بسم الله الرحمن الرحيم الآية

قال تعالى: ﴿ اللّهُ لاَ إِلهَ إِلاّ هُو الْحَيُّ الْقَيُّومُ لاَ تَأْخُذُهُ سِنَةٌ وَلاَ نَوْمٌ لَهُ مَا فِي السّمَأُواتِ وَمَا فِي الأَرْضِ مَن فَا اللّهِ عَنْدَهُ إِلاّ بِإِذْنِهِ يَعْلَمُ مَا بَيْنَ أَيْدِيهِمْ وَمَا خَلْفَهُمْ وَلاَ يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إِلاّ بِمَا شَاء خَلْفَهُمْ وَلاَ يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إِلاّ بِمَا شَاء وَسِعَ كُرْسِينَّهُ السّمَأُواتِ وَالأَرْضَ وَلاَ يَؤُودُهُ حِفْظُهُمَا وَهُو الْعَلِيُّ الْعَظِيمِ

﴿ ٥٥ ٢ ﴾ سورة البقرة

Dedication

To the great prophet Mohammed "Peace and prayers be upon him"

To whom we love my mother for her unconditional support, also to my father and my family.

I would like to dedicate this study to everyone at ZETA Automation company and specially Engineer. Alla Eldain Hamad for their encouragement and support.

ii

Acknowledgment

First of all, I would like to express my thanks to God for his great help in completing this thesis. After that there are numerous of people I would like to thank for their help though-out the completion of this thesis.

I would like to express my deep thanks to my supervisor, Dr. Aamir Hashim Obeid Ahmed for his support, continuous help, encouragement, and advice.

I would also like to thank the staff members of the school of electrical and nuclear engineering for their help, kindness, and friendship.

Last but not the least; I would like specially thank my teacher Mohamed Sayed Haj.

Abstract

This research is about designing a miniature model for production of nitrocellulose acid by mixing three acids (nitric, sulfuric, and oleum) using automatic control methods rather than the traditional ones. This is because it is safe and accurate compared to the traditional method, which is considered more dangerous to humans when dealing directly with these acids.

The main components used to design miniature model are Programmable Logic Controller (PLC), G-box, pumps, input/output modules, and sensors. Furthermore, the Simatic Ladder Diagram produced by the Siemens company was used for programming and simulation.

Practical results obtained proved that this method is more accurate and safer to produce nitrocellulose acid.

المستلخص

الهدف من هذه الدراسة تصميم نموذج مصغر لإنتاج حامض النيتروسيليلوز بخلط ثلاثة أحماض (النيتريك ،الكبريتيك، والاوليوم) بطريقة آليه بدلا من الطريقة التقليدية وذلك لانها طريقة أمنة ودقيقة مقارنة مع الطريقة التقليدية (اليدوية) التي تعتبر اكثر خطورة علي الانسان عند التعامل المباشر مع هذه الاحماض.

المكونات الصلبة الاساسية الاساسية التي تم استخدامها لبناء النموذج المصغر هي المتحكم المنطقى القابل للبرمجة، جهاز G-box، مضخات، وحدات الادخال والاخراج، والمحسسات. اضافة لذلك تم استخدام برنامج مكتوب بلغة السلم منتج من شركة سمينس للبرمجة والمحاكاة.

النتائج العملية المتحصل عليها برهنت ان هذه الطريقة اكثر دقة وسلامة لانتاج حامض النيترزسيليلوز

Table of Contents		
الآية	i	
Dedication	ii	
Acknowledgement	iii	
Abstract	iv	
المستخلص	V	
Table of Contents	vi	
List of Figures	ix	
CHAPTER ONE		
INTRODUCTION		
1.1 Background	1	
1.2 Problem Statement	2	
1.3 Objectives	2	
1.4 Methodology	2	
1.5 Thesis Layout	3	
CHAPTER TWO		
THEORETICAL BACKGROUND		
2.1 Nitric Acid	4	
2.1.1 Production	5	
2.1.2 Uses	6	
2.1.3 Safety	6	
2.2 Sulfuric Acid	6	
2.2. 1 Manufacture	7	
2.2.2 Uses	9	
2.2.3 Safety	10	
2.2.4 Legal restrictions	10	
2.3 Oleum Acid	11	

2.3.1 Production	
2.3.2 Applications	
2.3.3 Reactions	
2.4 Nitrocellulose	
2.4.1 Guncotton	13
2.4.2 Nitrate film	15
2.4.3 Production	17
2.4.4 Uses	17
CHAPTER THREE	
SYSTEM DESCRIPTION	
3.1 Hardware and Software	19
3.2 Programmable Logic Controllers	19
3.2.1 PLC components	22
3.2.2 Programming a PLC	27
3.3 Level Sensor	28
3.4 Pump	28
3.4.1 Positive displacement pump	29
3.4.2 Specifications	30
3.4.3 Pump material	31
3.4.4 Laraib pumping power	31
31 3.4.5 Pump efficiency	32
3.5 G-box	33
3.5.1 The G-box characteristics	33
3.5.2 Wireless up-load and download PLC programming	33
3.5.3 Message communicate with user's mobile	33
3.5.4 Applied field	
3.5.5 The G-box setting	34

CHAPTER FOUR		
EXPERIMENTAL WORKS AND RESULTS		
4.1 The Model	36	
4.2 Sequence of Operation	36	
4.3 The Flowchart	40	
4.4 Ladder Program	42	
CHAPTER FIVE		
CONCLUSION AND RECOMMENDATIONS		
5.1 Conclusion	43	
5.2 Recommendations	43	
References	44	

List of Figures

Figure	Title	Page
2.1	Chemical structure of the nitric acid	4
2.2	Chemical structure of the sulfuric acid	7
2.3	Chemical structure of the nitrocellulose	13
3.1	PLC component	22
3.2	Input adjustment interface	25
3.3	Output adjustment interface	26
3.4	A lobe pump	29
3.5	Screw pump	29
3.6	Lobe pump internals	29
3.7	Mechanism of a scroll pump	29
3.8	G-box communication	34
3.9	G-box setting	35
4.1	The overall hardware and software chemical system	36
4.2	Automatic operation mode	37
4.3	Manual operation modes	37
4.4	Levels 1 nitric acid	38
4.5	Level 2 nitric acid and sulfuric acid	38
4.6	Level 3 nitric acid and sulfuric acid and oleum	39
4.7	Mixture acids with stellar	39
4.8	The flowchart	41