3.8)	System model of proposed method (1x4).....	54
Figure (3.9)	OSTBC encoder block.....	55
Figure (3.10)	OSTBC Combiner block.....	57
Figure (3.11)	OSTBC Combiner block Components.....	59
Figure (3.12)	The flowchart for simulation	62
Figure (4.1)	Comparison of OSTBC types and proposed Method, with (number of packets =500 and frame length= 100)	64
Figure (4.2)	Comparison of OSTBC types and proposed Method, with (number of packets =500 and frame length= 50)	65
Figure (4.3)	Comparison of OSTBC types and proposed Method, with number of packets =1000 and frame length= 100)	65
Figure (4.4)	Comparison of OSTBC types and proposed Method, with (number of packets =1000 and frame length= 500)	66

Figure (4.5) Comparison of OSTBC types and proposed Method,
with (number of packets =2000 and frame length= 100 **66**

Figure (4.6) Comparison of OSTBC types and proposed Method,
with (number of packets =2000 and frame length= 500 **67**

List of Tables

Table (2.1)	Block Code with k=4 and n=7	23
Table (3.1)	Alamouti-type code matrices	42
Table (3.2)	All possibilities to generate a coding matrix's	44
Table (3.3)	Alamouti scheme-A channel model notation.....	46
Table (3.4)	(2x2) channel model notation	49
Table (3.5)	Received signal notation of (2x2) system	49
Table (3.6)	OSTBC encoder block variables.....	55
Table (3.7)	2x2 encoding algorithms.....	56
Table (3.8)	Variables of combiner block.....	57
Table (3.9)	2x2 combiner algorithm.....	58
Table (3.10)	Simulation parameters.....	63

List of Abbreviations

MIMO	Multiple-Input Multiple-Output
BER	Bit Error Rate
STC	Space-time coding
STTC	Space-Time Trellis Codes
STBC	Space-Time Block Codes
OSTBC	Orthogonal Space-Time Block Codes
SISO	Single Input Single Output
SNR	Signal to Noise Ratio
SER	Symbol Error Rate
ISI	Inter-Symbol Interference
AM	Amplitude Modulation
FM	Frequency Modulation
PEP	Pair wise Error Probability
AWGN	Additive white Gaussian noise
dB	decibel
MRC	Maximum Ratio Combining
SIMO	Single Input/Multiple Output
MISO	Multiple Input/Single Output
CSI	Channel State Information
SM	Spatial Multiplexing
ML	Maximum Likelihood
LOS	Line of Sight
NLOS	No Line of Sight
BPSK	Binary Phase Shift Keying
NRZ	Non Return to Zero
QPSK	Quadrature Phase Shift Keying

RS	Reed Solomon
QAM	Quadrature Amplitude Modulation